JP2006105434A - Heat pump hot water supply heating device - Google Patents

Heat pump hot water supply heating device Download PDF

Info

Publication number
JP2006105434A
JP2006105434A JP2004289546A JP2004289546A JP2006105434A JP 2006105434 A JP2006105434 A JP 2006105434A JP 2004289546 A JP2004289546 A JP 2004289546A JP 2004289546 A JP2004289546 A JP 2004289546A JP 2006105434 A JP2006105434 A JP 2006105434A
Authority
JP
Japan
Prior art keywords
hot water
heating
water storage
refrigerant
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004289546A
Other languages
Japanese (ja)
Other versions
JP4215699B2 (en
Inventor
Koji Namikata
浩二 南方
Hideji Hibi
秀二 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004289546A priority Critical patent/JP4215699B2/en
Priority to KR20050075013A priority patent/KR100640137B1/en
Priority to CN 200510109657 priority patent/CN100526727C/en
Publication of JP2006105434A publication Critical patent/JP2006105434A/en
Application granted granted Critical
Publication of JP4215699B2 publication Critical patent/JP4215699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heating property at starting operation by giving priority to a heating side in distributing compressor capability at the beginning of starting hot water storing operation and heating operation at the same time while sorting refrigerant into both a hot water storage water refrigerant heat exchanger and a heating side water refrigerant heat exchanger. <P>SOLUTION: This heat pump hot water supply heating device comprises a hot water storage side heat pump refrigerant circuit TR, a heating side heat pump refrigerant circuit DR, a hot water storage circuit C2 for circulating hot water in a hot water storage tank 31 for boiling-up, a heating circuit C1 for circulating heating hot water into a heating terminal for heating operation, and a control device S1 for controlling the openings of a hot water storage side flow control valve 27 and a heating side flow control valve 26 to sort the flow of the refrigerant from a compressor into the hot water storage heat pump refrigerant circuit and the heating side heat pump refrigerant circuit. The control device makes the opening of the heating side flow control valve in the heating side heat pump refrigerant circuit greater than the opening of the hot water storage side flow control valve in the hot water storage side heat pump refrigerant circuit at the beginning of starting hot water storing operation and heating operation at the same time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二酸化炭素を冷媒として用いたヒートポンプ式給湯暖房装置に関し、特に貯湯運転と暖房運転との同時運転時に、圧縮機からの冷媒を貯湯側ヒートポンプ冷媒回路と暖房側ヒートポンプ冷媒回路とに振り分けて流すようにしたヒートポンプ式給湯暖房装置関する。   TECHNICAL FIELD The present invention relates to a heat pump hot water supply and heating device using carbon dioxide as a refrigerant, and in particular, distributes refrigerant from a compressor to a hot water storage side heat pump refrigerant circuit and a heating side heat pump refrigerant circuit during simultaneous operation of hot water storage operation and heating operation. This relates to a heat pump type hot water supply and heating system that is allowed to flow.

二酸化炭素を冷媒として用いたヒートポンプ式給湯暖房装置において、ヒートポンプユニットの冷媒回路に貯湯側水冷媒熱交換器と暖房側水冷媒熱交換器の双方を組み込み、貯湯タンクに貯留された湯水を沸き上げる貯湯運転と、床暖房パネルなどの暖房端末に加熱した温水を循環供給して暖房する暖房運転とが行えるようにしたものが知られている(例えば、特許文献1参照)。
特開2002−257366号公報
In a heat pump hot water supply and heating system using carbon dioxide as a refrigerant, both the hot water storage side refrigerant heat exchanger and the heating side water refrigerant heat exchanger are incorporated in the refrigerant circuit of the heat pump unit to boil hot water stored in the hot water storage tank. A hot water storage operation and a heating operation in which warm water heated to a heating terminal such as a floor heating panel is circulated and heated are known (for example, see Patent Document 1).
JP 2002-257366 A

ところで、上記した特許文献1のヒートポンプ式給湯暖房装置では、ヒートポンプ冷媒回路に貯湯側水冷媒熱交換器と暖房側水冷媒熱交換器の双方が直列接続の形で設けられているため、貯湯運転と暖房運転を個別に行うことができないばかりでなく、貯湯運転と暖房運転の同時運転において、圧縮機の能力を貯湯側水冷媒熱交換器と暖房側水冷媒熱交換器に調整可能に振り分けることができない。   By the way, in the heat pump type hot water supply and heating device of Patent Document 1 described above, both the hot water storage side water refrigerant heat exchanger and the heating side water refrigerant heat exchanger are provided in series in the heat pump refrigerant circuit. In addition to being able to perform heating and heating operations individually, in the simultaneous operation of hot water storage operation and heating operation, the capacity of the compressor can be adjusted and distributed to the hot water storage side water refrigerant heat exchanger and the heating side water refrigerant heat exchanger. I can't.

そこで、圧縮機の能力の問題から貯湯側水冷媒熱交換器と暖房側水冷媒熱交換器の双方に冷媒を同時に流す場合、貯湯側水冷媒熱交換器と暖房側水冷媒熱交換器に対して、冷媒をそれぞれ適切に振り分けて流すことが望まれている。   Therefore, when the refrigerant flows through both the hot water storage side heat refrigerant heat exchanger and the heating side water refrigerant heat exchanger due to the problem of the capacity of the compressor, the hot water storage side water refrigerant heat exchanger and the heating side water refrigerant heat exchanger Therefore, it is desired to distribute the refrigerant appropriately and flow it.

特に、暖房運転の開始当初は、暖房端末が設置された部屋の温度を早急に上昇させる必要があることから、貯湯運転と暖房運転との同時運転の際には、圧縮機の能力配分において暖房側を優先して、貯湯側水冷媒熱交換器よりも暖房側水冷媒熱交換器へ多量の冷媒を流す必要がある。   In particular, at the beginning of the heating operation, it is necessary to raise the temperature of the room in which the heating terminal is installed as soon as possible. Therefore, in the simultaneous operation of the hot water storage operation and the heating operation, heating is performed in the capacity distribution of the compressor. It is necessary to give a larger amount of refrigerant to the heating side water refrigerant heat exchanger than to the hot water side water refrigerant heat exchanger, giving priority to the side.

本発明は、上述の実情に鑑みてなされたものであり、貯湯運転と暖房運転との同時運転を可能にしつつ、貯湯用水冷媒熱交換器と暖房側水冷媒熱交換器の双方に冷媒を振り分け可能とし、かつ、同時運転開始当初においては、圧縮機の能力配分において暖房側を優先して、運転開始時の暖房特性を高めることができるようにするヒートポンプ式給湯暖房装置の提供を目的としている。   The present invention has been made in view of the above circumstances, and distributes refrigerant to both the hot water storage water refrigerant heat exchanger and the heating side water refrigerant heat exchanger while enabling simultaneous operation of hot water storage operation and heating operation. An object of the present invention is to provide a heat pump type hot water supply and heating device that is capable of improving the heating characteristics at the start of operation by giving priority to the heating side in the capacity distribution of the compressor at the beginning of simultaneous operation. .

請求項1に記載の本発明は、圧縮機、貯湯側水冷媒熱交換器、貯湯側流量調整弁及び空気熱交換器を冷媒配管によりループ状に接続して構成し、二酸化炭素を冷媒として用いた貯湯側ヒートポンプ冷媒回路と、前記圧縮機の吐出側の冷媒流路から分岐し、暖房側水冷媒交換器及び暖房側流量調整弁を冷媒配管により接続して構成し、かつ、前記貯湯側流量調整弁と空気熱交換器との間の冷媒流路に合流させた暖房側ヒートポンプ冷媒回路と、貯湯運転時に前記貯湯側水冷媒熱交換器と貯湯タンクとの間でこの貯湯タンク内の湯水を循環させて沸き上げる貯湯循環回路と、暖房運転時に前記暖房側水冷媒熱交換器と暖房端末との間で暖房用の温水を循環させて暖房を行う暖房循環回路と、前記貯湯側流量調整弁及び暖房側流量調整弁の弁開度を制御し、前記圧縮機からの冷媒の流れを前記貯湯側ヒートポンプ冷媒回路と暖房側ヒートポンプ冷媒回路とに振り分ける手段を有する制御装置とを備え、前記制御装置は、貯湯運転と暖房運転との同時運転開始当初に、暖房側ヒートポンプ冷媒回路の暖房側流量調整弁の弁開度を、貯湯側ヒートポンプ冷媒回路の貯湯側流量調整弁の弁開度よりも大きくすることを特徴とする。   The present invention according to claim 1 is configured by connecting a compressor, a hot water storage side water refrigerant heat exchanger, a hot water storage side flow rate adjustment valve, and an air heat exchanger in a loop shape with a refrigerant pipe, and using carbon dioxide as a refrigerant. A hot water storage side heat pump refrigerant circuit and a refrigerant flow path on the discharge side of the compressor, and a heating side water refrigerant exchanger and a heating side flow rate adjustment valve are connected by a refrigerant pipe, and the hot water storage side flow rate The heating side heat pump refrigerant circuit joined to the refrigerant flow path between the regulating valve and the air heat exchanger, and hot water in the hot water storage tank between the hot water storage side water refrigerant heat exchanger and the hot water storage tank during hot water storage operation. A hot water storage circulation circuit that circulates and heats up, a heating circulation circuit that performs heating by circulating hot water for heating between the heating water refrigerant heat exchanger and the heating terminal during heating operation, and the hot water storage side flow rate adjustment valve And the opening degree of the heating side flow control valve And a control device having means for distributing the refrigerant flow from the compressor to the hot water storage side heat pump refrigerant circuit and the heating side heat pump refrigerant circuit, wherein the control device is operated simultaneously with the hot water storage operation and the heating operation. Initially, the opening degree of the heating side flow rate adjustment valve of the heating side heat pump refrigerant circuit is made larger than the opening degree of the hot water storage side flow rate adjustment valve of the hot water storage side heat pump refrigerant circuit.

