JP2008202826A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2008202826A
JP2008202826A JP2007037561A JP2007037561A JP2008202826A JP 2008202826 A JP2008202826 A JP 2008202826A JP 2007037561 A JP2007037561 A JP 2007037561A JP 2007037561 A JP2007037561 A JP 2007037561A JP 2008202826 A JP2008202826 A JP 2008202826A
Authority
JP
Japan
Prior art keywords
hot water
water supply
circuit
heat pump
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007037561A
Other languages
Japanese (ja)
Inventor
Hisao Kusuhara
尚夫 楠原
Kenji Shirai
健二 白井
Hiroshi Arashima
博 荒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007037561A priority Critical patent/JP2008202826A/en
Publication of JP2008202826A publication Critical patent/JP2008202826A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of reducing generation of overturning phenomenon, and preventing temperature rise of electric components. <P>SOLUTION: This heat pump type water heater comprises a heat pump circuit constituted by successively circularly connecting a compressor 1, a heat exchanger 2 for hot water supply, a pressure reducer 3, and an evaporator 4, an air distribution circuit composed of air distribution fans for distributing the air to the evaporator 4 and vertically disposed, and a hot water circulation circuit constituted by successively circularly connecting a hot water storage tank 7, a water feeding means 8, and the heat exchanger 2 for hot water supply. Electric components 16 for driving each of the heat pump circuit, the air distribution circuit, and the hot water circulation circuit are disposed at an upper portion of the air distribution circuit, and the air distribution fan 6b positioned at a lower part, out of the air distribution fans is stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ式給湯機に係り、特に2つの送風ファンの制御に関するものである。   The present invention relates to a heat pump type water heater, and more particularly to control of two blower fans.

従来のヒートポンプ式給湯機におけるヒートポンプサイクルを構成する圧縮機に、スクロール圧縮機を用いるものがある。図4は、従来からヒートポンプ式給湯機等の圧縮機に用いられているスクロール圧縮機の構成断面図である。   Some compressors constituting a heat pump cycle in a conventional heat pump type hot water heater use a scroll compressor. FIG. 4 is a structural cross-sectional view of a scroll compressor conventionally used in a compressor such as a heat pump type hot water heater.

図4において、固定スクロール101と旋回スクロール102とを噛み合わせて、その間に圧縮室103を形成し、自転拘束機構104による自転の拘束の元に円軌道に沿って旋回させた時に、圧縮室103の容積を変えながら移動し、冷媒の圧縮を行う。   In FIG. 4, when the fixed scroll 101 and the orbiting scroll 102 are engaged with each other, a compression chamber 103 is formed therebetween, and the compression chamber 103 is swung along a circular orbit under the rotation restraint by the rotation restraining mechanism 104. It moves while changing the volume of the refrigerant and compresses the refrigerant.

旋回スクロール102と、旋回スクロール102の背面側をバックアップする固定部材105との間に、旋回スクロール102の背面部に潤滑オイルにより高圧を与える高圧部106を設け、高圧部106との間をシーリング107によって仕切られ背面の外周部に高圧部106より若干低い圧力(背圧)を印加するための背圧室108が設けられ、高圧と背圧によって旋回スクロール102を固定スクロール101に押し付けている。   Between the orbiting scroll 102 and a fixing member 105 that backs up the back side of the orbiting scroll 102, a high pressure unit 106 that applies high pressure to the back surface of the orbiting scroll 102 with lubricating oil is provided, and a sealing 107 is provided between the orbiting scroll 102 and the high pressure unit 106. A back pressure chamber 108 for applying a pressure (back pressure) slightly lower than that of the high pressure portion 106 is provided on the outer periphery of the back surface, and the orbiting scroll 102 is pressed against the fixed scroll 101 by the high pressure and the back pressure.

しかしながら、高圧および背圧による押し付け力よりも、圧縮室103で圧縮された冷媒の圧力の方が大きくなると、旋回スクロール102が固定スクロール101から離れてしまい、高圧の圧縮室から低圧の圧縮室へと冷媒が漏洩し、十分な圧縮ができず、圧縮能力が低下してしまう、「転覆」という現象が発生する。   However, when the pressure of the refrigerant compressed in the compression chamber 103 becomes larger than the pressing force due to the high pressure and the back pressure, the orbiting scroll 102 moves away from the fixed scroll 101, and the high pressure compression chamber moves to the low pressure compression chamber. As a result, the refrigerant leaks, cannot be compressed sufficiently, and the compression ability is reduced.

