JP2006195327A - Optical element, its manufacturing method, lens unit using it and electronic equipment using it - Google Patents

Optical element, its manufacturing method, lens unit using it and electronic equipment using it Download PDF

Info

Publication number
JP2006195327A
JP2006195327A JP2005008787A JP2005008787A JP2006195327A JP 2006195327 A JP2006195327 A JP 2006195327A JP 2005008787 A JP2005008787 A JP 2005008787A JP 2005008787 A JP2005008787 A JP 2005008787A JP 2006195327 A JP2006195327 A JP 2006195327A
Authority
JP
Japan
Prior art keywords
lens
optical filter
optical element
temperature
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008787A
Other languages
Japanese (ja)
Inventor
Takaaki Koyo
貴昭 古用
Kazunari Nishihara
和成 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005008787A priority Critical patent/JP2006195327A/en
Publication of JP2006195327A publication Critical patent/JP2006195327A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent lowering of translucency of an optical element, a lens unit and electronic equipment or the like using the element. <P>SOLUTION: The optical element is equipped with a lens 4 and an optical filter 5 provided at least on one surface of the lens 4. Product of a refractive index and film thickness of the optical filter 5 is made to become smaller from a center of the lens 4 toward its outer periphery. Since optical path length in the optical filter 5 can be made equal both at a central part and at an outer peripheral part of the lens 4 thereby, wavelengths other than desired wavelength can be intercepted and only transmissivity of the desired wavelength can be kept high. Thus there is no need for providing a multilayer film and translucency can be raised as much. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子と、その製造方法と、それを用いたレンズユニットと、それを用いた電子機器に関するものである。   The present invention relates to an optical element, a manufacturing method thereof, a lens unit using the optical element, and an electronic apparatus using the optical unit.

従来この種の光学素子は、図4に示されるような構成を示していた。   Conventionally, this type of optical element has a configuration as shown in FIG.

図4において、レンズ1の上には反射防止膜2が蒸着等により成膜され、光学素子を形成していた。   In FIG. 4, an antireflection film 2 is formed on the lens 1 by vapor deposition or the like to form an optical element.

なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2003−84168号公報
As prior art document information relating to this application, for example, Patent Document 1 is known.
JP 2003-84168 A

しかしながら、このような従来の光学素子を用いたレンズユニットでは、小型化が難しいことが問題となっていた。   However, the lens unit using such a conventional optical element has a problem that it is difficult to reduce the size.

すなわち、上記従来の構成において、レンズ1の表面に均一な厚さで反射防止膜2を形成していた。そのため、反射防止膜2における光路長が、図5(a)〜(c)に示すごとくレンズ1の中心部と外周部とで異なるため、所望の波長以外の波長を持つ光が抑制できずに一部が透過し、逆に所望の波長を持つ光の透過率が下がってしまう。これを防ぐため、別に多層膜3をレンズ1裏面にも設けなければならず、透光性が低下するという課題があった。   That is, in the conventional configuration, the antireflection film 2 is formed on the surface of the lens 1 with a uniform thickness. Therefore, since the optical path length in the antireflection film 2 is different between the central portion and the outer peripheral portion of the lens 1 as shown in FIGS. 5A to 5C, light having a wavelength other than the desired wavelength cannot be suppressed. A part of the light is transmitted, and conversely, the transmittance of light having a desired wavelength is lowered. In order to prevent this, the multilayer film 3 must be separately provided on the back surface of the lens 1, which causes a problem that the translucency is lowered.

そこで本発明は、光学素子の透光性を高め、光学機器の特性を高めることを目的とする。   Therefore, an object of the present invention is to improve the translucency of an optical element and improve the characteristics of an optical device.

そして、この目的を達成するために本発明は、レンズと、このレンズの少なくとも一表面に設けた光学フィルタとを備え、この光学フィルタの屈折率と膜厚との積が、レンズの中心から外周に向けて小さくなる光学素子とした。   In order to achieve this object, the present invention includes a lens and an optical filter provided on at least one surface of the lens, and the product of the refractive index and the film thickness of the optical filter is from the center of the lens to the outer periphery. An optical element that becomes smaller toward the surface.

本発明の光学フィルタは、反射防止膜における光路長を、レンズの中心部と外周部で等しくすることができるため、所望の波長以外の波長を遮断し、且つ所望の波長の透過率のみを高く保つことができ、別に多層膜を設ける必要もなく、その分透光性を高めることができる。   In the optical filter of the present invention, since the optical path length in the antireflection film can be made equal between the central portion and the outer peripheral portion of the lens, wavelengths other than the desired wavelength are blocked, and only the transmittance of the desired wavelength is increased. Therefore, it is not necessary to provide a separate multilayer film, and the translucency can be increased.

(実施の形態1)
以下、本発明の実施の形態1における光学素子について図面を参照しながら説明する。
(Embodiment 1)
The optical element according to Embodiment 1 of the present invention will be described below with reference to the drawings.

図1に示すように、ガラス製あるいはプラスチック製のレンズ4の表面に光学フィルタ5を形成する方法としては、真空蒸着、スパッタなどが挙げられる。本実施の形態では真空蒸着の一種であるFB蒸着を用いた。あらかじめ設置しておいた材料(図示せず)に電子銃を照射し、材料(図示せず)の温度を1500℃〜2000℃まで上昇させ気化させる。ここで、その材料(図示せず)としては酸化シリコン、フッ化マグネシウム、酸化アルミニウム、酸化タンタル、酸化チタンなどを用いることができるが、本実施の形態では酸化シリコンを用いた。その後、その気化した材料(図示せず)が上方に設置したレンズ4表面に付着することにより光学フィルタ5を形成することができるのだが、その際、図2に示すように、中心に行くに従って開口面積が大きくなるようなスリット6をレンズ4付近、蒸着面側に備え回転させておく。この時、この回転数を数十rpm程度以上の高速回転にすることで、光学フィルタ5の蒸着量を、レンズ4中心を中心とする円周上において同一にすることができる。なお、本実施の形態ではスリット6を回転させたが、レンズ4を回転させてもよい。ただし、スリット6を回転させる方がより高精度な蒸着ができるため好ましい。   As shown in FIG. 1, examples of the method for forming the optical filter 5 on the surface of the glass or plastic lens 4 include vacuum deposition and sputtering. In this embodiment, FB vapor deposition, which is a kind of vacuum vapor deposition, is used. A previously installed material (not shown) is irradiated with an electron gun, and the temperature of the material (not shown) is raised to 1500 ° C. to 2000 ° C. and vaporized. Here, silicon oxide, magnesium fluoride, aluminum oxide, tantalum oxide, titanium oxide, or the like can be used as the material (not shown), but silicon oxide is used in this embodiment mode. Thereafter, the vaporized material (not shown) adheres to the surface of the lens 4 placed above, whereby the optical filter 5 can be formed. At this time, as shown in FIG. A slit 6 with a large opening area is provided in the vicinity of the lens 4 and on the vapor deposition surface side, and is rotated. At this time, the amount of vapor deposition of the optical filter 5 can be made equal on the circumference centered on the center of the lens 4 by setting the number of rotations to a high speed of about several tens rpm. Although the slit 6 is rotated in the present embodiment, the lens 4 may be rotated. However, it is preferable to rotate the slit 6 because highly accurate vapor deposition can be performed.

上記方法により、光学フィルタ5の膜厚を、レンズ4の中心から外周に向けて小さくし、且つレンズ4中心を中心とする円周上において同一とすることができる。   By the above method, the film thickness of the optical filter 5 can be reduced from the center of the lens 4 toward the outer periphery, and can be the same on the circumference centered on the center of the lens 4.

このような構成により、光学フィルタ5における光路長を、図5(d)〜(f)に示すごとくレンズ4の中心部と外周部とにおいて等しくすることができるため、所望の波長以外の波長を持つ光を遮断し、且つ所望の波長を持つ光を減衰させない。よって、別に多層膜(図示せず)等をレンズ4裏面に設ける必要が無いため、透光性の低下が防止できる。   With such a configuration, the optical path length in the optical filter 5 can be made equal in the central portion and the outer peripheral portion of the lens 4 as shown in FIGS. It blocks the light it has and does not attenuate the light with the desired wavelength. Therefore, it is not necessary to separately provide a multilayer film (not shown) or the like on the back surface of the lens 4, so that a decrease in translucency can be prevented.

なお、本実施の形態では凸型のレンズ4を例に挙げたが、凹レンズでも同様の方法で同様の効果を得ることができる。   In the present embodiment, the convex lens 4 is taken as an example, but the same effect can be obtained by a similar method even with a concave lens.

(実施の形態2)
以下、本発明の実施の形態2における光学素子について図面を参照しながら説明する。
(Embodiment 2)
Hereinafter, an optical element according to Embodiment 2 of the present invention will be described with reference to the drawings.

図1に示すように、ガラス製のレンズ4の表面に光学フィルタ5を形成する方法としては、真空蒸着、スパッタ、EB蒸着などが挙げられる。本実施の形態ではEB蒸着を用いた。あらかじめ設置しておいた材料(図示せず)に電子銃を照射し、材料(図示せず)の温度を1500℃〜2000℃まで上昇させ気化させる。ここで、その材料(図示せず)としては酸化シリコン、フッ化マグネシウム、酸化アルミニウム、酸化タンタル、酸化チタンなどを用いることができるが、本実施の形態では酸化シリコンを用いた。その後、その気化した材料(図示せず)が上方に設置したレンズ4表面に付着することにより表面に均一な膜厚を持った光学フィルタ5を形成する。この時、所望の波長よりもやや短波長側の光を透過するような膜厚に設定しておく。   As shown in FIG. 1, examples of a method for forming the optical filter 5 on the surface of the glass lens 4 include vacuum deposition, sputtering, and EB deposition. In this embodiment, EB deposition is used. A previously installed material (not shown) is irradiated with an electron gun, and the temperature of the material (not shown) is raised to 1500 ° C. to 2000 ° C. and vaporized. Here, silicon oxide, magnesium fluoride, aluminum oxide, tantalum oxide, titanium oxide, or the like can be used as the material (not shown), but silicon oxide is used in this embodiment mode. Thereafter, the vaporized material (not shown) adheres to the surface of the lens 4 placed above, thereby forming an optical filter 5 having a uniform film thickness on the surface. At this time, the film thickness is set so as to transmit light slightly shorter than the desired wavelength.

次に、図3に示すように、ヒータ7を光学フィルタ5中心部に当接させ、ヒータ7を250℃〜350℃に保持する。そうすることにより、光学フィルタ5中心部の光路長を大きくし、透過する波長を長波長側にシフトさせることができる。ここで、250℃〜350℃としたのは、高温すぎるとレンズ4形状が変化してしまうということ、また、低温すぎると光路長を変化させづらいということによる。   Next, as shown in FIG. 3, the heater 7 is brought into contact with the center of the optical filter 5, and the heater 7 is held at 250 ° C. to 350 ° C. By doing so, the optical path length at the center of the optical filter 5 can be increased, and the transmitted wavelength can be shifted to the longer wavelength side. Here, the reason why the temperature is set to 250 ° C. to 350 ° C. is that the shape of the lens 4 changes if the temperature is too high, and that the optical path length is difficult to change if the temperature is too low.

ここで、ヒータ8を光学フィルタ5外周部に当接させ、200℃未満に保っておく。これは、ヒータ8の熱が光学フィルタ5中心部から外周部へと伝わるのを防ぐためである。   Here, the heater 8 is brought into contact with the outer peripheral portion of the optical filter 5 and kept at less than 200 ° C. This is to prevent the heat of the heater 8 from being transmitted from the central portion of the optical filter 5 to the outer peripheral portion.

上記方法により、光学フィルタ5の膜厚を、レンズ4の中心から外周に向けて小さくし、且つレンズ4中心を中心とする円周上において同一とすることができる。   By the above method, the film thickness of the optical filter 5 can be reduced from the center of the lens 4 toward the outer periphery, and can be the same on the circumference centered on the center of the lens 4.

このような構成により、光学フィルタ5における光路長を、図5(d)〜(f)に示すごとくレンズ4の中心部と外周部とにおいて等しくすることが可能となるため、所望の波長以外の波長を持つ光を遮断し、且つ所望の波長を持つ光を減衰させない。よって、別に多層膜(図示せず)等をレンズ4裏面に設ける必要が無いため、透光性の低下を防止できる。   With such a configuration, the optical path length in the optical filter 5 can be made equal in the central portion and the outer peripheral portion of the lens 4 as shown in FIGS. It blocks light having a wavelength and does not attenuate light having a desired wavelength. Therefore, it is not necessary to separately provide a multilayer film (not shown) or the like on the back surface of the lens 4, so that a decrease in translucency can be prevented.

なお、本実施の形態では1回のみの加熱としたが、複数回加熱と冷却を繰り返す方法を用いるとなお良い。例えば、まず光学フィルタ5の中央部分を250℃程度で加熱すると同時に外周部を200℃未満に保持し、その後常温まで冷却し、次に光学フィルタ5の中央部の中心部を300℃程度で加熱しながら外周部を200℃未満に保持するという方法である。この方法であれば、部分部分の特性変化量をコントロールしやすいという利点がある。ここで、一度高温で加熱した部分はそれよりも低い温度では特性変化しないため、この例において中央部分を250℃程度で加熱、中央部の中心部を300℃で加熱したように、低温から高温へと段階を踏むことが好ましい。   Note that although heating is performed only once in this embodiment mode, it is more preferable to use a method of repeating heating and cooling a plurality of times. For example, first, the central portion of the optical filter 5 is heated at about 250 ° C., and at the same time the outer peripheral portion is kept below 200 ° C., then cooled to room temperature, and then the central portion of the central portion of the optical filter 5 is heated at about 300 ° C. However, it is a method of keeping the outer peripheral portion below 200 ° C. This method has an advantage that it is easy to control the characteristic change amount of the partial portion. Here, since the part once heated at a high temperature does not change its characteristics at a lower temperature, in this example, the central part is heated at about 250 ° C., and the central part at 300 ° C. is heated at a low temperature to a high temperature. It is preferable to go through the steps.

なお、本実施の形態では凸型のレンズ4を例に挙げたが、凹レンズでも同様の方法で同様の効果を得ることができる。   In the present embodiment, the convex lens 4 is taken as an example, but the same effect can be obtained by a similar method even with a concave lens.

本発明の光学素子は、フィルター特性と透光性にすぐれ、各種レンズユニットや電子機器などにおいて有用である。   The optical element of the present invention is excellent in filter characteristics and translucency, and is useful in various lens units and electronic devices.

(a)本発明の光学素子の斜視図、(b)本発明の光学素子の断面図(A) The perspective view of the optical element of this invention, (b) Sectional drawing of the optical element of this invention (a)本発明の実施の形態1におけるスリットとレンズを示す斜視図、(b)本発明の実施の形態1におけるスリットとレンズを示す正面図(A) The perspective view which shows the slit and lens in Embodiment 1 of this invention, (b) The front view which shows the slit and lens in Embodiment 1 of this invention 本発明の実施の形態2におけるヒータとレンズを示す断面図Sectional drawing which shows the heater and lens in Embodiment 2 of this invention 従来の光学素子の断面図Sectional view of a conventional optical element (a)〜(c)は従来の光学素子の断面図、特性図、特性図、(d)〜(f)は本発明の一実施形態の光学素子の断面図、特性図、特性図(A)-(c) is sectional drawing, characteristic figure, characteristic figure of the conventional optical element, (d)-(f) is sectional drawing, characteristic figure, characteristic figure of the optical element of one Embodiment of this invention.

符号の説明Explanation of symbols

4 レンズ
5 光学フィルタ
6 スリット
7 ヒータ
8 ヒータ
4 Lens 5 Optical filter 6 Slit 7 Heater 8 Heater

Claims (9)

レンズと、このレンズの少なくとも一表面に設けた光学フィルタとを備え、この光学フィルタの屈折率と膜厚との積が、前記レンズの中心から外周に向けて小さくなる光学素子。 An optical element comprising a lens and an optical filter provided on at least one surface of the lens, wherein the product of the refractive index and the film thickness of the optical filter decreases from the center of the lens toward the outer periphery. 請求項1に記載の光学フィルタが反射防止膜である光学素子。 An optical element, wherein the optical filter according to claim 1 is an antireflection film. 請求項1に記載の光学フィルタが赤外カットフィルタである光学素子。 An optical element, wherein the optical filter according to claim 1 is an infrared cut filter. 光学フィルタの屈折率と膜厚との積が、レンズ中心を中心とする円周上において同一である請求項1に記載の光学素子。 The optical element according to claim 1, wherein the product of the refractive index and the film thickness of the optical filter is the same on a circumference centered on the lens center. 請求項1に記載の光学素子を用いたレンズユニット。 A lens unit using the optical element according to claim 1. 請求項1に記載の光学素子を用いた電子機器。 An electronic apparatus using the optical element according to claim 1. レンズにおける光学フィルタ蒸着面の前方に、中心に行くに従って開口面積が大きくなるスリットを備え、このスリットとレンズの少なくともいずれか一方を回転させながら蒸着する光学素子の製造方法。 A method of manufacturing an optical element, comprising: a slit having an opening area that increases toward the center in front of an optical filter vapor deposition surface of a lens; and vapor deposition while rotating at least one of the slit and the lens. レンズ表面に光学フィルタを蒸着し、次にこの光学フィルタの中心部を第1の温度で加熱すると同時に、前記光学フィルタの外周部を前記第1の温度よりも低い第2の温度に保持する光学素子の製造方法。 An optical filter is deposited on the lens surface, and then the center of the optical filter is heated at a first temperature, and at the same time, the outer periphery of the optical filter is maintained at a second temperature lower than the first temperature. Device manufacturing method. レンズ表面に光学フィルタを蒸着し、次にこの光学フィルタの中心部を第1の温度で加熱すると同時に、前記光学フィルタの外周部をこの第1の温度よりも低い第2の温度に保持し、その後前記レンズ全体をこの第2の温度よりも低い第3の温度で冷却し、その後前記光学フィルタの中央部の中心部を前記第1の温度よりも高い第4の温度により加熱すると同時に、前記光学フィルタの外周部をこの第4の温度よりも低い第5の温度に保持する光学素子の製造方法。 Depositing an optical filter on the lens surface, and then heating the central portion of the optical filter at a first temperature, while maintaining the outer periphery of the optical filter at a second temperature lower than the first temperature; Thereafter, the entire lens is cooled at a third temperature lower than the second temperature, and thereafter, the central portion of the central portion of the optical filter is heated at a fourth temperature higher than the first temperature. A method for manufacturing an optical element, wherein the outer peripheral portion of the optical filter is held at a fifth temperature lower than the fourth temperature.
JP2005008787A 2005-01-17 2005-01-17 Optical element, its manufacturing method, lens unit using it and electronic equipment using it Pending JP2006195327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008787A JP2006195327A (en) 2005-01-17 2005-01-17 Optical element, its manufacturing method, lens unit using it and electronic equipment using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008787A JP2006195327A (en) 2005-01-17 2005-01-17 Optical element, its manufacturing method, lens unit using it and electronic equipment using it

Publications (1)

Publication Number Publication Date
JP2006195327A true JP2006195327A (en) 2006-07-27

Family

ID=36801442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008787A Pending JP2006195327A (en) 2005-01-17 2005-01-17 Optical element, its manufacturing method, lens unit using it and electronic equipment using it

Country Status (1)

Country Link
JP (1) JP2006195327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143415A (en) * 2011-01-13 2012-08-02 Sammy Corp Game system and game machine
WO2020162463A1 (en) * 2019-02-06 2020-08-13 日本板硝子株式会社 Optical element and optical element manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143415A (en) * 2011-01-13 2012-08-02 Sammy Corp Game system and game machine
WO2020162463A1 (en) * 2019-02-06 2020-08-13 日本板硝子株式会社 Optical element and optical element manufacturing method

Similar Documents

Publication Publication Date Title
US8559094B2 (en) Thermochromic smart window and method of manufacturing the same
US8367191B2 (en) Optical thin-films and optical elements comprising same
JP2008276112A (en) Nd filter
JP6258087B2 (en) Lens assembly
JP2006227432A (en) Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same
JP2008076844A (en) Optical filter
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP2008304497A5 (en)
US20060245056A1 (en) Thin-film structure with counteracting layer
JP2006195327A (en) Optical element, its manufacturing method, lens unit using it and electronic equipment using it
JP2007298661A (en) Antireflection film for infrared light
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2007063574A (en) Method for forming multilayer film and film-forming apparatus
US20070153408A1 (en) Nd filter for aperture device and aperture device comprising nd filter
US7033855B2 (en) Optical component and method of manufacturing the same
JP2006330128A (en) Nd filter with ir cut film, method for manufacturing same, and light quantity diaphragm device and camera having nd filter
JP4240458B2 (en) ND filter for light quantity diaphragm, light quantity diaphragm device, camera having the light quantity diaphragm device, and filter manufacturing method
JP2005017986A (en) Nd filter, method for manufacturing nd filter and light quantity attenuation device and camera having such nd filter
JP2008112033A (en) Optical filter
JP2006072031A (en) Antireflection film for infrared region, and infrared lens using the same
JP2007093804A (en) Ultraviolet/infrared cut filter and manufacturing method thereof
JP4793011B2 (en) Antireflection film forming method
JP5022654B2 (en) Optical element and manufacturing method thereof
JP2013147752A (en) Optical element
JP2006078519A (en) Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device