請求項2に記載の本発明は、圧縮機、貯湯側水冷媒熱交換器、貯湯側流量調整弁及び空気熱交換器を冷媒配管によりループ状に接続して構成し、二酸化炭素を冷媒として用いた貯湯側ヒートポンプ冷媒回路と、前記圧縮機の吐出側の冷媒流路から分岐し、暖房側水冷媒交換器及び暖房側流量調整弁を冷媒配管により接続して構成し、かつ、前記貯湯側流量調整弁と空気熱交換器との間の冷媒流路に合流させた暖房側ヒートポンプ冷媒回路と、貯湯運転時に前記貯湯側水冷媒熱交換器と貯湯タンクとの間でこの貯湯タンク内の湯水を循環させて沸き上げる貯湯用循環回路と、暖房運転時に前記暖房側水冷媒熱交換器と暖房端末との間で暖房用の温水を循環させて暖房を行う暖房循環回路と、前記貯湯側流量調整弁及び暖房側流量調整弁の弁開度を制御し、前記圧縮機からの冷媒の流れを前記貯湯側ヒートポンプ冷媒回路と暖房側ヒートポンプ冷媒回路とに振り分ける手段を有する制御装置とを備え、前記制御装置は、貯湯運転と暖房運転とを同時に行う同時運転開始当初に、暖房側ヒートポンプ冷媒回路の暖房側流量調整弁の弁開度を、貯湯側ヒートポンプ冷媒回路の貯湯側流量調整弁の弁開度よりも大きくし、かつ、その後は前記暖房循環回路側の負荷の増減に応じて暖房側流量調整弁及び貯湯側流量調整弁の弁開度を調整することを特徴とする。   The present invention according to claim 2 comprises a compressor, a hot water storage side water refrigerant heat exchanger, a hot water storage side flow rate adjustment valve and an air heat exchanger connected in a loop with a refrigerant pipe, and uses carbon dioxide as a refrigerant. A hot water storage side heat pump refrigerant circuit and a refrigerant flow path on the discharge side of the compressor, and a heating side water refrigerant exchanger and a heating side flow rate adjustment valve are connected by a refrigerant pipe, and the hot water storage side flow rate The heating side heat pump refrigerant circuit joined to the refrigerant flow path between the regulating valve and the air heat exchanger, and hot water in the hot water storage tank between the hot water storage side water refrigerant heat exchanger and the hot water storage tank during hot water storage operation. Circulating circuit for hot water storage that circulates and heats up, heating heating circuit that performs heating by circulating hot water for heating between the heating-side water refrigerant heat exchanger and the heating terminal during heating operation, and the hot-water storage-side flow rate adjustment Valve opening of valve and heating side flow control valve And a control device having means for controlling and distributing the refrigerant flow from the compressor to the hot water storage side heat pump refrigerant circuit and the heating side heat pump refrigerant circuit, and the control device simultaneously performs the hot water storage operation and the heating operation. At the beginning of simultaneous operation, the opening degree of the heating side flow rate adjustment valve of the heating side heat pump refrigerant circuit is made larger than the opening degree of the hot water side flow rate adjustment valve of the hot water storage side heat pump refrigerant circuit, and thereafter the heating circulation The opening degree of the heating side flow rate adjustment valve and the hot water storage side flow rate adjustment valve is adjusted according to increase or decrease of the load on the circuit side.

請求項3に記載の本発明は、請求項2に記載のヒートポンプ式給湯暖房装置において、前記制御装置は、暖房循環回路における負荷の増減の判断を、前記暖房側水冷媒熱交換器の温水側入口温度と温水側出口温度との差に基づいて行う判断手段を備えたことを特徴とする。   According to a third aspect of the present invention, in the heat pump hot water supply / room heating device according to the second aspect, the control device determines whether to increase or decrease the load in the heating circulation circuit based on the hot water side of the heating side water refrigerant heat exchanger. Judgment means for performing the determination based on the difference between the inlet temperature and the hot water side outlet temperature is provided.

請求項1に記載のヒートポンプ式給湯暖房装置では、貯湯運転と暖房運転との同時運転開始当初に、加熱能力の配分において暖房側を優先し、暖房側ヒートポンプ冷媒回路の暖房側水冷媒熱交換器へ流れる高温高圧の二酸化炭素冷媒の量を、貯湯側ヒートポンプ冷媒回路の貯湯側水冷媒熱交換器へ流れる高温高圧の二酸化炭素冷媒の量よりも多くしたから、貯湯運転と暖房運転の同時運転を可能にしつつ、暖房循環回路における暖房側水冷媒熱交換器から流出する暖房用温水の温度の立ち上がりを良好とすることができ、暖房端末の運転開始時における暖房特性を高めることが可能になる。   In the heat pump hot water supply and heating device according to claim 1, priority is given to the heating side in the distribution of the heating capacity at the beginning of the simultaneous operation of the hot water storage operation and the heating operation, and the heating side water refrigerant heat exchanger of the heating side heat pump refrigerant circuit The amount of high-temperature and high-pressure carbon dioxide refrigerant flowing to the hot water storage side heat pump refrigerant circuit is larger than the amount of high-temperature and high-pressure carbon dioxide refrigerant flowing to the hot water storage side heat refrigerant heat exchanger. While being possible, the temperature rise of the warm water for heating flowing out from the heating-side water refrigerant heat exchanger in the heating circuit can be improved, and the heating characteristics at the start of operation of the heating terminal can be improved.

請求項2に記載のヒートポンプ式給湯暖房装置では、請求項1に記載の効果の他に、暖房側の負荷の変動に応じて、暖房側流量調整弁と貯湯側流量調整弁のそれぞれの弁開度を調整し、暖房側の負荷が減少した際には、圧縮機の能力を、能力余裕側から能力不足側へ移行させる配分調整が可能となり、貯湯運転と暖房運転のそれぞれの状況に対応した能力配分が行える。   In the heat pump hot water supply and heating device according to claim 2, in addition to the effect according to claim 1, each of the heating side flow rate adjustment valve and the hot water storage side flow rate adjustment valve is opened according to the fluctuation of the load on the heating side. When the load on the heating side decreases, the distribution capacity can be adjusted so that the compressor capacity is shifted from the capacity surplus side to the capacity shortage side. Capability can be allocated.

本発明のヒートポンプ式給湯暖房装置は、圧縮機、貯湯側水冷媒熱交換器、貯湯側流量調整弁及び空気熱交換器を冷媒配管によりループ状に接続して構成し、二酸化炭素を冷媒として用いた貯湯側ヒートポンプ冷媒回路と、前記圧縮機の吐出側の冷媒流路から分岐し、暖房側水冷媒交換器及び暖房側流量調整弁を冷媒配管により接続して構成し、かつ、前記貯湯側流量調整弁と空気熱交換器との間の冷媒流路に合流させた暖房側ヒートポンプ冷媒回路と、貯湯運転時に前記貯湯側水冷媒熱交換器と貯湯タンクとの間でこの貯湯タンク内の湯水を循環させて沸き上げる貯湯循環回路と、暖房運転時に前記暖房側水冷媒熱交換器と暖房端末との間で暖房用の温水を循環させて暖房を行う暖房循環回路と、前記貯湯側流量調整弁及び暖房側流量調整弁の弁開度を制御し、前記圧縮機からの冷媒の流れを前記貯湯側ヒートポンプ冷媒回路と暖房側ヒートポンプ冷媒回路とに振り分ける手段を有する制御装置とを備え、前記制御装置は、貯湯運転と暖房運転との同時運転開始当初に、暖房側ヒートポンプ冷媒回路の暖房側流量調整弁の弁開度を、貯湯側ヒートポンプ冷媒回路の貯湯側流量調整弁の弁開度よりも大きくする構成としたものであり、以下に本発明の一実施例を記載する。   The heat pump hot water supply and heating device of the present invention is configured by connecting a compressor, a hot water storage side water refrigerant heat exchanger, a hot water storage side flow rate adjustment valve, and an air heat exchanger in a loop shape with a refrigerant pipe, and uses carbon dioxide as a refrigerant. A hot water storage side heat pump refrigerant circuit and a refrigerant flow path on the discharge side of the compressor, and a heating side water refrigerant exchanger and a heating side flow rate adjustment valve are connected by a refrigerant pipe, and the hot water storage side flow rate The heating side heat pump refrigerant circuit joined to the refrigerant flow path between the regulating valve and the air heat exchanger, and hot water in the hot water storage tank between the hot water storage side water refrigerant heat exchanger and the hot water storage tank during hot water storage operation. A hot water storage circulation circuit that circulates and heats up, a heating circulation circuit that performs heating by circulating hot water for heating between the heating water refrigerant heat exchanger and the heating terminal during heating operation, and the hot water storage side flow rate adjustment valve And heating side flow rate adjustment And a control device having means for distributing the refrigerant flow from the compressor to the hot water storage side heat pump refrigerant circuit and the heating side heat pump refrigerant circuit, the control device comprising hot water storage operation and heating At the beginning of simultaneous operation with the operation, the opening degree of the heating side flow rate adjustment valve of the heating side heat pump refrigerant circuit is made larger than the opening degree of the hot water side flow rate adjustment valve of the hot water storage side heat pump refrigerant circuit. Yes, one embodiment of the present invention will be described below.

以下、本発明の一実施例を図面に基づいて説明する。図1は本発明に係るヒートポンプ式給湯暖房装置の全体システムを示す系統図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an entire system of a heat pump hot water supply / room heating apparatus according to the present invention.

図1において、Aはヒートポンプユニットであり、Bはタンクユニットである。そしてこれら両ユニットA、Bは、温水暖房用の暖房循環回路C1の一部を構成する温水配管及び貯湯用の貯湯循環回路C2の一部を構成する温水配管によって繋がれている。また、前記ヒートポンプユニットAは、二酸化炭素を冷媒とする冷媒回路Rを内蔵している。   In FIG. 1, A is a heat pump unit and B is a tank unit. The units A and B are connected by a hot water pipe that forms part of the heating circuit C1 for hot water heating and a hot water pipe that forms part of the hot water storage circuit C2 for hot water storage. The heat pump unit A includes a refrigerant circuit R that uses carbon dioxide as a refrigerant.

1及び2は前記暖房循環回路C1に設けられた低温側の暖房端末としての床暖房パネルであり、これら床暖房パネル1、2は、室内の床に敷設される。3及び4は、前記床暖房パネル1及び2にそれぞれ対応して設けられた床暖房リモートコントローラ(以下、「床暖房リモコン」という)である。   1 and 2 are floor heating panels as heating terminals on the low temperature side provided in the heating circulation circuit C1, and these floor heating panels 1 and 2 are laid on the indoor floor. Reference numerals 3 and 4 denote floor heating remote controllers (hereinafter referred to as “floor heating remote controllers”) provided corresponding to the floor heating panels 1 and 2, respectively.

前記暖房循環回路C1には、複数の熱動弁5、6、暖房用循環ポンプ7、膨張タンク8、暖房側水冷媒熱交換器9の水流路9B、バイパス管10、このバイパス管10の途中に設けられたバイパス弁11などが設けられている。   The heating circulation circuit C 1 includes a plurality of thermal valves 5, 6, a heating circulation pump 7, an expansion tank 8, a water flow path 9 B of the heating-side water-refrigerant heat exchanger 9, a bypass pipe 10, and a middle of the bypass pipe 10. A bypass valve 11 and the like provided in the above are provided.

そして、この暖房循環回路C1は、暖房側水冷媒熱交換器9で加熱昇温された暖房用温水を、前記床暖房パネル1、2及び浴室に設置される高温側の暖房端末としての浴室暖房用ファンコイル13へ循環供給して暖房を行うものである。   And this heating circulation circuit C1 uses the heating hot water heated by the heating-side water refrigerant heat exchanger 9 as a heating device for heating as a high-temperature heating terminal installed in the floor heating panels 1 and 2 and the bathroom. The fan coil 13 is circulated and supplied for heating.

また、前記暖房循環回路C1には、暖房側水冷媒熱交換器9の水流路9Bの入口側と出口側の温水温度をそれぞれ検出する暖房入口側温度センサ12Aと暖房出口側温度センサ12Bを設けている。   Further, the heating circulation circuit C1 is provided with a heating inlet side temperature sensor 12A and a heating outlet side temperature sensor 12B for detecting the hot water temperatures on the inlet side and the outlet side of the water flow path 9B of the heating side water refrigerant heat exchanger 9, respectively. ing.

14は浴室暖房リモートコントローラ(以下、「浴室暖房リモコン」という)、15は前記浴室暖房用ファンコイル13の入口部に設けられた熱動弁、16は前記暖房用循環ポンプ7によって膨張タンク8から流出した温水の一部を、前記床暖房パネル1、2に供給するための混合熱動弁、18は床暖房パネル1、2に供給する温水温度を検知する床暖用温度センサである。   14 is a bathroom heating remote controller (hereinafter referred to as “bathroom heating remote controller”), 15 is a thermal valve provided at the inlet of the bathroom heating fan coil 13, and 16 is connected to the expansion tank 8 by the heating circulation pump 7. A mixed heat valve for supplying a part of the hot water that has flowed out to the floor heating panels 1 and 2, 18 is a floor warming temperature sensor that detects the temperature of the hot water supplied to the floor heating panels 1 and 2.

前記ヒートポンプユニットAの冷媒回路Rは、周波数の可変により能力調整可能な2段圧縮型の圧縮機21、貯湯側開閉弁24、貯湯側水冷媒熱交換器22の冷媒流路22A、電動膨張弁(減圧装置)にてなる貯湯側流量調整弁27、空気熱交換器28及び内部熱交換器25の二次側流路25B、アキュムレーター29を冷媒配管でループ状に順次接続して成る貯湯側ヒートポンプ冷媒回路TRを備えると共に、前記圧縮機21の吐出側の冷媒流路から分岐し、暖房側開閉弁23、暖房側水冷媒熱交換器9の冷媒流路9A、内部熱交換器25の一次側流路25A及び電動膨張弁(減圧装置)にてなる暖房側流量調整弁26を冷媒配管で順次接続して成り、かつ、前記貯湯側流量調整弁27と前記空気熱交換器28との間の冷媒流路に合流させて成る暖房側ヒートポンプ冷媒回路DRとを備えて構成されている。   The refrigerant circuit R of the heat pump unit A includes a two-stage compression type compressor 21 whose capacity can be adjusted by changing the frequency, a hot water storage side opening / closing valve 24, a refrigerant flow path 22A of the hot water storage side water refrigerant heat exchanger 22, and an electric expansion valve. A hot water storage side formed by sequentially connecting a hot water storage side flow rate adjusting valve 27, an air heat exchanger 28, a secondary flow path 25B of the internal heat exchanger 25, and an accumulator 29 in a loop shape with a refrigerant pipe. A heat pump refrigerant circuit TR is provided and branches from the refrigerant flow path on the discharge side of the compressor 21. The heating side on-off valve 23, the refrigerant flow path 9 </ b> A of the heating side water refrigerant heat exchanger 9, and the primary heat exchanger 25. A heating-side flow rate adjustment valve 26 composed of a side flow path 25A and an electric expansion valve (pressure reducing device) is sequentially connected by a refrigerant pipe, and between the hot water storage-side flow rate adjustment valve 27 and the air heat exchanger 28. To the refrigerant flow path It is constituted by a heating side heat pump refrigerant circuit DR made.

即ち、前記暖房側ヒートポンプ冷媒回路DRは、圧縮機21、空気熱交換器28、内部熱交換器25及びアキュムレーター29等を貯湯側ヒートポンプ冷媒回路TRと共用しており、貯湯側ヒートポンプ冷媒回路TRに対して並列接続されている。また、ヒートポンプユニットAの空気熱交換器28の近くには、外気温度を検出する外気温度センサGKを配設している。   That is, the heating side heat pump refrigerant circuit DR shares the compressor 21, the air heat exchanger 28, the internal heat exchanger 25, the accumulator 29 and the like with the hot water storage side heat pump refrigerant circuit TR, and the hot water storage side heat pump refrigerant circuit TR. Are connected in parallel. Further, near the air heat exchanger 28 of the heat pump unit A, an outside air temperature sensor GK that detects the outside air temperature is disposed.

前記貯湯循環回路C2は、貯湯タンク31の下部と貯湯側水冷媒熱交換器22の水流路22Bの一端とが、貯湯用循環ポンプ32を介して温水配管で接続されると共に、前記水流路22Bの他端と貯湯タンク31の上部とが同様に温水配管で接続されて、貯湯タンク31を含みループ状に構成されている。   In the hot water storage circuit C2, the lower part of the hot water storage tank 31 and one end of the water flow path 22B of the hot water storage side water refrigerant heat exchanger 22 are connected by a hot water pipe via a hot water storage circulation pump 32, and the water flow path 22B. Similarly, the other end of the hot water tank and the upper part of the hot water storage tank 31 are connected by a hot water pipe, and the hot water storage tank 31 is included in a loop shape.

また、前記貯湯側水冷媒熱交換器22の水流路22Bの他端と前記貯湯タンク31の上部との間の貯湯循環回路C2には、前記水流路22Bの出口側温水温度を検知する貯湯出口側温度センサ33が設けられている。   Further, a hot water storage circuit C2 between the other end of the water flow path 22B of the hot water storage side water refrigerant heat exchanger 22 and the upper portion of the hot water storage tank 31 has a hot water storage outlet for detecting the outlet side hot water temperature of the water flow path 22B. A side temperature sensor 33 is provided.

前記貯湯タンク31には、追焚用の水々熱交換器34の一次流路34Aが循環ポンプ35を介して接続され、水々熱交換器34の二次流路34Bには、循環ポンプ36を介して浴槽37が接続されている。   The hot water storage tank 31 is connected with a primary flow path 34A for the water heat exchanger 34 for remuneration via a circulation pump 35, and the secondary flow path 34B of the water heat exchanger 34 is connected with a circulation pump 36. The bathtub 37 is connected via the.

40は貯湯タンク31の上部に接続された給湯管であり、この給湯管40にはミキシングバルブ41が設けられている。42は減圧弁43が配設された給水管であり、この給水管42は、貯湯タンク31の下部とミキシングバルブ41とに分岐接続され、更に開閉弁44を介して前記膨張タンク8に接続されている。   A hot water supply pipe 40 is connected to the upper part of the hot water storage tank 31, and a mixing valve 41 is provided in the hot water supply pipe 40. Reference numeral 42 denotes a water supply pipe provided with a pressure reducing valve 43. The water supply pipe 42 is branched and connected to a lower portion of the hot water storage tank 31 and a mixing valve 41, and further connected to the expansion tank 8 via an opening / closing valve 44. ing.

また、前記貯湯タンク31には、ひとつしか図示しないが、貯湯タンク31の上下方向に所定の間隔を開けて、複数の湯温検出センサ45が設けてある。図示した湯温検出センサ45は、貯湯タンク31の高さ方向において、上部に配置したものである。   Although only one hot water storage tank 31 is shown in the drawing, a plurality of hot water temperature detection sensors 45 are provided at predetermined intervals in the vertical direction of the hot water storage tank 31. The illustrated hot water temperature detection sensor 45 is arranged at the upper part in the height direction of the hot water storage tank 31.

そして、真冬以外の外気温度がそれ程低くない季節においては、沸き上げ可能温度を、例えば85℃に設定いるため、前記湯温検出センサ45の検出湯温が55℃以上の場合には、残湯あり、と判断し、55℃未満の場合には、湯切れ寸前の緊急事態と判断される。このとき、湯温検出センサ45の配置箇所は残湯量が例えば50リットルの位置である。   And, in the season when the outside air temperature is not so low other than midwinter, the boiling possible temperature is set to 85 ° C., for example, so that when the hot water temperature detected by the hot water temperature detection sensor 45 is 55 ° C. or higher, the remaining hot water If it is less than 55 ° C., it is determined that the emergency is about to run out. At this time, the hot water temperature detection sensor 45 is disposed at a position where the remaining hot water amount is, for example, 50 liters.

なお、暖房運転時においては、暖房した部屋が暖まってくると、床暖房パネル1、2ではそれほど放熱されなくなり、膨張タンク8から暖房側水冷媒熱交換器9の水流路9Bへは50〜60℃の比較的高い温度の温水が戻されるため、暖房側水冷媒熱交換器9ではそれほど熱交換されず、圧縮機21へ戻る冷媒の温度も高温となり、圧縮機21に高負荷が掛かることとなる。   In the heating operation, when the heated room is warmed up, the floor heating panels 1 and 2 are not radiated so much, and the expansion tank 8 to the water flow path 9B of the heating-side water-refrigerant heat exchanger 9 has 50-60. Since the hot water having a relatively high temperature of 0 ° C. is returned, heat is not so much exchanged in the heating-side water-refrigerant heat exchanger 9, the temperature of the refrigerant returning to the compressor 21 is also high, and the compressor 21 is heavily loaded. Become.