一般的に、ヒートポンプ式給湯機の沸き終い時には、給湯用熱交換器に入水する入水温度が上昇するため、給湯用熱交換器において熱交換量が少なくなり、高圧側の圧力が増加してしまう。それに対して、沸き終い時における制御として、入水温度の上昇に伴い、循環ポンプによって送水量を増加させたり、減圧装置の開度を開くことによって高圧側の圧力の上昇を抑制している。   Generally, at the end of boiling of a heat pump type water heater, the temperature of water entering the heat exchanger for hot water supply rises, so the amount of heat exchange in the heat exchanger for hot water supply decreases and the pressure on the high pressure side increases. End up. On the other hand, as the control at the end of boiling, the increase in the pressure on the high pressure side is suppressed by increasing the amount of water supplied by a circulation pump or opening the opening of the decompression device as the incoming water temperature rises.

しかしながら高外気温時においては、低圧側の圧力が、低外気温時に比べて上昇してしまい、結果として高圧側圧力/低圧側圧力で表される圧縮比が減少してしまう。そのため転覆現象が発生してしまうが、このような転覆現象を回避する方法として、高低圧差をとるため、送風ファンの回転数を止める方法がある(例えば、特許文献1参照)。
特開2005−147545号公報
However, at the time of high outside air temperature, the pressure on the low pressure side increases compared to that at the time of low outside air temperature, and as a result, the compression ratio represented by the high pressure side pressure / low pressure side pressure is reduced. For this reason, a rollover phenomenon occurs. As a method for avoiding such a rollover phenomenon, there is a method of stopping the rotational speed of the blower fan in order to obtain a high-low pressure difference (see, for example, Patent Document 1).
JP 2005-147545 A

しかしながら、送風ファンの回転を停止する方法では、特許文献1のように、起動時の転覆防止制御であれば有効であるが、沸き終い時にはヒートポンプ式給湯機の電装部品が比較的高温になっているため、送風ファンの回転数を止めることによって、電装部品の放熱がされず温度が上昇してしまう。そのため、沸き終い時の転覆防止制御において送風ファンを停止してしまうと、低圧側の圧力を下げることができるが、電装部品の放熱を阻害してしまうという課題を有していた。   However, in the method of stopping the rotation of the blower fan, as in Patent Document 1, it is effective if the rollover prevention control is performed at the time of start-up, but the electrical components of the heat pump water heater become relatively high at the end of boiling. Therefore, by stopping the rotation speed of the blower fan, the electrical components are not dissipated and the temperature rises. For this reason, if the blower fan is stopped in the overturning prevention control at the end of boiling, the pressure on the low pressure side can be reduced, but there is a problem that the heat dissipation of the electrical component is hindered.

本発明は、上記従来の課題を解決するもので、転覆現象の発生を抑制するとともに、電装部品の温度上昇も防止することができるヒートポンプ式給湯機を提供することを目的と
する。
The present invention solves the above-described conventional problems, and an object of the present invention is to provide a heat pump type water heater that can suppress the occurrence of the overturning phenomenon and also prevent the temperature rise of the electrical components.

前記従来の課題を解決するために、本発明のヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次環状に接続したヒートポンプ回路と、前記蒸発器に送風し上下に配設された送風ファンから構成される送風回路と、貯湯槽、送水手段、前記給湯用熱交換器とを順次環状に接続した給湯循環回路とを備え、前記ヒートポンプ回路、前記送風回路、前記給湯循環回路の各回路を駆動する電装部品を前記送風回路の上部に配置し、前記送風ファンのうち下方に位置する送風ファンを停止することを特徴とするものである。   In order to solve the above-described conventional problems, a heat pump type hot water heater of the present invention includes a heat pump circuit in which a compressor, a hot water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected in an annular manner, A hot water tank, a hot water supply means, and a hot water supply circulation circuit in which the hot water supply heat exchanger is sequentially connected in an annular manner, the heat pump circuit, the blower circuit, An electrical component for driving each circuit of the hot water supply circulation circuit is arranged in the upper part of the blower circuit, and the blower fan positioned below among the blower fans is stopped.

これによって、送風ファンを停止することがないので、電装部品の放熱を促進することができ、さらに、上下両方の送風ファンを回転させていたときに比べて、風量を低下させることができるので、蒸発器における熱交換量を減少させることができ、低圧側の圧力の上昇も抑制することができるので、転覆も同時に防止することができる。   Since this does not stop the blower fan, it is possible to promote the heat dissipation of the electrical components, and furthermore, since the air volume can be reduced compared to when both the upper and lower blower fans are rotating, Since the amount of heat exchange in the evaporator can be reduced and the increase in pressure on the low pressure side can be suppressed, overturning can be prevented at the same time.

本発明は、転覆現象の発生を抑制するとともに、電装部品の温度上昇も防止することができるヒートポンプ式給湯機を提供することができる。   The present invention can provide a heat pump type hot water heater capable of suppressing the occurrence of the overturn phenomenon and preventing the temperature rise of the electrical component.

第1の発明のヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次環状に接続したヒートポンプ回路と、前記蒸発器に送風し上下に配設された送風ファンから構成される送風回路と、貯湯槽、送水手段、前記給湯用熱交換器とを順次環状に接続した給湯循環回路とを備え、前記ヒートポンプ回路、前記送風回路、前記給湯循環回路の各回路を駆動する電装部品を前記送風回路の上部に配置し、前記送風ファンのうち下方に位置する送風ファンを停止することにより、送風量を減少することで低圧側の圧力が上昇するのを抑制し、上方に位置する送風ファンは動作させているので、電装部品の放熱も促進することができる。   The heat pump type hot water heater of the first invention includes a compressor, a heat exchanger for hot water supply, a pressure reducing device, a heat pump circuit in which an evaporator is sequentially connected in an annular manner, and a blower fan that blows air to the evaporator and is arranged up and down. And a hot water supply circulation circuit in which a hot water storage tank, a water supply means, and a hot water supply heat exchanger are sequentially connected in an annular manner, and drives each circuit of the heat pump circuit, the blower circuit, and the hot water supply circulation circuit. By disposing the electrical component to be placed on the upper part of the blower circuit and stopping the blower fan located below among the blower fans, the pressure on the low pressure side is prevented from increasing by reducing the blown amount, and the upper part Since the blower fan located at is operated, the heat dissipation of the electrical component can also be promoted.

第2の発明のヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次環状に接続したヒートポンプ回路と、前記蒸発器に送風し上下に配設された送風ファンから構成される送風回路と、貯湯槽、送水手段、前記給湯用熱交換器とを順次環状に接続した給湯循環回路とを備え、前記ヒートポンプ回路、前記送風回路、前記給湯循環回路の各回路を駆動する電装部品を前記送風回路の上部に配置し、前記送風ファンのうち上方に位置する送風ファンの回転数を、前記送風ファンのうち下方に位置する送風ファンの回転数よりも大きくしたことにより、送風量を減少することで低圧側の圧力が上昇するのを抑制し、送風ファンは動作させているので、電装部品の放熱も促進することができる。   A heat pump type hot water heater according to a second aspect of the present invention includes a compressor, a hot water heat exchanger, a pressure reducing device, a heat pump circuit in which an evaporator is sequentially connected in an annular manner, and a blower fan that blows air to the evaporator and is arranged up and down. And a hot water supply circulation circuit in which a hot water storage tank, a water supply means, and a hot water supply heat exchanger are sequentially connected in an annular manner, and drives each circuit of the heat pump circuit, the blower circuit, and the hot water supply circulation circuit. The electrical component to be arranged at the top of the blower circuit, and the rotational speed of the blower fan located above among the blower fans is greater than the rotational speed of the blower fan located below among the blower fans, Since the pressure on the low-pressure side is suppressed from increasing by reducing the amount of blown air and the blower fan is operated, heat dissipation of the electrical components can also be promoted.

第3の発明のヒートポンプ式給湯機は、特に第1または第2の発明において、前記給湯用熱交換器に入水する湯水の温度を検出する入水温度検出手段を備え、前記入水温度検出手段で検出する入水温度に基づいて、前記送風ファンのうち下方に位置する送風ファンの制御を行うことにより、入水温度が上昇する沸き終いの段階で下方に位置する送風ファンを制御するので、転覆現象が発生しやすい沸き終い時に低圧側の圧力が上昇するのを防止することができる。   The heat pump type hot water heater according to the third aspect of the present invention is the first or second aspect of the invention, and further comprises an incoming water temperature detecting means for detecting the temperature of the hot water entering the hot water heat exchanger. By controlling the blower fan located below among the blower fans based on the incoming water temperature to be detected, the blower fan located below is controlled at the end of boiling when the incoming water temperature rises. It is possible to prevent the pressure on the low-pressure side from increasing at the end of boiling where apt to occur.

第4の発明のヒートポンプ式給湯機は、特に第1〜第3の発明において、外気温度を検出する外気温度検出手段を備え、前記外気温度検出手段で検出する外気温度に基づいて、前記送風ファンのうち下方に位置する送風ファンの制御を行うことにより、低圧側の圧力が上昇しやすい外気温度時に送風ファンを制御することになり、より確実に転覆現象が発
生しやすい沸き終い時に低圧側の圧力が上昇するのを防止することができる。
The heat pump type hot water heater according to a fourth aspect of the invention includes the outside air temperature detecting means for detecting the outside air temperature particularly in the first to third inventions, and the blower fan based on the outside air temperature detected by the outside air temperature detecting means. By controlling the blower fan located below, the blower fan is controlled at the outside air temperature at which the pressure on the low pressure side tends to rise, and the low pressure side at the end of boiling where the overturn phenomenon is more likely to occur. It is possible to prevent the pressure from rising.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本実施の形態におけるヒートポンプ式給湯機の構成図である。図1において、本実施の形態におけるヒートポンプ式給湯機は、冷媒を圧縮するインバータ式圧縮機1と、インバータ式圧縮機1で圧縮された冷媒と水との熱交換を行う給湯用熱交換器2と、給湯用熱交換器2で放熱した後の冷媒を減圧する減圧装置3と、減圧装置3で減圧された冷媒に熱を与える蒸発器4を備え、インバータ式圧縮機1、給湯用熱交換器2、減圧装置3、蒸発器4は冷媒配管5で環状に接続されヒートポンプ回路を形成している。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump type hot water heater in the present embodiment. In FIG. 1, the heat pump type hot water heater in the present embodiment includes an inverter compressor 1 that compresses refrigerant, and a heat exchanger 2 for hot water supply that performs heat exchange between the refrigerant compressed by the inverter compressor 1 and water. And a decompressor 3 that decompresses the refrigerant after radiating heat from the heat exchanger 2 for hot water supply, and an evaporator 4 that gives heat to the refrigerant decompressed by the decompressor 3. The inverter compressor 1, heat exchange for hot water supply The vessel 2, the decompression device 3, and the evaporator 4 are connected in a ring shape by a refrigerant pipe 5 to form a heat pump circuit.

また、蒸発器4に外気を送るための送風手段として上下に2つの送風ファン(上送風ファン6a、下送風ファン6b)から構成される送風回路を備え、さらに、インバータ式圧縮機1や減圧装置3、上下2つの送風ファン等を制御する制御手段であるマイクロコンピュータ15を備えた構成となっている。そして、外気温度検出手段であるサーミスタ14、および給湯用熱交換器2に入水する水の温度を検出する入水温度検出手段であるサーミスタ13とを備える。   Moreover, it has a blower circuit composed of two blower fans (upper blower fan 6a and lower blower fan 6b) as blower means for sending outside air to the evaporator 4, and further includes an inverter compressor 1 and a decompressor. 3. It has a configuration including a microcomputer 15 which is a control means for controlling the upper and lower two blower fans and the like. And the thermistor 14 which is an outside temperature detection means, and the thermistor 13 which is the incoming water temperature detection means which detects the temperature of the water which enters into the hot water supply heat exchanger 2 are provided.

本実施の形態では、インバータ式圧縮機1はアキュームレータのない圧縮機構成としており、アキュームレータを有する圧縮機構成に比べて小型化・軽量化を実現している。また、本実施の形態で使用する冷媒には二酸化炭素を使用しており、比較的安価で、かつ、安定であるため、製品コストを抑えることができるとともに、信頼性を向上させることができる。また、二酸化炭素はオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供することができる。また、ヒートポンプ回路に流通させる冷媒の高圧側の圧力が、臨界圧力を超える圧力となるために、給湯用熱交換器2で熱交換をして熱を奪われても、凝縮することがないため、給湯用熱交換器の全域に亘って、冷媒と水との間の温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くすることができる。なお、本実施の形態では二酸化炭素を使用しているが、これに限定されることはなく、高圧側が臨界圧力を超える冷媒であれば、二酸化炭素と同様に給湯用熱交換器2にて凝縮することがない。   In the present embodiment, the inverter type compressor 1 has a compressor configuration without an accumulator, and is smaller and lighter than a compressor configuration having an accumulator. In addition, carbon dioxide is used as the refrigerant used in this embodiment, which is relatively inexpensive and stable, so that the product cost can be suppressed and the reliability can be improved. In addition, since carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 that of the alternative refrigerant HFC-407C, it can provide a product that is friendly to the global environment. In addition, since the pressure on the high pressure side of the refrigerant flowing through the heat pump circuit exceeds the critical pressure, it does not condense even if heat is exchanged in the hot water supply heat exchanger 2 and heat is taken away. And it becomes easy to form the temperature difference between a refrigerant | coolant and water over the whole region of the heat exchanger for hot water supply, high temperature hot water can be obtained, and heat exchange efficiency can be made high. In the present embodiment, carbon dioxide is used. However, the present invention is not limited to this. If the high-pressure side exceeds the critical pressure, it is condensed in the hot water supply heat exchanger 2 in the same manner as carbon dioxide. There is nothing to do.

また、湯水を貯える貯湯槽7と、貯湯槽7の下部から給湯用熱交換器2に湯水を送水する送水手段である水ポンプ8を備え、貯湯槽7、水ポンプ8、給湯用熱交換器2は給湯配管9で環状に接続され給湯回路を形成している。また、貯湯槽7の下部には、給水源から水を供給するための給水管11が接続されており、常に水圧が加えられている状態となっている。   Moreover, the hot water storage tank 7 which stores hot water and the water pump 8 which is a water supply means which supplies hot water to the hot water supply heat exchanger 2 from the lower part of the hot water storage tank 7 are provided, and the hot water storage tank 7, the water pump 8, and the hot water supply heat exchanger. 2 is connected annularly by a hot water supply pipe 9 to form a hot water supply circuit. Further, a water supply pipe 11 for supplying water from a water supply source is connected to the lower part of the hot water tank 7, and water pressure is always applied.

貯湯槽7内の湯水の沸き上げ時には、水ポンプ8を駆動することにより、給湯用熱交換器2に水を送水し、給湯用熱交換器2で高温高圧の二酸化炭素冷媒と熱交換して高温の湯を生成する。給湯用熱交換器2で生成した高温の湯は、貯湯槽7の上部に接続された給湯管より貯湯槽7の上部に貯えられ、貯湯槽7内には、上方が高温、下方が低温という積層状態を成して湯が貯えられる。   When the hot water in the hot water tank 7 is boiled, the water pump 8 is driven to feed water to the hot water supply heat exchanger 2, and the hot water supply heat exchanger 2 exchanges heat with high-temperature and high-pressure carbon dioxide refrigerant. Produces hot water. The hot water generated in the hot water supply heat exchanger 2 is stored in the upper part of the hot water tank 7 from the hot water pipe connected to the upper part of the hot water tank 7, and the upper part of the hot water tank 7 is high in the upper part and low in the lower part. Hot water is stored in a laminated state.

また、カラン等の給湯端末10には、貯湯槽7の上方部に貯えられている高温水と、貯湯槽7に水を供給する給水管11から分岐して供給される水とを混合手段である混合弁12で混合し、所望の温度の湯を生成して給湯端末10に供給される構成となっている。なお、図1中に示す矢印は、冷媒もしくは水の流通する方向を示している。   In addition, the hot water supply terminal 10 such as a curan mixes high temperature water stored in an upper portion of the hot water tank 7 and water supplied by being branched from a water supply pipe 11 for supplying water to the hot water tank 7 by mixing means. It mixes with a certain mixing valve 12, produces | generates the hot water of desired temperature, and has the structure supplied to the hot water supply terminal 10. FIG. In addition, the arrow shown in FIG. 1 has shown the direction through which a refrigerant | coolant or water distribute | circulates.

図2は、本実施の形態1におけるヒートポンプ式給湯機の正面図である。図2に示すように、本実施の形態1においては、ヒートポンプ式給湯機の構成部品をすべて一つの筐体に収納しており、蒸発器4の前に上下に上送風ファン6a、下送風ファン6bとが配設されており、それぞれの送風ファンが回転することによって蒸発器4に外気を送る。ヒートポンプ回路と給湯回路とを別筐体に構成する分離型ヒートポンプ式給湯機に比べて、一つの筐体内にすべての構成部品を収納することで、筐体内部の空間を無駄なく使用することができ、ひいては設置の省スペース化を図ることができる。   FIG. 2 is a front view of the heat pump type water heater in the first embodiment. As shown in FIG. 2, in the first embodiment, all the components of the heat pump type hot water heater are housed in one housing, and the upper blower fan 6 a and the lower blower fan are vertically arranged in front of the evaporator 4. 6b is arranged, and the outside air is sent to the evaporator 4 by rotation of each blower fan. Compared to a separate heat pump type hot water heater in which the heat pump circuit and the hot water supply circuit are configured in separate housings, the space inside the housing can be used without waste by storing all the components in one housing. As a result, the installation space can be saved.

また上送風ファン6aの上方部には、電装部品16を配設しており送風ファンの駆動により放熱が促進される構成となっている。   In addition, an electrical component 16 is disposed above the upper blower fan 6a, and heat radiation is promoted by driving the blower fan.

次に、本発明の上送風ファン6a、下送風ファン6bの制御について説明する。図3は、沸き終い時における入水温度、高低圧力を示した図である。図3において、時間経過に伴い入水温度が上昇する。そして入水温度が上昇するとともに、給湯用熱交換器2での冷媒の放熱量が増え、高圧側圧力および低圧側圧力が上昇する。しかしながら高圧側圧力がある程度上昇して設計圧力を超えてしまうと、圧縮機の吐出口に設けている圧力スイッチ(図示せず)が働いてしまい、ヒートポンプ回路の運転を停止してしまう。   Next, control of the upper blower fan 6a and the lower blower fan 6b of the present invention will be described. FIG. 3 is a diagram showing the incoming water temperature and the high and low pressure at the end of boiling. In FIG. 3, the incoming water temperature rises with time. As the incoming water temperature rises, the amount of heat released from the refrigerant in the hot water supply heat exchanger 2 increases, and the high-pressure side pressure and the low-pressure side pressure rise. However, when the high-pressure side pressure rises to a certain level and exceeds the design pressure, a pressure switch (not shown) provided at the discharge port of the compressor works and stops the operation of the heat pump circuit.

そのため、高圧側圧力の上昇を防止しようと、減圧装置3の開度を開く方向に駆動する。その結果、高圧側の冷媒量が低圧側に移動するため、高圧側圧力の上昇を抑制する。しかしながら、減圧装置3の開度を開くと、低圧側圧力が上昇してしまい、結果として、高圧側圧力/低圧側圧力で表される圧縮比が小さくなってしまう。圧縮比が小さくなってしまい、圧縮機が保障する圧縮比よりも小さくなってしまうと、いわゆる転覆現象が生じてしまい、所望の圧縮性能を得ることができない。   Therefore, in order to prevent an increase in the high-pressure side pressure, the decompression device 3 is driven in the opening direction. As a result, the amount of refrigerant on the high-pressure side moves to the low-pressure side, so that an increase in high-pressure side pressure is suppressed. However, when the opening degree of the decompression device 3 is opened, the low pressure side pressure increases, and as a result, the compression ratio expressed by the high pressure side pressure / low pressure side pressure becomes small. If the compression ratio becomes small and becomes smaller than the compression ratio guaranteed by the compressor, a so-called rollover phenomenon occurs, and a desired compression performance cannot be obtained.

また、外気温度検出手段であるサーミスタ14で検出される温度がある程度高い過負荷条件の下であるならば、圧縮機1の運転周波数を比較的低い運転周波数に設定しているので、高圧側圧力の上昇を抑制するために、圧縮機1の運転周波数を大きく下げることができない。   Further, if the temperature detected by the thermistor 14 which is the outside air temperature detecting means is under an overload condition where the temperature is somewhat high, the operating frequency of the compressor 1 is set to a relatively low operating frequency. Therefore, the operating frequency of the compressor 1 cannot be greatly reduced.

そこで、本実施の形態では、サーミスタ14で検出される外気温度が比較的高い過負荷時において、沸き終い時における圧縮比を確保するために、低圧側の圧力上昇を抑制するために、下送風ファン6bの運転を停止もしくは回転数を低くする制御を行う。図3において、入水温度が徐々に高くなってきたB点より下送風ファン6bの運転の停止(または回転数の低下)を行う。B点は、入水温度検出手段であるサーミスタ13で検出される入水温度がある所定の温度を検出する点とし、沸き上げ完了直前に近い入水温度を検出する点であるとする。   Therefore, in the present embodiment, in order to secure a compression ratio at the end of boiling in an overload where the outside air temperature detected by the thermistor 14 is relatively high, Control is performed to stop the operation of the blower fan 6b or reduce the rotational speed. In FIG. 3, the operation of the lower blower fan 6b is stopped (or the rotational speed is lowered) from the point B at which the incoming water temperature is gradually increased. Point B is a point at which the incoming water temperature detected by the thermistor 13 serving as the incoming water temperature detection means is a predetermined temperature, and a point at which the incoming water temperature is detected just before the completion of boiling.

送風ファン停止がない場合は、図3に点線で示すように、高圧側圧力と低圧側圧力が上昇してしまい、その結果、圧縮比が転覆現象が発生してしまう圧縮比Aよりも小さくなってしまい、圧縮してしまうが、下送風ファン6bの運転を停止することによって低圧側圧力の上昇を抑制し、その結果、圧縮比A以上で圧縮比を確保することができ、その結果転覆現象の発生を防止するとともに、上送風ファン6aの運転を継続するので、電装部品16の放熱を促進することができる。   When there is no blower fan stop, as shown by a dotted line in FIG. 3, the high pressure side pressure and the low pressure side pressure rise, and as a result, the compression ratio becomes smaller than the compression ratio A where the overturn phenomenon occurs. However, by stopping the operation of the lower blower fan 6b, it is possible to suppress an increase in the low-pressure side pressure, and as a result, a compression ratio can be secured at a compression ratio A or higher. Since generation | occurrence | production of this is prevented and the driving | operation of the upper ventilation fan 6a is continued, the thermal radiation of the electrical component 16 can be accelerated | stimulated.

また、本実施の形態では上送風ファン6aの運転を連続運転としているが、上送風ファン6aを断続運転することによって、電装部品16の放熱を促進するとともに、最大限に送風ファンを停止することができるので、より低圧側圧力の上昇を防止することができる。   Further, in the present embodiment, the operation of the upper blower fan 6a is a continuous operation, but by intermittently operating the upper blower fan 6a, heat dissipation of the electrical component 16 is promoted and the blower fan is stopped to the maximum. Therefore, it is possible to prevent the lower pressure side pressure from increasing.

なお、本実施の形態では、入水温度がある所定の温度を検出すると、下送風ファン6bの運転停止もしくは回転数を低下させたが、入水温度の他に、低圧側圧力の値を検出し、その低圧側圧力の値に基づいて送風ファンの制御を行ってもよい。   In the present embodiment, when the incoming water temperature is detected to be a predetermined temperature, the operation of the lower blower fan 6b is stopped or the number of rotations is reduced. In addition to the incoming water temperature, the value of the low-pressure side pressure is detected, The blower fan may be controlled based on the value of the low pressure side pressure.

以上のように、外気温度が高い過負荷時において、複数の送風ファンを設け、一部の送風ファンの回転数を低下させることによって、蒸発器における熱交換量を低下させ、低圧側圧力を低下させるとともに、すべての送風ファンについて停止させることがないので、電装部品の放熱の促進を妨げることがない。   As described above, at the time of overload when the outside air temperature is high, a plurality of blower fans are provided, and by reducing the rotation speed of some of the blower fans, the heat exchange amount in the evaporator is lowered and the low pressure side pressure is lowered. In addition, since all the blower fans are not stopped, the promotion of heat dissipation of the electrical components is not hindered.

本発明にかかるヒートポンプ式給湯機は、複数の送風ファンを有するヒートポンプサイクルを有する給湯機において適用することができる。   The heat pump type water heater according to the present invention can be applied to a water heater having a heat pump cycle having a plurality of blower fans.

実施の形態1におけるヒートポンプ式給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 実施の形態1におけるヒートポンプ式給湯機の正面図Front view of heat pump type water heater in embodiment 1 実施の形態1における圧力および入水温度の時間変化図Time variation diagram of pressure and incoming water temperature in the first embodiment 従来のヒートポンプ式給湯機の圧縮機の分解構成図Disassembled configuration diagram of a conventional heat pump water heater compressor

符号の説明Explanation of symbols

1 インバータ式圧縮機
2 給湯用熱交換器
3 減圧装置
4 蒸発器
5 冷媒配管
6 送風ファン
7 貯湯槽
8 水ポンプ
9 給湯配管
10 給湯端末
11 給水管
12 混合弁
13 サーミスタ
14 サーミスタ
15 マイクロコンピュータ
DESCRIPTION OF SYMBOLS 1 Inverter type compressor 2 Heat exchanger for hot water supply 3 Depressurizer 4 Evaporator 5 Refrigerant piping 6 Blower fan 7 Hot water storage tank 8 Water pump 9 Hot water supply pipe 10 Hot water supply terminal 11 Water supply pipe 12 Mixing valve 13 Thermistor 14 Thermistor 15 Microcomputer

Claims (4)

圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次環状に接続したヒートポンプ回路と、前記蒸発器に送風し上下に配設された送風ファンから構成される送風回路と、貯湯槽、送水手段、前記給湯用熱交換器とを順次環状に接続した給湯循環回路とを備え、前記ヒートポンプ回路、前記送風回路、前記給湯循環回路の各回路を駆動する電装部品を前記送風回路の上部に配置し、前記送風ファンのうち下方に位置する送風ファンを停止することを特徴とするヒートポンプ式給湯機。 A heat pump circuit in which a compressor, a heat exchanger for hot water supply, a decompression device, and an evaporator are sequentially connected in an annular manner, a blower circuit configured by a blower fan that is blown to the evaporator and disposed above and below, a hot water storage tank, and a water supply And a hot water supply circulation circuit in which the hot water supply heat exchanger is sequentially and annularly connected, and electrical components for driving the heat pump circuit, the blower circuit, and the hot water supply circulation circuit are arranged above the blower circuit. And the heat-pump type water heater characterized by stopping the ventilation fan located below among the said ventilation fans. 圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次環状に接続したヒートポンプ回路と、前記蒸発器に送風し上下に配設された送風ファンから構成される送風回路と、貯湯槽、送水手段、前記給湯用熱交換器とを順次環状に接続した給湯循環回路とを備え、前記ヒートポンプ回路、前記送風回路、前記給湯循環回路の各回路を駆動する電装部品を前記送風回路の上部に配置し、前記送風ファンのうち上方に位置する送風ファンの回転数を、前記送風ファンのうち下方に位置する送風ファンの回転数よりも大きくしたことを特徴とするヒートポンプ式給湯機。 A heat pump circuit in which a compressor, a heat exchanger for hot water supply, a decompression device, and an evaporator are sequentially connected in an annular manner, a blower circuit configured by a blower fan that is blown to the evaporator and disposed above and below, a hot water storage tank, and a water supply And a hot water supply circulation circuit in which the hot water supply heat exchanger is sequentially and annularly connected, and electrical components for driving the heat pump circuit, the blower circuit, and the hot water supply circulation circuit are arranged above the blower circuit. And the heat pump type hot water supply apparatus characterized by making the rotation speed of the ventilation fan located upward among the said ventilation fans larger than the rotation speed of the ventilation fan located below among the said ventilation fans. 前記給湯用熱交換器に入水する湯水の温度を検出する入水温度検出手段を備え、前記入水温度検出手段で検出する入水温度に基づいて、前記送風ファンのうち下方に位置する送風ファンの制御を行うことを特徴とする請求項1または2に記載のヒートポンプ式給湯機。 Control of a blower fan located below among the blower fans is provided with an incoming water temperature detection means for detecting the temperature of hot water entering the hot water heat exchanger, and based on the incoming water temperature detected by the incoming water temperature detection means The heat pump type water heater according to claim 1 or 2, wherein 外気温度を検出する外気温度検出手段を備え、前記外気温度検出手段で検出する外気温度に基づいて、前記送風ファンのうち下方に位置する送風ファンの制御を行うことを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ式給湯機。 An outside air temperature detecting means for detecting an outside air temperature is provided, and a blower fan positioned below among the blower fans is controlled based on the outside air temperature detected by the outside air temperature detecting means. 4. The heat pump type hot water heater according to any one of 3 above.
JP2007037561A 2007-02-19 2007-02-19 Heat pump type water heater Pending JP2008202826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037561A JP2008202826A (en) 2007-02-19 2007-02-19 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037561A JP2008202826A (en) 2007-02-19 2007-02-19 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2008202826A true JP2008202826A (en) 2008-09-04

Family

ID=39780529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037561A Pending JP2008202826A (en) 2007-02-19 2007-02-19 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2008202826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133598A (en) * 2008-12-03 2010-06-17 Daikin Ind Ltd Heat pump type water heater
JP2012097990A (en) * 2010-11-04 2012-05-24 Toshiba Carrier Corp Heat pump water heater
JP2013019602A (en) * 2011-07-12 2013-01-31 Mitsubishi Heavy Ind Ltd Heat pump water heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280632A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2004069195A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005345006A (en) * 2004-06-03 2005-12-15 Kansai Electric Power Co Inc:The Heat pump type hot water heating device
JP2006118820A (en) * 2004-10-25 2006-05-11 Matsushita Electric Ind Co Ltd Heat pump type water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280632A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2004069195A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005345006A (en) * 2004-06-03 2005-12-15 Kansai Electric Power Co Inc:The Heat pump type hot water heating device
JP2006118820A (en) * 2004-10-25 2006-05-11 Matsushita Electric Ind Co Ltd Heat pump type water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133598A (en) * 2008-12-03 2010-06-17 Daikin Ind Ltd Heat pump type water heater
JP2012097990A (en) * 2010-11-04 2012-05-24 Toshiba Carrier Corp Heat pump water heater
JP2013019602A (en) * 2011-07-12 2013-01-31 Mitsubishi Heavy Ind Ltd Heat pump water heater

Similar Documents

Publication Publication Date Title
JP5039515B2 (en) Electric compressor
WO2014050274A1 (en) Heat pump hot water supply device
JP2005134070A (en) Heat pump water heater
JP2006342980A (en) Heat pump water heater
JP2008202826A (en) Heat pump type water heater
JP2008039353A (en) Heat pump type water heater
JP2010043627A (en) Compressor
JP2008202809A (en) Heat pump type water heater
JP5267011B2 (en) Hot water storage water heater
JP2006258375A (en) Heat pump type water heater
JP2007327697A (en) Refrigerating device
JP2011075257A (en) Heat pump type water heater
JP2009085565A (en) Heat pump water heater
WO2019181710A1 (en) Refrigeration cycle apparatus
JP2007170765A (en) Operation method of refrigerating cycle device
JP4816089B2 (en) Heat pump water heater
JP2008039288A (en) Heat pump type water heater
JP5401913B2 (en) Heat pump water heater
JP2011179762A (en) Heat pump hot water generator
JP3801168B2 (en) Heat pump water heater
JP3772883B2 (en) Operation control method of heat pump device
JP2005147544A (en) Heat pump water heater
JP4665801B2 (en) Air conditioner
JP2007212103A (en) Heat pump type hot water supply apparatus
JP6643711B2 (en) Refrigeration cycle apparatus and cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710