JP2009024219A - High strength and formable aluminum alloy cold-rolled sheet - Google Patents

High strength and formable aluminum alloy cold-rolled sheet Download PDF

Info

Publication number
JP2009024219A
JP2009024219A JP2007188488A JP2007188488A JP2009024219A JP 2009024219 A JP2009024219 A JP 2009024219A JP 2007188488 A JP2007188488 A JP 2007188488A JP 2007188488 A JP2007188488 A JP 2007188488A JP 2009024219 A JP2009024219 A JP 2009024219A
Authority
JP
Japan
Prior art keywords
rolled sheet
less
cold
aluminum alloy
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188488A
Other languages
Japanese (ja)
Other versions
JP5059505B2 (en
Inventor
Katsushi Matsumoto
克史 松本
Katsura Kajiwara
桂 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007188488A priority Critical patent/JP5059505B2/en
Publication of JP2009024219A publication Critical patent/JP2009024219A/en
Application granted granted Critical
Publication of JP5059505B2 publication Critical patent/JP5059505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg based alloy cold-rolled sheet of high Mg which can provide a total elongation of ≥10% in spite of having high strength satisfying a tensile strength of ≥500 MPa, can be formed in spite of its high strength, and has an excellent balance of the strength and ductility, and excellent formability. <P>SOLUTION: The crystal grain diameter in the sheet thickness direction of an Al-Mg based aluminum alloy cold-rolled sheet having a high Mg content are finely elongated to a rolling direction, also, Mg based precipitates in the crystal grains are finely suppressed so as to have a fixed numerical density or below, thus the total elongation when tensile strength is 500 to <600 MPa is controlled to ≥10%. In this way, the characteristics of the Al-Mg based aluminum alloy cold-rolled sheet where it can be formed in spite of its high strength are improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い成形性を有する高Mg含有Al−Mg系アルミニウム合金冷延板であって、特に、強度延性バランスに優れ、高強度で成形が可能なアルミニウム合金冷延板に関するものである。本発明は、冷延によって板として製造されたアルミニウム合金板であって、後述する部材や部品として使用される前のアルミニウム合金冷延板に関するものである。   The present invention relates to an Al-Mg based aluminum alloy cold-rolled sheet having high formability, and particularly to an aluminum alloy cold-rolled sheet that has an excellent balance of strength and ductility and can be formed with high strength. The present invention relates to an aluminum alloy plate manufactured as a plate by cold rolling, and relates to an aluminum alloy cold rolled plate before being used as a member or component described later.

周知の通り、従来から、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、各種アルミニウム合金板(以下、アルミニウムをAlとも言う)が、合金毎の各特性に応じて汎用されている。   As is well known, various aluminum alloy plates (hereinafter referred to as aluminum as Al) have been conventionally used for transportation equipment such as automobiles, ships, aircraft or vehicles, machines, electrical products, architecture, structures, optical equipment, and members and parts of equipment. Is also widely used depending on the characteristics of each alloy.

これらのアルミニウム合金板は、多くの場合、プレス成形などで成形されて、上記各用途の部材や部品とされる。この点、高成形性の点からは、前記Al合金のなかでも、強度・延性バランスに優れたAl−Mg系合金が有利である。   In many cases, these aluminum alloy plates are formed by press molding or the like, and are used as members and parts for the above-described applications. In this respect, from the viewpoint of high formability, among the Al alloys, an Al—Mg alloy having an excellent balance between strength and ductility is advantageous.

このため、従来から、Al−Mg系Al合金板に関して、成分系の検討や製造条件の最適化検討が行われている。このAl−Mg系Al合金としては、例えばJIS A 5052、5182等が代表的な合金成分系である。しかし、このAl−Mg系Al合金でも、冷延鋼板と比較すると延性に劣り、成形性に劣っている。   For this reason, conventionally, regarding the Al—Mg-based Al alloy plate, examination of component systems and optimization of manufacturing conditions have been performed. As this Al—Mg-based Al alloy, for example, JIS A 5052, 5182 and the like are typical alloy component systems. However, even this Al—Mg-based Al alloy is inferior in ductility and inferior in formability as compared with a cold-rolled steel sheet.

これに対し、Al−Mg系Al合金は、Mg含有量を増加させて6%、できれば8%を超える高Mg化させると、強度延性バランスが向上する。ただ、このように、高Mg化させたAl−Mg系Al合金は、DC鋳造などで鋳造した鋳塊を、均熱処理後に熱間圧延を施す、通常の製造方法では、熱延中に割れやすくなる。   On the other hand, when the Al-Mg-based Al alloy is made to have a high Mg content of 6%, preferably 8%, if the Mg content is increased, the strength ductility balance is improved. However, Al-Mg-based Al alloy with high Mg content is easily cracked during hot rolling in a normal manufacturing method in which an ingot cast by DC casting or the like is hot-rolled after soaking. Become.

このため、従来から、8%を超える高Mg化させたAl−Mg系Al合金板を、双ロール式連続鋳造により製造することが、従来から知られてる。この双ロール式連続鋳造法は、回転する一対の水冷銅鋳型 (双ロール) 間に、耐火物製の給湯ノズルからアルミニウム合金溶湯を注湯して凝固させ、かつ、この双ロール間において、上記凝固させて、適度に圧下し、かつ急冷して、アルミニウム合金薄板とする方法である。この双ロール式連続鋳造法はハンター法や3C法などが知られている。   For this reason, it has hitherto been known that an Al—Mg-based Al alloy plate having a high Mg content exceeding 8% is manufactured by twin-roll continuous casting. In this twin-roll continuous casting method, molten aluminum alloy is poured from a refractory hot-water supply nozzle between a pair of rotating water-cooled copper molds (twist rolls) and solidified. In this method, the aluminum alloy sheet is solidified, moderately reduced, and rapidly cooled. As this twin roll type continuous casting method, the Hunter method, the 3C method and the like are known.

このような双ロール式連続鋳造法を用いて製造した高MgのAl−Mg系合金板の成形性向上を意図して組織を規定した例も、従来から提案されている。例えば、6 〜10% の高MgであるAl−Mg系合金板の、Al−Mg系の金属間化合物の平均サイズを10μm 以下とした、機械的性質に優れた自動車用アルミニウム合金板が提案されている (特許文献1参照) 。また、10μm 以上のAl−Mg系金属間化合物の個数を300個/mm2以下とし、平均結晶粒径が10〜70μm とした自動車ボディーシート用アルミニウム合金板なども提案されている (特許文献2参照) 。
特開平7−252571号公報 特開平8−165538号公報
An example in which the structure is defined for the purpose of improving the formability of a high Mg Al—Mg alloy plate manufactured using such a twin-roll continuous casting method has also been proposed. For example, an aluminum alloy plate for automobiles having excellent mechanical properties, in which the average size of an Al—Mg based intermetallic compound of an Al—Mg based alloy plate having a high Mg content of 6 to 10% is 10 μm or less has been proposed. (See Patent Document 1). Also proposed is an aluminum alloy plate for automobile body sheets in which the number of Al—Mg intermetallic compounds of 10 μm or more is 300 pieces / mm 2 or less and the average crystal grain size is 10 to 70 μm (see Patent Document 2). )
JP-A-7-252571 JP-A-8-165538

ただ、このような8%を超えて高Mg化させたAl−Mg系合金板を、上記した双ロール式などの連続鋳造法で製造しても、他の5000系や6000系などの合金系と同様に、引張強度が高くなると、伸びが急激に低下する。このために、強度延性バランスにおいて、引張強度が500MPa以上で10%以上の全伸びを得ることは、これまで実質的にできなかった。   However, even if such an Al-Mg alloy plate having a high Mg content exceeding 8% is manufactured by the continuous casting method such as the twin roll type, other alloy systems such as 5000 series and 6000 series are used. Similarly, as the tensile strength increases, the elongation decreases rapidly. For this reason, in the balance between strength and ductility, it has been impossible to obtain a total elongation of 10% or more when the tensile strength is 500 MPa or more.