そこで、高温となった冷媒の冷却機構として前記暖房側水冷媒熱交換器9の他に設けたのが前記内部熱交換器25である。この内部熱交換器25での放熱分は、同じ冷媒回路R内の空気熱交換器28を通過した後の冷媒に取込まれるので、冷媒回路Rの吸熱効率をも向上させている。   Therefore, the internal heat exchanger 25 is provided in addition to the heating-side water-refrigerant heat exchanger 9 as a cooling mechanism for the refrigerant having reached a high temperature. Since the heat radiation in the internal heat exchanger 25 is taken into the refrigerant after passing through the air heat exchanger 28 in the same refrigerant circuit R, the heat absorption efficiency of the refrigerant circuit R is also improved.

さらに、圧縮機21の吐出側における高温高圧ガス冷媒の温度を検出する吐出側温度センサ50は、冷媒が所定の高温度に達したのを検知すると、圧縮機21の保護のため、この圧縮機21を停止させるように制御するためのものである。   Further, when the discharge-side temperature sensor 50 that detects the temperature of the high-temperature and high-pressure gas refrigerant on the discharge side of the compressor 21 detects that the refrigerant has reached a predetermined high temperature, this compressor is used to protect the compressor 21. 21 for controlling to stop 21.

46は台所リモートコントローラ(以下、「台所リモコン」という)、47は風呂リモートコントローラ(以下、「風呂リモコン」という)である。   46 is a kitchen remote controller (hereinafter referred to as “kitchen remote control”), and 47 is a bath remote controller (hereinafter referred to as “bath remote control”).

また、前記ヒートポンプユニットAとタンクユニットBには、それぞれマイクロコンピュータから成る制御装置S1、S2が設けられている。   Further, the heat pump unit A and the tank unit B are provided with control devices S1 and S2 each composed of a microcomputer.

これら制御装置S1、S2は、床暖房リモコン3、4、浴室暖房リモコン14、台所リモコン46及び風呂リモコン47などからの各種運転信号や、暖房入口側温度センサ12A、暖房出口側温度センサ12B、床暖用温度センサ18、貯湯出口側温度センサ33、吐出側温度センサ50、外気温度センサGKなどからの各種温度信号とに応じて、圧縮機21の運転及び周波数制御、暖房側循環ポンプ7及び貯湯側循環ポンプ32の運転制御、熱動弁5、6、16、貯湯側開閉弁24、暖房側開閉弁23の開閉制御、暖房側流量調整弁26、貯湯側流量調整弁27の弁開度制御などを行うものである。以下その動作を説明する。   These control devices S1 and S2 include various operation signals from the floor heating remote control 3 and 4, the bathroom heating remote control 14, the kitchen remote control 46 and the bath remote control 47, the heating inlet side temperature sensor 12A, the heating outlet side temperature sensor 12B, the floor The operation and frequency control of the compressor 21, the heating-side circulation pump 7, and the hot water storage according to various temperature signals from the warming temperature sensor 18, the hot water outlet side temperature sensor 33, the discharge side temperature sensor 50, the outside air temperature sensor GK, and the like. Operation control of the side circulation pump 32, thermal valves 5, 6, 16, hot water storage side opening / closing valve 24, heating side opening / closing valve 23 opening / closing control, heating side flow rate adjustment valve 26, hot water storage side flow rate adjustment valve 27 valve opening control And so on. The operation will be described below.

〈貯湯運転〉
前記台所リモコン46や風呂リモコン47からの運転信号が、タンクユニットBの制御装置S2に入力されると、その信号が制御装置S2からヒートポンプユニットAの制御装置S1に伝達され、貯湯タンク31内の湯水を沸き上げるための貯湯運転が行なわれる。
<Hot water storage operation>
When an operation signal from the kitchen remote controller 46 or the bath remote controller 47 is input to the control device S2 of the tank unit B, the signal is transmitted from the control device S2 to the control device S1 of the heat pump unit A, Hot water storage operation is performed to boil hot water.

即ち、制御装置S1により貯湯側循環ポンプ32が運転し、貯湯循環回路C2では、貯湯タンク31内の底部→貯湯用循環ポンプ32→貯湯側水冷媒熱交換器22の水流路22B→貯湯タンク31内の上部の順に給湯用の湯水が流れ、貯湯タンク31内には、上部ほど高温の湯が貯湯される。   That is, the hot water storage side circulation pump 32 is operated by the control device S1, and in the hot water storage circulation circuit C2, the bottom of the hot water storage tank 31 → the hot water storage circulation pump 32 → the water flow path 22B of the hot water storage side water refrigerant heat exchanger 22 → the hot water storage tank 31. Hot water for hot water supply flows in the order of the upper part of the inside, and hot water is stored in the hot water storage tank 31 toward the upper part.

一方、ヒートポンプユニットAでは、制御装置S1が圧縮機21を運転させて、貯湯側開閉弁24を開放する共に、外気温センサGKにて検出した外気温度データに基づき、前記貯湯側流量調整弁27を所定の弁開度に開かせ、貯湯側ヒートポンプ冷媒回路TRにおける圧縮機21→貯湯側開閉弁24→貯湯側水冷媒熱交換器22の冷媒流路22A→貯湯側流量調整弁27→空気熱交換器28→内部熱交換器25のニ次流路25B→アキュムレーター29→圧縮機21の順に二酸化炭素冷媒が流れる。このとき、暖房運転は行われないため、暖房側開閉弁23は閉じられ、また、暖房側流量調整弁26は下限の弁開度が維持される。   On the other hand, in the heat pump unit A, the control device S1 operates the compressor 21 to open the hot water storage side opening / closing valve 24, and based on the outside air temperature data detected by the outside air temperature sensor GK, the hot water storage side flow rate adjustment valve 27. In the hot water storage side heat pump refrigerant circuit TR, the compressor 21 → the hot water storage side on / off valve 24 → the refrigerant flow path 22A of the hot water storage side water refrigerant heat exchanger 22 → the hot water storage side flow rate adjustment valve 27 → air heat. The carbon dioxide refrigerant flows in the order of the exchanger 28 → the secondary flow path 25B of the internal heat exchanger 25 → the accumulator 29 → the compressor 21. At this time, since the heating operation is not performed, the heating side opening / closing valve 23 is closed, and the heating side flow rate adjustment valve 26 is maintained at the lower limit valve opening degree.

ここで、貯湯タンク31の上部へ供給される湯の温度は、例えば約85℃であるが、貯湯出口側温度センサ33が検出する温度がこの温度になるように、圧縮機21の周波数制御、貯湯側流量調整弁27の弁開度制御が制御装置S1により行われる一方、貯湯側循環ポンプ32の流量制御が制御装置S2により行われる。   Here, the temperature of the hot water supplied to the upper part of the hot water storage tank 31 is, for example, about 85 ° C. The valve opening control of the hot water storage side flow rate adjustment valve 27 is performed by the control device S1, while the flow control of the hot water storage side circulation pump 32 is performed by the control device S2.

上記した約85℃の沸き上げ目標温度は、外気温度の低い冬季から春季の使用、又は寒冷地域の使用などでは、高温の湯の使用量が多く、かつ、水道水の温度も低い関係から、約90℃に設定する場合もある。逆に外気温度が高い夏季から秋季の使用、又は温暖地域の使用などでは、高温の湯の使用量が少なく、かつ、水道水の温度も高い関係から、沸き上げ目標温度を低めの約65℃程度に設定する場合もある。   The above-mentioned boiling target temperature of about 85 ° C. is used from winter to spring when the outside air temperature is low, or in cold areas, etc., because the amount of hot water used is large and the temperature of tap water is low. In some cases, it may be set to about 90 ° C. On the other hand, when the outdoor temperature is high from summer to autumn, or in warm regions, the amount of hot water used is low and the temperature of tap water is high. It may be set to a degree.

前記貯湯タンク31内に貯湯された高温水は、給水管42からの約10〜20℃程度の水道水がミキシングバルブ41に供給されて混合され、このミキシングバルブ41にて利用部で要求される適度な温度に調整され、給湯管40から台所や浴槽37へのお湯張り等に利用される。そして、給湯が行われると、給水管42から貯湯タンク31内の底部に給水される。また、循環ポンプ35、36を運転することにより、貯湯タンク31内の上部の高温水と浴槽37の湯とを追焚用の水々熱交換器34で熱交換し、浴槽37の追焚きを行うこともできる。   The hot water stored in the hot water storage tank 31 is mixed with tap water of about 10 to 20 ° C. supplied from the water supply pipe 42 to the mixing valve 41, and is requested by the use section at the mixing valve 41. The temperature is adjusted to an appropriate temperature and used for hot water filling from the hot water supply pipe 40 to the kitchen or the bathtub 37. When hot water is supplied, water is supplied from the water supply pipe 42 to the bottom of the hot water storage tank 31. In addition, by operating the circulation pumps 35 and 36, the hot water in the upper part of the hot water storage tank 31 and the hot water in the bathtub 37 are heat-exchanged by the water heat exchanger 34 for the memory, and the bathtub 37 is reheated. It can also be done.

以上のような通常の貯湯運転動作の場合では、最大で9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば効率の良い6.0kW程度となるように、圧縮機21の周波数制御、貯湯側流量調整弁27の弁開度制御が制御装置S1により行われる。ここで、利用部への給湯によって、貯湯タンク31内の使用可能な高温水の残湯量が約50リットルに減少し、前記湯温検出センサ45による検出湯温が約55℃未満となって、所謂湯切れ寸前の緊急事態になったと判断された場合には、ヒートポンプユニットAの圧縮機21の能力が、最大の9.0kWとなるように、フルパワーによる圧縮機21の周波数制御、貯湯用流量調整弁27の弁開度制御が制御装置S1により行われる。   In the case of the normal hot water storage operation as described above, the capacity of the compressor 21 of the heat pump unit A having a maximum capacity of 9.0 kW is, for example, about 6.0 kW, which is efficient, so that the compressor 21 The control device S1 performs frequency control and valve opening control of the hot water storage-side flow rate adjustment valve 27. Here, the amount of hot water remaining in the hot water storage tank 31 that can be used in the hot water storage tank 31 is reduced to about 50 liters by hot water supply to the use section, and the hot water temperature detected by the hot water temperature detection sensor 45 is less than about 55 ° C. When it is determined that an emergency just before the hot water shortage has occurred, the compressor 21 of the heat pump unit A has a maximum power of 9.0 kW so that the frequency of the compressor 21 can be controlled by full power and used for hot water storage. The valve opening degree control of the flow rate adjusting valve 27 is performed by the control device S1.

〈床暖房運転〉
次に、床暖房パネル1又は2による床暖房を行う場合、その部屋の壁面等に取り付けられた床暖房リモコン3又は4の運転スイッチをオンにする。すると、運転開始信号を受けた制御装置S2によってこれに対応した熱動弁5又は6が開かれ、暖房用循環ポンプ7が運転し、暖房循環回路C1では、膨張タンク8→暖房用循環ポンプ7→暖房側水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に暖房用の温水が流れる。
<Floor heating operation>
Next, when performing floor heating by the floor heating panel 1 or 2, the operation switch of the floor heating remote control 3 or 4 attached to the wall surface or the like of the room is turned on. Then, the control valve S2 that has received the operation start signal opens the corresponding thermal valve 5 or 6, and the heating circulation pump 7 is operated. In the heating circulation circuit C1, the expansion tank 8 → the heating circulation pump 7 The hot water for heating flows in the order of the water flow path 9B of the heating-side water-refrigerant heat exchanger 9, the thermal valve 5 or 6, the floor heating panel 1 or 2, and the expansion tank 8.

なお、前記バイパス弁11は、熱動弁5又は6が開くのに時間がかかり、また熱動弁5又は6が故障している場合に開いて対応できるように、温水の一部を、バイパス管10を介してバイパスさせるものであり、微少量の温水が流れる。   The bypass valve 11 bypasses part of the hot water so that it takes time to open the thermal valve 5 or 6 and can be opened when the thermal valve 5 or 6 is broken. Bypassing through the pipe 10, a small amount of warm water flows.

一方、前記床暖房リモコン3又は4の運転スイッチをオンにした際に、制御装置S2から運転信号が制御装置S1に伝達され、そこで、この制御装置S2は、ヒートポンプユニットAの圧縮機21を運転すると共に暖房側開閉弁23を開き、冷媒回路Rでは、圧縮機21→暖房側開閉弁23→暖房側水冷媒熱交換器9の冷媒流路9A→内部熱交換器25の一次流路25A→暖房側流量調整弁26→空気熱交換器28→内部熱交換器25の二次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。   On the other hand, when the operation switch of the floor heating remote controller 3 or 4 is turned on, an operation signal is transmitted from the control device S2 to the control device S1, where the control device S2 operates the compressor 21 of the heat pump unit A. At the same time, the heating side on / off valve 23 is opened, and in the refrigerant circuit R, the compressor 21 → the heating side on / off valve 23 → the refrigerant channel 9A of the heating side water / refrigerant heat exchanger 9 → the primary channel 25A of the internal heat exchanger 25 → The refrigerant flows in the order of the heating side flow rate adjustment valve 26 → the air heat exchanger 28 → the secondary flow path 25 </ b> B of the internal heat exchanger 25 → the accumulator 29 → the compressor 21.

このとき、貯湯は行われないので、貯湯側開閉弁24は閉じているため、貯湯側水冷媒熱交換器22の冷媒流路22Aには冷媒は流れない。   At this time, since hot water is not stored, the hot water storage side on-off valve 24 is closed, so that no refrigerant flows into the refrigerant flow path 22A of the hot water storage side water refrigerant heat exchanger 22.

前記床暖房パネル1又は2に供給される温水の目標温度は約60〜65℃であるが、暖房出口側センサ12Bが検出する温水温度が、上記の目標温度になるように圧縮機21の周波数制御、暖房側流量調整弁26の弁開度制御が制御装置S1により行われる。   The target temperature of the hot water supplied to the floor heating panel 1 or 2 is about 60 to 65 ° C., but the frequency of the compressor 21 is set so that the hot water temperature detected by the heating outlet side sensor 12B becomes the above target temperature. Control and valve opening control of the heating side flow rate adjustment valve 26 are performed by the control device S1.

また、床暖房制御は、床暖房リモコン3又は4に搭載された室温センサ(図示せず)により室温を検出し、その検出室温と例えば約20℃の設定温度との偏差に基づき熱動弁5又は6を開閉制御し、床暖房パネル1又は2への温水供給量を制御装置S2が制御する。   In the floor heating control, a room temperature sensor (not shown) mounted on the floor heating remote controller 3 or 4 detects a room temperature, and the thermal valve 5 is based on a deviation between the detected room temperature and a set temperature of about 20 ° C., for example. Alternatively, open / close control is performed, and the control device S2 controls the amount of hot water supplied to the floor heating panel 1 or 2.

また、床暖房パネル1及び2の双方同時に床暖房を行う場合、床暖房リモコン3及び4の運転スイッチをオンにすることにより、上述と同様に熱動弁5及び6が開閉制御され、床暖房パネル1及び2の双方に同時に温水が供給され、床暖房パネル1及び2への温水供給量を個別に制御することにより、設置した各部屋における床暖房の個別制御が可能となっている。   In addition, when floor heating is simultaneously performed on both the floor heating panels 1 and 2, by turning on the operation switches of the floor heating remote controllers 3 and 4, the thermal valves 5 and 6 are controlled to be opened and closed in the same manner as described above. Hot water is supplied to both the panels 1 and 2 at the same time, and individually controlling the amount of hot water supplied to the floor heating panels 1 and 2 enables individual control of floor heating in each installed room.

上述の床暖房運転を行う場合、床暖房する部屋の温度が上昇して暖まってくると、床暖房パネル1、2からの放熱量が小さくなり、膨張タンク8から暖房側水冷媒熱交換器9の水流路9Bへは50〜60℃の温水が供給されることとなる。このため、暖房側水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となって圧縮機21に負荷がかかる。このような場合の冷媒の冷却機構として設けたのが内部熱交換器25であり、内部熱交換器25の一次流路25Aでの放熱分は同じ冷媒回路Rにある内部熱交換器25の二次流路25Bで再度吸収されるため、無駄なく、効率を落とすことなく、冷媒回路Rを構成できる。   When performing the above-mentioned floor heating operation, when the temperature of the room to be heated rises and warms up, the amount of heat released from the floor heating panels 1 and 2 decreases, and the expansion tank 8 and the heating-side water refrigerant heat exchanger 9 Hot water of 50 to 60 ° C. is supplied to the water flow path 9B. For this reason, heat is not so much exchanged in the heating-side water-refrigerant heat exchanger 9, the refrigerant temperature becomes high, and the compressor 21 is loaded. The internal heat exchanger 25 is provided as a cooling mechanism for the refrigerant in such a case, and the heat release in the primary flow path 25A of the internal heat exchanger 25 is two of the internal heat exchanger 25 in the same refrigerant circuit R. Since it is absorbed again by the next flow path 25B, the refrigerant circuit R can be configured without waste and without reducing efficiency.

〈浴室暖房運転〉
次に、浴室暖房用ファンコイル13による浴室の温風暖房を行う場合、浴室暖房リモコン14の運転スイッチをオンにする。すると、その運転開始信号が制御装置S2に送信され、この制御装置S2により浴室暖房用ファンコイル13の入口部の熱動弁15が開き、暖房用循環ポンプ7が運転を開始する。ここで、暖房循環回路C1では、膨張タンク8→暖房用循環ポンプ7→暖房側水冷媒熱交換器9の水流路9B→熱動弁15→浴室暖房用ファンコイル13→膨張タンク8の順に暖房用の温水が流れる。
<Bathroom heating operation>
Next, when performing hot air heating of the bathroom by the fan coil 13 for bathroom heating, the operation switch of the bathroom heating remote controller 14 is turned on. Then, the operation start signal is transmitted to the control device S2, and the control device S2 opens the thermal valve 15 at the inlet of the bathroom heating fan coil 13, and the heating circulation pump 7 starts operation. Here, in the heating circulation circuit C1, heating is performed in the order of the expansion tank 8 → the heating circulation pump 7 → the water flow path 9B of the heating side water refrigerant heat exchanger 9 → the thermal valve 15 → the bathroom heating fan coil 13 → the expansion tank 8. Hot water for use flows.

ここで、バイパス弁11は、熱動弁15が開くのに時間がかかり、また熱動弁15が故障している場合に開いて対応できるように、温水の一部を、バイパス管10を介してバイパスさせるものであり、微少量の温水が流れる。   Here, the bypass valve 11 takes time for the thermal valve 15 to open, and a part of the hot water is passed through the bypass pipe 10 so that the thermal valve 15 can be opened and responded when the thermal valve 15 is broken. A small amount of warm water flows.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転と同様であり、貯湯は行われないので、貯湯側開閉弁24は閉じており、貯湯側水冷媒熱交換器22の冷媒流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as in the floor heating operation, and no hot water is stored. Therefore, the hot water storage side open / close valve 24 is closed, and the refrigerant flow path 22A of the hot water storage side water refrigerant heat exchanger 22 has a refrigerant. Does not flow.

前記浴室暖房用ファンコイル13に供給される温水の目標温度は約80℃であり、暖房出口側センサ12Bが検出する温水温度が上記の目標温度になるように、前記圧縮機21の周波数制御、暖房側流量調整弁26の弁開度制御が制御装置S1により行われる。   The target temperature of the hot water supplied to the bathroom heating fan coil 13 is about 80 ° C., and the frequency control of the compressor 21 is performed so that the hot water temperature detected by the heating outlet side sensor 12B becomes the target temperature. The opening degree control of the heating side flow rate adjustment valve 26 is performed by the control device S1.

また、前記制御装置S2による浴室暖房制御は、浴室暖房用ファンコイル13に搭載された室温センサ(図示せず)により室温を検出し、検出室温と設定温度との偏差に基づいて、ファン回転数を制御すると共に、熱動弁15を開閉制御することにより行われる。   In the bathroom heating control by the control device S2, the room temperature is detected by a room temperature sensor (not shown) mounted on the fan coil 13 for bathroom heating, and the number of fan rotations is determined based on the deviation between the detected room temperature and the set temperature. And the thermal valve 15 is controlled to be opened and closed.

以上のような床暖房運転又は浴室暖房運転動作の場合では、最大で9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、暖房側流量調整弁26の弁開度制御が制御装置S1により行われる。   In the case of the floor heating operation or bathroom heating operation as described above, the compressor 21 of the heat pump unit A having a maximum capacity of 9.0 kW has a capacity of, for example, about 7.0 kW. Frequency control and valve opening control of the heating side flow rate adjustment valve 26 are performed by the control device S1.

〈床暖房と浴室暖房の同時暖房運転〉
床暖房パネル1、2による床暖房と、浴室暖房用ファンコイル13による浴室温風暖房を同時に行う場合、それぞれのリモコン3、4、14の運転スイッチをオンにする。すると、制御装置S2により熱動弁5、6、15が開き、暖房用循環ポンプ7が運転し、暖房循環回路C1では、膨張タンク8→暖房用循環ポンプ7→暖房側水冷媒熱交換器9の水流路9B→熱動弁5及び6→床暖房パネル1及び2→膨張タンク8の順に温水が流れると共に、膨張タンク8→暖房用循環ポンプ7→暖房側水冷媒熱交換器9の水流路9B→熱動弁15→浴室暖房用ファンコイル13→膨張タンク8の順に温水が流れる。
<Simultaneous heating operation of floor heating and bathroom heating>
When floor heating by the floor heating panels 1 and 2 and bath room temperature air heating by the fan coil 13 for bathroom heating are performed at the same time, the operation switches of the respective remote controllers 3, 4 and 14 are turned on. Then, the thermal valves 5, 6, 15 are opened by the control device S2, and the heating circulation pump 7 is operated. In the heating circulation circuit C1, the expansion tank 8 → the heating circulation pump 7 → the heating side water refrigerant heat exchanger 9 Water flow path 9B → thermal valves 5 and 6 → floor heating panels 1 and 2 → expansion tank 8 and hot water flows in the order, expansion tank 8 → heating circulation pump 7 → water flow path of heating side water refrigerant heat exchanger 9 Hot water flows in the order of 9B → thermal valve 15 → fan coil 13 for bathroom heating → expansion tank 8.

前記バイパス弁11は、熱動弁5、6、15が開くのに時間がかかり、また熱動弁5、6、15が故障している場合に開いて対応できるように、温水の一部を、バイパス管10を介してバイパスさせるものであり、微少量の温水が流れる。   The bypass valve 11 takes part of the hot water so that it takes time to open the thermal valves 5, 6 and 15 and can be opened when the thermal valves 5, 6 and 15 are out of order. Bypassing through the bypass pipe 10, a small amount of warm water flows.

ここで、暖房出口側温度センサ12Bでの温水温度制御は約80℃であるが、これでは床暖房パネル1、2に循環供給する暖房用の温水としては、温度が高すぎることになる。これを解決するために、混合熱動弁16を開くことで約80℃の温水に膨張タンク8からの中温水を混ぜ、床暖用温度センサ18にて検出される温水の温度が約60℃になるように制御している。   Here, the hot water temperature control at the heating outlet side temperature sensor 12B is about 80 ° C., but this is too high as the heating hot water to be circulated to the floor heating panels 1 and 2. In order to solve this, the temperature of the hot water detected by the floor warming temperature sensor 18 is about 60 ° C. by opening the mixing heat valve 16 and mixing the warm water of about 80 ° C. with the medium temperature water from the expansion tank 8. It is controlled to become.

また、中温水を混ぜすぎて低温になった場合は、混合熱動弁16を閉じ、床暖用温度センサ18の検出温度に基づく熱動弁16の開閉制御を制御装置S2が行う。   Further, when the temperature of the medium temperature water is excessively reduced and the temperature becomes low, the mixing heat valve 16 is closed, and the control device S2 performs opening / closing control of the heat valve 16 based on the temperature detected by the floor warming temperature sensor 18.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転又は浴室暖房運転と同様であり、貯湯は行われないので、貯湯側開閉弁24は閉じており、貯湯側水冷媒熱交換器22の冷媒流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as the floor heating operation or the bathroom heating operation, and no hot water is stored. Therefore, the hot water storage side open / close valve 24 is closed, and the refrigerant flow path of the hot water storage side water refrigerant heat exchanger 22 is used. No refrigerant flows through 22A.

以上のような床暖房及び浴室暖房の同時運転動作の場合では、最大で約9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば約7.0kW程度となるように、圧縮機21の周波数制御、暖房側流量調整弁26の弁開度制御が制御装置S1により行われる。   In the case of simultaneous operation of floor heating and bathroom heating as described above, compression is performed so that the capacity of the compressor 21 of the heat pump unit A having a capacity of about 9.0 kW at the maximum is, for example, about 7.0 kW. The control device S1 performs frequency control of the machine 21 and valve opening control of the heating-side flow rate adjustment valve 26.

〈貯湯運転と暖房運転の同時運転〉
貯湯運転と暖房運転の同時運転の場合、暖房用の温水の循環経路と貯湯用の湯水の循環経路は上述したとおりである。
<Simultaneous operation of hot water storage operation and heating operation>
In the case of simultaneous operation of the hot water storage operation and the heating operation, the circulation path of the hot water for heating and the circulation path of the hot water for hot water storage are as described above.

この貯湯運転と暖房運転の同時運転時には、冷媒回路Rでは、制御装置S1により貯湯側開閉弁23と暖房側開閉弁24が共に開き、圧縮機21→貯湯側開閉弁24→貯湯側流量調整弁27→空気熱交換器28→内部熱交換器25の二次側流路25B→アキュムレーター29→圧縮機21の順に流れる貯湯側ヒートポンプ冷媒回路TRと、圧縮機21→暖房側開閉弁23→暖房側水冷媒熱交換器9の冷媒流路9A→内部熱交換器25の一次側流路25A→暖房側流量調整弁26→前記貯湯側流量調整弁27と空気熱交換器28との間
の冷媒流路に合流の順に流れる暖房側ヒートポンプ冷媒回路DRとの双方に、冷媒が振り分けられて流れる。
During the simultaneous operation of the hot water storage operation and the heating operation, in the refrigerant circuit R, the hot water storage side opening / closing valve 23 and the heating side opening / closing valve 24 are both opened by the control device S1, and the compressor 21 → the hot water storage side opening / closing valve 24 → the hot water storage side flow rate adjustment valve. 27 → Air heat exchanger 28 → Secondary flow path 25B of internal heat exchanger 25 → Accumulator 29 → Compressor 21 Hot water storage side heat pump refrigerant circuit TR and compressor 21 → Heating side on / off valve 23 → Heating The refrigerant flow path 9A of the side water refrigerant heat exchanger 9 → the primary side flow path 25A of the internal heat exchanger 25 → the heating side flow rate adjustment valve 26 → the refrigerant between the hot water storage side flow rate adjustment valve 27 and the air heat exchanger 28. The refrigerant is distributed and flows to both the heating-side heat pump refrigerant circuit DR that flows in the order of merging in the flow path.

このとき、暖房側水冷媒熱交換器9と貯湯側水冷媒熱交換器22及び内部熱交換器25で熱交換が行われる。   At this time, heat exchange is performed by the heating side water refrigerant heat exchanger 9, the hot water storage side water refrigerant heat exchanger 22, and the internal heat exchanger 25.

以上のような通常の貯湯運転と暖房運転の同時運転では、ヒートポンプユニットAの圧縮機21の能力が最大約9.0kWのものであっても、放熱ロスなどが起因となって暖房効率が給湯効率よりも劣るため、例えば約7.7kW程度の実質能力となる。   In the simultaneous operation of the normal hot water storage operation and the heating operation as described above, even if the capacity of the compressor 21 of the heat pump unit A is about 9.0 kW at the maximum, the heating efficiency is increased due to heat dissipation loss and the like. Since it is inferior to efficiency, it becomes a real capacity of about 7.7 kW, for example.

そこで、この同時運転開始当初においては、圧縮機21の能力を暖房側が約4.7kW、一方、貯湯側が約3.0kWとなるように制御装置S1が振り分けて、圧縮機21の周波数制御、暖房側流量調整弁26と貯湯側流量調整弁27のそれぞれの弁開度を制御することが、制御装置S1によって行われる。   Therefore, at the beginning of the simultaneous operation, the control device S1 distributes the capacity of the compressor 21 so that the heating side is about 4.7 kW while the hot water storage side is about 3.0 kW, and the frequency control and heating of the compressor 21 are performed. The control device S1 controls the valve openings of the side flow rate adjustment valve 26 and the hot water storage side flow rate adjustment valve 27.

即ち、ヒートポンプユニットA側の制御装置S1は、貯湯運転と暖房運転の同時運転当初に、暖房側ヒートポンプ冷媒回路DRの暖房側流量調整弁26の弁開度を、例えば上限で約480ステップとした場合、それよりも小さく、かつ、予め定められた、例えば約320ステップ程度に設定し、一方、貯湯側ヒートポンプ冷媒回路TRの貯湯側流量調整弁27の弁開度を、例えば上限で約480ステップとした場合、前記暖房側流量調整弁26の弁開度よりも小さい弁開度、例えば約240ステップ程度に設定する弁開度制御を行う。   That is, the control device S1 on the heat pump unit A side sets the opening degree of the heating side flow rate adjustment valve 26 of the heating side heat pump refrigerant circuit DR to, for example, an upper limit of about 480 steps at the beginning of the simultaneous operation of the hot water storage operation and the heating operation. In this case, it is set to about 320 steps which is smaller than that and predetermined, for example, while the opening degree of the hot water storage side flow rate adjustment valve 27 of the hot water storage side heat pump refrigerant circuit TR is set to about 480 steps at the upper limit, for example. In this case, the valve opening control is set to a valve opening smaller than the valve opening of the heating side flow rate adjustment valve 26, for example, about 240 steps.

従って、圧縮機21の能力は、貯湯運転と暖房運転の同時運転当初において、暖房側が優先され、暖房側流量調整弁26の弁開度を貯湯側流量調整弁27の弁開度よりも大きく設定して、同時運転が行われることから、圧縮機21の能力配分、即ち二酸化炭素冷媒の加熱能力の配分において、暖房側が優先されるものである。そして、暖房側水冷媒熱交換器9へ流れる超臨界圧力となされた高温高圧の二酸化炭素の冷媒量は、貯湯側水冷媒熱交換器22へ流れる冷媒量よりも多量であるため、貯湯運転と暖房運転の同時運転を可能にしながら、暖房循環回路C1における暖房側水冷媒熱交換器9の水流路9B出口側から流出する暖房用の温水温度の立ち上がりが良好となり、床暖房パネル1、2や浴室暖房用コイル13の運転開始時における暖房特性を高めることができる。   Therefore, the compressor 21 has the ability to set the opening degree of the heating side flow rate adjustment valve 26 larger than the opening degree of the hot water storage side flow rate adjustment valve 27 at the beginning of the simultaneous operation of the hot water storage operation and the heating operation. Since the simultaneous operation is performed, the heating side is given priority in the capacity distribution of the compressor 21, that is, the distribution of the heating capacity of the carbon dioxide refrigerant. And since the refrigerant | coolant amount of the high-temperature / high pressure carbon dioxide made into the supercritical pressure which flows into the heating side water refrigerant | coolant heat exchanger 9 is larger than the refrigerant | coolant amount which flows into the hot water storage side water refrigerant | coolant heat exchanger 22, While enabling the simultaneous operation of the heating operation, the warming water temperature for heating that flows out from the outlet side of the water flow path 9B of the heating-side water refrigerant heat exchanger 9 in the heating circuit C1 becomes good, and the floor heating panels 1, 2, Heating characteristics at the start of operation of the bathroom heating coil 13 can be enhanced.

また、床暖房パネル1、2にて暖房している部屋の温度や、浴室暖房用コイル13にて暖房している浴室の温度が上昇し、それらの部屋が設定温度に達した場合や、それら暖房端末の運転が停止した場合には、暖房循環回路C1の負荷が減少する。   In addition, when the temperature of the room heated by the floor heating panels 1 and 2 or the temperature of the bathroom heated by the bathroom heating coil 13 rises and those rooms reach the set temperature, When the operation of the heating terminal stops, the load on the heating circuit C1 decreases.

この場合、暖房側水冷媒熱交換器9の水流路9Bの入口側と出口側の双方にそれぞれ配された暖房入口側温度センサ12Aと暖房出口側温度センサ12Bによるそれぞれの検出温度の差が減少し、この温度差が減少すると、前記制御装置S1は、暖房循環回路C1の負荷が減少したと判断(判断手段)し、暖房側流量調整弁26の弁開度を、例えば同時運転開始当初の弁開度よりも1段階小さい弁開度にする一方、貯湯側流量調整弁27の弁開度を、例えば同時運転開始当初の弁開度よりも1段階大きい弁開度となるように弁開度制御を行う。   In this case, the difference between the detected temperatures of the heating inlet side temperature sensor 12A and the heating outlet side temperature sensor 12B respectively disposed on both the inlet side and the outlet side of the water flow path 9B of the heating side water refrigerant heat exchanger 9 is reduced. When this temperature difference decreases, the control device S1 determines that the load on the heating circuit C1 has decreased (determination means), and determines the valve opening of the heating-side flow rate adjustment valve 26, for example, at the beginning of simultaneous operation. The valve opening of the hot water storage side flow rate adjustment valve 27 is set to a valve opening that is one step larger than, for example, the initial valve opening at the start of simultaneous operation. Control the degree.

その後、更に暖房入口側温度センサ12Aと暖房出口側温度センサ12Bによるそれぞれの検出温度の差が減少した場合には、前記制御装置S1は、暖房循環回路C1の負荷が更に減少したと再び判断(判断手段)し、暖房側流量調整弁26の弁開度を、例えば同時運転開始当初の弁開度よりも2段階小さい弁開度にする一方、貯湯側流量調整弁27の弁開度を、例えば同時運転開始当初の弁開度よりも2段階大きい弁開度となるように弁開度制御を行う。   Thereafter, when the difference between the detected temperatures of the heating inlet side temperature sensor 12A and the heating outlet side temperature sensor 12B further decreases, the control device S1 determines again that the load of the heating circulation circuit C1 has further decreased ( Determination means), for example, the opening degree of the heating-side flow rate adjustment valve 26 is set to be two steps smaller than the initial opening degree of the simultaneous operation, while the opening degree of the hot water storage-side flow rate adjustment valve 27 is For example, the valve opening degree control is performed so that the valve opening degree is two stages larger than the initial valve opening degree.

ここで、上述とは逆に、前記した暖房端末の運転が再開した場合には、暖房循環回路C1の負荷が増加する。この場合、暖房側水冷媒熱交換器9の水流路9Bの入口側と出口側の双方にそれぞれ配された暖房入口側温度センサ12Aと暖房出口側温度センサ12Bによるそれぞれの検出温度の差が増加し、この温度差が増加すると、前記制御装置S1は、暖房循環回路C1の負荷が増加したと判断(判断手段)し、暖房側流量調整弁26の弁開度を、例えば1段階大きい弁開度に戻す一方、貯湯側流量調整弁27の弁開度を、例えば1段階小さい弁開度に戻すように弁開度制御を行う。   Here, contrary to the above, when the operation of the heating terminal is resumed, the load on the heating circulation circuit C1 increases. In this case, the difference between the detected temperatures of the heating inlet side temperature sensor 12A and the heating outlet side temperature sensor 12B respectively arranged on both the inlet side and the outlet side of the water flow path 9B of the heating side water refrigerant heat exchanger 9 increases. When this temperature difference increases, the control device S1 determines that the load on the heating circulation circuit C1 has increased (determination means), and opens the valve opening of the heating-side flow rate adjustment valve 26, for example, by one step larger. On the other hand, the valve opening degree control is performed so that the valve opening degree of the hot water storage side flow rate adjustment valve 27 is returned to, for example, a one degree smaller valve opening degree.

その後、更に暖房入口側温度センサ12Aと暖房出口側温度センサ12Bによるそれぞれの検出温度の差が増加した場合には、前記制御装置S1は、暖房循環回路C1の負荷が更に増加したと判断(判断手段)し、暖房側流量調整弁26の弁開度を、例えば同時運転開始当初の弁開度に戻す一方、貯湯側流量調整弁27の弁開度も、例えば同時運転開始当初の弁開度に戻るように弁開度制御を行う。従って、暖房側の負荷の変動に応じて、暖房側流量調整弁26と貯湯側流量調整弁27のそれぞれの弁開度を調整し、暖房側の負荷が減少した際には、圧縮機21の能力を、能力余裕側から能力不足側へ移行させる配分調整が可能となり、貯湯運転と暖房運転のそれぞれの状況に対応した能力配分を実行できる。   Thereafter, when the difference between the detected temperatures of the heating inlet side temperature sensor 12A and the heating outlet side temperature sensor 12B further increases, the control device S1 determines that the load of the heating circulation circuit C1 has further increased (determination). In other words, the opening degree of the heating side flow rate adjustment valve 26 is returned to, for example, the initial valve opening degree of the simultaneous operation, while the opening degree of the hot water storage side flow rate adjustment valve 27 is, for example, the initial opening degree of the simultaneous operation. The valve opening is controlled so as to return to. Therefore, when the opening degree of each of the heating side flow rate adjustment valve 26 and the hot water storage side flow rate adjustment valve 27 is adjusted according to the fluctuation of the heating side load and the heating side load decreases, the compressor 21 It is possible to adjust the distribution to shift the capacity from the capacity surplus side to the capacity shortage side, and it is possible to execute the capacity distribution corresponding to each situation of the hot water storage operation and the heating operation.

以上本発明の一実施例に基づいて説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the present invention has been described based on one embodiment of the present invention, various alternatives, modifications or variations can be made by those skilled in the art based on the above description, and the above-described various alternatives can be made without departing from the spirit of the present invention. It includes examples, modifications or variations.

ヒートポンプ式給湯暖房装置の全体系統図である。It is a whole system diagram of a heat pump type hot water supply and heating device.

符号の説明Explanation of symbols

A ヒートポンプユニット
B タンクユニット
C1 暖房循環回路
C2 貯湯循環回路
R 冷媒回路
DR 暖房側ヒートポンプ冷媒回路
TR 貯湯側ヒートポンプ冷媒回路
9 暖房側水冷媒熱交換器
12A 暖房入口側温度センサ
12B 暖房出口側温度センサ
21 圧縮機
22 貯湯側水冷媒熱交換器
26 暖房側流量調整弁
27 貯湯側流量調整弁
28 空気熱交換器
31 貯湯タンク
32 貯湯用循環ポンプ
A Heat pump unit B Tank unit C1 Heating circulation circuit C2 Hot water circulation circuit R Refrigerant circuit DR Heating side heat pump refrigerant circuit TR Hot water side heat pump refrigerant circuit 9 Heating side water refrigerant heat exchanger 12A Heating inlet side temperature sensor 12B Heating outlet side temperature sensor 21 Compressor 22 Hot water storage side water refrigerant heat exchanger 26 Heating side flow rate adjustment valve 27 Hot water storage side flow rate adjustment valve 28 Air heat exchanger 31 Hot water storage tank 32 Circulation pump for hot water storage

Claims (3)

圧縮機、貯湯側水冷媒熱交換器、貯湯側流量調整弁及び空気熱交換器を冷媒配管によりループ状に接続して構成し、二酸化炭素を冷媒として用いた貯湯側ヒートポンプ冷媒回路と、
前記圧縮機の吐出側の冷媒流路から分岐し、暖房側水冷媒交換器及び暖房側流量調整弁を冷媒配管により接続して構成し、かつ、前記貯湯側流量調整弁と空気熱交換器との間の冷媒流路に合流させた暖房側ヒートポンプ冷媒回路と、
貯湯運転時に前記貯湯側水冷媒熱交換器と貯湯タンクとの間でこの貯湯タンク内の湯水を循環させて沸き上げる貯湯循環回路と、
暖房運転時に前記暖房側水冷媒熱交換器と暖房端末との間で暖房用の温水を循環させて暖房を行う暖房循環回路と、
前記貯湯側流量調整弁及び暖房側流量調整弁の弁開度を制御し、前記圧縮機からの冷媒の流れを前記貯湯側ヒートポンプ冷媒回路と暖房側ヒートポンプ冷媒回路とに振り分ける手段を有する制御装置とを備え、
前記制御装置は、貯湯運転と暖房運転との同時運転開始当初に、暖房側ヒートポンプ冷媒回路の暖房側流量調整弁の弁開度を、貯湯側ヒートポンプ冷媒回路の貯湯側流量調整弁の弁開度よりも大きくすることを特徴とするヒートポンプ式給湯暖房装置。
A compressor, a hot water storage side water refrigerant heat exchanger, a hot water storage side flow rate adjustment valve, and an air heat exchanger are connected in a loop with a refrigerant pipe, and a hot water storage side heat pump refrigerant circuit using carbon dioxide as a refrigerant;
Branching from the refrigerant flow path on the discharge side of the compressor, the heating side water refrigerant exchanger and the heating side flow rate adjustment valve are connected by a refrigerant pipe, and the hot water storage side flow rate adjustment valve, the air heat exchanger, A heating side heat pump refrigerant circuit joined to the refrigerant flow path between,
A hot water storage circuit that circulates the hot water in the hot water storage tank between the hot water storage side refrigerant heat exchanger and the hot water storage tank during boiling hot water operation,
A heating circulation circuit that performs heating by circulating hot water for heating between the heating-side water refrigerant heat exchanger and the heating terminal during heating operation;
A control device that controls valve openings of the hot water storage side flow rate adjustment valve and the heating side flow rate adjustment valve, and has means for distributing the flow of refrigerant from the compressor to the hot water storage side heat pump refrigerant circuit and the heating side heat pump refrigerant circuit; With
The control device, at the beginning of the simultaneous operation of the hot water storage operation and the heating operation, the valve opening degree of the heating side flow rate adjustment valve of the heating side heat pump refrigerant circuit, the valve opening degree of the hot water side flow rate adjustment valve of the hot water storage side heat pump refrigerant circuit A heat pump hot water supply and heating device characterized by being larger than the above.
圧縮機、貯湯側水冷媒熱交換器、貯湯側流量調整弁及び空気熱交換器を冷媒配管によりループ状に接続して構成し、二酸化炭素を冷媒として用いた貯湯側ヒートポンプ冷媒回路と、
前記圧縮機の吐出側の冷媒流路から分岐し、暖房側水冷媒交換器及び暖房側流量調整弁を冷媒配管により接続して構成し、かつ、前記貯湯側流量調整弁と空気熱交換器との間の冷媒流路に合流させた暖房側ヒートポンプ冷媒回路と、
貯湯運転時に前記貯湯側水冷媒熱交換器と貯湯タンクとの間でこの貯湯タンク内の湯水を循環させて沸き上げる貯湯用循環回路と、
暖房運転時に前記暖房側水冷媒熱交換器と暖房端末との間で暖房用の温水を循環させて暖房を行う暖房循環回路と、
前記貯湯側流量調整弁及び暖房側流量調整弁の弁開度を制御し、前記圧縮機からの冷媒の流れを前記貯湯側ヒートポンプ冷媒回路と暖房側ヒートポンプ冷媒回路とに振り分ける手段を有する制御装置とを備え、
前記制御装置は、貯湯運転と暖房運転とを同時に行う同時運転開始当初に、暖房側ヒートポンプ冷媒回路の暖房側流量調整弁の弁開度を、貯湯側ヒートポンプ冷媒回路の貯湯側流量調整弁の弁開度よりも大きくし、かつ、その後は前記暖房循環回路側の負荷の増減に応じて暖房側流量調整弁及び貯湯側流量調整弁の弁開度を調整する構成としたことを特徴とするヒートポンプ式給湯暖房装置。
A compressor, a hot water storage side water refrigerant heat exchanger, a hot water storage side flow rate adjustment valve, and an air heat exchanger are connected in a loop with a refrigerant pipe, and a hot water storage side heat pump refrigerant circuit using carbon dioxide as a refrigerant;
Branching from the refrigerant flow path on the discharge side of the compressor, the heating side water refrigerant exchanger and the heating side flow rate adjustment valve are connected by a refrigerant pipe, and the hot water storage side flow rate adjustment valve, the air heat exchanger, A heating side heat pump refrigerant circuit joined to the refrigerant flow path between,
A circulating circuit for hot water storage that circulates the hot water in the hot water storage tank between the hot water storage side water refrigerant heat exchanger and the hot water storage tank during boiling hot water operation,
A heating circulation circuit that performs heating by circulating hot water for heating between the heating-side water refrigerant heat exchanger and the heating terminal during heating operation;
A control device that controls valve openings of the hot water storage side flow rate adjustment valve and the heating side flow rate adjustment valve, and has means for distributing the flow of refrigerant from the compressor to the hot water storage side heat pump refrigerant circuit and the heating side heat pump refrigerant circuit; With
The control device sets the valve opening of the heating-side flow rate adjustment valve of the heating-side heat pump refrigerant circuit at the beginning of the simultaneous operation for simultaneously performing the hot-water storage operation and the heating operation, and A heat pump characterized in that the opening degree of the heating side flow rate adjustment valve and the hot water storage side flow rate adjustment valve is adjusted in accordance with the increase or decrease of the load on the heating circulation circuit side after the opening degree. Type hot water heater.
前記制御装置は、暖房循環回路における負荷の増減の判断を、前記暖房側水冷媒熱交換器の温水側入口温度と温水側出口温度との差温に基づいて行う判断手段を備えたことを特徴とする請求項2に記載のヒートポンプ式給湯暖房装置。   The control device includes a determination unit that determines whether to increase or decrease the load in the heating circulation circuit based on a temperature difference between a hot water side inlet temperature and a hot water side outlet temperature of the heating side water refrigerant heat exchanger. The heat pump type hot water supply / room heating device according to claim 2.
JP2004289546A 2004-10-01 2004-10-01 Heat pump water heater / heater Expired - Fee Related JP4215699B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004289546A JP4215699B2 (en) 2004-10-01 2004-10-01 Heat pump water heater / heater
KR20050075013A KR100640137B1 (en) 2004-10-01 2005-08-17 Heat pumped water heating and heating apparaturs
CN 200510109657 CN100526727C (en) 2004-10-01 2005-09-19 Heat pump type hot-water heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289546A JP4215699B2 (en) 2004-10-01 2004-10-01 Heat pump water heater / heater

Publications (2)

Publication Number Publication Date
JP2006105434A true JP2006105434A (en) 2006-04-20
JP4215699B2 JP4215699B2 (en) 2009-01-28

Family

ID=36375395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289546A Expired - Fee Related JP4215699B2 (en) 2004-10-01 2004-10-01 Heat pump water heater / heater

Country Status (3)

Country Link
JP (1) JP4215699B2 (en)
KR (1) KR100640137B1 (en)
CN (1) CN100526727C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322077A (en) * 2006-06-01 2007-12-13 Hitachi Appliances Inc Heat pump hot-water supply floor-heating device
JP2009024976A (en) * 2007-07-23 2009-02-05 Sharp Corp Heat pump system
JP2009236379A (en) * 2008-03-26 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply system
JP2014016103A (en) * 2012-07-09 2014-01-30 Rinnai Corp System of supplying hot water and heating
JP2015034671A (en) * 2013-08-09 2015-02-19 株式会社アタゴ製作所 Heat exchanger for heat pump type water heater
JP2015152183A (en) * 2014-02-10 2015-08-24 リンナイ株式会社 heat pump
JP2016090174A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Hot water supply air-conditioning system
WO2016181501A1 (en) * 2015-05-12 2016-11-17 三菱電機株式会社 Heat pump equipment
JPWO2014106895A1 (en) * 2013-01-07 2017-01-19 三菱電機株式会社 Heat pump system
KR20180067094A (en) * 2016-12-12 2018-06-20 엠티코리아(주) Hybrid heat pump system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475072B2 (en) * 2012-08-09 2014-04-16 リンナイ株式会社 Heat pump heat source system
JP5712197B2 (en) * 2012-12-04 2015-05-07 シャープ株式会社 Heat pump heat source system
JP2014163594A (en) * 2013-02-26 2014-09-08 Mitsubishi Electric Corp Flow control device and fluid circuit system
CN104748188A (en) * 2015-04-01 2015-07-01 洛阳中懋环保设备有限公司 Water source heat pump device for making hot water within non-heating full-load time
JP6745039B2 (en) * 2016-11-25 2020-08-26 株式会社ノーリツ Heating water heater
CN112361607B (en) * 2020-10-26 2022-04-05 珠海格力电器股份有限公司 Water heater system control method and device and water heater system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257366A (en) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd Hot water supplying/heating system
JP3869798B2 (en) * 2003-01-14 2007-01-17 三洋電機株式会社 Heat pump water heater / heater
JP3869801B2 (en) * 2003-01-20 2007-01-17 三洋電機株式会社 Heat pump water heater / heater
JP4215661B2 (en) * 2004-02-27 2009-01-28 三洋電機株式会社 Heat pump water heater / heater

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322077A (en) * 2006-06-01 2007-12-13 Hitachi Appliances Inc Heat pump hot-water supply floor-heating device
JP2009024976A (en) * 2007-07-23 2009-02-05 Sharp Corp Heat pump system
JP2009236379A (en) * 2008-03-26 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply system
JP2014016103A (en) * 2012-07-09 2014-01-30 Rinnai Corp System of supplying hot water and heating
JPWO2014106895A1 (en) * 2013-01-07 2017-01-19 三菱電機株式会社 Heat pump system
US9797605B2 (en) 2013-01-07 2017-10-24 Mitsubishi Electric Corporation Heat pump system
JP2015034671A (en) * 2013-08-09 2015-02-19 株式会社アタゴ製作所 Heat exchanger for heat pump type water heater
JP2015152183A (en) * 2014-02-10 2015-08-24 リンナイ株式会社 heat pump
JP2016090174A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Hot water supply air-conditioning system
WO2016181501A1 (en) * 2015-05-12 2016-11-17 三菱電機株式会社 Heat pump equipment
JPWO2016181501A1 (en) * 2015-05-12 2017-07-27 三菱電機株式会社 Heat pump equipment
KR20180067094A (en) * 2016-12-12 2018-06-20 엠티코리아(주) Hybrid heat pump system

Also Published As

Publication number Publication date
CN1755199A (en) 2006-04-05
KR20060050501A (en) 2006-05-19
JP4215699B2 (en) 2009-01-28
CN100526727C (en) 2009-08-12
KR100640137B1 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP5087484B2 (en) Hot water storage hot water heater
JP5097624B2 (en) Hot water supply system
JP2004218912A (en) Heat pump type hot water heating device
KR101548073B1 (en) Heating-apparatus and Water-heater storing heat capable of using the hot heat of heat-source separated from heat storing tank directly
JP2007024458A (en) Hot-water supplier
JP3869798B2 (en) Heat pump water heater / heater
JP2004232978A (en) Heat pump type hot water supply and heating apparatus
JP2007139258A (en) Hot water storage type water heater
JP3869801B2 (en) Heat pump water heater / heater
KR20110097430A (en) Boiler system
JP4215661B2 (en) Heat pump water heater / heater
JP4148909B2 (en) Heat pump water heater / heater
JP2004218911A (en) Heat pump type hot-water supply heating device
JP4101190B2 (en) Hot water storage water heater
JP2002364912A (en) Multifunctional water-heater
JP2005274021A (en) Heat pump hot water supply heating device
JP2004232912A (en) Heat pump water heater
JP2002295899A (en) Hot-water storage type water-heating heat source
JP2004177117A (en) Heat pump water heater
JP3849689B2 (en) Heat pump water heater
JP4144996B2 (en) Hot water storage hot water source
JP2004150796A (en) Heat pump water heater
JP2006090703A (en) Heat pump type hot water supply heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees