JP2006219762A - Al-Mg BASED ALLOY SHEET WITH GOOD PRESS FORMABILITY - Google Patents

Al-Mg BASED ALLOY SHEET WITH GOOD PRESS FORMABILITY Download PDF

Info

Publication number
JP2006219762A
JP2006219762A JP2006116990A JP2006116990A JP2006219762A JP 2006219762 A JP2006219762 A JP 2006219762A JP 2006116990 A JP2006116990 A JP 2006116990A JP 2006116990 A JP2006116990 A JP 2006116990A JP 2006219762 A JP2006219762 A JP 2006219762A
Authority
JP
Japan
Prior art keywords
orientation
texture
cold rolling
crystal grain
volume fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006116990A
Other languages
Japanese (ja)
Other versions
JP4339869B2 (en
Inventor
Masahiro Yanagawa
政洋 柳川
Yasushi Maeda
恭志 前田
Yasuhiro Hayashida
康宏 林田
Shigeo Hattori
重夫 服部
Kuniaki Matsui
邦昭 松井
Seiichi Hashimoto
成一 橋本
Barrat Fredrick
バーラット フレデリック
C Blem John
シー ブレム ジョン
J Risi Daniel
ジェイ リージ ダニエル
J Martha Shawn
ジェイ マーサ シャウン
Chan Kwansoo
チャン クワンソー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Howmet Aerospace Inc
Original Assignee
Kobe Steel Ltd
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Aluminum Company of America filed Critical Kobe Steel Ltd
Publication of JP2006219762A publication Critical patent/JP2006219762A/en
Application granted granted Critical
Publication of JP4339869B2 publication Critical patent/JP4339869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg based alloy sheet with good press formability, namely, with excellent deep-drawability. <P>SOLUTION: The Al-Mg based alloy sheet has a texture composed of grains with a ratio of the volume fraction in the S orientation to the volume fraction in the CUBE orientation (S/Cube) being 1 or more, and a GOSS orientation of 10% or less, wherein the grain size is in the range of 20 to 100 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プレス成形性に優れるAl−Mg系合金板であり、特に深絞り成形性が高く、自動車ボディパネル等の材料に好適なAl−Mg系合金板に関する。   The present invention relates to an Al-Mg alloy plate having excellent press formability, and particularly relates to an Al-Mg alloy plate having high deep drawability and suitable for materials such as automobile body panels.

近年、地球環境などへの配慮の観点から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車のボディパネル等の材料として、鋼板等の鉄鋼材料にかえてアルミニウム材料の適用が検討されている。   In recent years, from the viewpoint of consideration for the global environment, social demands for weight reduction of vehicles such as automobiles are increasing. In order to respond to such demands, the application of aluminum materials instead of steel materials such as steel plates is being studied as materials for automobile body panels and the like.

しかし、強度的に鋼板と同程度であるアルミニウム材料であっても、一般に深絞り成形、張出し成形等のプレス成形性が劣っているため、プレス成形性での改善が強く望まれている。   However, even an aluminum material having a strength comparable to that of a steel plate is generally inferior in press formability such as deep drawing and stretch forming, and therefore, improvement in press formability is strongly desired.

プレス成形性に優れるアルミニウム合金板としては、従来からAl−Mg系のJIS5052合金やJIS5182合金等のアルミニウム合金材料が使用されており、他には特許文献1に開示されたAl−Mg系合金材料がある。本件出願人は、これまで鋭意、研究開発と商品化の努力を行い、KS5030合金やKS5032合金(いずれも神戸製鋼所商品名で、その内容は特許文献2、特許文献3、特許文献4、特許文献5等に開示されている)を開発している。これらの合金は、Mgを高濃度添加することで高強度、高延性を与え、0.5%程度のCuを添加することで塗装焼付硬化性と耐応力腐食割れ性を高め、さらにMn、Crを添加することにより結晶粒径の最適化をはかったことを特徴としている。そして、これらのアルミニウム合金板は自動車パネル等に適用されている。   As an aluminum alloy plate excellent in press formability, aluminum alloy materials such as Al-Mg based JIS 5052 alloy and JIS 5182 alloy have been used conventionally, and other Al-Mg based alloy materials disclosed in Patent Document 1 are used. There is. The applicant of the present invention has been diligently engaged in research and development and commercialization. The KS5030 alloy and the KS5032 alloy (both are trade names of Kobe Steel, the contents of which are Patent Document 2, Patent Document 3, Patent Document 4, Patent (Disclosed in Document 5). These alloys give high strength and high ductility by adding a high concentration of Mg, and by adding about 0.5% of Cu, paint bake hardenability and stress corrosion cracking resistance are improved, and Mn, Cr It is characterized in that the crystal grain size was optimized by adding. These aluminum alloy plates are applied to automobile panels and the like.

しかし、これらのアルミニウム系合金板は成形性が十分とはいえず、自動車メーカーからさらなる成形性の向上が要求されていた。成形性が不十分な理由は,塑性異方性をうまく制御できないためであった。つまり、JIS5182合金などのJIS合金、KS5030合金やKS5032合金などの本出願人が開発した合金あるいは特許文献6、特許文献7、特許文献8、特許文献9、特許文献10等に開示されたAl−Mg系合金は合金成分を特定するのにとどまり、塑性異方性を支配する集合組織に関してはなんら配慮されていない。   However, it cannot be said that these aluminum alloy plates have sufficient formability, and further improvement of formability has been demanded by automobile manufacturers. The reason why moldability is insufficient is that the plastic anisotropy cannot be controlled well. That is, a JIS alloy such as JIS 5182 alloy, an alloy developed by the present applicant such as KS5030 alloy and KS5032, or Al--disclosed in Patent Document 6, Patent Document 7, Patent Document 8, Patent Document 9, Patent Document 10, and the like. The Mg-based alloy only specifies the alloy components, and no consideration is given to the texture governing plastic anisotropy.

集合組織が成形性を支配することは古くから知られている。例えば冷延鋼板では板面方位として(111)を強く発達させることで深絞り性を向上させることができることが知られている。最近では、アルミ合金においても、板材の集合組織を制御することにより成形性を向上させることが提案されている。例えば、特許文献11に、深絞り成形用アルミニウム合金として、板面の(110)方位集積度が10%以上で、かつ(110)方位と(112)方位の集積度比が1.5以上であり、結晶粒径が35〜80μmの範囲にあるAl−Mg系合金板が開示されている。しかし、ここに示されている集合組織も深絞り成形に最適とは言えず、より深絞り成形性に優れた集合組織が求められている。   It has long been known that textures dominate formability. For example, in cold-rolled steel sheets, it is known that deep drawability can be improved by strongly developing (111) as the plane orientation. Recently, it has been proposed to improve formability of aluminum alloys by controlling the texture of plate materials. For example, in Patent Document 11, as an aluminum alloy for deep drawing, the (110) orientation integration degree of the plate surface is 10% or more, and the integration degree ratio of the (110) orientation and the (112) orientation is 1.5 or more. There is disclosed an Al—Mg alloy plate having a crystal grain size in the range of 35 to 80 μm. However, the texture shown here is not optimal for deep drawing, and there is a demand for a texture that is more excellent in deep drawability.

本発明者の一人も集合組織を制御した張出し成形に優れたAl−Mg合金を発明した(特許文献12)が、そこに規定した集合組織は必ずしも張出し成形性について最適とは限らず、張出し成形性と集合組織との関係をより明らかにする必要である。また、この発明では、成形性を大きく支配する結晶粒径については考慮していない。   One of the inventors of the present invention invented an Al—Mg alloy excellent in stretch forming with controlled texture (Patent Document 12). However, the texture defined therein is not necessarily optimum for stretch formability, and stretch forming. It is necessary to clarify the relationship between sex and texture. In the present invention, the crystal grain size that largely controls the formability is not taken into consideration.

学術論文に目を向けると、P.Ratchevらは、Al−Mg合金板における集合組織と成形性の関係を塑性加工理論に基づいて計算機予測し、Cube方位などが強く発達すると異方性が強くなり、成形性が低下すると報告している(非特許文献1)。
特開昭52−141409号公報 特開昭60−125346号公報 特開昭63−89649号公報 特開平2−269937号公報 特開平3−315486号公報 特開昭52−141409号公報 特開昭60−125346号公報 特開昭63−89649号公報 特開平2−269937号公報 特開平3−315486号公報 特開平5−295476号公報 特開平8−325663号公報 Texture and Microstructures、vol.22、1994年、P219.
Looking at academic papers, Ratchev et al. Predict the relationship between texture and formability in Al-Mg alloy plates based on plastic working theory, and report that anisotropy becomes stronger and formability decreases when the Cube orientation etc. develops strongly. (Non-Patent Document 1).
JP 52-141409 A JP 60-125346 A JP 63-89649 A JP-A-2-269937 JP-A-3-315486 JP 52-141409 A JP 60-125346 A JP 63-89649 A JP-A-2-269937 JP-A-3-315486 JP-A-5-295476 JP-A-8-325663 Texture and Microstructures, vol. 22, 1994, P219.

本発明は、このような事情に鑑みてなされたものであり、その目的は、塑性異方性を支配する集合組織につき、個々の結晶方位の割合を制御し、さらに結晶粒径を最適化し、また添加元素の種類と添加量を特定範囲に限定することによって、プレス成形性に優れた最適のAl−Mg系合金板を提供することにある。より詳しくは、プレス成形性のうち、(i)張出し成形性、(ii)深絞り成形性、(iii)引張り領域から平面ひずみ領域における成形割れ限界の3つの特性の向上を目的に、それぞれの特性に優れたAl−Mg系合金板を提供することを目的とする。   The present invention has been made in view of such circumstances, and its purpose is to control the ratio of individual crystal orientations for the texture governing plastic anisotropy, and further optimize the crystal grain size, It is another object of the present invention to provide an optimum Al-Mg alloy plate excellent in press formability by limiting the kind and amount of additive elements to a specific range. More specifically, among the press moldability, (i) stretch moldability, (ii) deep drawability, and (iii) improvement of the three cracking limits in the tensile region to the plane strain region, An object of the present invention is to provide an Al-Mg alloy plate having excellent characteristics.

本発明のプレス成形性に優れるAl−Mg系合金板のうち、張出し成形性に優れるAl−Mg系合金板は、集合組織として,CUBE方位の体積分率が5〜20%,GOSS方位の体積分率が1〜5%,BRASS方位,S方位,COPPER方位の体積分率が各々1〜10%であり,結晶粒径が20〜70μmの範囲にあることを要旨とする。好ましくは、CUBE方位の体積分率が5〜15%,GOSS方位の体積分率が1〜3%,BRASS方位,S方位,COPPER方位の体積分率が各々1〜5%である。さらに、結晶粒径は30〜60μmであることが好ましい。   Among the Al-Mg alloy plates having excellent press formability according to the present invention, the Al-Mg alloy plate having excellent stretch formability has a volume fraction of 5-20% in CUBE orientation and a volume in GOSS orientation as a texture. The gist is that the fraction is 1 to 5%, the volume fraction of BRASS orientation, S orientation, and COPPER orientation is 1 to 10%, respectively, and the crystal grain size is in the range of 20 to 70 μm. Preferably, the volume fraction of the CUBE azimuth is 5 to 15%, the volume fraction of the GOSS azimuth is 1 to 3%, and the volume fraction of the BRASS azimuth, S azimuth, and COPPER azimuth is 1 to 5% each. Furthermore, the crystal grain size is preferably 30 to 60 μm.

深絞り成形性に優れるAl−Mg系合金板は、集合組織として、CUBE方位の体積分率とS方位の体積分率の比(S/Cube)が1以上であり、かつGOSS方位が10%以下であり、かつ結晶粒径が20〜100μmの範囲にあることを要旨とする。好ましくは、CUBE方位の体積分率とS方位の体積分率の比(S/Cube)が2以上で、かつGOSS方位が5%以下である。また、結晶粒径は40〜80μmが好ましい。   The Al—Mg-based alloy plate having excellent deep drawability has, as a texture, a ratio of the volume fraction of the CUBE orientation to the volume fraction of the S orientation (S / Cube) of 1 or more and a GOSS orientation of 10%. The gist is that the crystal grain size is in the range of 20 to 100 μm. Preferably, the ratio (S / Cube) of the volume fraction of the CUBE orientation to the volume fraction of the S orientation is 2 or more, and the GOSS orientation is 5% or less. The crystal grain size is preferably 40 to 80 μm.

引張り領域から平面ひずみ領域における成形割れ限界が高いAl−Mg系合金板は、集合組織として、CUBE方位の体積分率が30〜50%で、かつBRASS方位の体積分率が10〜20%で、かつ結晶粒径が50〜100μmの範囲にあることを要旨とする。好ましくは、CUBE方位の体積分率が40〜50%でかつBRASS方位の体積分率が15〜20%である。また、粒径は、60〜90μmであることがより好ましい。   An Al—Mg alloy plate having a high forming crack limit from the tensile region to the plane strain region has a volume fraction of CUBE orientation of 30 to 50% and a volume fraction of BRASS orientation of 10 to 20% as a texture. And the crystal grain size is in the range of 50 to 100 μm. Preferably, the volume fraction of the CUBE orientation is 40 to 50% and the volume fraction of the BRASS orientation is 15 to 20%. The particle size is more preferably 60 to 90 μm.

更に、これらのAl−Mg系合金板は、いずれもMgを2〜6wt%含有し、Fe、Mn、Cr、Zr、及びCuの内から選ばれる1種以上を総和で0.03wt%以上(Cuが選択される場合はCuとして0.2wt%以上)含有し、残部がAlである組成であることが好ましい。   Furthermore, these Al-Mg alloy plates all contain 2 to 6 wt% Mg, and a total of at least one selected from Fe, Mn, Cr, Zr and Cu is 0.03 wt% or more ( When Cu is selected, it is preferable that the Cu content be 0.2 wt% or more), with the balance being Al.

Al−Mg系合金板において、以上のように集合組織、結晶粒径、添加元素を適切に制御することにより、プレス成形性を向上できる。具体的には、張出し成形性又は深絞り成形性に優れ、あるいは引張り領域から平面ひずみ領域における成形割れ限界が高い、自動車ボディパネル等に好適なアルミニウム合金板を得ることができる。   In the Al—Mg-based alloy plate, press formability can be improved by appropriately controlling the texture, crystal grain size, and additive elements as described above. Specifically, it is possible to obtain an aluminum alloy plate suitable for an automobile body panel or the like, which is excellent in stretch formability or deep drawability, or has a high forming crack limit from a tensile region to a plane strain region.

通常のアルミニウム合金板の集合組織は、主としてCUBE方位,GOSS方位,BRASS方位,S方位,COPPER方位から構成され、これらの体積分率が変化すると塑性異方性が変化する。ここで、集合組織のでき方は同じ結晶系の場合でも加工法によって異なり、圧延による板材の場合には圧延面と圧延方向で表す必要がある。圧延面は(○○○)で表現され、圧延方向は<△△△>で表現される(○、△は整数を示す)。かかる表現方法に基づいて、CUBE方位,GOSS方位,BRASS方位,S方位,COPPER方位は、以下のように表される。   The texture of a normal aluminum alloy plate is mainly composed of a CUBE orientation, a GOSS orientation, a BRASS orientation, an S orientation, and a COPPER orientation. When these volume fractions change, the plastic anisotropy changes. Here, how the texture is formed varies depending on the processing method even in the case of the same crystal system, and in the case of a plate material by rolling, it is necessary to express it by a rolling surface and a rolling direction. The rolling surface is represented by (◯◯◯), and the rolling direction is represented by <ΔΔΔ> (◯ and Δ are integers). Based on such a representation method, the CUBE direction, the GOSS direction, the BRASS direction, the S direction, and the COPPER direction are expressed as follows.

CUBE方位 (100)<001>
GOSS方位 (110)<001>
BRASS方位 (110)<1−12>
S方位 (123)<63−4>
COPPER方位 (112)<11−1>
CUBE bearing (100) <001>
GOSS orientation (110) <001>
BRASS orientation (110) <1-12>
S direction (123) <63-4>
COPPER bearing (112) <11-1>

本明細書ではこれらの方位から±10度以内の方位のずれは同一の方位因子に属するものと定義する。なお方位を表す場合に,負方向の数値は数値の上にバ−を付けて表示するのが一般的であるが,本明細書においては,都合上,数値の前に「−」符号を付けてこれを表示する。また、これらの方位因子以外の方位をランダム方位と定義する。   In this specification, it is defined that deviations in orientation within ± 10 degrees from these orientations belong to the same orientation factor. When expressing the direction, the numerical value in the negative direction is generally displayed with a bar on the numerical value. However, in this specification, for the sake of convenience, a “-” sign is added before the numerical value. Display this. Further, directions other than these direction factors are defined as random directions.

本発明者らは、集合組織の変化に対応する塑性異方性の変化から、張出し成形性、深絞り成形性、引張り領域から平面ひずみ領域における成形割れ限界の3つの特性に最適の組織形態を明らかにした。以下、個々の成形特性ごとに説明する。   From the change in plastic anisotropy corresponding to the change in texture, the present inventors have determined the optimum structure for the three properties of stretch-formability, deep-drawn formability, and forming crack limit in the tensile region to the plane strain region. Revealed. Hereinafter, each molding characteristic will be described.

(1)張出し成形性と集合組織の関係
張出し成形性に優れるとは二軸応力下での割れ限界が高いことである。そのための支配因子は3つあり、塑性異方性が弱いこと、加工硬化能が高いこと、ひずみ速度感受性指数が高い値を示すことである。集合組織が弱いものが張出し成形性に優れることは従来からわかっていたことであるが、圧延で板を製造する場合、完全に等方的なもの(換言すると集合組織が弱い)を得ることは不可能で、何らかの方位が強くなる。
(1) Relationship between stretch formability and texture The excellent stretch formability means that the crack limit under biaxial stress is high. There are three dominating factors for this purpose: low plastic anisotropy, high work hardening ability, and high strain rate sensitivity index. It has been known in the past that a material with a weak texture is excellent in stretch formability, but when producing a sheet by rolling, it is possible to obtain a completely isotropic material (in other words, a texture is weak). Impossible, some orientation becomes stronger.

個々の方位の体積分率と張出し性の関係について、多くの実験結果をもとに検討した結果、CUBE方位の体積分率が5%以上で20%以下、好ましくは15%以下,GOSS方位の体積分率が1%以上で5%以下、好ましくは3%以下,BRASS方位,S方位,COPPER方位の体積分率が各々1%以上で10%以下、好ましくは5%以下のときに、塑性異方性の弱い組織、即ち最も張出し性に優れる組織となることがわかった。   As a result of examining the relationship between the volume fraction of each orientation and the overhang property based on many experimental results, the volume fraction of the CUBE orientation is 5% or more and 20% or less, preferably 15% or less. Plasticity when the volume fraction is 1% or more and 5% or less, preferably 3% or less, and the volume fraction of BRASS, S, and COPPER orientations is 1% or more and 10% or less, preferably 5% or less. It turned out that it becomes a structure | tissue with weak anisotropy, ie, a structure | tissue which is most excellent in the overhang property.

集合組織の定量的評価の方法に関しては、電子チャネリングパタ−ン法で板面100ケの結晶粒について1ケ1ケの粒の方位を求め、上記5つの方位のどれに属するかを決定し、全ての粒子の大きさは同じと仮定して、各方位の体積分率を算出した。以下、本明細書における集合組織の定量的評価方法は、同様である。   Regarding the quantitative evaluation method of the texture, the orientation of each grain is obtained for 100 crystal grains on the plate surface by the electronic channeling pattern method, and which of the above five orientations is determined. The volume fraction of each direction was calculated on the assumption that all the particles had the same size. Hereinafter, the texture evaluation method in this specification is the same.

(2)深絞り成形性と集合組織の関係
深絞り成形性が優れるとは、フランジ部での板の絞り込みが容易でかつパンチ側部あるいはパンチ底部で破断しにくいことである。そのためには、1方向で引張った場合(引張方向にと垂直の方向には圧縮応力がかかっている状態)の塑性変形が容易で,かつ2方向から引張った場合(2方向に引張応力がかかっている状態)の強度が高いことが必要である。
(2) Relationship between deep-drawing formability and texture The excellent deep-drawing formability means that it is easy to squeeze the plate at the flange portion and it is difficult to break at the punch side or the punch bottom. For this purpose, plastic deformation is easy when pulled in one direction (a state where compressive stress is applied in a direction perpendicular to the tensile direction), and when pulled from two directions (tensile stress is applied in two directions). It is necessary for the strength to be high).

本発明者らは集合組織と深絞り成形性の指標であるLDR(限界絞り比)の関係について鋭意研究した結果,(i)Cube方位,Goss方位はLDRを低下させること、(ii)S方位はLDRを向上させること、(iii)その他の方位の影響は無視できることを明らかにした。(i)〜(iii)の知見のうち、(ii)の見解だけは従来からわかっていた(本発明者の1人による学位論文)が、他の方位の体積分率と深絞り性の関係については、本発明者らが実験結果に基づいて新たに見出したものである。   As a result of intensive studies on the relationship between texture and LDR (limit drawing ratio), which is an index of deep drawability, the present inventors have found that (i) Cube orientation and Goss orientation reduce LDR, and (ii) S orientation. Clarified that it improves LDR and (iii) the influence of other orientations can be ignored. Of the findings of (i) to (iii), only the view of (ii) has been known so far (a dissertation by one of the inventors), but the relationship between volume fraction of other orientations and deep drawability Is newly found by the present inventors based on experimental results.

(i)〜(iii)の知見に基づき、Al−Mg合金の集合組織を、CUBE方位の体積分率とS方位の体積分率の比(S/Cube)が1以上、好ましくは2以上で、かつGOSS方位が10%以下、好ましくは5%以下にすればLDRが高くなり、深絞り成形性に優れる。尚、特許文献11(特開平5−295476号公報)に記載の深絞り性成形用アルミニウム合金は、GOSS又はBRASS方位に該当する(110)方位の集積度が10%以上で、かつ(110)方位とCOPPER方位に該当する(112)方位の集積度比が1.5以上であって、S方位率を規定していない点、CUBE方位の体積分率とS方位の体積分率の比(S/Cube)に着目していない点が本発明と異なっている。   Based on the findings of (i) to (iii), the texture of the Al—Mg alloy has a ratio of the volume fraction of the CUBE orientation to the volume fraction of the S orientation (S / Cube) of 1 or more, preferably 2 or more. When the GOSS orientation is 10% or less, preferably 5% or less, the LDR is increased and the deep drawability is excellent. Note that the deep-drawable forming aluminum alloy described in Patent Document 11 (Japanese Patent Laid-Open No. 5-295476) has an accumulation degree of (110) orientation corresponding to GOSS or BRASS orientation of 10% or more, and (110) The (112) orientation integration ratio corresponding to the azimuth and the COPPER azimuth is 1.5 or more and the S azimuth ratio is not defined, the ratio of the volume fraction of the CUBE azimuth and the volume fraction of the S azimuth ( The point which does not pay attention to (S / Cube) is different from the present invention.

(3)引張り領域から平面ひずみ領域における成形割れ限界と集合組織の関係
本発明者らが鋭意研究した結果,引張り領域から平面ひずみ領域における成形割れ限界は塑性異方性に影響されず,加工硬化特性とひずみ速度感受性が支配的であること、特に加工硬化特性は集合組織の影響を受け,集合組織の異方性が強いほど加工硬化特性が向上することが明かになった。
(3) Relationship between forming crack limit and texture from tensile region to plane strain region As a result of the intensive studies by the present inventors, the forming crack limit from tensile region to plane strain region is not affected by plastic anisotropy, and work hardening It was clarified that the characteristics and strain rate sensitivity are dominant, especially the work hardening characteristics are affected by the texture, and the stronger the texture anisotropy, the better the work hardening characteristics.

引張り領域から平面ひずみ領域における成形割れ限界が高い集合組織は、CUBE方位の体積分率が30%以上、好ましくは40%で、50%以下で、且つBRASS方位の体積分率が10%以上、好ましくは15%以上で20%以下である。   The texture having a high forming crack limit from the tensile region to the plane strain region has a volume fraction of CUBE orientation of 30% or more, preferably 40%, 50% or less, and a volume fraction of BRASS orientation of 10% or more. Preferably, it is 15% or more and 20% or less.

(4)プレス成形性と結晶粒径の関係
(a)張出し成形性
結晶粒径が小さいほど変形が均一に起き、ひずみ速度感受性指数が高い値を示し、張出し成形性が向上する。
(4) Relationship between press moldability and crystal grain size (a) Stretch moldability The smaller the crystal grain size, the more uniformly the deformation occurs, the higher the strain rate sensitivity index, and the better the stretch moldability.

本発明者らは鋭意研究した結果,結晶粒径として20μm以上、好ましくは30μm以上で、70μm以下、好ましくは60μm以下の範囲にあることが最適であることを見いだした。20μm未満では、成形時にストレッチャストレインマ−クが発生するため好ましくなく、70μmを越えると粒界破壊が起こり易くなって好ましくないからである。   As a result of intensive studies, the present inventors have found that it is optimal that the crystal grain size is in the range of 20 μm or more, preferably 30 μm or more, 70 μm or less, preferably 60 μm or less. If it is less than 20 μm, a stretcher strain mark is generated at the time of molding, which is not preferable, and if it exceeds 70 μm, grain boundary breakage tends to occur, which is not preferable.

尚、結晶粒径の測定は、倍率が100倍の光学顕微鏡写真に基づいてクロスカット法で平均切片長を求め、これを平均結晶粒径とした。以下、本明細書において、同様である。   In the measurement of the crystal grain size, the average slice length was determined by the cross-cut method based on an optical micrograph having a magnification of 100, and this was used as the average crystal grain size. The same applies hereinafter.

(b)深絞り成形性
結晶粒径が20μm以上、好ましくは40μm以上で、100μm以下、好ましくは60μm以下の範囲にあれば、深絞り成形性が良好である。20μm未満では絞った製品の底部にストレッチャストレインマ−クが発生して製品の外観が損なわれ、100μmを超えると製品の表面にオレンジピ−ル(肌荒れ)が発生して製品の外観が損なわれるからである。
(B) Deep-drawing formability If the crystal grain size is in the range of 20 μm or more, preferably 40 μm or more and 100 μm or less, preferably 60 μm or less, the deep-drawing formability is good. If it is less than 20 μm, a stretcher strain mark is generated at the bottom of the squeezed product and the appearance of the product is impaired. If it exceeds 100 μm, an orange peel (rough skin) is generated on the surface of the product and the appearance of the product is impaired. It is.

(c)引張り領域から平面ひずみ領域における成形割れ限界
引張り領域から平面ひずみ領域における成形割れ限界は、塑性異方性に影響されず,加工硬化特性とひずみ速度感受性が支配的であり、特に加工硬化特性は集合組織の影響を受けることがわかっている。そして、結晶粒径が大きいほど加工硬化特性が向上することがわかった。ただし,結晶粒径が大きくなりすぎると成形時にオレンジピ−ル(肌あれ)が生じ製品の外観を著しく損なう。
(C) Forming crack limit from tensile region to plane strain region The forming crack limit from tensile region to plane strain region is not affected by plastic anisotropy, and work hardening characteristics and strain rate sensitivity are dominant, especially work hardening. Characteristics are known to be affected by texture. And it turned out that work hardening characteristic improves, so that a crystal grain size is large. However, if the crystal grain size becomes too large, an orange peel (skin) occurs during molding and the appearance of the product is significantly impaired.

従って、結晶粒径が50μm以上、好ましくは60μm以上で、100μm以下、好ましくは90μm以下の範囲にすると、引張り領域から平面ひずみ領域における成形割れ限界が高くなる。   Accordingly, when the crystal grain size is in the range of 50 μm or more, preferably 60 μm or more, 100 μm or less, preferably 90 μm or less, the forming crack limit from the tensile region to the plane strain region becomes high.

(5)化学組成について
本発明のアルミニウム合金の化学組成は、以下に述べる理由から、2wt%≦2wt%≦Mg≦6wt%のMgを含有し、Fe、Mn、Cr、Zr、及びCuの内から選ばれる1種以上を総和で0.03wt%以上(Cuが選択される場合はCuとして0.2wt%以上)、且つ個々の元素の含有率の上限がFe≦0.2wt%、Mn≦0.6wt%、Cr≦0.3wt%、Zr≦0.3wt%、Cu≦1.0%であることが好ましい。これらの添加元素は集合組織形成に大きな影響をおよぼし,塑性異方性を変化させるので、添加元素量の最適化とそれに対応したプロセス条件の最適化により集合組織の最適化をはかることができる。
(5) Chemical Composition The chemical composition of the aluminum alloy of the present invention contains 2 wt% ≦ 2 wt% ≦ Mg ≦ 6 wt% of Mg for the following reasons, and includes Fe, Mn, Cr, Zr, and Cu. At least one selected from the group consisting of 0.03 wt% or more (when Cu is selected, Cu is 0.2 wt% or more), and the upper limit of the content of each element is Fe ≦ 0.2 wt%, Mn ≦ It is preferable that 0.6 wt%, Cr ≦ 0.3 wt%, Zr ≦ 0.3 wt%, and Cu ≦ 1.0%. These additive elements have a great influence on the texture formation and change the plastic anisotropy. Therefore, the texture can be optimized by optimizing the amount of added elements and the corresponding process conditions.

・2wt%≦Mg≦6wt%
Mgは加工硬化能を高め材料を均一に塑性変形させ,破断割れ限界を向上させる重要な元素である。Mgの含有率が2wt%未満では、Mg含有の硬化が不十分であり、6wt%を越えると製造が困難となり,しかも成形時に粒界破壊が発生しやすくなるので、2〜6wt%の範囲にあることが望ましい。
・ 2wt% ≦ Mg ≦ 6wt%
Mg is an important element that improves work hardening ability and uniformly plastically deforms the material and improves the fracture crack limit. If the Mg content is less than 2 wt%, the Mg content is not sufficiently cured, and if it exceeds 6 wt%, production becomes difficult, and moreover, grain boundary breakage is likely to occur during molding. It is desirable to be.

・Fe、Mn、Cr、Zr、及びCuの内から選ばれる1種以上を総和で0.03wt%以上(Cuが選択される場合はCuとして0.2wt%以上)、且つ個々の元素の含有率の上限がFe≦0.2wt%、Mn≦0.6wt%、Cr≦0.3wt%、Zr≦0.3wt%、Cu≦1.0wt%
Fe、Mn、Cr、Zrの添加は結晶粒微細化に有効であり,しかも集合組織制御に重要な役割を果す。粒界破壊は結晶粒径が大きい時に発生しやすく,結晶粒径が小さいほど好ましい。従って、結晶粒微細化に有効な元素であるFe、Mn、Cr、Zrを添加することが好ましい。また、これらの元素は、ひずみ速度感受性指数を向上させ成形限界を向上させる。ひずみ速度感受性指数が正の値を示すことは成形時のくびれ開始までのひずみが増加することを意味する。但し、Fe,Mn,Cr,Zrの含有率合計が0.03wt%未満では添加効果がなく、一方、各元素の上限率(すなわち、Feの含有率が0.2wt%、Mnの含有率が0.6wt%、Crの含有率が0.3wt%、Zrの含有率が0.3wt%)を超えると、粗大な化合物が形成され,破壊の起点となるため成形性が劣化するからである。
-One or more selected from Fe, Mn, Cr, Zr, and Cu in a total of 0.03 wt% or more (when Cu is selected, 0.2 wt% or more as Cu), and the inclusion of individual elements The upper limit of the rate is Fe ≦ 0.2 wt%, Mn ≦ 0.6 wt%, Cr ≦ 0.3 wt%, Zr ≦ 0.3 wt%, Cu ≦ 1.0 wt%
The addition of Fe, Mn, Cr, and Zr is effective for refining crystal grains and plays an important role in texture control. Grain boundary fracture is likely to occur when the crystal grain size is large, and the smaller the crystal grain size, the better. Therefore, it is preferable to add Fe, Mn, Cr, and Zr, which are effective elements for crystal grain refinement. These elements also improve the strain rate sensitivity index and improve the molding limit. A positive value of the strain rate sensitivity index means that the strain until the start of constriction during molding increases. However, if the total content of Fe, Mn, Cr, and Zr is less than 0.03 wt%, there is no effect of addition, while the upper limit ratio of each element (that is, the Fe content is 0.2 wt% and the Mn content is If the content exceeds 0.6 wt%, Cr content is 0.3 wt%, and Zr content is 0.3 wt%, a coarse compound is formed, and the formability is deteriorated because it becomes a starting point of fracture. .

Cuは加工硬化能を向上させ塗装焼付硬化特性を向上させ、さらに耐応力腐食割れ性を向上させる元素であり,しかも集合組織を変化させる効果がある。但し、0.2wt%未満では添加効果がなく,1.0wt%を越えると粗大な化合物が形成され,破壊の起点となるため成形性が劣化するからである。   Cu is an element that improves work hardening ability, improves paint bake hardening characteristics, further improves stress corrosion cracking resistance, and has the effect of changing the texture. However, if it is less than 0.2 wt%, there is no effect of addition, and if it exceeds 1.0 wt%, a coarse compound is formed and becomes the starting point of fracture, so that the moldability deteriorates.

(6)集合組織と製造条件
本発明のアルミニウム合金の板材は、通常の鋳造、均質化熱処理、熱間圧延、冷間圧延、最終焼鈍の工程を経て製造されるが、化学組成、各工程の設定条件により、得られる集合組織は変わる。
(6) Texture and production conditions The aluminum alloy plate material of the present invention is produced through normal casting, homogenization heat treatment, hot rolling, cold rolling, and final annealing processes. The resulting texture varies depending on the setting conditions.

まず、Mn、Cr、Fe、Zrなどの遷移金属を含有する場合、析出物を所望の形態に制御することが重要である。なぜならば、これらの析出物は、再結晶方位の優先核生成サイトとして働き、形成される集合組織を支配するからである。またこれらの析出物は結晶粒径をも支配し、成形割れ限界を大きく左右するからである。従って、均質化熱処理工程における最適条件も、Mn、Cr、Fe、Zrなどの遷移金属の種類と添加量が変われば変化するため、一義的には決定できない。   First, when a transition metal such as Mn, Cr, Fe, or Zr is contained, it is important to control the precipitate to a desired form. This is because these precipitates act as preferential nucleation sites for recrystallization orientation and dominate the texture formed. Moreover, these precipitates also control the crystal grain size and greatly influence the limit of forming cracks. Accordingly, the optimum conditions in the homogenization heat treatment process cannot be uniquely determined because they change as the type and amount of transition metals such as Mn, Cr, Fe, and Zr change.

均質化熱処理工程の後に行なう熱間圧延工程、冷間圧延工程の最適条件は、均質化熱処理で形成される析出物の形態によって変化する。高温圧延、低温圧延、高圧下冷延、低圧下冷延などの組み合わせがあるが、この組み合わせも一義的には決まらない。さらに、熱間圧延後に荒鈍を行なった後、冷間圧延を行ってもよいし、冷間圧延の途中で中間焼鈍を行なってもよく、熱間圧延後に荒鈍を行なう場合と行なわない場合、冷間圧延の途中で中間焼鈍を行なう場合と行なわない場合では、最適な圧延条件は異なる。   The optimum conditions for the hot rolling process and the cold rolling process performed after the homogenization heat treatment process vary depending on the form of precipitates formed by the homogenization heat treatment. There are combinations of hot rolling, cold rolling, cold rolling under high pressure, cold rolling under low pressure, etc., but this combination is not uniquely determined. Further, after the hot rolling, after the roughing, the cold rolling may be performed, the intermediate annealing may be performed in the middle of the cold rolling, and when the roughening is performed after the hot rolling. The optimum rolling conditions differ depending on whether intermediate annealing is performed during cold rolling or not.

冷間圧延後に最終熱処理(溶体化処理)を行なう。この溶体化処理条件によっても、集合組織は変化する。   A final heat treatment (solution treatment) is performed after cold rolling. The texture also changes depending on the solution treatment conditions.

つまり、請求の範囲に示した好適な集合組織を得るには、合金成分や均質化熱処理条件が変化すると、圧延条件、荒鈍条件、溶体化処理条件などをその都度調整する必要がある。すなわち、同じ合金組成であっても。均質化熱処理条件、圧延条件、荒鈍条件、溶体化処理条件などを複合的に制御することによって、最適な集合組織を形成することができ、プレス成形性を大きく向上させることができるからである。従って、これらの製造条件は、個々には従来の製造条件とオーバーラップするものもあるが、一連の製造工程としては特殊な組み合わせを行うことで要求される成形性に好適な集合組織を得ることができる。   That is, in order to obtain the preferred texture shown in the claims, it is necessary to adjust the rolling conditions, rough conditions, solution treatment conditions, and the like each time the alloy components and the homogenization heat treatment conditions change. That is, even with the same alloy composition. This is because by optimally controlling the homogenization heat treatment conditions, rolling conditions, roughening conditions, solution treatment conditions, etc., an optimal texture can be formed, and the press formability can be greatly improved. . Therefore, although these manufacturing conditions may overlap with the conventional manufacturing conditions individually, as a series of manufacturing processes, a texture suitable for the formability required by performing a special combination is obtained. Can do.

ただし、傾向としては、最終冷間圧延率が低い時には深絞り成形性に優れた集合組織を得ることが容易く、最終冷間圧延率が50%前後の時には張出し成形性に優れた集合組織を得ることが容易く、また最終冷間圧延率が高い時には引張り領域から平面ひずみ領域における成形割れ限界が高くなりやすいと言える。ここで、最終冷間圧延率とは、冷間圧延の途中で焼鈍を行なった場合に焼鈍後行なう圧延率をいい、途中で焼鈍を行なわない場合には冷間圧延率が最終冷間圧延率となる。   However, as a tendency, when the final cold rolling rate is low, it is easy to obtain a texture with excellent deep drawability, and when the final cold rolling rate is around 50%, a texture with excellent stretch forming property is obtained. In addition, when the final cold rolling rate is high, it can be said that the forming crack limit from the tensile region to the plane strain region tends to increase. Here, the final cold rolling rate refers to the rolling rate performed after annealing when annealing is performed in the middle of cold rolling, and the cold rolling rate is the final cold rolling rate when annealing is not performed in the middle. It becomes.

以下、本発明を具体的な実施例に基づいて説明する。   Hereinafter, the present invention will be described based on specific examples.

以下の実施例において、得られた組織の結晶粒径は、圧延面に垂直で且つ圧延方向に垂直な面を線切断法で測定した。結晶粒径の測定は、倍率が100倍の光顕写真についてクロスカット法で平均切片長を求め、これを平均結晶粒径とした。   In the following examples, the crystal grain size of the obtained structure was measured by a line cutting method on a plane perpendicular to the rolling surface and perpendicular to the rolling direction. For the measurement of the crystal grain size, an average section length was obtained by a cross-cut method for a photomicrograph having a magnification of 100 times, and this was used as the average crystal grain size.

また、集合組織については、電子チャネリングパターン法で100個の結晶粒について各結晶粒の方位を求め、上記5つの方位のどれに属するかを決定し、各方位の体積分率を算出した(1ケ1ケの粒の大きさは同じと仮定した。)。   As for the texture, the orientation of each crystal grain was determined for 100 crystal grains by the electronic channeling pattern method, which one of the above five orientations was determined, and the volume fraction of each orientation was calculated (1 It was assumed that the size of one grain was the same.)

実施例1
Al−5%Mg−0.1%Fe合金につき通常のDC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ150mm,長さ3000mmのインゴットを得た。480℃で48時間保持した後、440℃で4時間保持するという二段階の均質化熱処理を施し,熱間圧延で5mm厚さの板とした。熱間圧延の開始温度は、直前に行なった均質化熱処理の温度である440℃で、熱間圧延の終了温度は320℃であった。熱間圧延後、冷間圧延により、1mm厚さの板材とするが、冷間圧延途中に適宜中間焼鈍を施すことにより、最終冷間圧延率を17%〜80%の範囲で調整した。中間焼鈍を行なわない場合、冷間圧延で5mmから1mmにまで一気に圧延することになり、最終冷間圧延率は80%となる。
Example 1
The Al-5% Mg-0.1% Fe alloy was ingoted by ordinary DC casting (semi-continuous casting) to obtain an ingot having a width of 400 mm, a thickness of 150 mm, and a length of 3000 mm. A two-stage homogenization heat treatment was performed, which was held at 480 ° C. for 48 hours and then held at 440 ° C. for 4 hours, and was hot rolled to form a 5 mm thick plate. The start temperature of hot rolling was 440 ° C., which is the temperature of the homogenization heat treatment performed immediately before, and the end temperature of hot rolling was 320 ° C. After hot rolling, a 1 mm-thick plate material was obtained by cold rolling, but the final cold rolling rate was adjusted in the range of 17% to 80% by appropriately performing intermediate annealing during the cold rolling. When intermediate annealing is not performed, cold rolling is performed at a time from 5 mm to 1 mm, and the final cold rolling rate is 80%.

冷間圧延により得られた厚み1mmの板材を、表1に示す温度及び保持時間で行なう溶体化処理をして、表1に示すような結晶粒径及び集合組織を有するNo.1〜15の板材を得た。ここで、溶体化処理温度までの加熱は、急速加熱(60000℃/h)と徐加熱(300℃/h)の2種類で行なった。 A plate material having a thickness of 1 mm obtained by cold rolling was subjected to a solution treatment performed at the temperature and holding time shown in Table 1, and No. 1 having a crystal grain size and a texture as shown in Table 1. 1 to 15 plate materials were obtained. Here, the heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) and gradual heating (300 ° C./h).

得られたNo.1〜15の板材について、次のようなバルジ張出し試験を行った。すなわち、直径100mmの板材試験片の周縁を直径50mmの金型に固定し、試験片の一面に静水圧を与えることにより試験片を下げていき、破断時の歪み量を試験開始時に対する割合として求めた。歪み量の測定は、板材試験片の表面に3mm角の碁盤目状のスタンプを押し、その寸法変化から測定した。結果を、製造方法(最終冷間圧延率,溶体化処理温度及び保持時間、加熱速度)、結晶粒径及び集合組織とともに表1に示す。   No. obtained The following bulge overhang tests were performed on 1 to 15 plate materials. That is, the periphery of a 100 mm diameter plate material test piece is fixed to a 50 mm diameter mold, and the test piece is lowered by applying hydrostatic pressure to one surface of the test piece. Asked. The amount of strain was measured by pressing a 3 mm square grid-like stamp on the surface of the plate specimen and measuring the change in dimensions. The results are shown in Table 1 together with the production method (final cold rolling rate, solution treatment temperature and holding time, heating rate), crystal grain size and texture.

Figure 2006219762
Figure 2006219762

表1から、実施例はいずれも歪み量0.40mmを超えたが、比較例は0.38mm未満、あるいは0.38mmを超えてもssマークが発生し(No.14)、本発明の板材が比較例よりも優れた張出成形性を示すことがわかる。   From Table 1, all the examples exceeded the strain amount of 0.40 mm, but the comparative example produced an ss mark even when it was less than 0.38 mm or exceeding 0.38 mm (No. 14). It can be seen that the film has better stretch formability than the comparative example.

実施例2:請求項1に係わる発明の好適実施例
Al−5%Mg−0.1%Fe合金につき通常のDC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ150mm,長さ3000mmのインゴットを得た。520℃で48時間保持した後、460℃で4時間保持するという二段均熱処理を施し,熱間圧延で5mm厚さの板とした。熱間圧延の開始温度は460℃で終了温度は330℃であった。熱間圧延後、冷間圧延により、1mm厚さの板材とするが、冷間圧延途中に適宜中間焼鈍を施すことにより、最終冷間圧延率を17%〜80%の範囲で調整した。中間焼鈍を行なわない場合、冷間圧延で5mmから1mmにまで一気に圧延することになり、最終冷間圧延率は80%となる。
Example 2: A preferred embodiment of the invention according to claim 1 An Al-5% Mg-0.1% Fe alloy was agglomerated by ordinary DC casting (semi-continuous casting), width 400 mm, thickness 150 mm, length A 3000 mm ingot was obtained. A two-step soaking process was performed, which was held at 520 ° C. for 48 hours and then held at 460 ° C. for 4 hours, and was hot rolled to form a 5 mm thick plate. The hot rolling start temperature was 460 ° C. and the end temperature was 330 ° C. After hot rolling, a 1 mm-thick plate material was obtained by cold rolling, but the final cold rolling rate was adjusted in the range of 17% to 80% by appropriately performing intermediate annealing during the cold rolling. When intermediate annealing is not performed, cold rolling is performed at a time from 5 mm to 1 mm, and the final cold rolling rate is 80%.

冷間圧延により得られた厚み1mmの板材を、表2に示す温度及び保持時間で保持する溶体化処理をして、表2に示すような結晶粒径及び集合組織を有するNo.21〜28の板材を得た。ここで、溶体化処理温度までの加熱は、急速加熱(60000℃/h)と徐加熱(300℃/h)の2種類で行なった。   A plate material having a thickness of 1 mm obtained by cold rolling was subjected to solution treatment for holding at a temperature and holding time shown in Table 2, and No. 1 having a crystal grain size and a texture as shown in Table 2. 21 to 28 plate materials were obtained. Here, the heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) and gradual heating (300 ° C./h).

得られた板材試験片No.21〜28について、限界絞り比(LDR)を測定した。限界絞り比(LDR)の測定は、種々の直径の円板試験片を準備し、下記寸法のポンチで深絞り加工し、深絞り加工できないときの試験片の直径とパンチの直径の比を限界絞り比とした。限界絞り比が大きい程、深絞り成形性に優れていることを示している。尚、測定試験に用いた油は、固形潤滑材KS−3(神戸製鋼開発)であった。   The obtained plate material test piece No. For 21-28, the limiting drawing ratio (LDR) was measured. The limit drawing ratio (LDR) is measured by preparing disk specimens of various diameters, deep drawing with punches of the following dimensions, and limiting the ratio of the specimen diameter to the punch diameter when deep drawing is not possible. The aperture ratio was used. It shows that the deeper the drawability, the better the limit drawing ratio. The oil used in the measurement test was a solid lubricant KS-3 (Kobe Steel Development).

LDR試験の測定条件
金型材質 SKD11
パンチ 直径50mm(平頭)
ダイホルダー 直径52.8mm
ダイ肩 R6.0mm
BHF 0.5t
パンチスピード 850mm/min
Measurement conditions for LDR test Mold material SKD11
Punch diameter 50mm (flat head)
Die holder 52.8mm in diameter
Die shoulder R6.0mm
BHF 0.5t
Punch speed 850mm / min

表2に、限界絞り比(LDR)を、最終冷間圧延率,加熱速度,溶体化処理温度及び保持時間、結晶粒径、並びに集合組織(CUBE方位の体積分率とS方位の体積分率の比(S/Cube)及びGOSS方位の体積分率)とともに示す。   Table 2 shows the limit drawing ratio (LDR), final cold rolling rate, heating rate, solution treatment temperature and holding time, crystal grain size, and texture (volume fraction of CUBE orientation and volume fraction of S orientation). (S / Cube) and volume fraction of GOSS orientation).

Figure 2006219762
Figure 2006219762

表2から、本発明の板材は比較例よりもLDRが高く、深絞り成形性に優れていることがわかる。   From Table 2, it can be seen that the plate material of the present invention has a higher LDR than the comparative example and is excellent in deep drawability.

実施例3
Al−5%Mg−0.1%Fe合金につき通常のDC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ150mm,長さ3000mmのインゴットを得た。480℃で48時間保持する均熱処理を施し,熱間圧延で5mm厚さの板とした。熱間圧延の開始温度は480℃で終了温度は340℃であった。熱間圧延後、冷間圧延により、1mm厚さの板材とするが、冷間圧延途中に適宜中間焼鈍を施すことにより、最終冷間圧延率を17%〜80%の範囲で調整した。中間焼鈍を行なわない場合、冷間圧延で5mmから1mmにまで一気に圧延することになり、最終冷間圧延率は80%となる。
Example 3
The Al-5% Mg-0.1% Fe alloy was ingoted by ordinary DC casting (semi-continuous casting) to obtain an ingot having a width of 400 mm, a thickness of 150 mm, and a length of 3000 mm. A soaking treatment was performed at 480 ° C. for 48 hours, and a hot-rolled plate was formed to a thickness of 5 mm. The hot rolling start temperature was 480 ° C. and the end temperature was 340 ° C. After hot rolling, a 1 mm-thick plate material was obtained by cold rolling, but the final cold rolling rate was adjusted in the range of 17% to 80% by appropriately performing intermediate annealing during the cold rolling. When intermediate annealing is not performed, cold rolling is performed at a time from 5 mm to 1 mm, and the final cold rolling rate is 80%.

冷間圧延により得られた厚み1mmの板材を、表3に示す温度及び保持時間で保持する溶体化処理して、表3に示すような結晶粒径及び集合組織を有するNo.31〜37の板材を得た。ここで、溶体化処理温度までの加熱は、急速加熱(60000℃/h)と徐加熱(300℃/h)の2種類で行なった。   A plate material having a thickness of 1 mm obtained by cold rolling was subjected to a solution treatment for holding at a temperature and holding time shown in Table 3, and No. 1 having a crystal grain size and a texture as shown in Table 3. 31 to 37 plate materials were obtained. Here, the heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) and gradual heating (300 ° C./h).

No.31〜37の板材のから、図1及び図2に示す形状を有する試験片を切り取り、図1に示す試験片を用いて二軸引張試験を行い、図2に示す試験片を用いて一軸引張試験を行なった。いずれも試験片が破断したときのひずみ量を測定し、試験開始時に対するひずみ割合を求めた。尚、図1に示す試験片を用いた試験では、平面ひずみ領域における破断限界時のひずみ量、図2に示す試験片を用いた試験では、1軸引張領域における破断限界時のひずみ量がわかる。いずれも数値が大きい程、破断限界が高いことを示す。   No. A test piece having the shape shown in FIGS. 1 and 2 is cut out from the plate materials 31 to 37, a biaxial tensile test is performed using the test piece shown in FIG. 1, and a uniaxial tension is used using the test piece shown in FIG. A test was conducted. In all cases, the amount of strain when the test piece broke was measured, and the strain ratio relative to the start of the test was determined. In the test using the test piece shown in FIG. 1, the amount of strain at the breaking limit in the plane strain region is found, and in the test using the test piece shown in FIG. 2, the amount of strain at the breaking limit in the uniaxial tensile region is found. . In any case, the larger the value, the higher the breaking limit.

測定結果を、製造方法(最終冷間圧延率,溶体化処理温度及び保持時間、加熱速度)、結晶粒径及び集合組織とともに表3に示す。   The measurement results are shown in Table 3 together with the production method (final cold rolling rate, solution treatment temperature and holding time, heating rate), crystal grain size and texture.

Figure 2006219762
Figure 2006219762

表3から明らかなように,平面ひずみ、1軸引張のいずれも本発明の板材の方が比較例よりも高くて、引張り領域から平面ひずみ領域における成形割れ限界が高いことがわかる。   As is clear from Table 3, it can be seen that the plate strain of the present invention is higher than the comparative example in both plane strain and uniaxial tension, and the forming crack limit in the plane strain region is higher from the tensile region.