通常、Al合金板は、前記した通り、多くはプレス成形などで成形されて、上記各用途の部材や部品とされる。したがって、高Mg化させたAl−Mg系Al合金板の強度のみがいくら高くても、伸びがプレス成形可能なだけなければ、成形して上記各用途の部材や部品とすることができずに、結局、実用化(実際に使用)できない。   Usually, as described above, many Al alloy plates are formed by press molding or the like, and are used as members or parts for the above-mentioned applications. Therefore, no matter how high the strength of the Al-Mg-based Al alloy plate made high in Mg, if the elongation can only be press-molded, it cannot be formed into members and parts for each of the above applications. After all, practical use (actual use) is not possible.

本発明はこのような課題を解決するためになされたものであって、その目的は、例えば、引張強度が500MPa以上の高強度でも、10%以上の全伸びを得ることができる、高強度でも成形が可能な、高MgのAl−Mg系合金冷延板を提供することである。   The present invention has been made in order to solve such a problem, and the purpose thereof is, for example, high tensile strength of 500 MPa or more, even with a high strength capable of obtaining a total elongation of 10% or more. An object of the present invention is to provide a high Mg Al-Mg alloy cold-rolled sheet that can be formed.

この目的を達成するために、高強度でも成形が可能な本発明アルミニウム合金冷延板の要旨は、Mg:6.0〜15.0質量%を含み、残部がAlおよび不純物からなるAl−Mg系アルミニウム合金冷延板であって、この冷延板の板厚方向の平均結晶粒径が30μm以下であり、かつ圧延方向の平均結晶粒径と板厚方向の平均結晶粒径との比であるアスペクト比が平均で3.0以上であり、結晶粒内のMg系析出物の平均粒径が各析出物の球相当径で換算して100nm以下であるとともに、これらMg系析出物の平均数密度が4×104 個/μm3 以下とする。 In order to achieve this object, the gist of the aluminum alloy cold-rolled sheet of the present invention, which can be formed even with high strength, is Mg: 6.0 to 15.0% by mass, the balance being Al—Mg composed of Al and impurities. Aluminum alloy cold-rolled sheet, the average crystal grain size in the plate thickness direction of this cold-rolled plate is 30 μm or less, and the ratio of the average crystal grain size in the rolling direction to the average crystal grain size in the plate thickness direction A certain aspect ratio is 3.0 or more on average, and the average particle diameter of Mg-based precipitates in crystal grains is 100 nm or less in terms of the equivalent sphere diameter of each precipitate, and the average of these Mg-based precipitates The number density is 4 × 10 4 pieces / μm 3 or less.

ここで、前記アルミニウム合金冷延板が、引張強度が500MPa以上である場合の全伸びが10%以上である特性を有することが好ましい。また、前記アルミニウム合金冷延板が、等軸な再結晶組織を有するAl−Mg系アルミニウム合金板を冷間圧延、調質した冷延板であることが好ましい。また、前記アルミニウム合金冷延板が、更に、質量%で、Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下の一種または二種以上を含むことが好ましい。更に、好ましくは、前記アルミニウム合金冷延板が、質量%で、Cu:1.0%以下、Fe:1.0%以下、Si:0.5%以下、Ti:0.1%以下、Zn:1.0%以下の含有することを許容する。   Here, it is preferable that the aluminum alloy cold-rolled sheet has a characteristic that the total elongation is 10% or more when the tensile strength is 500 MPa or more. The aluminum alloy cold-rolled sheet is preferably a cold-rolled sheet obtained by cold rolling and tempering an Al—Mg-based aluminum alloy sheet having an equiaxed recrystallized structure. Further, the aluminum alloy cold-rolled sheet is further in mass%, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, or It is preferable that 2 or more types are included. More preferably, the aluminum alloy cold-rolled sheet is, by mass%, Cu: 1.0% or less, Fe: 1.0% or less, Si: 0.5% or less, Ti: 0.1% or less, Zn : It is allowed to contain 1.0% or less.

本発明は、高Mg化させたAl−Mg系Al合金板の、平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物を規定して、例えば、引張強度が500MPa以上、600MPa未満である場合の全伸びが10%以上であり、プレス成形が可能である特性をもたせる。   The present invention defines the average crystal grain size, average aspect ratio, and Mg-based precipitates in the crystal grains of the Al—Mg-based Al alloy sheet having a high Mg content. For example, the tensile strength is 500 MPa or more and less than 600 MPa. In this case, the total elongation is 10% or more, and a characteristic that enables press molding is provided.

このような本発明の平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物の規定を満足させるためには、好ましくは等軸な再結晶組織を有するようなAl−Mg系Al合金板を、冷間圧延して、本発明のような冷延板とすることが必須となる。言い換えると、冷間圧延しなければ、本発明のような平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物の規定を満足できない。したがって、例えば、引張強度が500MPa以上、600MPa未満である場合の全伸びが10%以上であり、プレス成形が可能であるような特性をもたせることができない。   In order to satisfy the specifications of the average crystal grain size, average aspect ratio, and Mg-based precipitates in the crystal grains of the present invention, an Al—Mg-based Al alloy preferably having an equiaxed recrystallized structure It is essential to cold-roll the plate to obtain a cold-rolled plate as in the present invention. In other words, unless cold rolling is performed, the average crystal grain size, the average aspect ratio, and the Mg-based precipitates in the crystal grains cannot be satisfied as in the present invention. Therefore, for example, when the tensile strength is 500 MPa or more and less than 600 MPa, the total elongation is 10% or more, and it is not possible to provide such a characteristic that press molding is possible.

ここで、冷間圧延する(等軸な再結晶組織を有する)Al−Mg系Al合金板までの製造方法は特に問わない。冷間圧延する高Mg化させたAl−Mg系Al合金は、DC鋳造などで鋳造した鋳塊を、均熱処理後に熱間圧延を施す、通常の製造方法で製造してもいい。あるいは、前記した双ロール式連続鋳造により製造しても良い。   Here, the production method to the Al—Mg-based Al alloy plate that is cold-rolled (having an equiaxed recrystallized structure) is not particularly limited. The Al—Mg-based Al alloy having a high Mg content that is cold-rolled may be manufactured by a normal manufacturing method in which an ingot cast by DC casting or the like is hot-rolled after soaking. Or you may manufacture by the above-mentioned twin roll type continuous casting.

(化学成分組成)
本発明Al合金冷延板における化学成分組成の、各合金元素の意義及びその限定理由について以下に説明する。本発明では、Al合金冷延板として、例えば、引張強度が500MPa以上、600MPa未満である場合の全伸びが10%以上である、高強度でプレス成形が可能な特性を有する。このような、高強度で、かつ、所望の強度−伸びバランスを得るためには、前提として、冷延板を、Mg:6.0〜15.0質量%を含み、残部がAlおよび不純物からなるAl−Mg系アルミニウム合金組成とする。なお、各元素の含有量の%表示は全て質量%の意味である。
(Chemical composition)
The significance of each alloy element and the reason for its limitation in the chemical composition of the Al alloy cold-rolled sheet of the present invention will be described below. In the present invention, as an Al alloy cold-rolled sheet, for example, the tensile strength is 500 MPa or more and less than 600 MPa. In order to obtain such a high strength and a desired strength-elongation balance, it is assumed that the cold-rolled sheet contains Mg: 6.0 to 15.0 mass%, and the balance is made of Al and impurities. It is set as the Al-Mg type aluminum alloy composition which becomes. In addition,% display of content of each element means the mass% altogether.

また、本発明Al合金冷延板が、更に、質量%で、Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下の一種または二種以上を含むことが好ましい。   Further, the Al alloy cold-rolled sheet of the present invention is further a mass%, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less Or it is preferable that 2 or more types are included.

ここで、本発明Al合金冷延板が、それ以外の元素として、好ましくは、Cu:1.0%以下、Fe:1.0%以下、Si:0.5%以下、Ti:0.1%以下、Zn:1.0%以下の含有を許容する。これらの元素は基本的には不純物であるが、本発明Al合金溶製時の溶解原料として、不可避的に混入される。このため、これら元素の過度の低減は、製造上不経済となるために、本発明Al合金冷延板の上記特性を阻害しない上記範囲での含有を許容する。   Here, the Al alloy cold-rolled sheet of the present invention preferably has Cu: 1.0% or less, Fe: 1.0% or less, Si: 0.5% or less, Ti: 0.1 as other elements. % Or less and Zn: 1.0% or less are allowed. These elements are basically impurities, but are inevitably mixed as a melting raw material when the Al alloy of the present invention is melted. For this reason, excessive reduction of these elements is uneconomical in production, and therefore, the inclusion in the above range that does not impair the above properties of the Al alloy cold rolled sheet of the present invention is allowed.

(Mg:6.0〜15.0%)
MgはAl合金板の強度、延性を高める重要合金元素である。Mg含有量が少な過ぎると、本発明の高強度でプレス成形が可能な特性が出ず、強度や、あるいは延性(伸び)、成形性が不足する。一方、Mg含有量が多過ぎると、製造方法や条件の制御を行なっても、Al−Mg系化合物の晶析出が多くなる。この結果、延性(伸び)、成形性が著しく低下する。また、加工硬化量が大きくなり、冷間圧延性も低下させる。したがって、Mgは6.0〜15.0%の範囲、好ましくは8%を超え14%以下の範囲とする。
(Mg: 6.0 to 15.0%)
Mg is an important alloy element that increases the strength and ductility of the Al alloy sheet. If the Mg content is too small, the high strength and press-molding characteristics of the present invention will not be obtained, and the strength, ductility (elongation) and formability will be insufficient. On the other hand, when there is too much Mg content, even if it controls a manufacturing method and conditions, the crystal precipitation of an Al-Mg type compound will increase. As a result, ductility (elongation) and formability are significantly reduced. In addition, the work hardening amount is increased and the cold rollability is also lowered. Therefore, Mg is in the range of 6.0 to 15.0%, preferably more than 8% and 14% or less.

(Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下の一種または二種以上)
Mn、Cr、Zr、Vなどの遷移元素は、結晶粒内にもβ相を析出させ、結晶粒内のMg系析出物の本発明規定を満足させるための好ましい元素である。即ち、β相析出環境下では、これら結晶粒内の遷移元素の遷移元素系析出物が、結晶粒内のβ相の核生成サイト(駆動力)となって、結晶粒内にもβ相を微細析出させる。これによって、高強度でプレス成形が可能な特性を発揮させる。このため、Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下の一種または二種以上を選択的に含有させる。
(Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less)
Transition elements such as Mn, Cr, Zr, and V are preferable elements for precipitating a β phase in crystal grains and satisfying the provisions of the present invention for Mg-based precipitates in crystal grains. That is, in the β-phase precipitation environment, transition element-based precipitates of transition elements in the crystal grains become β-phase nucleation sites (driving force) in the crystal grains, and the β-phase is also formed in the crystal grains. Precipitate fine. As a result, the properties that enable press molding with high strength are exhibited. For this reason, one or two or more of Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, and V: 0.3% or less are selectively contained.

これらの遷移元素の効果は含有量が微量でも発揮される、言い換えると、微量でも結晶粒内に遷移元素系析出物を形成し、これらの遷移元素系析出物は微量でもβ相の核生成サイトとなる。したがって、敢えて、これら遷移元素の含有量の下限値は規定しない。ただ、通常の板の製造条件で、これらの効果を効率的に発揮させるためには、これら各元素の含有量の下限値は0.05%以上であることが好ましい。   The effects of these transition elements can be exhibited even in a small amount. In other words, even if the amount is small, transition element-based precipitates are formed in the crystal grains. It becomes. Therefore, the lower limit of the content of these transition elements is not defined. However, in order to efficiently exhibit these effects under normal plate manufacturing conditions, the lower limit value of the content of each of these elements is preferably 0.05% or more.

(結晶粒組織)
本発明Al−Mg系Al合金冷延板の結晶粒組織は、例えば、引張強度が500MPa以上、600MPa未満である場合の全伸びが10%以上であり、高強度で、プレス成形が可能であるような特性をもたせるために重要となる。このために、本発明結晶粒組織は、板厚方向の平均結晶粒径が30μm以下であり、かつ圧延方向の平均結晶粒径と板厚方向の平均結晶粒径との比であるアスペクト比が平均で3.0以上とする。
(Grain structure)
The crystal grain structure of the Al-Mg-based Al alloy cold-rolled sheet of the present invention has, for example, a total elongation of 10% or more when the tensile strength is 500 MPa or more and less than 600 MPa, and can be press-molded with high strength. It is important to have such characteristics. Therefore, the crystal grain structure of the present invention has an average crystal grain size in the plate thickness direction of 30 μm or less, and an aspect ratio that is a ratio of the average crystal grain size in the rolling direction to the average crystal grain size in the plate thickness direction. The average value is 3.0 or more.

(結晶粒のアスペクト比)
アルミニウム合金冷延板の結晶粒を、通常の等軸粒ではなく、平均圧延方向の平均結晶粒径と板厚方向の平均結晶粒径との比であるアスペクト比が、平均で3.0以上の、圧延方向に伸長させたものにすることによって、前記した高強度でプレス成形が可能な特性をもたせることができる。
(Aspect ratio of crystal grains)
The crystal grain of the aluminum alloy cold rolled sheet is not a regular equiaxed grain, but the average aspect ratio, which is the ratio of the average crystal grain size in the average rolling direction and the average crystal grain size in the plate thickness direction, is 3.0 or more on average. By making it elongated in the rolling direction, it is possible to have the above-described characteristics that allow high-strength press molding.

このアスペクト比が平均で3.0未満では、通常の等軸粒と大差なくなり、伸長結晶粒の上記効果が不足するため、前記した高強度でプレス成形が可能な特性をもたせることができない。この点で、結晶粒の圧延方向への伸長は大きいほど良く、結晶粒のアスペクト比は、好ましくは4.0以上、より好ましくは6.0以上である。   If this aspect ratio is less than 3.0 on average, there will be no significant difference from normal equiaxed grains, and the above-mentioned effects of elongated crystal grains will be insufficient, so that the above-described properties capable of press forming with high strength cannot be provided. In this respect, the elongation of the crystal grains in the rolling direction is better, and the aspect ratio of the crystal grains is preferably 4.0 or more, more preferably 6.0 or more.

結晶粒のアスペクト比は、中間焼鈍を施さない工程では、熱延板の結晶粒組織、冷間圧延率および冷間圧延温度によって決まる。この点で、結晶粒の平均アスペクト比の上限は、熱間圧延や冷間圧延など、伸長粒とするための製造工程の能力限界から決定されるが、そのレベルは20程度である。   The aspect ratio of the crystal grains is determined by the crystal grain structure of the hot-rolled sheet, the cold rolling rate, and the cold rolling temperature in the process in which intermediate annealing is not performed. In this respect, the upper limit of the average aspect ratio of the crystal grains is determined from the capability limit of the manufacturing process for forming elongated grains such as hot rolling and cold rolling, but the level is about 20.

(平均アスペクト比測定方法)
結晶粒のアスペクト比は、板厚方向中央部の上面観察(偏光観察)によって測定される。冷間圧延後で、最終焼鈍などの調質処理後の冷延板の板厚方向中央部、圧延面上面を、機械研磨、電解研磨、およびバーカー液による陽極酸化処理後、偏光観察によって行う。
(Average aspect ratio measurement method)
The aspect ratio of the crystal grains is measured by observing the upper surface (polarized light observation) at the center in the thickness direction. After cold rolling, the central portion in the thickness direction of the cold-rolled sheet after the tempering treatment such as final annealing and the upper surface of the rolled surface are performed by polarization observation after mechanical polishing, electrolytic polishing, and anodizing treatment with Barker liquid.

上記板の板厚方向中央部を上面から、結晶粒組織を×100倍の光学顕微鏡により偏光観察したとき、結晶方位の違いによって白黒の違いがでる。この際の観察で、輪郭がはっきり観察できる、視野内の結晶粒を対象に、個々の結晶粒の圧延方向の最大長さと、板厚方向の最大長さとを各々計測して、結晶粒の圧延方向の平均最大長さ(圧延方向の平均結晶粒径)と、板厚方向の平均最大長さ(板厚方向の平均結晶粒径)をする。そして、これらの結晶粒の(圧延方向の平均結晶粒径:平均最大長さ)/(板厚方向の平均結晶粒径:平均最大長さ)をアスペクト比として計算する。なお、測定する結晶粒は100個とする。   When the central portion of the plate in the thickness direction is observed from the upper surface and the crystal grain structure is observed with polarized light using an optical microscope of × 100 magnification, a difference in black and white appears due to a difference in crystal orientation. In this observation, for the crystal grains in the field of view where the outline can be clearly observed, the maximum length in the rolling direction of each crystal grain and the maximum length in the plate thickness direction are measured respectively, and the rolling of the crystal grains is measured. The average maximum length in the direction (average crystal grain size in the rolling direction) and the average maximum length in the plate thickness direction (average crystal grain size in the plate thickness direction) are determined. Then, (average crystal grain size in rolling direction: average maximum length) / (average crystal grain size in plate thickness direction: average maximum length) of these crystal grains is calculated as an aspect ratio. Note that the number of crystal grains to be measured is 100.

(平均結晶粒径)
また、ここで、前記した測定において、個々の結晶粒の板厚方向の最大長さの平均値を、板厚方向の平均結晶粒径とする。この板厚方向の平均結晶粒径が30μmを超えて粗大化した場合、前記した高強度でプレス成形が可能な特性をもたせることができない。
(Average crystal grain size)
Here, in the above-described measurement, the average value of the maximum lengths of the individual crystal grains in the plate thickness direction is defined as the average crystal grain size in the plate thickness direction. When the average crystal grain size in the plate thickness direction is larger than 30 μm, it is impossible to give the above-described characteristics that enable high-strength press molding.

(結晶粒内析出物)
本発明Al−Mg系Al合金冷延板では、結晶粒内のMg系析出物(Al−Mg系化合物)をナノレベルに微細に析出させて強度−伸びバランスを向上させる。結晶粒内のMg系析出物の析出状態は、塑性変形挙動に大きく影響し、これまで説明した前記他の要件と同様に、本発明Al−Mg系Al合金冷延板に、上記した高強度でプレス成形が可能であるような特性をもたせるために重要となる。したがって、より具体的には、本発明結晶粒内析出物組織は、結晶粒内のMg系析出物の平均粒径が各析出物の球相当径で換算して100nm以下であるとともに、これらMg系析出物の平均数密度が4×104 個/μm3 以下であることとする。
(Intracrystalline precipitate)
In the Al-Mg-based Al alloy cold-rolled sheet of the present invention, Mg-based precipitates (Al-Mg-based compounds) in crystal grains are finely precipitated at the nano level to improve the strength-elongation balance. The precipitation state of Mg-based precipitates in the crystal grains has a great influence on the plastic deformation behavior. Like the other requirements described so far, the Al-Mg-based Al alloy cold-rolled sheet of the present invention has the above-described high strength. This is important in order to provide such characteristics that press molding is possible. Therefore, more specifically, in the intragranular precipitate structure of the present invention, the average particle diameter of Mg-based precipitates in the crystal grains is 100 nm or less in terms of the equivalent sphere diameter of each precipitate, and these Mg It is assumed that the average number density of the system precipitates is 4 × 10 4 pieces / μm 3 or less.

結晶粒内のMg系析出物が上記平均粒径規定を超えて粗大化した場合や、数密度が上記規定を超えて多くなった場合には、破壊の起点となり、また、粒界にも析出しやすくなるために、Al−Mg系Al合金冷延板の成形性が著しく劣化する。   When the Mg-based precipitates in the crystal grains become coarser than the above average grain size specification, or when the number density exceeds the above specification, it becomes a starting point of fracture and also precipitates at the grain boundaries. Therefore, the formability of the Al—Mg-based Al alloy cold-rolled sheet is significantly deteriorated.

(結晶粒内析出物の測定方法)
Al−Mg系Al合金冷延板の板厚中心部から試料を採取し、試料表面を0.05〜0.1mm機械研磨した後、電解エッチングした表面 (板厚方向でも板の長手方向でもどちらでも良い) を、20000倍のFE−TEM(透過型電子顕微鏡)により観察する。板厚中心部におけるFE−TEMによる組織観察は、板厚中心部1 箇所につき、観察視野の合計面積が4μm2 以上となるように行い、これを板の長手方向に適当に距離を置いた10箇所観察する。また、各観察位置の膜厚に関しては、等厚干渉縞により求める。そして、各々観察される結晶粒内の各Mg系析出物の、球相当径で換算した粒径と、単位体積当たりの数密度とを求めて、各々平均化する。
(Measurement method of precipitates in crystal grains)
A sample was taken from the center of the thickness of the Al-Mg-based Al alloy cold-rolled sheet, the sample surface was mechanically polished by 0.05 to 0.1 mm, and then electroetched (either in the thickness direction or in the longitudinal direction of the plate) May be observed with a 20,000-fold FE-TEM (transmission electron microscope). The structure observation by the FE-TEM at the center of the plate thickness was performed so that the total area of the observation field was 4 μm 2 or more per one center of the plate thickness, and this was appropriately spaced in the longitudinal direction of the plate. Observe the location. In addition, the film thickness at each observation position is obtained by equal thickness interference fringes. Then, the particle size converted by the equivalent sphere diameter and the number density per unit volume of each Mg-based precipitate in each observed crystal grain are obtained and averaged.

本発明で言うMg系析出物とは、このFE−TEMにより観察された視野をX線分光装置(EDX)により分析することにより、Mgを含むことが確認された析出物(Al−Mg系化合物)であり、Mgを含まない他の析出物とは識別される。このMgを含む量は、EDXにより検出できる量 (微量) あれば良い。   The Mg-based precipitate referred to in the present invention is a precipitate (Al-Mg-based compound) that has been confirmed to contain Mg by analyzing the visual field observed by the FE-TEM with an X-ray spectrometer (EDX). ) And is distinguished from other precipitates not containing Mg. The amount containing Mg may be an amount (a trace amount) that can be detected by EDX.

(製造方法)
以下に、本発明におけるAl−Mg系Al合金冷延板の製造方法につき説明する。以上説明した、本発明の平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物の規定を満足させるためには、好ましくは等軸な再結晶組織を有するようなAl−Mg系Al合金板を、冷間圧延して、冷延板とすることが必須となる。言い換えると、冷間圧延しなければ、本発明のような平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物の規定を満足できない。
(Production method)
Below, the manufacturing method of the Al-Mg type Al alloy cold-rolled sheet in this invention is demonstrated. In order to satisfy the above-described specifications of the average crystal grain size, average aspect ratio, and Mg-based precipitates in the crystal grains, the Al—Mg-based Al having an equiaxed recrystallized structure is preferable. It is essential to cold-roll the alloy plate to form a cold-rolled plate. In other words, unless cold rolling is performed, the average crystal grain size, the average aspect ratio, and the Mg-based precipitates in the crystal grains cannot be satisfied as in the present invention.

但し、冷間圧延するまでの、高Mg化させたAl−Mg系Al合金板の製造方法は特に問わない。冷間圧延するAl合金板は、DC鋳造などで鋳造した鋳塊を、均熱処理後に熱間圧延を施す、通常の製造方法で製造してもいいし、あるいは、前記した双ロール式連続鋳造により製造しても良い。   However, the manufacturing method of the Al—Mg-based Al alloy plate having a high Mg content until cold rolling is not particularly limited. The Al alloy sheet to be cold-rolled may be manufactured by a normal manufacturing method in which an ingot cast by DC casting or the like is hot-rolled after soaking, or by the above-described twin-roll continuous casting. It may be manufactured.

(冷間圧延)
ただ、通常の製造方法にするにしても、双ロール式にするにしても、本発明の冷延板組織とするためには、冷延される前の板を、予め等軸な再結晶組織を有するものとすることが好ましい。これに対して、冷延される前の板が加工組織を有していた場合には、冷延の途中で板が、Mg系析出物であるβ相による割れを生じる可能性が高く、結果として、本発明の平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物の規定を満足できなくなる可能性が高くなる。
(Cold rolling)
However, in order to obtain the cold-rolled plate structure of the present invention, whether it is a normal manufacturing method or a twin roll type, the plate before cold rolling is preliminarily equiaxial recrystallized structure. It is preferable to have. On the other hand, if the plate before cold rolling has a processed structure, the plate is likely to crack due to the β phase being Mg-based precipitate during the cold rolling. As a result, there is a high possibility that the average crystal grain size, the average aspect ratio, and the Mg-based precipitates in the crystal grain cannot be satisfied.

冷延される前の板を、このような予め等軸な再結晶組織とするためには、冷延前に板を、再結晶と溶体化効果とが得られる、400℃〜液相線温度の比較的高温で荒鈍(焼鈍)することが好ましい。この荒鈍を連続焼鈍によって行う場合には、好ましくは、昇温速度:1℃/s以上、保持時間:0s以上、5min以下、冷却速度:1℃/s以上の条件とする。また、この荒鈍をバッチ焼鈍によって行う場合には、好ましくは、昇温速度:200℃/hr以下、保持時間:4時間以下、冷却速度:200℃/hr以下の条件とする。昇温速度、冷却速度を規定したのは、これらの速度が遅いと、この昇温−冷却過程で、粒界にβ相が多量に析出する可能性があり、本発明の結晶粒内のMg系析出物の規定を満足できなくなる可能性が高くなるからである。   In order to make the plate before cold rolling into such an equiaxed recrystallized structure in advance, the plate is recrystallized and solution effect can be obtained before cold rolling. It is preferable to roughen (anneal) at a relatively high temperature. In the case where the roughening is performed by continuous annealing, the temperature rise rate is preferably 1 ° C./s or more, the holding time is 0 second or more and 5 minutes or less, and the cooling rate is 1 ° C./s or more. Moreover, when performing this roughing by batch annealing, it is preferable that the temperature rising rate is 200 ° C./hr or less, the holding time is 4 hours or less, and the cooling rate is 200 ° C./hr or less. The temperature increase rate and the cooling rate are defined because if these rates are slow, a large amount of β phase may be precipitated at the grain boundary during this temperature increase-cooling process. This is because there is a high possibility that the regulation of system precipitates cannot be satisfied.

冷間圧延では、リバースやタンデムパス冷間圧延機を用いて良く、必要によりパス毎に中間焼鈍を施しても良いが、冷延率(加工率)は50%以上とする。冷延率が低いと、本発明の平均結晶粒径、平均アスペクト比、結晶粒内のMg系析出物の規定を満足できなくなる可能性が高くなる。   In cold rolling, a reverse or tandem pass cold rolling mill may be used, and intermediate annealing may be performed for each pass if necessary, but the cold rolling rate (working rate) is 50% or more. When the cold rolling rate is low, there is a high possibility that the average crystal grain size, the average aspect ratio, and the Mg-based precipitates in the crystal grains cannot be satisfied.

(最終焼鈍)
冷延後のAl合金板は、β相を出さず、かつ強度を低下させずに、結晶粒をサブグレイン化でき、伸びを改善できる回復効果を得るために、低温短時間の最終焼鈍を施す。この低温短時間の最終焼鈍は、溶体化効果が得られる400℃以上の比較的高温の通常の最終焼鈍とは異なり、焼鈍温度は250℃以下の低温とする。
(Final annealing)
The Al alloy sheet after cold rolling is subjected to final annealing at a low temperature for a short time in order to obtain a recovery effect capable of subgraining the crystal grains and improving the elongation without producing a β phase and without reducing the strength. . This low-temperature short-time final annealing is performed at a low temperature of 250 ° C. or lower, unlike a normal final annealing at a relatively high temperature of 400 ° C. or higher where a solution effect can be obtained.

この最終焼鈍を連続焼鈍によって行う場合には、好ましくは、焼鈍温度:400℃以下、昇温速度:1℃/s以上、保持時間:0s以上、5min以下、冷却速度:1℃/s以上の条件とする。また、この最終焼鈍をバッチ焼鈍によって行う場合には、好ましくは、焼鈍温度:200℃以下、昇温速度:200℃/hr以下、保持時間:4時間以下、冷却速度:200℃/hr以下の条件とする。   When this final annealing is performed by continuous annealing, preferably, the annealing temperature is 400 ° C. or less, the heating rate is 1 ° C./s or more, the holding time is 0 s or more, 5 min or less, and the cooling rate is 1 ° C./s or more. Condition. Moreover, when this final annealing is performed by batch annealing, it is preferable that the annealing temperature is 200 ° C. or less, the heating rate is 200 ° C./hr or less, the holding time is 4 hours or less, and the cooling rate is 200 ° C./hr or less. Condition.

昇温速度、冷却速度を規定したのは、これらの速度が遅いと、この昇温−冷却過程で、粒界にβ相が多量に析出する可能性があり、本発明の結晶粒内のMg系析出物の規定を満足できなくなる可能性が高くなるからである。なお、250度℃以上では結晶粒内のMg系析出物の規定を満足できなくなる可能性が高く、高MgのAl−Mg系合金板の伸びが低下し、強度−延性バランスが低下してプレス成形性が低下する可能性が高い。さらに、通常の溶体化効果が得られる400℃以上の焼鈍では、固溶促進してMg系析出物の規定を満足するようになり、伸びが改善するが、強度が低下する。   The temperature increase rate and the cooling rate are defined because if these rates are slow, a large amount of β phase may be precipitated at the grain boundary during this temperature increase-cooling process. This is because there is a high possibility that the regulation of system precipitates cannot be satisfied. Note that at 250 ° C. or higher, there is a high possibility that the definition of Mg-based precipitates in the crystal grains cannot be satisfied, the elongation of the high Mg Al—Mg alloy plate is lowered, and the strength-ductility balance is lowered. There is a high possibility that moldability will be reduced. Furthermore, in annealing at 400 ° C. or higher where a normal solutionizing effect is obtained, solid solution is promoted to satisfy the definition of Mg-based precipitates, and the elongation is improved, but the strength is lowered.

以下に本発明の実施例を説明する。表1に示す種々の化学成分組成のAl−Mg系Al合金溶湯(発明例A〜G、比較例H、I)を、前記した双ロール連続鋳造法およびDC鋳造法により各鋳塊に鋳造した。   Examples of the present invention will be described below. Al—Mg-based Al alloy melts (Invention Examples A to G, Comparative Examples H and I) having various chemical composition compositions shown in Table 1 were cast on each ingot by the twin roll continuous casting method and the DC casting method described above. .

DC鋳造法の場合には、Al合金溶湯の注湯温度 (鋳造前の溶湯温度) を640〜700℃の温度範囲とし、表2に示す条件で、各Al合金鋳塊をバッチ式熱処理炉にて均熱処理した後、約300℃の開始温度、約350℃の終了温度で、表2に示す各板厚まで圧延する熱間圧延を行った。   In the case of the DC casting method, the pouring temperature of the Al alloy molten metal (melt temperature before casting) is set to a temperature range of 640 to 700 ° C., and each Al alloy ingot is placed in a batch heat treatment furnace under the conditions shown in Table 2. After soaking, the steel sheet was hot-rolled at a start temperature of about 300 ° C. and an end temperature of about 350 ° C. to the plate thicknesses shown in Table 2.

双ロール連続鋳造法の場合には、Al合金溶湯の注湯温度 (鋳造前の溶湯温度) を640〜700℃の温度範囲とし、冷却速度200〜400℃/sの範囲で表2に示す各板厚のAl合金薄板鋳塊を製造した。双ロールの周速は70m/minとし、双ロール表面の潤滑は行なわなかった。   In the case of the twin roll continuous casting method, the pouring temperature of the Al alloy molten metal (melting temperature before casting) is set to a temperature range of 640 to 700 ° C., and the cooling rates in the range of 200 to 400 ° C./s are shown in Table 2. A plate-thick Al alloy sheet ingot was produced. The peripheral speed of the twin roll was 70 m / min, and the twin roll surface was not lubricated.

DC鋳造法による熱延板、双ロール連続鋳造法による薄板鋳塊ともに、荒鈍(焼鈍)を行った後に、冷間圧延した。荒鈍は、連続焼鈍によって行い、表2に示す各焼鈍温度で、保持時間を60sと各例とも一定にして加熱した。この際、昇温速度:50〜100℃/s、冷却速度:50〜100℃/sの範囲で行った。また、冷間圧延は、表2に示す加工率、板厚にて行い、冷間圧延中の中間焼鈍は行なわなかった。   Both the hot rolled sheet by the DC casting method and the thin sheet ingot by the twin roll continuous casting method were subjected to roughening (annealing) and then cold rolled. Roughening was performed by continuous annealing, and heating was performed at each annealing temperature shown in Table 2 with a holding time of 60 s constant in each example. At this time, the heating rate was 50 to 100 ° C./s, and the cooling rate was 50 to 100 ° C./s. The cold rolling was performed at the processing rates and plate thicknesses shown in Table 2, and no intermediate annealing was performed during the cold rolling.

また、これら各冷延板を、表2 に示す焼鈍条件で最終焼鈍を行った。この際、バッチ焼鈍炉では、昇温速度:40℃/hr、冷却速度:40℃/hr、表2に*で示す連続焼鈍炉(比較例17、23)では、昇温速度:50〜100℃/s、冷却速度:50〜100℃/sの条件で行った。   Each of these cold-rolled sheets was subjected to final annealing under the annealing conditions shown in Table 2. At this time, in the batch annealing furnace, the heating rate is 40 ° C./hr, the cooling rate is 40 ° C./hr, and in the continuous annealing furnace indicated by * in Table 2 (Comparative Examples 17 and 23), the heating rate is 50 to 100. C./s, cooling rate: 50 to 100.degree. C./s.

(板組織)
このように得られた最終焼鈍後のAl−Mg系Al合金板の長手方向( 圧延方向) に亙って、互いの間隔を100mm以上開けた任意の測定箇所、10箇所における板厚中心部から試料を採取し、前記した各測定方法により、平均結晶粒径(μm )、アスペクト比、結晶粒内のMg系析出物の平均粒径(μm )、数密度(個/μm2) を各々測定した。表3 に測定結果を示す。ここで、FE−TEMは日立製作所製電界放射型透過電子顕微鏡:HF−2000を用いた。
(Plate structure)
From the central part of the plate thickness at 10 arbitrary measurement points at intervals of 100 mm or more over the longitudinal direction (rolling direction) of the Al—Mg-based Al alloy plate after final annealing thus obtained. Samples were taken, and the average crystal grain size (μm), aspect ratio, average grain size (μm) of Mg-based precipitates in the crystal grains, and number density (pieces / μm2) were measured by the measurement methods described above. . Table 3 shows the measurement results. Here, FE-TEM used Hitachi field emission transmission electron microscope: HF-2000.

これにより撮影した発明例と比較例の板の組織(図面代用写真)を図1〜4に示す。図1は表3 の発明例1、図2は表3 の発明例2、図3は表3 の発明例3、図4は表3 の比較例17の各組織である。   The structure of the board of the inventive examples and comparative examples photographed in this way (drawing substitute photos) is shown in FIGS. FIG. 1 shows the structure of Invention Example 1 of Table 3, FIG. 2 shows the structure of Invention Example 2 of Table 3, FIG. 3 shows the structure of Invention Example 3 of Table 3, and FIG.

更に、前記最終焼鈍後のAl−Mg系Al合金板の板厚中心部から試験片を採取し、各試験片の機械的性質と、強度延性バランス「引張強度(TS:MPa)×全伸び(EL:%)」(MPa%)の平均値を求めた。これらの結果も表3に示す。   Further, a test piece was taken from the center of the thickness of the Al-Mg-based Al alloy plate after the final annealing, and the mechanical properties and strength ductility balance of each test piece "tensile strength (TS: MPa) x total elongation ( EL:%) ”(MPa%) was determined. These results are also shown in Table 3.

(引張試験)
引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行い、試験片長手方向が圧延方向と一致するように作製した。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。
(Tensile test)
The tensile test was performed according to JIS Z 2201, and the shape of the test piece was a JIS No. 5 test piece, and the test piece was manufactured so that the longitudinal direction of the test piece coincided with the rolling direction. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke.

表1の通り、発明例は、発明範囲内の組成を有し、表2の通り、好ましい製造条件範囲内で製造されている。このため、表3の通り、発明例は、冷延板の板厚方向の平均結晶粒径が30μm以下であり、かつ圧延方向の平均結晶粒径と板厚方向の平均結晶粒径との比であるアスペクト比が平均で3.0以上である。また、結晶粒内のMg系析出物の平均粒径が各析出物の球相当径で換算して100nm以下であるとともに、これらMg系析出物の平均数密度が4×104 個/μm3 以下である。 As shown in Table 1, the invention examples have compositions within the scope of the invention, and as shown in Table 2, they are produced within the preferred production conditions. For this reason, as shown in Table 3, the invention example has an average crystal grain size in the thickness direction of the cold-rolled sheet of 30 μm or less, and the ratio between the average crystal grain size in the rolling direction and the average crystal grain size in the thickness direction. The average aspect ratio is 3.0 or more. Further, the average particle diameter of the Mg-based precipitates in the crystal grains is 100 nm or less in terms of the sphere equivalent diameter of each precipitate, and the average number density of these Mg-based precipitates is 4 × 10 4 pieces / μm 3. It is as follows.

この結果、発明例は、アルミニウム合金冷延板として、引張強度が500MPa以上、600MPa未満である場合の全伸びが10%以上である特性を有し、強度延性バランスや成形性に優れている。   As a result, the inventive example has a property that the total elongation is 10% or more when the tensile strength is 500 MPa or more and less than 600 MPa as an aluminum alloy cold-rolled sheet, and is excellent in strength ductility balance and formability.

これに対して、比較例15〜23は、発明範囲内の組成を有するものの、表2の通り、好ましい製造条件の範囲外で製造されている。このため、表3の通り、比較例15〜23は、冷延板の平均結晶粒径、アスペクト比、結晶粒内のMg系析出物の平均粒径、平均数密度が発明規定範囲外となっている。この結果、比較例15〜23は、アルミニウム合金冷延板として、引張強度の割に全伸びが低く、強度延性バランスや成形性に劣っている。   On the other hand, although Comparative Examples 15-23 have a composition within the range of invention, as shown in Table 2, it is manufactured outside the range of preferable manufacturing conditions. For this reason, as shown in Table 3, in Comparative Examples 15 to 23, the average crystal grain size and aspect ratio of the cold-rolled sheet, the average grain size of Mg-based precipitates in the crystal grains, and the average number density are outside the specified range of the invention. ing. As a result, Comparative Examples 15 to 23 have low total elongation for the tensile strength as aluminum alloy cold-rolled plates, and are inferior in strength ductility balance and formability.

比較例24〜27は、好ましい製造条件の範囲外で製造されているものの、発明範囲外の組成を有する。このため、24〜27は、冷延板の平均結晶粒径、アスペクト比、結晶粒内のMg系析出物の平均粒径、平均数密度は発明規定範囲内であるものの、アルミニウム合金冷延板として、引張強度の割に全伸びが低く、強度延性バランスや成形性に劣っている。   Although Comparative Examples 24-27 are manufactured outside the range of preferable manufacturing conditions, they have compositions outside the scope of the invention. For this reason, although 24-27 are the average crystal grain diameter of a cold-rolled sheet, an aspect ratio, the average grain diameter of the Mg-type precipitate in a crystal grain, and an average number density are in an invention prescription | regulation range, an aluminum alloy cold-rolled sheet As for the tensile strength, the total elongation is low, and the strength ductility balance and formability are inferior.

また、図1〜4の対比から視覚的に分かる通り、冷延板の板厚方向(図の上下方向)の平均結晶粒径が30μm以下で、かつ圧延方向(図の左右方向)の平均結晶粒径と板厚方向(図の上下方向)の平均結晶粒径との比であるアスペクト比が平均で3.0以上である図1〜3の発明例1〜3は、図の左右方向に伸長し、図の上下方向に細かい結晶粒組織となっている。これに対して、図4の比較例17は、冷延板の板厚方向の平均結晶粒径が30μmを越えて大き過ぎ、かつ前記アスペクト比が平均で3.0未満と小さすぎるために、図の上下方向と図の左右方向との長さに差がない謂わば等軸で、粗大な結晶粒組織となっている。   1-4, the average crystal grain size in the thickness direction (vertical direction in the figure) of the cold rolled sheet is 30 μm or less and the average crystal in the rolling direction (horizontal direction in the figure). Inventive Examples 1 to 3 in FIGS. 1 to 3 in which the aspect ratio, which is the ratio of the grain size and the average crystal grain size in the plate thickness direction (vertical direction in the figure), is 3.0 or more on average, It is elongated and has a fine grain structure in the vertical direction of the figure. On the other hand, in Comparative Example 17 of FIG. 4, the average crystal grain size in the thickness direction of the cold-rolled sheet is too large exceeding 30 μm, and the aspect ratio is too small as an average of less than 3.0. A so-called equiaxed axis with no difference in length between the vertical direction in the figure and the horizontal direction in the figure has a coarse crystal grain structure.

したがって、これらの実施例の結果から、本発明の、組成、結晶粒径、結晶粒内のMg系析出物規定や、これらを規定内とする好ましい製造条件の、強度延性バランスや成形性に対する臨界的な意義が分かる。   Therefore, from the results of these Examples, the criticality for the strength ductility balance and formability of the present invention, the composition, crystal grain size, Mg-based precipitate definition within the crystal grains, and preferable production conditions within these specifications I understand the significance.

Figure 2009024219
Figure 2009024219

Figure 2009024219
Figure 2009024219

Figure 2009024219
Figure 2009024219

以上説明したように、本発明によれば、引張強度が500MPa以上の高強度でも10%以上の全伸びを得ることができる、高強度でも成形が可能な、強度延性バランス、成形性が優れた高MgのAl−Mg系合金冷延板を提供することができる。この結果、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品などの、強度と成形性とが要求されるアルミニウム合金板用途への適用を拡大できる。   As described above, according to the present invention, a total elongation of 10% or more can be obtained even when the tensile strength is 500 MPa or higher, and the strength ductility balance and moldability are excellent even if the strength is high. A high Mg Al—Mg alloy cold-rolled sheet can be provided. As a result, for aluminum alloy plate applications that require strength and formability, such as transportation equipment such as automobiles, ships, aircraft, and vehicles, machines, electrical products, architecture, structures, optical equipment, and members and parts of equipment. The application of can be expanded.

本発明Al−Mg系合金冷延板の組織を示す図面代用写真である。It is a drawing substitute photograph which shows the structure | tissue of this invention Al-Mg type alloy cold-rolled sheet. 本発明Al−Mg系合金冷延板の組織を示す図面代用写真である。It is a drawing substitute photograph which shows the structure | tissue of this invention Al-Mg type alloy cold-rolled sheet. 本発明Al−Mg系合金冷延板の組織を示す図面代用写真である。It is a drawing substitute photograph which shows the structure | tissue of this invention Al-Mg type alloy cold-rolled sheet. 比較例Al−Mg系合金冷延板の組織を示す図面代用写真である。It is a drawing substitute photograph which shows the structure | tissue of a comparative example Al-Mg type alloy cold-rolled sheet.

Claims (5)

Mg:6.0〜15.0質量%を含み、残部がAlおよび不純物からなるAl−Mg系アルミニウム合金冷延板であって、この冷延板の板厚方向の平均結晶粒径が30μm以下であり、かつ圧延方向の平均結晶粒径と板厚方向の平均結晶粒径との比であるアスペクト比が平均で3.0以上であり、結晶粒内のMg系析出物の平均粒径が各析出物の球相当径で換算して100nm以下であるとともに、これらMg系析出物の平均数密度が4×104 個/μm3 以下であることを特徴とする高強度で成形が可能なアルミニウム合金冷延板。 Mg: An Al—Mg-based aluminum alloy cold-rolled sheet containing 6.0 to 15.0% by mass with the balance being Al and impurities, and the average crystal grain size in the thickness direction of the cold-rolled sheet is 30 μm or less And the average aspect ratio, which is the ratio of the average crystal grain size in the rolling direction and the average crystal grain size in the plate thickness direction, is 3.0 or more on average, and the average grain size of the Mg-based precipitates in the crystal grains is In terms of the equivalent sphere diameter of each precipitate, it is 100 nm or less, and the average number density of these Mg-based precipitates is 4 × 10 4 pieces / μm 3 or less. Aluminum alloy cold rolled sheet. 前記アルミニウム合金冷延板が、引張強度が500MPa以上で、全伸びが10%以上である特性を有する請求項1に記載の高強度で成形が可能なアルミニウム合金冷延板。   The aluminum alloy cold-rolled sheet according to claim 1, wherein the aluminum alloy cold-rolled sheet has characteristics of a tensile strength of 500 MPa or more and a total elongation of 10% or more. 前記アルミニウム合金冷延板が、等軸な再結晶組織を有するAl−Mg系アルミニウム合金板を冷間圧延、調質した冷延板である、請求項1または2に記載の高強度で成形が可能なアルミニウム合金冷延板。   The said aluminum alloy cold-rolled sheet is a cold-rolled sheet obtained by cold rolling and tempering an Al-Mg-based aluminum alloy sheet having an equiaxed recrystallized structure, and is formed with high strength according to claim 1 or 2. Possible aluminum alloy cold rolled sheet. 前記アルミニウム合金冷延板が、更に、質量%で、Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下の一種または二種以上を含む請求項1乃至3のいずれか1項に記載の高強度で成形が可能なアルミニウム合金冷延板。   The aluminum alloy cold-rolled sheet further comprises one or two of mass%: Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less. The aluminum alloy cold-rolled sheet that can be formed with high strength according to any one of claims 1 to 3, including the above. 前記アルミニウム合金冷延板が、更に、質量%で、Cu:1.0%以下、Fe:1.0%以下、Si:0.5%以下、Ti:0.1%以下、Zn:1.0%以下の含有を許容する請求項1乃至4のいずれか1項に記載の高強度で成形が可能なアルミニウム合金冷延板。   The aluminum alloy cold-rolled sheet is further, in mass%, Cu: 1.0% or less, Fe: 1.0% or less, Si: 0.5% or less, Ti: 0.1% or less, Zn: 1.%. The aluminum alloy cold-rolled sheet according to any one of claims 1 to 4, wherein the aluminum alloy cold-rolled sheet is capable of being formed with high strength.
JP2007188488A 2007-07-19 2007-07-19 Aluminum alloy cold-rolled sheet that can be formed with high strength Expired - Fee Related JP5059505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188488A JP5059505B2 (en) 2007-07-19 2007-07-19 Aluminum alloy cold-rolled sheet that can be formed with high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188488A JP5059505B2 (en) 2007-07-19 2007-07-19 Aluminum alloy cold-rolled sheet that can be formed with high strength

Publications (2)

Publication Number Publication Date
JP2009024219A true JP2009024219A (en) 2009-02-05
JP5059505B2 JP5059505B2 (en) 2012-10-24

Family

ID=40396317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188488A Expired - Fee Related JP5059505B2 (en) 2007-07-19 2007-07-19 Aluminum alloy cold-rolled sheet that can be formed with high strength

Country Status (1)

Country Link
JP (1) JP5059505B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073368B1 (en) 2009-03-19 2011-10-13 한국기계연구원 A manufacturing method of aluminium alloy strip
CN103882271A (en) * 2014-03-28 2014-06-25 合肥工业大学 Al-Mg-Si-Cu alloy material with high strength and high elongation and preparation method thereof
KR20160004897A (en) * 2014-07-03 2016-01-13 엘에스전선 주식회사 Aluminum alloy conductor wire and method for preparing the same
JP2017082281A (en) * 2015-10-27 2017-05-18 昭和電工パッケージング株式会社 Small sized electronic device case, molding method thereof and aluminum alloy rolled laminate sheet material for small sized electronic device case
WO2018155531A1 (en) 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
WO2021070889A1 (en) * 2019-10-08 2021-04-15 株式会社Uacj Aluminum alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339668A (en) * 1992-06-05 1993-12-21 Kobe Steel Ltd Rolled sheet of al-mg alloy for forming at very low temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339668A (en) * 1992-06-05 1993-12-21 Kobe Steel Ltd Rolled sheet of al-mg alloy for forming at very low temperature

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073368B1 (en) 2009-03-19 2011-10-13 한국기계연구원 A manufacturing method of aluminium alloy strip
CN103882271A (en) * 2014-03-28 2014-06-25 合肥工业大学 Al-Mg-Si-Cu alloy material with high strength and high elongation and preparation method thereof
CN103882271B (en) * 2014-03-28 2015-12-09 合肥工业大学 A kind of high-strength high-elongation ratio Al-Mg-Si-Cu alloy material and preparation method thereof
CN106663490B (en) * 2014-07-03 2018-12-14 Ls电线有限公司 Aluminium alloy conductor core and its manufacturing method
KR101716645B1 (en) 2014-07-03 2017-03-15 엘에스전선 주식회사 Aluminum alloy conductor wire and method for preparing the same
CN106663490A (en) * 2014-07-03 2017-05-10 Ls电线有限公司 Aluminum alloy conductor wire and method for manufacturing same
KR20160004897A (en) * 2014-07-03 2016-01-13 엘에스전선 주식회사 Aluminum alloy conductor wire and method for preparing the same
JP2017082281A (en) * 2015-10-27 2017-05-18 昭和電工パッケージング株式会社 Small sized electronic device case, molding method thereof and aluminum alloy rolled laminate sheet material for small sized electronic device case
WO2018155531A1 (en) 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
KR20190121292A (en) 2017-02-23 2019-10-25 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and fastening parts, structural parts, spring parts, conductive members and battery members using the same
US11268172B2 (en) 2017-02-23 2022-03-08 Furukawa Electric Co., Ltd. Aluminum alloy material, and fastening component, structural component, spring component, conductive member and battery member including the aluminum alloy material
WO2021070889A1 (en) * 2019-10-08 2021-04-15 株式会社Uacj Aluminum alloy material
CN113661264A (en) * 2019-10-08 2021-11-16 株式会社Uacj Aluminum alloy material
EP4043602A4 (en) * 2019-10-08 2023-11-01 UACJ Corporation Aluminum alloy material
JP7414452B2 (en) 2019-10-08 2024-01-16 株式会社Uacj Aluminum alloy material and its manufacturing method
CN113661264B (en) * 2019-10-08 2024-02-27 株式会社Uacj Aluminum alloy material

Also Published As

Publication number Publication date
JP5059505B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
KR100933385B1 (en) Aluminum alloy plate and its manufacturing method
JP5064991B2 (en) High strength high ductility aluminum alloy sheet
JP4203508B2 (en) Method for producing aluminum alloy cast plate
KR101277297B1 (en) High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof
CA2706198C (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP2007138227A (en) Magnesium alloy material
JP4541934B2 (en) Manufacturing method of forming aluminum alloy sheet
WO2013140826A1 (en) Aluminum alloy sheet having excellent press formability and shape fixability, and method for manufacturing same
JP4914098B2 (en) Method for producing aluminum alloy cast plate
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP5945370B2 (en) Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains
JP5059353B2 (en) Aluminum alloy plate with excellent stress corrosion cracking resistance
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP4955969B2 (en) Manufacturing method of forming aluminum alloy sheet
JP5416795B2 (en) Aluminum alloy sheet for forming
JP2006206932A (en) Method for producing aluminum alloy sheet for forming
JP4427020B2 (en) Manufacturing method of forming aluminum alloy sheet
JP5260883B2 (en) Aluminum alloy plate for warm forming and warm forming method
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP4550598B2 (en) Aluminum alloy sheet for forming
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2007077485A (en) Aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees