JP2006210492A - Method of manufacturing printed wiring board - Google Patents

Method of manufacturing printed wiring board Download PDF

Info

Publication number
JP2006210492A
JP2006210492A JP2005018123A JP2005018123A JP2006210492A JP 2006210492 A JP2006210492 A JP 2006210492A JP 2005018123 A JP2005018123 A JP 2005018123A JP 2005018123 A JP2005018123 A JP 2005018123A JP 2006210492 A JP2006210492 A JP 2006210492A
Authority
JP
Japan
Prior art keywords
layer
circuit
printed wiring
wiring board
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005018123A
Other languages
Japanese (ja)
Inventor
Kenji Takai
健次 高井
Yukihisa Hiroyama
幸久 廣山
Kiyoshi Hasegawa
清 長谷川
Michio Moriike
教夫 森池
Kenichi Kamiyama
健一 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005018123A priority Critical patent/JP2006210492A/en
Publication of JP2006210492A publication Critical patent/JP2006210492A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a printed wiring board with which a coarse surface making processing of a conductor circuit can be performed while uniform etching property of etching liquid is kept as it is, wiring width can be maintained and cost can be reduced. <P>SOLUTION: The method of manufacturing the printed wiring board has a step for preparing a substrate material having a feeding layer or layers on one face or both faces of an insulating resin layer, a step for forming a plating resist pattern on the feeding layer, a step for forming a circuit with pattern electroplating, a step for peeling the plating resist pattern, and a step for removing the feeding layer except for a part where the circuit is formed by etching liquid. Etching liquid comprises (A) sulfuric acid, (B) hydrogen peroxide and (C) corrosion inhibitor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はプリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a printed wiring board.

近年、電子機器の小型化・軽量化・高速化の要求が高まり、プリント配線板の高密度化が進んでおり、近年、電気めっきを用いたセミアディティブ法によるプリント配線板の製造方法が注目されている。このセミアディティブ法は、特開平10−4254号公報にあるように回路を形成したい樹脂表面にレーザー等でIVHとなる穴を形成した後に、化学粗化やプラズマ処理等により数μmの凹凸を樹脂上に形成し、Pd触媒を付与し、1μm程度の無電解めっきを行い、パターン電気めっきレジストを形成し、パターン電気めっきにより回路形成を行った後にレジスト及び回路以外の部分に存在する給電層を除去する手法であり、サイドエッチングの大きいサブトラクティブ法に比べ、より微細な配線形成を可能とするものである。   In recent years, there has been an increasing demand for smaller, lighter, and faster electronic devices, and the density of printed wiring boards has been increasing. In recent years, a method for manufacturing printed wiring boards using a semi-additive method using electroplating has attracted attention. ing. In this semi-additive method, as described in Japanese Patent Application Laid-Open No. 10-4254, after forming a hole that becomes IVH with a laser or the like on the surface of the resin on which a circuit is to be formed, the unevenness of several μm is formed on the resin by chemical roughening or plasma treatment. Formed on top, applied with Pd catalyst, electroless plating of about 1 μm, formed pattern electroplating resist, formed circuit by pattern electroplating, and then formed the power supply layer present in the part other than resist and circuit This is a removal method, and enables finer wiring formation as compared with a subtractive method with large side etching.

さらに、樹脂付き金属箔上にセミアディティブ法により回路形成を行う方法もある。近年は金属箔の厚みを薄くするために、特開2003−158364号公報にあるような支持金属箔上に5μm以下の厚みの金属箔が形成されている引き剥がし可能なタイプの金属箔が用いられる。この手法では、絶縁樹脂層の表面に無電解めっきを施す必要がなく、より信頼性の高いプリント配線板を作製できる。また、特開平7−221444号公報にあるようにポリイミドフィルムの片面に電子ビーム蒸着装置を用いて1μm程度の銅層を形成し、接着剤やプリプレグを介して内層回路に積層し、給電層とする方法もある。   Further, there is a method of forming a circuit on a metal foil with resin by a semi-additive method. In recent years, in order to reduce the thickness of the metal foil, a peelable type metal foil in which a metal foil having a thickness of 5 μm or less is formed on a supporting metal foil as disclosed in Japanese Patent Application Laid-Open No. 2003-158364 is used. It is done. In this method, it is not necessary to perform electroless plating on the surface of the insulating resin layer, and a printed wiring board with higher reliability can be manufactured. In addition, as disclosed in JP-A-7-212444, a copper layer of about 1 μm is formed on one side of a polyimide film using an electron beam evaporation apparatus, and is laminated on an inner layer circuit via an adhesive or a prepreg. There is also a way to do it.

給電層をエッチングする場合のエッチング液には特開2003‐324265号公報、特開2003‐158364号公報、特開2003‐86938号公報にあるように硫酸及び過酸化水素を主成分とするエッチング液を用いるのがよいとされている。上記エッチングと銅の反応は化学反応律速性が強いため、液あたりによるエッチング速度の差異が少なく、セミアディティブ法に向いている。回路形成後、更にビルドアップ法により導体回路上に絶縁層を形成する場合や導体回路上にソルダーレジストを形成する場合は導体回路表面を粗面化する必要がある。導体回路の粗面化が不十分であった場合、導体回路と絶縁層の接着性が不十分となり、後の接着性が低下する恐れがある。導体回路の粗面化処理には酸化、還元処理やエッチング処理が用いられることが多い。
特開平10−4254号公報 特開2003−158364号公報 特開平7−221444号公報 特開2003‐324265号公報 特開2003‐86938号公報
The etching solution for etching the power feeding layer is an etching solution mainly composed of sulfuric acid and hydrogen peroxide as disclosed in JP-A Nos. 2003-324265, 2003-158364, and 2003-86938. It is recommended to use. Since the reaction between the etching and copper has a strong chemical reaction rate-determining property, there is little difference in the etching rate per solution, which is suitable for the semi-additive method. After the circuit is formed, the surface of the conductor circuit needs to be roughened when an insulating layer is further formed on the conductor circuit by a build-up method or when a solder resist is formed on the conductor circuit. When the roughening of the conductor circuit is insufficient, the adhesion between the conductor circuit and the insulating layer becomes insufficient, and the subsequent adhesion may be reduced. Oxidation, reduction treatment and etching treatment are often used for the roughening treatment of the conductor circuit.
Japanese Patent Laid-Open No. 10-4254 JP 2003-158364 A JP-A-7-212444 JP 2003-324265 A JP 2003-86938 A

従来はプリント配線板がそれ程微細ではなく、回路形成後に粗面化処理を行う余裕があった。しかしながら近年は配線のライン(L)/スペース(S)が20μm/20μm以下の微細配線を有するプリント配線板が必要とされてきており、回路形成後に粗面化処理を行うと配線が設計値に比べて大幅に細くなってしまうといった不具合がある。また、回路形成時にエッチングを行い、更に導体回路の粗面化処理の為のエッチングを行うとコスト的にも芳しくない。   Conventionally, the printed wiring board is not so fine, and there is room for performing the roughening treatment after the circuit is formed. In recent years, however, printed wiring boards having fine wiring with wiring lines (L) / spaces (S) of 20 μm / 20 μm or less have been required. There is a problem that it becomes much thinner than that. Further, if etching is performed at the time of circuit formation and further etching for roughening the conductor circuit, it is not good in terms of cost.

本発明は、上記の不具合を改善し、給電層のエッチングと同時に導体回路の粗面化処理が行えるようにすることを目的とする。即ちエッチング液の均一エッチング性を保持したまま導体回路の粗面化処理を行えるようにし、配線幅の維持とコスト低減を可能にするプリント配線板の製造方法を提供することを目的とする。   An object of the present invention is to improve the above-described problems and enable a conductor circuit to be roughened simultaneously with etching of a power feeding layer. That is, it is an object of the present invention to provide a method for manufacturing a printed wiring board that enables a conductor circuit to be roughened while maintaining a uniform etching property of an etching solution, and enables maintenance of wiring width and cost reduction.

本発明は以下の通りである。
(1)絶縁樹脂層の片面又は両面に給電層を有する基板材料を準備する工程、給電層上にめっきレジストパターンを形成する工程、パターン電気めっきにより回路を形成する工程、めっきレジストパターンを剥離する工程、回路が形成された部分以外の給電層をエッチング液により除去する工程、を有するプリント配線板の製造方法であって、前記エッチング液が(A)硫酸、(B)過酸化水素、(C)腐食抑制剤を含むエッチング液であるプリント配線板の製造方法。
(2)(C)腐食抑制剤がアゾール化合物である項(1)に記載のプリント配線板の製造方法。
(3)回路が形成された部分以外の給電層をエッチング液により除去する工程後の回路表面の粗化形状が、Rz(十点平均表面粗さ)≧2.0μmである項(1)又は(2)に記載のプリント配線板の製造方法。
(4)給電層が銅層であり、かつ電気めっきが電気銅めっきである項(1)〜(3)いずれかに記載のプリント配線板の製造方法。
The present invention is as follows.
(1) A step of preparing a substrate material having a power feeding layer on one side or both sides of an insulating resin layer, a step of forming a plating resist pattern on the power feeding layer, a step of forming a circuit by pattern electroplating, and peeling the plating resist pattern And a step of removing a power feeding layer other than the portion where the circuit is formed with an etching solution, wherein the etching solution is (A) sulfuric acid, (B) hydrogen peroxide, (C ) A method for producing a printed wiring board which is an etching solution containing a corrosion inhibitor.
(2) The method for producing a printed wiring board according to item (1), wherein (C) the corrosion inhibitor is an azole compound.
(3) The term (1) or (1) wherein the roughened shape of the circuit surface after the step of removing the power feeding layer other than the portion where the circuit is formed with an etching solution is Rz (ten-point average surface roughness) ≧ 2.0 μm The manufacturing method of the printed wiring board as described in (2).
(4) The method for manufacturing a printed wiring board according to any one of Items (1) to (3), wherein the power feeding layer is a copper layer and the electroplating is electrolytic copper plating.

エッチング液の均一エッチング性を保持したまま導体回路の粗面化処理を行えるようにし、配線幅の維持とコスト低減を可能にするプリント配線板の製造方法を提供することが可能となった。   It has become possible to provide a method of manufacturing a printed wiring board that enables the conductor circuit to be roughened while maintaining the uniform etchability of the etching solution, and enables the maintenance of the wiring width and cost reduction.

本発明のプリント配線板の製造方法の実施の形態を、図1、2を用いて説明するが、本発明はこれに限定されるものではない。まず(a)に示すように絶縁樹脂層1の両面に5μm以下の給電層である銅箔(銅層)2を貼り合わせた基板材料13を用意する。なお給電層としては、銅層以外に、ニッケル層、アルミニウム層、クロム層、パラジウム層、金層、亜鉛層、錫層が挙げられるが、経済性作業性の点から銅層が好ましい。絶縁樹脂層1としてはエポキシ系樹脂やポリイミド系樹脂を主成分として含むものが挙げられ、他にもアクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、フッ素樹脂、シアネート樹脂、PPE(ポリフェニレンエーテル)等や、その含有物でもよい。作業性や強度の面からガラスクロスやアラミド繊維のような補強材が入っていてもよい。絶縁樹脂層の厚みは任意であるが、0.01mm〜10mmが好ましい。銅箔の厚みは1〜5μmが好適であり、5μmを超える厚みだと回路形成性に支障をきたす可能性がある。またここで用いる銅箔は、電流密度5A/dm以上の電流密度で作製されている電解銅箔が好ましい。銅箔作製時の電流密度が低いと後のエッチング工程でエッチング速度が遅いという不具合が発生し、回路形成に支障をきたす可能性がある。 An embodiment of the method for producing a printed wiring board of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this. First, as shown to (a), the board | substrate material 13 which bonded the copper foil (copper layer) 2 which is a power feeding layer of 5 micrometers or less on both surfaces of the insulating resin layer 1 is prepared. In addition to the copper layer, the power feeding layer includes a nickel layer, an aluminum layer, a chromium layer, a palladium layer, a gold layer, a zinc layer, and a tin layer, but a copper layer is preferable from the viewpoint of economical workability. Examples of the insulating resin layer 1 include an epoxy resin or a polyimide resin as a main component. In addition, acrylic resin, polyimide resin, benzocyclobutene resin, fluorine resin, cyanate resin, PPE (polyphenylene ether), etc. Or its inclusions. In view of workability and strength, a reinforcing material such as glass cloth or aramid fiber may be contained. The thickness of the insulating resin layer is arbitrary, but is preferably 0.01 mm to 10 mm. The thickness of the copper foil is preferably 1 to 5 μm, and if it exceeds 5 μm, the circuit formability may be hindered. The copper foil used here is preferably an electrolytic copper foil produced at a current density of 5 A / dm 2 or more. If the current density at the time of producing the copper foil is low, there is a possibility that the etching rate is slow in the subsequent etching process, which may hinder circuit formation.

次いで図1(b)に示すように、銅箔の上から基板材料13にスルーホール3を形成する。スルーホール3を形成する方法としてはドリルやレーザーといった手法があるが、直径200μm以下の微細な穴加工にはレーザーを用いるのが好適である。ここで用いることが出来るレーザーとしては、COやCO、エキシマ等の気体レーザーやYAG等の固体レーザーがある。COレーザーが容易に大出力を得られる事からφ50μm以上のスルーホール3の加工に適している。φ50μm以下の微細なスルーホール3を加工する場合は、より短波長で集光性のよいYAGレーザーが適している。 Next, as shown in FIG. 1B, through holes 3 are formed in the substrate material 13 from above the copper foil. As a method of forming the through hole 3, there is a technique such as drilling or laser, but it is preferable to use a laser for processing a fine hole having a diameter of 200 μm or less. Examples of the laser that can be used here include gas lasers such as CO 2 , CO, and excimer, and solid lasers such as YAG. Since a CO 2 laser can easily obtain a large output, it is suitable for processing a through hole 3 having a diameter of 50 μm or more. When processing a fine through hole 3 having a diameter of 50 μm or less, a YAG laser having a shorter wavelength and good condensing property is suitable.

次いで過マンガン酸塩、クロム酸塩、クロム酸のような酸化剤を用いてスルーホール内部の樹脂残さの除去を行う。次いで銅箔上及びスルーホール内部に触媒核を付与する。触媒核の付与には、貴金属イオンやパラジウムコロイドを使用する。特にパラジウムコロイドを使用するのが安価で好ましい。   Next, the resin residue inside the through hole is removed using an oxidizing agent such as permanganate, chromate, or chromic acid. Next, catalyst nuclei are applied on the copper foil and inside the through holes. A precious metal ion or a palladium colloid is used for imparting the catalyst nucleus. In particular, it is preferable to use palladium colloid because it is inexpensive.

次に図1(c)に示すように、触媒核を付与した銅箔上及びスルーホール内部に薄付けの無電解銅めっき層4を形成する。この無電解銅めっきには、CUST2000(日立化成工業株式会社製、商品名)やCUST201(日立化成工業株式会社製、商品名)等の市販の無電解銅めっきが使用できる。これらの無電解銅めっきは硫酸銅、ホルマリン、錯化剤、水酸化ナトリウムを主成分とする。薄付けの無電解めっき層4の厚さは次の電気めっきが行うことができる厚さであればよく、0.1〜1μmが好ましい。また給電層である銅箔(銅層)2表面に形成された薄付けの無電解銅めっき層4も給電層とみなすことができる。   Next, as shown in FIG. 1C, a thin electroless copper plating layer 4 is formed on the copper foil provided with the catalyst nucleus and inside the through hole. For this electroless copper plating, commercially available electroless copper plating such as CUST2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) or CUST201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) can be used. These electroless copper platings are mainly composed of copper sulfate, formalin, complexing agent and sodium hydroxide. The thickness of the thin electroless plating layer 4 may be any thickness that allows the next electroplating to be performed, and is preferably 0.1 to 1 μm. Moreover, the thin electroless copper plating layer 4 formed on the surface of the copper foil (copper layer) 2 that is the power feeding layer can also be regarded as the power feeding layer.

次に図1(d)に示すように給電層である銅箔上の薄付けの無電解めっき層4表面にめっきレジスト5パターンを形成する。なおめっきレジスト5パターンは、給電層表面に接するように形成してもよく、また図1に示したように給電層上の薄付けの無電解銅めっき層4表面に接するように形成してもよい。めっきレジスト5の厚さは、その後電気めっきする導体の厚さと同程度かより厚い膜厚にするのが好適である。めっきレジスト5に使用できる樹脂には、PMER P−LA900PM(東京応化株式会社製、商品名)のような液状レジストや、HW−425(日立化成工業株式会社製、商品名)、RY−3025(日立化成工業株式会社製、商品名)等のドライフィルムなどが挙げられる。スルーホール上と導体回路となるべき個所はめっきレジスト5を形成しない。   Next, as shown in FIG. 1D, a plating resist 5 pattern is formed on the surface of the thin electroless plating layer 4 on the copper foil as the power feeding layer. The plating resist 5 pattern may be formed so as to be in contact with the surface of the power feeding layer, or may be formed so as to be in contact with the surface of the thin electroless copper plating layer 4 on the power feeding layer as shown in FIG. Good. The thickness of the plating resist 5 is preferably set to a thickness that is about the same as or thicker than the thickness of the conductor to be electroplated thereafter. Examples of resins that can be used for the plating resist 5 include liquid resists such as PMER P-LA900PM (trade name, manufactured by Tokyo Ohka Co., Ltd.), HW-425 (trade name, manufactured by Hitachi Chemical Co., Ltd.), RY-3025 ( And dry films such as Hitachi Chemical Co., Ltd., trade name). The plating resist 5 is not formed on the through hole and the portion to be a conductor circuit.

次に図1(e)に示すようにパターン電気めっきにより回路(電気めっき層)6を形成する。電気めっきには、電気銅めっきが好ましく、通常プリント配線板で使用される硫酸銅電気めっきやピロリン酸銅電気めっきなどが挙げられる。電気めっきの厚さは、回路導体として使用できればよく、1〜100μmの範囲である事が好ましく、5〜50μmの範囲である事がより好ましい。また回路形成時の電流密度は、銅箔作製時の電流密度よりも低いことが望ましく、0.5A/dm以上5A/dm以下であることが望ましい。回路形成時の電流密度が高いと後のエッチング工程で溶解しやすい可能性がある。 Next, as shown in FIG. 1E, a circuit (electroplating layer) 6 is formed by pattern electroplating. The electroplating is preferably copper electroplating, and examples thereof include copper sulfate electroplating and copper pyrophosphate electroplating that are usually used for printed wiring boards. The thickness of electroplating is only required to be used as a circuit conductor, and is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm. The current density at the time of circuit formation is preferably lower than the current density at the time of copper foil preparation, and is preferably 0.5 A / dm 2 or more and 5 A / dm 2 or less. If the current density at the time of circuit formation is high, it may be easily dissolved in a later etching process.

次に図1(f)に示すようにアルカリ性剥離液や硫酸あるいは市販のレジスト剥離液を用いてめっきレジストパターンの剥離を行った後、回路パターン部以外の絶縁樹脂層表面の給電層(銅箔と薄付けの無電解銅めっき層)をエッチング液を用いて除去することで回路形成が終了する。前記エッチング液は、(A)硫酸、(B)過酸化水素を主成分とし、(C)腐食抑制剤を含む。また前記エッチング液は、10〜300g/Lの(A)硫酸及び10〜200g/Lの(B)過酸化水素を含むことが好ましい。硫酸、過酸化水素を主成分とするエッチング液は、拡散律速性が弱いため微細配線形成性が良好である。尚、上記濃度域未満の濃度ではエッチング速度が遅いために作業性が悪く、上記濃度域を超える濃度ではエッチング速度が速いためにエッチング量のコントロールが難しい可能性がある。エッチング速度は1〜15μm/分がよい。更に(B)過酸化水素の安定剤としてアルコール系溶媒を含んでいても良い。   Next, as shown in FIG. 1 (f), after removing the plating resist pattern using an alkaline stripping solution, sulfuric acid, or a commercially available resist stripping solution, the power feeding layer (copper foil) on the surface of the insulating resin layer other than the circuit pattern portion And the thin electroless copper plating layer) are removed by using an etching solution to complete the circuit formation. The etching solution contains (A) sulfuric acid and (B) hydrogen peroxide as main components and (C) a corrosion inhibitor. Moreover, it is preferable that the said etching liquid contains 10-300 g / L (A) sulfuric acid and 10-200 g / L (B) hydrogen peroxide. An etchant containing sulfuric acid and hydrogen peroxide as main components has a good diffusion rate-determining property and therefore has good fine wiring formation. It should be noted that if the concentration is lower than the above-mentioned concentration range, the workability is poor because the etching rate is low, and if the concentration exceeds the above-mentioned concentration region, the etching rate may be high, so that it is difficult to control the etching amount. The etching rate is preferably 1 to 15 μm / min. Further, (B) an alcohol solvent may be included as a hydrogen peroxide stabilizer.

(C)腐食抑制剤としてはアゾール化合物が好ましい。アゾール化合物の前記エッチング液中の濃度としては0.5〜40g/Lであることが好ましく、0.5〜30g/Lであることがより好ましく、0.5〜20g/Lであることが特に好ましい。   (C) An azole compound is preferred as the corrosion inhibitor. The concentration of the azole compound in the etching solution is preferably 0.5 to 40 g / L, more preferably 0.5 to 30 g / L, and particularly preferably 0.5 to 20 g / L. preferable.

はんだ耐熱性の観点から、アゾール化合物は1、2、3−ベンゾトリアゾールであることが好ましい。1、2、3−ベンゾトリアゾールの他に添加されうるアゾール化合物としては、微細な凹凸を形成させ、(C)腐食抑制剤として働くものであれば特に限定されないが、例えば、5−アミノテトラゾール、ベンゾトリアゾール、トリルトリアゾール、1−メチルテトラゾール、2−メチルテトラゾール、5−メチルトリアゾール、1−フェニルテトラゾール、イミダゾール、5−フェニルテトラゾール、チアゾール、ピラゾール、イソオキサゾール、1,2,3−トリアゾール、インダゾール、1,2,4−トリアゾールなどが挙げられ、特に好ましくは5−アミノテトラゾールである。また、前記アゾール化合物は、1種又は2種以上、前記エッチング液に含んでいてもよい。   From the viewpoint of solder heat resistance, the azole compound is preferably 1,2,3-benzotriazole. The azole compound that can be added in addition to 1,2,3-benzotriazole is not particularly limited as long as it forms fine irregularities and (C) acts as a corrosion inhibitor. For example, 5-aminotetrazole, Benzotriazole, tolyltriazole, 1-methyltetrazole, 2-methyltetrazole, 5-methyltriazole, 1-phenyltetrazole, imidazole, 5-phenyltetrazole, thiazole, pyrazole, isoxazole, 1,2,3-triazole, indazole, 1,2,4-triazole and the like can be mentioned, and 5-aminotetrazole is particularly preferable. Moreover, the said azole compound may be contained in the said etching liquid 1 type (s) or 2 or more types.

上記のようなエッチング液で給電層のエッチングを行った場合、導体回路に数ミクロンの凹凸が生じる。はんだ耐熱性の観点から、導体回路表面のRz(十点平均表面粗さ)は2.0μm以上であることが望ましい。更に2.0μm以上5.0μm以下であることがより望ましい。   When the power feeding layer is etched with the etching solution as described above, unevenness of several microns is generated in the conductor circuit. From the viewpoint of solder heat resistance, Rz (ten-point average surface roughness) of the surface of the conductor circuit is desirably 2.0 μm or more. Furthermore, it is more desirable that it is 2.0 to 5.0 μm.

その後、図2(g)に示すように導体回路の上下に絶縁樹脂層7を介し、5μm以下の給電層である銅箔8を積層する。絶縁樹脂層7としてはエポキシ系樹脂やポリイミド系樹脂を主成分として含むものであり、他にもアクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、フッ素樹脂、シアネート樹脂、PPE(ポリフェニレンエーテル)等や、その含有物でもよい。作業性や強度の面からガラスクロスやアラミド繊維のような補強材が入っていてもよい。絶縁樹脂層7の厚みは任意であるが、0.01mm〜10mmが好ましい。 After that, as shown in FIG. 2 (g), copper foils 8 as power feeding layers of 5 μm or less are laminated on the upper and lower sides of the conductor circuit via insulating resin layers 7. The insulating resin layer 7 includes an epoxy resin or a polyimide resin as a main component, and in addition, an acrylic resin, a polyimide resin, a benzocyclobutene resin, a fluorine resin, a cyanate resin, PPE (polyphenylene ether), The inclusion may be sufficient. In view of workability and strength, a reinforcing material such as glass cloth or aramid fiber may be contained. The thickness of the insulating resin layer 7 is arbitrary, but is preferably 0.01 mm to 10 mm.

次いで図2(h)に示すように銅箔8の上から絶縁樹脂層7にインタースティシャルバイアホール(IVH)9を形成する。インタースティシャルバイアホール(IVH)を形成する方法としてはレーザーを用いるのが好適である。ここで用いることが出来るレーザーとしては、COやCO、エキシマ等の気体レーザーやYAG等の固体レーザーがある。COレーザーが容易に大出力を得られる事からφ50μm以上のインタースティシャルバイアホール(IVH)の加工に適している。φ50μm以下の微細なインタースティシャルバイアホール(IVH)を加工する場合は、より短波長で集光性のよいYAGレーザーが適している。 Next, an interstitial via hole (IVH) 9 is formed in the insulating resin layer 7 from above the copper foil 8 as shown in FIG. As a method for forming the interstitial via hole (IVH), it is preferable to use a laser. Examples of the laser that can be used here include gas lasers such as CO 2 , CO, and excimer, and solid lasers such as YAG. Since a CO 2 laser can easily obtain a large output, it is suitable for processing an interstitial via hole (IVH) of φ50 μm or more. When processing a fine interstitial via hole (IVH) having a diameter of 50 μm or less, a YAG laser having a shorter wavelength and good condensing property is suitable.

次いで過マンガン酸塩、クロム酸塩、クロム酸のような酸化剤を用いてIVH内部の樹脂残さの除去を行う。次いで銅箔上及びIVH内部に触媒核を付与する。触媒核の付与には、貴金属イオンやパラジウムコロイドを使用する。特にパラジウムコロイドを使用するのが安価で好ましい。   Next, the resin residue inside IVH is removed using an oxidizing agent such as permanganate, chromate, or chromic acid. Next, catalyst nuclei are applied on the copper foil and inside the IVH. A precious metal ion or a palladium colloid is used for imparting the catalyst nucleus. In particular, it is preferable to use palladium colloid because it is inexpensive.

次に図2(i)に示すように、触媒核を付与した銅箔上及びスルーホール内部に薄付けの無電解銅めっき層10を形成する。この無電解銅めっきには、CUST2000(日立化成工業株式会社製、商品名)やCUST201(日立化成工業株式会社製、商品名)等の市販の無電解銅めっきが使用できる。これらの無電解銅めっきは硫酸銅、ホルマリン、錯化剤、水酸化ナトリウムを主成分とする。薄付けの無電解銅めっき層10の厚さは次の電気めっきが行うことができる厚さであればよく、0.1〜1μmが好ましい。   Next, as shown in FIG. 2 (i), a thin electroless copper plating layer 10 is formed on the copper foil provided with the catalyst nucleus and inside the through hole. For this electroless copper plating, commercially available electroless copper plating such as CUST2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) or CUST201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) can be used. These electroless copper platings are mainly composed of copper sulfate, formalin, complexing agent and sodium hydroxide. The thickness of the thin electroless copper plating layer 10 may be any thickness that allows the next electroplating to be performed, and is preferably 0.1 to 1 μm.

次に図2(j)に示すように無電解めっきを行った上にめっきレジスト11パターンを形成する。めっきレジスト11の厚さは、その後めっきする導体の厚さと同程度かより厚い膜厚にするのが好適である。めっきレジスト11に使用できる樹脂には、PMER P−LA900PM(東京応化株式会社製、商品名)のような液状レジストや、HW−425(日立化成工業株式会社製、商品名)、RY−3025(日立化成工業株式会社製、商品名)等のドライフィルムなどが挙げられる。ビアホール上と導体回路となるべき個所はめっきレジスト11を形成しない。   Next, as shown in FIG. 2 (j), after performing electroless plating, a plating resist 11 pattern is formed. The thickness of the plating resist 11 is preferably set to a thickness that is about the same as or thicker than the thickness of the conductor to be subsequently plated. Resins that can be used for the plating resist 11 include liquid resists such as PMER P-LA900PM (trade name, manufactured by Tokyo Ohka Co., Ltd.), HW-425 (trade name, manufactured by Hitachi Chemical Co., Ltd.), RY-3025 ( And dry films such as Hitachi Chemical Co., Ltd., trade name). The plating resist 11 is not formed on the via hole and the portion to be a conductor circuit.

次に図2(k)に示すように電気めっきにより回路(電気めっき層)12を形成する。電気めっきには、通常プリント配線板で使用される硫酸銅電気めっきやピロリン酸銅電気めっきが使用できる。電気めっきの厚さは、回路導体として使用できればよく、1〜100μmの範囲である事が好ましく、5〜50μmの範囲である事がより好ましい。また回路形成時の電流密度は、銅箔作製時の電流密度よりも低いことが望ましく、0.5A/dm以上5A/dm以下であることが望ましい。回路形成時の電流密度が高いと後のエッチング工程で溶解しやすい可能性がある。 Next, as shown in FIG. 2 (k), a circuit (electroplating layer) 12 is formed by electroplating. For electroplating, copper sulfate electroplating and copper pyrophosphate electroplating, which are usually used for printed wiring boards, can be used. The thickness of electroplating is only required to be used as a circuit conductor, and is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm. The current density at the time of circuit formation is preferably lower than the current density at the time of copper foil preparation, and is preferably 0.5 A / dm 2 or more and 5 A / dm 2 or less. If the current density at the time of circuit formation is high, it may be easily dissolved in a later etching process.

次に図2(l)に示すようにアルカリ性剥離液や硫酸あるいは市販のレジスト剥離液を用いてめっきレジスト11パターンの剥離を行い、回路パターン部以外の絶縁樹脂層表面の給電層(銅箔と薄付けの無電解銅めっき層)を前記のエッチング液を用いて除去することで、回路形成を行う。   Next, as shown in FIG. 2 (l), the plating resist 11 pattern is stripped using an alkaline stripping solution, sulfuric acid, or a commercially available resist stripping solution, and the power feeding layer (copper foil and The circuit is formed by removing the thin electroless copper plating layer) using the etching solution.

以下、本発明の好適な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
(金属箔A)
以下の工程により金属箔Aを作製した。
幅510mm、厚み35μmの電解銅箔(キャリア銅箔)の光択面に下記の条件でクロムめっきを連続的に行って1.0mg/dmの厚さのクロムめっき層(剥離層)を形成した。クロムめっき形成後のRz(十点平均表面粗さ)は0.5μmであった。なお、表面粗さはJIS−B−0601に基づき測定した。
クロムめっき条件
・液組成:三酸化クロム250g/L、硫酸2.5g/L
・浴温:25℃
・アノード:鉛
・電流密度20A/dm
EXAMPLES Hereinafter, although the suitable Example of this invention is described, this invention is not limited to these Examples.
(Metal foil A)
Metal foil A was produced by the following steps.
A chromium plating layer (peeling layer) having a thickness of 1.0 mg / dm 2 is formed by continuously performing chromium plating on the light selective surface of an electrolytic copper foil (carrier copper foil) having a width of 510 mm and a thickness of 35 μm under the following conditions. did. Rz (ten-point average surface roughness) after chromium plating formation was 0.5 μm. The surface roughness was measured based on JIS-B-0601.
Chromium plating conditions / liquid composition: chromium trioxide 250 g / L, sulfuric acid 2.5 g / L
・ Bath temperature: 25 ° C
・ Anode: Lead ・ Current density 20A / dm 2

次に下記に示す光択めっき条件で厚さ2.0μmの電気銅めっきを行った。電気銅めっき終了後の金属箔のRz(十点平均表面粗さ)は0.6μmであった。
硫酸銅めっき条件
・液組成:硫酸銅5水和物100g/L、硫酸150g/L、塩化物イオン30ppm
・浴温:25℃
・アノード:鉛
・電流密度:10A/dm
Next, electrolytic copper plating with a thickness of 2.0 μm was performed under the photoselective plating conditions shown below. The Rz (ten-point average surface roughness) of the metal foil after the electrolytic copper plating was 0.6 μm.
Copper sulfate plating conditions / solution composition: copper sulfate pentahydrate 100 g / L, sulfuric acid 150 g / L, chloride ion 30 ppm
・ Bath temperature: 25 ° C
・ Anode: Lead ・ Current density: 10 A / dm 2

次に下記に示すように電気めっきにより亜鉛防錆処理を行った。
液組成:亜鉛20g/L,硫酸70g/L
・浴温:40℃
・アノード:鉛
・電流密度:15A/dm
・電解時間:10秒
Next, as shown below, zinc rust prevention treatment was performed by electroplating.
Liquid composition: Zinc 20 g / L, sulfuric acid 70 g / L
・ Bath temperature: 40 ℃
・ Anode: Lead ・ Current density: 15 A / dm 2
・ Electrolysis time: 10 seconds

次に引き続き下記に示すクロメート処理を行った。
・液組成:クロム酸5.0g/L
・pH11.5
・浴温:55℃
・アノード:鉛
・浸漬時間:5秒
Next, the following chromate treatment was performed.
Liquid composition: chromic acid 5.0 g / L
・ PH 11.5
・ Bath temperature: 55 ℃
・ Anode: Lead ・ Immersion time: 5 seconds

次に下記に示すシランカップリング処理を行った。
・液組成:3−アミノプロピルトリメトキシシラン5.0g/L
・液温25℃
・浸漬時間10秒
シランカップリング処理後、金属箔を120℃で乾燥してカップリング剤を金属箔表面に吸着させた。そのときの金属箔のRz(十点平均表面粗さ)=0.6μmであった。以上、金属箔Aを作製した。
Next, the following silane coupling treatment was performed.
Liquid composition: 3-aminopropyltrimethoxysilane 5.0 g / L
・ Liquid temperature 25 ℃
Immersion time 10 seconds After the silane coupling treatment, the metal foil was dried at 120 ° C. to adsorb the coupling agent on the surface of the metal foil. At that time, Rz (ten-point average surface roughness) of the metal foil was 0.6 μm. As described above, metal foil A was produced.

(樹脂組成物A)
下記の組成よりなる樹脂組成物Aを作製した。
・ビフェニル構造を有するノボラック型エポキシ樹脂、NC3000S−H(日本化薬株式会社社製、商品名):80重量部
・カルボン酸変性アクリロニトリルブタジエンゴム粒子、XER−91SE−15(JSR株式会社製、商品名):5重量部
・トリアジン環含有クレゾールノボラック型フェノール樹脂、フェノライトEXB−9829(窒素含有量18重量%、水酸基当量151、大日本インキ化学工業株式会社製、商品名):9重量部
・フェノール性水酸基含有リン化合物、HCA−HQ(三光株式会社製):26重量部
・無機フィラー、球状シリカ、アドマファインSC−2050(株式会社アドマテックス社製、商品名):40重量部
・イミダゾール誘導体化合物、1−シアノエチル−2フェニルイミダゾリウムトリメリテート、2PZ−CNS(四国化成工業株式会社製、商品名):0.24重量部
・溶剤、メチルエチルケトン
(Resin composition A)
A resin composition A having the following composition was prepared.
-Novolac type epoxy resin having biphenyl structure, NC3000S-H (Nippon Kayaku Co., Ltd., trade name): 80 parts by weight-Carboxylic acid-modified acrylonitrile butadiene rubber particles, XER-91SE-15 (JSR Corporation, commercial product) Name): 5 parts by weight-triazine ring-containing cresol novolac type phenol resin, phenolite EXB-9829 (nitrogen content 18% by weight, hydroxyl group equivalent 151, manufactured by Dainippon Ink & Chemicals, trade name): 9 parts by weight Phenolic hydroxyl group-containing phosphorus compound, HCA-HQ (manufactured by Sanko Co., Ltd.): 26 parts by weight, inorganic filler, spherical silica, Admafine SC-2050 (manufactured by Admatechs Co., Ltd., trade name): 40 parts by weight, imidazole derivative Compound, 1-cyanoethyl-2-phenylimidazolium trimellitate , 2PZ-CNS (manufactured by Shikoku Chemicals Corporation, trade name): 0.24 parts by weight solvent, methyl ethyl ketone

(金属箔B)
作製した金属箔Aのシランカップリング剤処理面に、作製した樹脂組成物Aを塗工した。塗工後は残溶剤が1重量%以下になるように160℃で1分程度の乾燥を行い、金属箔B作製した。塗工した樹脂組成物Aの厚みは2.0μmであった。
(Metal foil B)
The produced resin composition A was applied to the surface of the produced metal foil A treated with the silane coupling agent. After coating, the metal foil B was produced by drying at 160 ° C. for about 1 minute so that the residual solvent was 1% by weight or less. The thickness of the coated resin composition A was 2.0 μm.

樹脂含浸のガラスクロスである厚み0.2mmのプリプレグGEA−679F(日立化成工業製、商品名)4枚とその上下に樹脂組成物Aが塗工された面がプリプレグに接するように金属箔Bを積層し、170℃、2.45MPaの条件で1時間プレス成形し、銅箔上のキャリア箔を引き剥がすことで図1(a)に示すような絶縁樹脂層1(プリプレグ、接着補助剤層)及び銅箔2よりなる基板材料13(銅張積層板)を製造した。   4 foil prepregs GEA-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a resin impregnated glass cloth, and metal foil B so that the surface coated with the resin composition A on the top and bottom thereof is in contact with the prepreg. Are laminated under pressure at 170 ° C. and 2.45 MPa for 1 hour, and the carrier foil on the copper foil is peeled off to insulate the insulating resin layer 1 (prepreg, adhesion aid layer) as shown in FIG. And a substrate material 13 (copper-clad laminate) made of copper foil 2 was manufactured.

図1(b)に示すように、銅箔2上から炭酸ガスインパクトレーザー穴あけ機L−500(住友重機械工業株式会社製、商品名)により、直径80μmの貫通スルーホール3をあけ、過マンガン酸カリウム65g/リットルと水酸化ナトリウム40g/リットルの混合水溶液に、液温70℃で20分間浸漬し、スミアの除去を行なった。   As shown in FIG. 1 (b), through-holes 3 having a diameter of 80 μm were drilled from the copper foil 2 with a carbon dioxide impact laser drilling machine L-500 (trade name, manufactured by Sumitomo Heavy Industries, Ltd.), Smear was removed by immersing in a mixed aqueous solution of potassium acid 65 g / liter and sodium hydroxide 40 g / liter at a liquid temperature of 70 ° C. for 20 minutes.

その後、パラジウム触媒であるHS−201B(日立化成工業株式会社製、商品名)を付与した後、CUST−201(日立化成工業株式会社製、商品名)を使用し、液温25℃、30分の条件で無電解銅めっきを行ない、図1(c)に示すように厚さ0.5μmの無電解銅めっき層4を形成した。   Then, after giving HS-201B (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is a palladium catalyst, CUST-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is used, and the liquid temperature is 25 ° C., 30 minutes. The electroless copper plating was performed under the conditions described above to form an electroless copper plating layer 4 having a thickness of 0.5 μm as shown in FIG.

図1(d)に示すように、ドライフィルムフォトレジストであるRY−3325(日立化成工業株式会社製、商品名)を、無電解銅めっき層4の表面にラミネートし、電解銅めっきを行う箇所をマスクしたフォトマスクを介して紫外線で露光し、現像してめっきレジスト5を形成した。   As shown in FIG. 1D, a dry film photoresist RY-3325 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is laminated on the surface of the electroless copper plating layer 4 and electrolytic copper plating is performed. A plating resist 5 was formed by exposure with ultraviolet rays through a photomask masked with and developing.

図1(e)に示すように、硫酸銅浴を用いて、液温25℃、電流密度1.0A/dmの条件で、電気銅めっきを20μmほど行い、最小回路導体幅/回路導体間隔(L/S)=23/17μmとなるように回路6パターンを形成した。 As shown in FIG. 1 (e), using a copper sulfate bath, electrolytic copper plating is carried out for about 20 μm under conditions of a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2 , and the minimum circuit conductor width / circuit conductor interval. Circuit 6 patterns were formed so that (L / S) = 23/17 μm.

次に図1(f)に示すように、レジスト剥離液であるHTO(ニチゴー・モートン株式会社製、商品名)でドライフィルムの除去を行った後に98重量%硫酸100ml/l、35w重量%過酸化水素60ml/l、(C)腐食抑制剤である5−アミノテトラゾール2g/lからなるエッチング液により給電層(銅箔と無電解銅めっき層)をエッチング除去し、内層基板14を作製した。このときの内層導体回路6のRz(十点平均表面粗さ)は4.0μmであった。表面粗さはJIS B 0601に従ってSURFTEST SV−400(MITUTOYO株式会社製、商品名)により測定した。   Next, as shown in FIG. 1 (f), after removing the dry film with HTO (trade name, manufactured by Nichigo Morton Co., Ltd.), which is a resist stripping solution, 98% by weight sulfuric acid 100 ml / l, 35% by weight excess. The power supply layer (copper foil and electroless copper plating layer) was removed by etching with an etching solution composed of hydrogen oxide 60 ml / l and (C) 2-aminotetrazole 2 g / l which is a corrosion inhibitor, to produce an inner layer substrate 14. At this time, Rz (ten-point average surface roughness) of the inner layer conductor circuit 6 was 4.0 μm. The surface roughness was measured by SURFTEST SV-400 (trade name, manufactured by MITUTOYO Co., Ltd.) according to JIS B 0601.

上記内層基板14の上下に60μm厚GEA−679F(日立化成工業製、商品名)1枚と樹脂組成物Aが塗工された面がプリプレグに接するように金属箔Bを積層し、170℃、2.45MPaの条件で1時間プレス成形し、キャリアを引き剥がすことで絶縁樹脂層7(プリプレグ、接着補助剤層)及び銅箔8よりなる図2(g)に示すような基板を作製した。   A metal foil B is laminated above and below the inner layer substrate 14 so that the surface coated with one 60 μm thick GEA-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) and the resin composition A is in contact with the prepreg. A substrate as shown in FIG. 2 (g) made of the insulating resin layer 7 (prepreg, adhesion auxiliary agent layer) and the copper foil 8 was produced by press molding under the condition of 2.45 MPa for 1 hour and peeling off the carrier.

次に図2(h)に示すように、銅箔8上から炭酸ガスインパクトレーザー穴あけ機L−500(住友重機械工業株式会社製、商品名)により、直径80μmのIVH9をあけ、過マンガン酸カリウム65g/リットルと水酸化ナトリウム40g/リットルの混合水溶液に、液温70℃で20分間浸漬し、スミアの除去を行なった。   Next, as shown in FIG. 2 (h), IVH9 having a diameter of 80 μm was opened from the copper foil 8 by a carbon dioxide impact laser drilling machine L-500 (trade name, manufactured by Sumitomo Heavy Industries, Ltd.), and permanganic acid Smear was removed by dipping in a mixed aqueous solution of potassium 65 g / liter and sodium hydroxide 40 g / liter at a liquid temperature of 70 ° C. for 20 minutes.

その後、パラジウム触媒であるHS−201B(日立化成工業株式会社製、商品名)を付与した後、CUST−201(日立化成工業株式会社製、商品名)を使用し、液温25℃、30分の条件で無電解銅めっきを行ない、図2(i)に示すように厚さ0.5μmの無電解銅めっき層10を形成した。   Then, after giving HS-201B (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is a palladium catalyst, CUST-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is used, and the liquid temperature is 25 ° C., 30 minutes. The electroless copper plating was performed under the conditions described above to form an electroless copper plating layer 10 having a thickness of 0.5 μm as shown in FIG.

図1(j)に示すように、ドライフィルムフォトレジストであるRY−3325(日立化成工業株式会社製、商品名)を、無電解銅めっき層10の表面にラミネートし、電解銅めっきを行う箇所をマスクしたフォトマスクを介して紫外線で露光し、現像してめっきレジスト11を形成した。   As shown in FIG. 1 (j), a location where RY-3325 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a dry film photoresist, is laminated on the surface of the electroless copper plating layer 10 and electrolytic copper plating is performed. A plating resist 11 was formed by exposure with ultraviolet light through a photomask masked with and developing.

図2(k)に示すように、硫酸銅浴を用いて、液温25℃、電流密度1.0A/dmの条件で、電気銅めっきを20μmほど行い、最小回路導体幅/回路導体間隔(L/S)=23/17μmとなるように回路12パターンを形成した。 As shown in FIG. 2 (k), using a copper sulfate bath, electrolytic copper plating is performed for about 20 μm under conditions of a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2. Circuit 12 patterns were formed so that (L / S) = 23/17 μm.

次に図2(l)に示すように、レジスト剥離液であるHTO(ニチゴー・モートン株式会社製、商品名)でドライフィルムの除去を行った後に98重量%硫酸100ml/l、35重量%過酸化水素60ml/lからなるエッチング液により、プリント配線板の最外層の給電層(銅箔と無電解銅めっき層)をエッチング除去し、プリント配線板を作製した。なお最外層の給電層のエッチング除去に用いるエッチング液は、従来のエッチング液でもよく、また本発明のエッチング液でもかまわない。   Next, as shown in FIG. 2 (l), after removing the dry film with HTO (trade name, manufactured by Nichigo-Morton Co., Ltd.) which is a resist stripping solution, 98% by weight sulfuric acid 100 ml / l, 35% by weight excess. The power supply layer (copper foil and electroless copper plating layer) of the outermost layer of the printed wiring board was removed by etching with an etching solution composed of 60 ml / l of hydrogen oxide to produce a printed wiring board. Note that the etching solution used for etching removal of the outermost power feeding layer may be a conventional etching solution or the etching solution of the present invention.

(比較例1)
内層基板14の給電層のエッチング液に98重量%硫酸100ml/l、35重量%過酸化水素60ml/lからなるエッチング液を用いた以外は、実施例1と同様にプリント配線板を作製した。内層導体回路のRz(十点平均表面粗さ)は1.5μmだった。
(Comparative Example 1)
A printed wiring board was produced in the same manner as in Example 1 except that an etching solution composed of 98% by weight sulfuric acid 100 ml / l and 35% by weight hydrogen peroxide 60 ml / l was used as the etching solution for the power feeding layer of the inner layer substrate 14. Rz (ten-point average surface roughness) of the inner layer conductor circuit was 1.5 μm.

(比較例2)
内層基板14の給電層のエッチング液に98重量%硫酸100ml/l、35重量%過酸化水素60ml/lからなるエッチング液を用い、更にCZ処理(メック株式会社製、商品名)により導体回路表面に粗化形状を形成したこと以外は、実施例1と同様にプリント配線板を作製した。内層導体回路のRz(十点平均表面粗さ)は3.0μmだった。
(Comparative Example 2)
The surface of the conductor circuit is subjected to CZ treatment (trade name, manufactured by MEC Co., Ltd.) using an etchant composed of 98% by weight sulfuric acid 100 ml / l and 35% by weight hydrogen peroxide 60 ml / l for the feed layer etchant of the inner substrate 14. A printed wiring board was produced in the same manner as in Example 1 except that a roughened shape was formed. Rz (10-point average surface roughness) of the inner layer conductor circuit was 3.0 μm.

(基板の信頼性評価)
実施例1及び比較例1,2で作製したプリント配線板の吸湿加熱試験を行った。試験条件は121℃、2気圧、湿度100%の条件で1時間放置し、その後260℃のはんだ耐熱試験を行い、プリント配線板の膨れ等の不具合点の観察を行った。結果を表1に示した。
(Reliability evaluation of substrate)
The moisture absorption heating test of the printed wiring board produced in Example 1 and Comparative Examples 1 and 2 was performed. The test conditions were 121 ° C., 2 atm, and 100% humidity for 1 hour, and then a 260 ° C. solder heat resistance test was performed to observe defects such as swelling of the printed wiring board. The results are shown in Table 1.

Figure 2006210492
Figure 2006210492

表1に示すように実施例1によりプリント配線板作製を行った場合は不具合が発生しなかったのに対し、比較例1によりプリント配線板作製を行った場合は内層導体と外層絶縁層の間で膨れが発生した。また比較例2の様に従来通り給電層のエッチング後に内層導体の粗化処理を行うと、最小回路導体幅23μmが15μmになるなど、回路導体が過剰にエッチングされてしまうことが分かった。以上示した様に、本発明を用いることでエッチング液の均一エッチング性を保持したまま導体回路の粗面化処理を行えるようにし、配線幅の維持とコスト低減を可能にした。   As shown in Table 1, no trouble occurred when the printed wiring board was produced according to Example 1, whereas when the printed wiring board was produced according to Comparative Example 1, there was a gap between the inner conductor and the outer insulating layer. A blister occurred. Further, it was found that when the inner layer conductor is roughened after etching of the power feeding layer as in Comparative Example 2, the circuit conductor is excessively etched, such as the minimum circuit conductor width of 23 μm becomes 15 μm. As described above, by using the present invention, the conductor circuit can be roughened while maintaining the uniform etching property of the etching solution, and the wiring width can be maintained and the cost can be reduced.

本発明のプリント配線板の製造方法の実施の形態を示す断面図。Sectional drawing which shows embodiment of the manufacturing method of the printed wiring board of this invention. 本発明のプリント配線板の製造方法の実施の形態を示す断面図。Sectional drawing which shows embodiment of the manufacturing method of the printed wiring board of this invention.

符号の説明Explanation of symbols

1 絶縁樹脂層
2 銅箔
3 スルーホール
4 無電解銅めっき層
5 めっきレジスト
6 回路(電気めっき層)
7 絶縁樹脂層
8 銅箔
9 インタースティシャルバイアホール(IVH)
10 無電解銅めっき層
11 めっきレジスト
12 回路(電気めっき層)
13 基板材料
14 内層基板
DESCRIPTION OF SYMBOLS 1 Insulation resin layer 2 Copper foil 3 Through hole 4 Electroless copper plating layer 5 Plating resist 6 Circuit (electroplating layer)
7 Insulating resin layer 8 Copper foil 9 Interstitial via hole (IVH)
10 Electroless copper plating layer 11 Plating resist 12 Circuit (electroplating layer)
13 Substrate material 14 Inner layer substrate

Claims (4)

絶縁樹脂層の片面又は両面に給電層を有する基板材料を準備する工程、給電層上にめっきレジストパターンを形成する工程、パターン電気めっきにより回路を形成する工程、めっきレジストパターンを剥離する工程、回路が形成された部分以外の給電層をエッチング液により除去する工程、を有するプリント配線板の製造方法であって、前記エッチング液が(A)硫酸、(B)過酸化水素、(C)腐食抑制剤を含むエッチング液であるプリント配線板の製造方法。   A step of preparing a substrate material having a power feeding layer on one or both sides of an insulating resin layer, a step of forming a plating resist pattern on the power feeding layer, a step of forming a circuit by pattern electroplating, a step of peeling the plating resist pattern, a circuit A method of manufacturing a printed wiring board having a step of removing a power feeding layer other than a portion where the metal is formed with an etching solution, wherein the etching solution is (A) sulfuric acid, (B) hydrogen peroxide, and (C) corrosion inhibition. The manufacturing method of the printed wiring board which is an etching liquid containing an agent. (C)腐食抑制剤がアゾール化合物である請求項1に記載のプリント配線板の製造方法。   (C) The method for producing a printed wiring board according to claim 1, wherein the corrosion inhibitor is an azole compound. 回路が形成された部分以外の給電層をエッチング液により除去する工程後の回路表面の粗化形状が、Rz(十点平均表面粗さ)≧2.0μmである請求項1又は2に記載のプリント配線板の製造方法。   The roughened shape of the circuit surface after the step of removing the power feeding layer other than the portion where the circuit is formed with an etching solution is Rz (ten-point average surface roughness) ≧ 2.0 μm. Manufacturing method of printed wiring board. 給電層が銅層であり、かつ電気めっきが電気銅めっきである請求項1〜3いずれかに記載のプリント配線板の製造方法。

The method for manufacturing a printed wiring board according to claim 1, wherein the power feeding layer is a copper layer, and the electroplating is electrolytic copper plating.

JP2005018123A 2005-01-26 2005-01-26 Method of manufacturing printed wiring board Pending JP2006210492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018123A JP2006210492A (en) 2005-01-26 2005-01-26 Method of manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018123A JP2006210492A (en) 2005-01-26 2005-01-26 Method of manufacturing printed wiring board

Publications (1)

Publication Number Publication Date
JP2006210492A true JP2006210492A (en) 2006-08-10

Family

ID=36967016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018123A Pending JP2006210492A (en) 2005-01-26 2005-01-26 Method of manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP2006210492A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120870A (en) * 2007-11-12 2009-06-04 Toppan Printing Co Ltd Etchant and method for manufacturing wiring board by using the etchant
JP2009149971A (en) * 2007-11-27 2009-07-09 Mec Kk Etching agent
JP2010278067A (en) * 2009-05-26 2010-12-09 Nippon Mektron Ltd Method of manufacturing multilayer flexible printed circuit board, and multilayer circuit base material
JP2011114223A (en) * 2009-11-27 2011-06-09 Hitachi Chem Co Ltd Surface treatment method of semiconductor-mounting conductive base material, conductive base material formed by using the same, and semiconductor package
CN105407646A (en) * 2015-12-11 2016-03-16 深圳崇达多层线路板有限公司 Process for improving residual copper of stepped groove
CN109355649A (en) * 2018-12-21 2019-02-19 苏州美吉纳纳米新材料科技有限公司 A kind of PCB copper face oxidant and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2002060981A (en) * 2000-08-23 2002-02-28 Nippon Peroxide Co Ltd Surface roughening treating solution for copper and copper alloy surface
JP2002124762A (en) * 2000-10-16 2002-04-26 Toshiba Chem Corp Production method for multilayered printed wiring board
JP2003101221A (en) * 2001-09-20 2003-04-04 Ibiden Co Ltd Method for manufacturing multilayer printed wiring board
JP2004119564A (en) * 2002-09-25 2004-04-15 Hitachi Chem Co Ltd Chemical coarsening liquid and multilayer printed wiring board manufactured using the same
JP2005005341A (en) * 2003-06-10 2005-01-06 Mitsubishi Gas Chem Co Inc Method for manufacturing printed circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2002060981A (en) * 2000-08-23 2002-02-28 Nippon Peroxide Co Ltd Surface roughening treating solution for copper and copper alloy surface
JP2002124762A (en) * 2000-10-16 2002-04-26 Toshiba Chem Corp Production method for multilayered printed wiring board
JP2003101221A (en) * 2001-09-20 2003-04-04 Ibiden Co Ltd Method for manufacturing multilayer printed wiring board
JP2004119564A (en) * 2002-09-25 2004-04-15 Hitachi Chem Co Ltd Chemical coarsening liquid and multilayer printed wiring board manufactured using the same
JP2005005341A (en) * 2003-06-10 2005-01-06 Mitsubishi Gas Chem Co Inc Method for manufacturing printed circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120870A (en) * 2007-11-12 2009-06-04 Toppan Printing Co Ltd Etchant and method for manufacturing wiring board by using the etchant
JP2009149971A (en) * 2007-11-27 2009-07-09 Mec Kk Etching agent
JP2013167024A (en) * 2007-11-27 2013-08-29 Mec Kk Etching agent
JP2010278067A (en) * 2009-05-26 2010-12-09 Nippon Mektron Ltd Method of manufacturing multilayer flexible printed circuit board, and multilayer circuit base material
CN101959376A (en) * 2009-05-26 2011-01-26 日本梅克特隆株式会社 The manufacture method of multilayer flexible printed wiring plate and multilayer circuit basis material
JP2011114223A (en) * 2009-11-27 2011-06-09 Hitachi Chem Co Ltd Surface treatment method of semiconductor-mounting conductive base material, conductive base material formed by using the same, and semiconductor package
CN105407646A (en) * 2015-12-11 2016-03-16 深圳崇达多层线路板有限公司 Process for improving residual copper of stepped groove
CN105407646B (en) * 2015-12-11 2018-06-12 深圳崇达多层线路板有限公司 A kind of technique for improving the residual copper of stepped groove
CN109355649A (en) * 2018-12-21 2019-02-19 苏州美吉纳纳米新材料科技有限公司 A kind of PCB copper face oxidant and preparation method thereof
CN109355649B (en) * 2018-12-21 2020-08-28 苏州美吉纳纳米新材料科技有限公司 PCB copper surface oxidant and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1667506B1 (en) Electroless plating process and printed circuit board
US4981560A (en) Method of surface treatment of copper foil or a copper clad laminate for internal layer
WO2001014135A1 (en) Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil
EP1102524A1 (en) Double-sided printed wiring board and method for manufacturing multilayer printed wiring board having three or more layers
WO2015030256A1 (en) Copper foil provided with carrier, copper-clad laminated board, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP2006210492A (en) Method of manufacturing printed wiring board
JP4032712B2 (en) Method for manufacturing printed wiring board
JP5004336B2 (en) Catalyst solution used in electroless plating method, electroless plating method using the catalyst solution, and object to be plated on which a metal film is formed using the electroless plating method
JP2009041112A (en) Copper etching liquid and manufacturing method of printed wiring board using the same
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP3928392B2 (en) Method for manufacturing printed wiring board
JP2002060967A (en) Surface treating method for copper or copper alloy
JP5938948B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
JP4370490B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JP2003204138A (en) Manufacturing method for printed wiring board
JP5288168B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4631394B2 (en) Metal etching solution and method for producing printed wiring board
JP2006019654A (en) Multi-layer wiring board and its manufacturing method
JP6304829B2 (en) Copper foil for laser processing, copper foil for laser processing with carrier foil, copper-clad laminate, and method for producing printed wiring board
JP3951938B2 (en) Etching method and printed wiring board manufacturing method using the same
KR101591654B1 (en) Double side flexible copper clad laminate for forming fine wiring and method for manufacturing the same
JP4697521B2 (en) Method for manufacturing metal foil, metal foil using the same, metal foil with resin, metal-clad laminate, printed wiring board, and printed wiring board manufacturing method
JP4555998B2 (en) Printed wiring board
JP2009147387A (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP3815765B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071226

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100930