実施例4
表4及び表5に示す組成を有する合金について、通常のDC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ150mm,長さ3000mmのインゴットを得た。表4及び表5に示す均質化熱処理を施し,熱間圧延で5mm厚さの板とした。熱間圧延の開始温度は均質化熱処理温度(二段均熱の場合は二段目の温度)で、熱間圧延の終了温度は開始温度よりも約150℃低い温度であった。その後冷間圧延で5mmから1mm厚さの板材にした。この際、途中で中間焼鈍を施すことにより、最終冷間圧延率を50%及び17%に調整した。その後、530℃で溶体化処理し、表4及び表5に示すような結晶粒径及び集合組織を有するNo.41〜73の板材を得た。ここで、溶体化処理温度までの加熱は、いずれも急速加熱(60000℃/h)で行なった。
Example 4
The alloys having the compositions shown in Table 4 and Table 5 were ingoted by ordinary DC casting (semi-continuous casting) to obtain an ingot having a width of 400 mm, a thickness of 150 mm, and a length of 3000 mm. The homogenized heat treatment shown in Table 4 and Table 5 was performed, and a 5 mm thick plate was obtained by hot rolling. The starting temperature of hot rolling was the homogenizing heat treatment temperature (the temperature of the second stage in the case of two-stage soaking), and the end temperature of hot rolling was about 150 ° C. lower than the starting temperature. After that, it was made into a plate material having a thickness of 5 mm to 1 mm by cold rolling. Under the present circumstances, the final cold rolling reduction was adjusted to 50% and 17% by performing intermediate annealing in the middle. Thereafter, solution treatment was performed at 530 ° C., and No. 1 having crystal grain sizes and textures as shown in Tables 4 and 5 were obtained. 41 to 73 plate materials were obtained. Here, the heating to the solution treatment temperature was performed by rapid heating (60000 ° C./h).

得られたNo.41〜73の板材について、実施例1と同様にしてバルジ張出し試験を行った。測定結果を、製造方法(最終冷間圧延率,溶体化処理温度及び保持時間、加熱速度)、結晶粒径及び集合組織とともに表4及び表5に示す。表4は実施例であり、表5は比較例である。   No. obtained About the board | plate materials of 41-73, it carried out similarly to Example 1, and performed the bulge extension test. The measurement results are shown in Tables 4 and 5 together with the production method (final cold rolling rate, solution treatment temperature and holding time, heating rate), crystal grain size and texture. Table 4 is an example and Table 5 is a comparative example.

尚、表中の均質化熱処理条件におけるA:Bの表示は、A℃でB時間保持したことを示し、さらに「↓」の上段から下段の2段階で処理したことを示している。以下、本明細書において同様である。   In addition, the display of A: B in the homogenization heat treatment conditions in the table indicates that the material was held at A ° C. for B time, and further, it was processed in two stages from “upper” to “lower”. The same applies hereinafter.

Figure 2006219762
Figure 2006219762

Figure 2006219762
Figure 2006219762

表5(比較例に該当)はいずれもバジル試験割れ歪みの値がいずれも0.37以下であるのに対し、表4(実施例に該当)に示すバジル試験割れ歪みの値がいずれも0.38以上で優れていた。   Table 5 (corresponding to the comparative example) has a basil test crack strain value of 0.37 or less, whereas Table 4 (corresponding to the example) has a basil test crack strain value of 0. Excellent at 38 or more.

実施例5:請求項2に係わる発明の好適実施例
表6、表7に示した合金について通常のDC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ150mm,長さ3000mmのインゴットを得た。表6及び表7に示す均質化熱処理を施し,熱間圧延で5mm厚さの板とした。熱間圧延の開始温度は均質化熱処理温度(二段均熱の場合は二段目の温度)で、熱間圧延の終了温度はそれよりも約150℃低い温度であった。その後冷間圧延で5mmから1mm厚さの板材にした。この際、途中で中間焼鈍を施すことによりあるいは施さないことにより、最終冷間圧延率を17%、50%、80%とした。中間焼鈍を行なわない場合には、最終冷間圧延率が80%となる。
Example 5: Preferred embodiment of the invention according to claim 2 The alloys shown in Tables 6 and 7 are ingot formed by ordinary DC casting (semi-continuous casting), and are 400 mm wide, 150 mm thick and 3000 mm long. Got. The homogenized heat treatment shown in Table 6 and Table 7 was performed, and the plate was 5 mm thick by hot rolling. The starting temperature of hot rolling was the homogenizing heat treatment temperature (the temperature of the second stage in the case of two-stage soaking), and the end temperature of hot rolling was about 150 ° C. lower than that. After that, it was made into a plate material having a thickness of 5 mm to 1 mm by cold rolling. At this time, the final cold rolling rate was set to 17%, 50%, and 80% by intermediate annealing or not. When intermediate annealing is not performed, the final cold rolling reduction is 80%.

その後、400℃又は530℃で保持することによる溶体化処理し、表4及び表5に示すような結晶粒径及び集合組織を有するNo.81〜113の板材を得た。ここで、溶体化処理温度までの加熱は、急速加熱(60000℃/h)又は徐加熱(300℃/h)の2種類で行なった。 Thereafter, solution treatment by holding at 400 ° C. or 530 ° C. was carried out, and No. having crystal grain sizes and textures as shown in Tables 4 and 5 81 to 113 plate materials were obtained. Here, the heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) or slow heating (300 ° C./h).

得られたNo.81〜113の板材について、実施例2と同様にして限界絞り比(LDR)測定試験を行った。測定結果を、組成、製造方法(最終冷間圧延率,均質化熱処理条件、溶体化処理条件)、結晶粒径及び集合組織とともに表6及び表7に示す。表6は実施例に該当し、表7は比較例に該当する。   No. obtained For the plate materials 81 to 113, the limit drawing ratio (LDR) measurement test was performed in the same manner as in Example 2. The measurement results are shown in Tables 6 and 7 together with the composition, production method (final cold rolling rate, homogenization heat treatment condition, solution treatment condition), crystal grain size and texture. Table 6 corresponds to an example, and Table 7 corresponds to a comparative example.

Figure 2006219762
Figure 2006219762

Figure 2006219762
Figure 2006219762

本発明実施例に該当する場合(表6)は、LDRが2.08以上と高かったのに対し、比較例(表7)ではLDRが2.01以下と低いか、或いは2.02以上のLDRが得られてもオレンジピールが生じたり、ストレッチャーストレインマーク(ssマーク)が生じ、製品としては不良であった。   In the case corresponding to the embodiment of the present invention (Table 6), the LDR was as high as 2.08 or more, whereas in the comparative example (Table 7), the LDR was as low as 2.01 or less, or 2.02 or more. Even if LDR was obtained, an orange peel was generated, a stretcher strain mark (ss mark) was generated, and the product was defective.

実施例6
表8及び表9に示した合金について、通常のDC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ150mm,長さ3000mmのインゴットを得た。表8及び表9に示す均質化熱処理を施し,熱間圧延で5mm厚さの板とした。熱間圧延の開始温度は均質化熱処理温度(二段均熱の二段目の温度)で、熱間圧延の終了温度はそれよりも約150℃低い温度であった。その後冷間圧延で5mmから1mm厚さの板材にした。この際、途中で中間焼鈍を施すことにより、或いは中間焼鈍を施さないことにより、最終冷間圧延率を17%、50%、80%(中間焼鈍を施さない場合)に調整した。その後、530℃で溶体化処理し、表8及び表9に示すような結晶粒径及び集合組織を有するNo.121〜153の板材を得た。ここで、溶体化処理温度までの加熱は、急速加熱(60000℃/h)又は徐加熱(300℃/h)の2種類で行なった。
Example 6
The alloys shown in Table 8 and Table 9 were ingoted by ordinary DC casting (semi-continuous casting) to obtain an ingot having a width of 400 mm, a thickness of 150 mm, and a length of 3000 mm. The homogenized heat treatment shown in Table 8 and Table 9 was performed, and a 5 mm thick plate was obtained by hot rolling. The starting temperature of hot rolling was the homogenizing heat treatment temperature (the temperature of the second stage of the two-stage soaking), and the end temperature of hot rolling was about 150 ° C. lower than that. After that, it was made into a plate material having a thickness of 5 mm to 1 mm by cold rolling. At this time, the final cold rolling reduction was adjusted to 17%, 50%, and 80% (when intermediate annealing was not performed) by performing intermediate annealing in the middle or not performing intermediate annealing. Thereafter, solution treatment was performed at 530 ° C., and No. 1 having crystal grain sizes and textures as shown in Tables 8 and 9 were obtained. 121-153 plate materials were obtained. Here, the heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) or slow heating (300 ° C./h).

得られたNo.121〜153の板材について、実施例3と同様にして、特殊形状試験片を用いた引張り試験を行なった。結果を、組成、製造方法(最終圧延率、均質化熱処理条件、加熱速度)、粒径及び組織とともに、表8及び表9に示す。表8は本発明実施例に該当する場合であり、表9は本発明の比較例に該当する場合である。   No. obtained About the board | plate material of 121-153, it carried out similarly to Example 3, and the tension test using a special-shaped test piece was done. The results are shown in Tables 8 and 9 together with the composition, production method (final rolling rate, homogenization heat treatment condition, heating rate), particle size and structure. Table 8 shows a case corresponding to an embodiment of the present invention, and Table 9 shows a case corresponding to a comparative example of the present invention.

Figure 2006219762
Figure 2006219762

Figure 2006219762
Figure 2006219762

実施例(表8)は、1軸引張時の破断限界は0.35以上で、平面ひずみの破断限界は0.30以上であった。これに対して、比較例(表9)では、1軸引張時の破断限界は0.35未満で、平面ひずみの破断限界は0.30未満あり、しかもオレンジピールの発生が認められるものもあった。   In the examples (Table 8), the fracture limit during uniaxial tension was 0.35 or more, and the fracture limit of plane strain was 0.30 or more. On the other hand, in the comparative example (Table 9), the rupture limit during uniaxial tension is less than 0.35, the rupture limit of plane strain is less than 0.30, and some orange peels are observed. It was.

本発明のAl−Mg系合金板は、プレス成形性、具体的には深絞り成形性に優れるように、集合組織、結晶粒径、添加元素を適切に制御されている。従って、本発明のAl−Mg系合金板は、自動車ボディパネル等に用いられるアルミニウム合金板として好適である。   In the Al—Mg alloy plate of the present invention, the texture, crystal grain size, and additive elements are appropriately controlled so as to be excellent in press formability, specifically deep drawability. Therefore, the Al—Mg alloy plate of the present invention is suitable as an aluminum alloy plate used for automobile body panels and the like.

平面ひずみ領域における引張試験に用いられる試験片(広幅引張試験片)の形状を示す平面図である。It is a top view which shows the shape of the test piece (wide width tensile test piece) used for the tensile test in a plane strain area | region. 一軸引張領域における引張試験に用いられる試験片の形状を示す平面図である。It is a top view which shows the shape of the test piece used for the tension test in a uniaxial tension area | region.

Claims (2)

Al−Mg系合金板であって、CUBE方位の体積分率とS方位の体積分率の比(S/Cube)が1以上、GOSS方位が10%以下の集合組織を有し、且つ結晶粒径が20〜100μmの範囲にあることを特徴とするプレス成形性に優れるAl−Mg系合金板。   An Al-Mg alloy plate having a texture with a ratio of the volume fraction of the CUBE orientation to the volume fraction of the S orientation (S / Cube) of 1 or more and a GOSS orientation of 10% or less. An Al-Mg alloy plate excellent in press formability characterized by having a diameter in a range of 20 to 100 µm. 請求項1に記載のAl−Mg系合金板であって、2wt%≦Mg≦6wt%のMgを含有し、Fe、Mn、Cr、Zr、及びCuの内から選ばれる1種以上を総和で0.03wt%以上(Cuが選択される場合はCuとして0.2wt%以上)含有し、且つ個々の元素の含有率の上限がFe≦0.2wt%、Mn≦0.6wt%、Cr≦0.3wt%、Zr≦0.3wt%、Cu≦1.0%であるプレス成形性に優れるAl−Mg系合金板。   2. The Al—Mg alloy plate according to claim 1, comprising 2 wt% ≦ Mg ≦ 6 wt% of Mg, and summing at least one selected from Fe, Mn, Cr, Zr, and Cu. 0.03 wt% or more (when Cu is selected, 0.2 wt% or more as Cu), and the upper limit of the content of each element is Fe ≦ 0.2 wt%, Mn ≦ 0.6 wt%, Cr ≦ An Al—Mg-based alloy plate excellent in press formability with 0.3 wt%, Zr ≦ 0.3 wt%, and Cu ≦ 1.0%.
JP2006116990A 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability Expired - Fee Related JP4339869B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9886098P 1998-09-02 1998-09-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23955099A Division JP2000080431A (en) 1998-09-02 1999-08-26 Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY

Publications (2)

Publication Number Publication Date
JP2006219762A true JP2006219762A (en) 2006-08-24
JP4339869B2 JP4339869B2 (en) 2009-10-07

Family

ID=22271292

Family Applications (3)

Application Number Title Priority Date Filing Date
JP23955099A Pending JP2000080431A (en) 1998-09-02 1999-08-26 Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2006116990A Expired - Fee Related JP4339869B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability
JP2006116991A Expired - Lifetime JP4326009B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP23955099A Pending JP2000080431A (en) 1998-09-02 1999-08-26 Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006116991A Expired - Lifetime JP4326009B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability

Country Status (1)

Country Link
JP (3) JP2000080431A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064744A (en) * 1999-08-30 2001-03-13 Nippon Light Metal Co Ltd High strength aluminum alloy sheet suitable for spinning working and its production
JP4550598B2 (en) * 2005-01-21 2010-09-22 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP2006291298A (en) * 2005-04-12 2006-10-26 Ykk Corp Aluminum alloy, and slide fastener using the alloy
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
JP2006322064A (en) * 2005-04-19 2006-11-30 Furukawa Electric Co Ltd:The High moldability aluminum material
US10161020B2 (en) * 2007-10-01 2018-12-25 Arconic Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
JP5480599B2 (en) * 2009-11-10 2014-04-23 株式会社神戸製鋼所 Aluminum alloy plate for magnetic disk and manufacturing method thereof
WO2013015110A1 (en) 2011-07-25 2013-01-31 日本軽金属株式会社 Aluminum alloy plate and method for manufacturing same
JP5870791B2 (en) 2012-03-21 2016-03-01 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6170386B2 (en) * 2013-09-10 2017-07-26 株式会社アマダホールディングス Method of bending metal plate material and laser processing apparatus used in the bending method
JP6176393B2 (en) 2014-04-09 2017-08-09 日本軽金属株式会社 High-strength aluminum alloy plate with excellent bending workability and shape freezing property
WO2016002489A1 (en) * 2014-06-30 2016-01-07 日本軽金属株式会社 Aluminum alloy sheet with excellent press formability and shape fixability and process for producing same
JP2016056444A (en) * 2014-09-10 2016-04-21 株式会社神戸製鋼所 Aluminum alloy sheet
JP6436564B2 (en) * 2014-09-11 2018-12-12 第一高周波工業株式会社 Bending metal strip manufacturing method
JP2017075354A (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Aluminum alloy sheet for can-top
MX2019013330A (en) * 2017-06-06 2020-01-15 Novelis Inc Aluminum alloy article having low texture and methods of making the same.
CN108486510B (en) * 2018-04-24 2019-06-11 东莞理工学院 A kind of aviation covering Al-Cu-MgT3 aluminium alloy process quality control method
EP3827108B1 (en) * 2018-07-23 2023-01-25 Novelis, Inc. Highly formable, recycled aluminum alloys and methods of making the same
CN112877621B (en) * 2021-01-14 2022-03-04 西北工业大学 Cold bulging method for regulating residual stress of aluminum alloy ring piece and improving mechanical property

Also Published As

Publication number Publication date
JP2006219763A (en) 2006-08-24
JP4339869B2 (en) 2009-10-07
JP4326009B2 (en) 2009-09-02
JP2000080431A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP4326009B2 (en) Al-Mg alloy plate with excellent press formability
TWI385257B (en) Fabrication method of magnesium alloy plate and the magnesium alloy plate
CN108472699B (en) Magnesium alloy sheet material and method for producing same
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
EP2453031B1 (en) Magnesium alloy plate
JP2007254825A (en) Method for manufacturing aluminum alloy sheet superior in bendability
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP4057199B2 (en) Al-Mg-Si alloy plate
JP2003226926A (en) Aluminum alloy sheet having excellent bending workability and production method thereof
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP2009024219A (en) High strength and formable aluminum alloy cold-rolled sheet
JP2001200349A (en) METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP2008202134A (en) Aluminum alloy hot rolled sheet having excellent press formability
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
US6117252A (en) Al--Mg based alloy sheets with good press formability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
US6221182B1 (en) Al-Mg based alloy sheets with good press formability
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet
JP2003226927A (en) Aluminum alloy panel for flat hem working
JP4022497B2 (en) Method for manufacturing aluminum alloy panel
JP2003129156A (en) Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090702

R150 Certificate of patent or registration of utility model

Ref document number: 4339869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees