WO2020162463A1 - Optical element and optical element manufacturing method - Google Patents

Optical element and optical element manufacturing method Download PDF

Info

Publication number
WO2020162463A1
WO2020162463A1 PCT/JP2020/004180 JP2020004180W WO2020162463A1 WO 2020162463 A1 WO2020162463 A1 WO 2020162463A1 JP 2020004180 W JP2020004180 W JP 2020004180W WO 2020162463 A1 WO2020162463 A1 WO 2020162463A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
optical element
center
central portion
distance
Prior art date
Application number
PCT/JP2020/004180
Other languages
French (fr)
Japanese (ja)
Inventor
哲 日下
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2020162463A1 publication Critical patent/WO2020162463A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an optical element and a method for manufacturing an optical element.
  • optical elements such as lenses
  • an antireflection film or the like can reduce the occurrence of flare and ghost.
  • Patent Document 1 describes an optical product in which an optical multilayer film for antireflection is formed on one side or both sides of a substrate.
  • the optical multilayer film has a seven-layer structure in which low refractive index layers and high refractive index layers are alternately laminated.
  • Patent Document 2 describes a lens with an antireflection film having a convex or concave surface portion and an antireflection film formed on the surface portion.
  • the film thickness of the antireflection film in the central part of the surface part is different from the film thickness of the antireflection film in the peripheral part.
  • the film thickness of the antireflection film becomes thicker in a region where the incident angle is larger.
  • Patent Document 3 describes an optical lens provided in an optical information recording/reproducing apparatus.
  • An antireflection film is provided on at least one lens surface of the optical lens.
  • the film thickness of the antireflection film in the peripheral portion of the lens surface is equal to or larger than the film thickness of the antireflection film in the central portion of the lens surface.
  • Patent Document 4 describes an optical element for an optical pickup device.
  • an antireflection film is formed on the surface of the lens.
  • the antireflection film is formed to have an optical film thickness that has the lowest reflectance with respect to an incident/emitted light beam at an arbitrary position on the surface of the optical element.
  • the optical film thickness of the antireflection film is large in the peripheral portion of the lens where the lens curvature is large.
  • Patent Document 5 describes an optical member in which a plurality of fine concavo-convex structures having antireflection properties are provided on the surface of the lens surface.
  • an intermediate layer is formed between the fine concavo-convex structure and the lens surface. The film thickness of the intermediate layer is continuously increased from the lens central portion to the lens peripheral portion.
  • Patent Document 1 Japanese Unexamined Patent Publication No. JP, 10-160906, A JP, 2003-215310, A JP 2004-333908 A JP, 2009-139775, A
  • Patent Document 1 the spatial variation of the thickness of the optical multilayer film in the optical product is not clear.
  • the thickness of the coating such as the antireflection film on the peripheral portion of the lens surface is larger than the thickness of the coating on the central portion of the lens surface. This cannot be said to be advantageous from the viewpoint of preventing the occurrence of cracks in the coating such as the antireflection film due to the temperature change.
  • the present invention provides an optical element advantageous from the viewpoint of preventing the occurrence of cracks in the coating such as the antireflection film due to the temperature change.
  • the present invention also provides a manufacturing method suitable for manufacturing such an optical element.
  • the present invention is A main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion; A coating formed on the main surface, Provided is an optical element satisfying the conditions of (i) d 1 ⁇ d 0 and d 1 ⁇ d 2 or (ii) d 2 ⁇ d 1 ⁇ d 0 .
  • d 0 is the thickness of the coating at the center of the center.
  • d 1 is the thickness of the coating at a position where the distance from the center in the direction perpendicular to the optical axis is 90% of the distance between the center and the peripheral edge and the center.
  • d 2 is the thickness of the coating at a position where the distance from the center in the direction perpendicular to the optical axis is 110% of the distance between the boundary and the center.
  • the present invention is In the main surface of the main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion, the distance from the center of the central portion in the direction perpendicular to the optical axis is defined as follows: Also increase, Applying the coating liquid to the main surface to form a coating, A method for manufacturing an optical element is provided.
  • the present invention is A coating is formed by vapor deposition on the main surface of the main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion, In the vapor deposition, the coating is applied to a first region including a position in which a distance from a center of the central portion in a direction perpendicular to an optical axis is 90% of a distance between a boundary between the central portion and the peripheral portion and the center. The probability of the substance for depositing is lower than the probability of depositing the substance for the coating in the second region including the center, A method for manufacturing an optical element is provided.
  • the above optical element is advantageous from the viewpoint of preventing cracks in the coating due to temperature changes.
  • the above manufacturing method is suitable for manufacturing such an optical element.
  • FIG. 1A is a sectional view showing an example of an optical element according to the present invention.
  • FIG. 1B is a sectional view showing another example of the optical element according to the present invention.
  • FIG. 1C is a sectional view showing still another example of the optical element according to the present invention.
  • FIG. 1D is a sectional view showing still another example of the optical element according to the present invention.
  • FIG. 2 is a sectional view showing an optical element according to a comparative example.
  • FIG. 3A is a diagram conceptually showing an example of the method for manufacturing an optical element according to the present invention.
  • 3B is a plan view of the mask shown in FIG. 3A.
  • FIG. 4A is a diagram conceptually showing another example of the method for manufacturing an optical element according to the present invention.
  • FIG. 4B is a plan view of the mask shown in FIG. 4A.
  • FIG. 5A is a photograph showing the appearance of the optical element according to the comparative example before the temperature cycle test.
  • FIG. 5B is a photograph showing the appearance of the optical element according to the comparative example after the temperature cycle test.
  • the present inventor has devised the optical element according to the present invention based on the following new findings regarding the optical element.
  • cracks may occur on the surface or inside of the coating during or after the temperature cycle test.
  • the term “crack” means a crack or crack that occurs in a layer or film such as a coating.
  • An example of the conditions of the temperature cycle test is that the cycle of changing the environmental temperature of the optical element in the temperature range of ⁇ 40° C. to 85° C. over 15 minutes is repeated 500 times. It is considered that due to the difference between the coefficient of thermal expansion of the material forming the coating and the coefficient of thermal expansion of the material of the main body of the optical element, thermal stress is generated due to the temperature change and a crack is generated.
  • the main body of the optical element is made of resin and the coating is a layer of an inorganic material such as a metal oxide, it is considered that cracks are more likely to occur.
  • the optical performance may be deteriorated at that portion, or moisture or the like may act on the material of the optical element body through the crack to deteriorate the property of the material.
  • the thermal stress ⁇ t generated when the environmental temperature of the optical element changes from the temperature Tb to the temperature Ta is represented by the following formula (1).
  • E f is the Young's modulus [N/m 2 ] of the coating
  • ⁇ s is the thermal expansion coefficient of the optical element body [1/° C.]
  • ⁇ f is the thermal expansion coefficient of the coating [1/° C.]
  • ⁇ f is the Poisson's ratio of the coating.
  • ⁇ t E f ⁇ ( ⁇ s ⁇ f ) ⁇ (Ta ⁇ Tb)/(1- ⁇ f )(1)
  • the thermal stress ⁇ t causes compressive or tensile stress in the coating. As a result, the optical element is bent.
  • the stress ⁇ f generated by the deflection is expressed by the equation (2) called the Stoney equation.
  • E s is the Young's modulus [N/m 2 ] of the optical element body
  • D is the thickness [m] of the optical element body
  • ⁇ s is the Poisson's ratio of the optical element body
  • R is deformed by thermal stress. It is the radius of curvature [m] of the optical element body
  • d is the thickness [m] of the coating.
  • ⁇ f E s ⁇ D 2 / ⁇ 6 ⁇ (1- ⁇ s ) ⁇ R ⁇ d ⁇ (2)
  • S corresponds to the force per unit width of the coating.
  • ⁇ t depends on the temperature change and the coefficient of thermal expansion of the material
  • the force per unit width in the coating depends on the product of the stress ⁇ f and the coating thickness d. Since the larger the value of S, the larger the force applied to the coating, it is understood that when d is large, peeling and cracking of the coating are likely to occur.
  • the thickness of the coating in the peripheral portion of the optical element is made larger than the thickness of the coating in the central portion of the optical element for the purpose of reducing the amount of reflection of light rays and the like, as in the techniques described in Patent Documents 2 to 5. ..
  • the thickness of the coating in the peripheral portion of the optical element is large, and it is considered that the coating is likely to crack due to temperature changes in the peripheral portion of the optical element. Therefore, the yield in manufacturing the optical element may be low, and thus the productivity in manufacturing the optical element may be low.
  • the formation of the coating on the optical element can be performed at a temperature higher than room temperature from the viewpoint of improving the adhesion of the coating to the optical element body. Therefore, thereafter, due to the difference between the coefficient of thermal expansion of the material forming the coating and the coefficient of thermal expansion of the optical element body in the optical element returned to room temperature, thermal stress is likely to occur and cracks are likely to occur.
  • the present inventor newly found a spatial variation in the thickness of the coating, which is advantageous from the viewpoint of preventing the coating from being cracked due to a change in temperature.
  • An optical element according to the invention has been devised.
  • each of the optical elements 1a, 1b, 1c, and 1d includes a body 10 and a coating 20.
  • the main body 10 has a main surface 15.
  • the main surface 15 includes a central portion 11 and a peripheral portion 12.
  • the central portion 11 has a convex surface or a concave surface.
  • the central portion 11 has a convex surface in the optical element 1a and the optical element 1b.
  • the central portion 11 has a convex surface.
  • the central portion 11 has a concave surface.
  • the peripheral portion 12 is formed around the central portion 11.
  • the coating 20 is formed on the main surface 15.
  • the optical elements 1a to 1d satisfy the conditions (i) d 1 ⁇ d 0 and d 1 ⁇ d 2 or (ii) d 2 ⁇ d 1 ⁇ d 0 .
  • the optical elements 1a and 1c satisfy the conditions of (i) d 1 ⁇ d 0 and d 1 ⁇ d 2 .
  • the optical elements 1b and 1d satisfy the condition (ii) d 2 ⁇ d 1 ⁇ d 0 .
  • d 0 is the thickness of the coating 20 at the center P C of the central portion 11.
  • d 1 is the thickness of the coating 20 at the position P 90 where the distance from the center P C in the direction perpendicular to the optical axis A is 90% of the distance between the boundary B and the center P C.
  • the boundary B is a boundary between the central portion 11 and the peripheral portion 12.
  • d 2 is the thickness of the coating 20 at the position P 110 where the distance from the center P C in the direction perpendicular to the optical axis A is 110% of the distance between the boundary B and the center P C.
  • the thicknesses d 0 , d 1 and d 2 mean the thickness of the principal surface 15 in the normal direction.
  • FIG. 2 shows an optical element 2 according to a comparative example.
  • the optical element 2 is configured in the same manner as the optical element 1a, except for the part particularly described.
  • the constituent elements of the optical element 2 corresponding to the constituent elements of the optical element 1a are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the condition of d 2 >d 1 >d 0 is satisfied.
  • d 2 and d 1 are larger than d 0 , and the stress generated near the position P 90 of the coating 20 and the stress generated near the position P 110 of the coating 20 are likely to be large. Further, since the directions of these stresses are different, a force that tears the coating 20 near the boundary B easily works. Therefore, in the optical element 2, it is considered that cracks are likely to occur in the coating 20 due to the temperature change.
  • Each of the optical element 1a and the optical element 1c may further satisfy the condition of 1 ⁇ d 0 /d 1 ⁇ 2 and the condition of 1 ⁇ d 2 /d 1 ⁇ 2. As a result, cracks are less likely to occur in the coating 20 with changes in temperature.
  • the value of d 0 /d 1 may be 1.05 to 1.5 or 1.1 to 1.3.
  • the value of d 2 /d 1 may be 1.05 to 1.5, or 1.1 to 1.2.
  • Each of the optical element 1b and the optical element 1d may further satisfy the condition of 1 ⁇ d 0 /d 1 ⁇ 2 and the condition of 0 ⁇ d 2 /d 1 ⁇ 1. As a result, cracks are less likely to occur in the coating 20 with changes in temperature.
  • the value of d 0 /d 1 may be 1.05 to 1.5 or 1.1 to 1.3.
  • the value of d 2 /d 1 may be 0.01 to 0.9 or 0.1 to 0.7.
  • Each of the optical elements 1a to 1d is typically a lens.
  • Each of the optical elements 1a and 1b is, for example, a plano-convex lens.
  • Each of the optical elements 1c and 1d is, for example, a plano-concave lens.
  • the central portion 11 may be, for example, a spherical surface or an aspherical surface.
  • the peripheral portion 12 has, for example, a flat surface. This flat surface is parallel to the plane perpendicular to the optical axis A. In this case, the direction of the stress generated near the position P 90 of the coating 20 is different from the direction of the stress generated near the position P 110 of the coating 20, and the force to tear the coating 20 near the boundary B is appear. However, in each of the optical elements 1a to 1d, since the above condition (i) or condition (ii) is satisfied, cracks are less likely to occur in the coating 20 due to temperature changes.
  • the main body 10 is formed of, for example, a translucent resin.
  • the absolute value of the difference between the coefficient of thermal expansion of the material forming the coating 20 and the coefficient of thermal expansion of the main body 10 tends to be large.
  • the translucent resin is not particularly limited. Examples of the translucent resin include acrylic resin, polycarbonate resin, and polyolefin resin.
  • the main body 10 may be formed of translucent glass.
  • the coating 20 is not particularly limited as long as it is a film formed on the main surface.
  • the coating 20 is, for example, an antireflection film.
  • the antireflection film prevents reflection in a specific wavelength range.
  • the antireflection film may be a single layer film or a multilayer film.
  • the antireflection film may be, for example, a single-layer film formed of a material having a refractive index lower than that of the main body 10.
  • the coating 10 functioning as an antireflection film may be a laminated multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked.
  • the material forming the high refractive index layer is, for example, cerium oxide, titanium oxide, tantalum oxide, zirconium oxide, or silicon nitride.
  • the material forming the low refractive index layer is, for example, silicon oxide or magnesium fluoride.
  • the wettability of the first region R1 including the position P 90 with the coating liquid is higher than the wettability of the second region R2 including the center P C with the coating liquid.
  • the coating liquid is applied to the main surface 15 to form the coating 20.
  • the thickness of the coating 20 is likely to be smaller than in the second region R2 having low wettability with the coating liquid. Therefore, this method is suitable for manufacturing the optical elements 1a to 1d.
  • the coating liquid is applied by, for example, spin coating.
  • the position P 110 may be included in the first region R1.
  • the method of increasing the wettability of the first region R1 with the coating liquid more than the wettability of the second region R2 with the coating liquid is not limited to a particular method.
  • the wettability of the first region R1 with respect to the coating liquid is improved.
  • the wettability of the second region R2 with respect to the coating liquid can be improved.
  • the mask 50 is a plate-shaped member having an annular through hole.
  • the mask 50 has a central portion 51, an outer peripheral portion 52, and a support portion 53.
  • the central portion 51 has a disc shape.
  • the outer peripheral portion 52 is an annular member that surrounds the central portion 51 and has a circular through hole.
  • the axis of the central portion 51 and the axis of the circular through hole coincide with each other.
  • the radius of the central portion 51 is such that the distance from the center P C in the direction perpendicular to the optical axis A is smaller than 90% of the distance between the boundary B and the center P C.
  • the radius of the circular through hole of the outer peripheral portion 52 is such that the distance from the center P C in the direction perpendicular to the optical axis A is larger than 90% of the distance between the boundary B and the center P C. Therefore, by disposing the mask 50 so that the center of the central portion 51 is located on the optical axis A, the plasma that has passed through the annular through hole is selectively applied to the first region R1. As a result, the wettability of the first region R1 with the coating liquid can be made higher than the wettability of the second region R2 with the coating liquid.
  • the wettability of the first region R1 with the coating liquid can be improved. It may be higher than sex.
  • the coating 20 is formed on the main surface 15 of the main body 10 by vapor deposition.
  • the probability that the substance for the coating 20 adheres to the first region R1 including the position P 90 on the main surface 15 is the probability that the substance for the coating 20 adheres to the second region R2 including the center P C. Lower than.
  • the thickness of the coating 20 in the first region R1 tends to be smaller than that in the second region R2. Therefore, this method is suitable for manufacturing the optical elements 1a to 1d.
  • the position P 110 may be included in the first region R1.
  • the vapor deposition may be physical vapor deposition or chemical vapor deposition.
  • the method of reducing the probability that the substance for the coating 20 adheres to the first region R1 is lower than the probability that the substance for the coating 20 adheres to the second region R2 is not particularly limited.
  • the vapor deposition apparatus 70 shown in FIG. 4A can be used to manufacture the optical elements 1a to 1d.
  • the vapor deposition device 70 is a device for vacuum vapor deposition, and includes a vacuum chamber 72, a holder 74, a mask 75, and a vapor deposition source 76.
  • the holder 74, the mask 75, and the vapor deposition source 76 are arranged inside the vacuum chamber 72.
  • the main body 10 is arranged so that the main surface 15 of the main body 10 faces the vapor deposition source 76.
  • the holder 74 is configured to be rotatable. The holder 74 rotates while the main body 10 is fixed to the holder 74.
  • a known method can be used as a method for fixing the main body 10 to the holder 74.
  • a method of gripping the edge surface of the main body 10 with a V groove or a U groove can be used.
  • the mask 75 is arranged between the holder 74 and the vapor deposition source 76. As shown in FIG. 4B, the mask 75 has a notch narrowed from the center of the mask 75 toward the peripheral edge of the mask 75.
  • a plano-convex lens made of polymethylmethacrylate was prepared.
  • the main surface having the convex surface of this plano-convex lens has a central portion forming a convex surface and a peripheral portion formed around the central portion.
  • the convex surface at the center was a spherical surface having a radius of curvature of 4 mm.
  • the peripheral portion had a flat surface parallel to the surface perpendicular to the optical axis.
  • the diameter of the plano-convex lens was 7 mm, and the effective diameter of the convex surface was 5 mm.
  • a mask having the same mode as the mask 50 shown in FIG. 3 was prepared.
  • This mask was manufactured such that the directional plasma was applied to a region corresponding to 80% to 120% of the effective diameter of the convex surface of the plano-convex lens.
  • This mask was placed above the plano-convex lens, and the surface modification treatment of the main surface having the convex surface of the plano-convex lens was performed using an atmospheric pressure plasma device (Well, product name: WADP-200A). ..
  • Ar (argon) gas is supplied at a flow rate of 15 slm (standard liter per minute)
  • O 2 (oxygen) is supplied at a flow rate of 15 sccm (standard cubic centimeter per minute)
  • RF discharge power is supplied.
  • plano-convex lens and the mask were arranged so that their central axes coincided with each other, and the distance between the plano-convex lens and the mask was adjusted to about 1 mm using a spacer.
  • the plano-convex lens and the mask were conveyed in one direction by a belt conveyor made of wire, and plasma was irradiated from above. Further, since the shadow of the supporting portion of the mask is generated on the surface of the plano-convex lens, the plasma irradiation was performed twice by changing the phase about 5° around the central axis of the plano-convex lens and the mask.
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • 3 g of hollow silica sol manufactured by JGC Catalysts & Chemicals, product name: Thruria 4110, silica solid content: about 25 wt%
  • 22.4 g of ethanol manufactured by Kishida Chemical Co., Ltd.
  • the coating liquid was applied to the plano-convex lens to form a coating film.
  • the flat surface opposite to the convex surface of the plano-convex lens was fixed on the spin axis of the spin coater by vacuum adsorption.
  • the rotation speed of the spin coater was gradually increased with the convex surface of the plano-convex lens facing upward, and the rotation speed was kept at 500 rpm (revolutions per minute). After that, an appropriate amount of the coating liquid was dropped toward the plano-convex lens with a syringe.
  • the rotation speed of the spin coater was raised to 4000 rpm and kept for 25 seconds, and the excess coating liquid was skipped.
  • the plano-convex lens was taken out, and the plano-convex lens was placed in a heating oven to gradually raise the temperature around the plano-convex lens.
  • the temperature was kept at 200° C. for 10 minutes, and the coating film was dried to form a single-layer antireflection film. In this way, the optical element according to Example 1 was manufactured.
  • the thickness of the antireflection film in the optical element according to Example 1 was measured using a microspectrophotometer (manufactured by JASCO Corporation, product name: MSV-5000). In this measurement, the thickness d 0 of the antireflection film at the center of the convex surface of the plano-convex lens, the thickness d 1 of the antireflection film on the convex surface at the position corresponding to 90% of the diameter of the convex surface, and the thickness of the convex surface The thickness d 2 of the antireflection film on the flat peripheral portion outside the convex surface at the position corresponding to the diameter corresponding to 110% of the diameter was measured.
  • Example 2 An optical element according to Example 2 was made in the same manner as Example 1 except for the following points.
  • a spin coater manufactured by Mikasa, product name: MS-B100
  • the rotation speed of the spin coater was gradually increased and kept at 1500 rpm while the plano-convex lens was fixed. Then, an appropriate amount of the coating liquid was dripped toward the plano-convex lens. Then, the spin coater was further rotated at 4000 rpm for 25 seconds.
  • the plano-convex lens was taken out, and the plano-convex lens was placed in a heating oven to gradually raise the temperature around the plano-convex lens.
  • the temperature was kept at 200° C. for 10 minutes, and the coating film was dried to form a single-layer antireflection film.
  • the optical element according to Example 2 was obtained.
  • Example 3 For the same plano-convex lens as that used in Example 1, a vapor deposition apparatus configured in the same manner as the vapor deposition apparatus 70 shown in FIGS. 4A and 4B was used to perform vacuum vapor deposition on the main surface including the convex surface of the plano-convex lens. Then, an antireflection film was formed. In vacuum deposition, the pressure inside the vacuum chamber was reduced to about 10 ⁇ 3 Pa using a vacuum pump, and magnesium fluoride (MgF 2 ) was heated and evaporated from the deposition source. The holder was rotated for a predetermined time in vacuum deposition. The vacuum deposition time was adjusted so that the antireflection film on the plano-convex lens had a predetermined thickness. Thus, the optical element according to Example 3 was obtained.
  • MgF 2 magnesium fluoride
  • the plano-convex lens was taken out, and the plano-convex lens was placed in a heating oven to gradually raise the temperature around the plano-convex lens.
  • the temperature was kept at 200° C. for 10 minutes, and the coating film was dried to form a single-layer antireflection film. In this way, the optical element according to Comparative Example 1 was obtained.
  • ⁇ Temperature cycle test> A temperature cycle test was performed on the optical element according to each example and the optical element according to Comparative Example 1. In the temperature cycle test, a cycle in which the temperature around the optical element was changed in the temperature range of ⁇ 40° C. to 85° C. over 15 minutes was repeated 500 times. In the optical element according to each example, no crack was generated on the surface of the antireflection film after the temperature cycle test.

Abstract

An optical element (1a) is provided with a body (10) and a coating (20). The body (10) had a main surface (15). The main surface (15) includes a center section (11) and a peripheral section (12). The center section (11) forms a protruding surface. The peripheral section (12) is formed at the perimeter of the center section (11). The coating (20) is formed on the main surface (15). The optical element (1a) satisfies condition (i): d1<d0 and d1<d2.

Description

光学素子及び光学素子の製造方法Optical element and method of manufacturing optical element
 本発明は、光学素子及び光学素子の製造方法に関する。 The present invention relates to an optical element and a method for manufacturing an optical element.
 従来、レンズ等の光学素子の表面に反射防止膜等のコーティングを施すことが知られている。反射防止膜により、フレア及びゴーストの発生を低減できる。 Conventionally, it is known to coat the surface of optical elements such as lenses with an antireflection film or the like. The antireflection film can reduce the occurrence of flare and ghost.
 例えば、特許文献1には、基体の片面又は両面に反射防止のための光学多層膜が形成された光学製品が記載されている。光学多層膜は、低屈折率層と高屈折率層とを交互に積層した7層構造である。 For example, Patent Document 1 describes an optical product in which an optical multilayer film for antireflection is formed on one side or both sides of a substrate. The optical multilayer film has a seven-layer structure in which low refractive index layers and high refractive index layers are alternately laminated.
 特許文献2には、凸面又は凹面の表面部と、表面部上に形成された反射防止膜とを有する反射防止膜付きレンズが記載されている。表面部の中心部における反射防止膜の膜厚と周縁部における反射防止膜の膜厚とが異なっている。反射防止膜の膜厚は、入射角の大きい領域ほど厚くなっている。 Patent Document 2 describes a lens with an antireflection film having a convex or concave surface portion and an antireflection film formed on the surface portion. The film thickness of the antireflection film in the central part of the surface part is different from the film thickness of the antireflection film in the peripheral part. The film thickness of the antireflection film becomes thicker in a region where the incident angle is larger.
 特許文献3には、光情報記録再生装置に設けられる光学レンズが記載されている。光学レンズの少なくとも一方のレンズ面には反射防止膜が設けられている。レンズ面の周辺部における反射防止膜の膜厚は、レンズ面の中央部における反射防止膜の膜厚以上である。 Patent Document 3 describes an optical lens provided in an optical information recording/reproducing apparatus. An antireflection film is provided on at least one lens surface of the optical lens. The film thickness of the antireflection film in the peripheral portion of the lens surface is equal to or larger than the film thickness of the antireflection film in the central portion of the lens surface.
 特許文献4には、光ピックアップ装置用の光学素子が記載されている。この光学素子においてレンズの表面に反射防止膜が形成されている。反射防止膜は、光学素子の面内の任意の位置における入出射光線に対し反射率が最も低くなる光学膜厚で形成されている。例えば、レンズ曲率の大きいレンズ周辺部において反射防止膜の光学膜厚が厚くなっている。 Patent Document 4 describes an optical element for an optical pickup device. In this optical element, an antireflection film is formed on the surface of the lens. The antireflection film is formed to have an optical film thickness that has the lowest reflectance with respect to an incident/emitted light beam at an arbitrary position on the surface of the optical element. For example, the optical film thickness of the antireflection film is large in the peripheral portion of the lens where the lens curvature is large.
 特許文献5には、反射防止性を有する複数の微細凹凸構造がレンズ面の表面に設けられた光学部材が記載されている。光学部材において、微細凹凸構造とレンズ面との間には中間層が形成されている。中間層の膜厚は、レンズ中心部からレンズ周辺部にかけて連続的に厚くなっている。 Patent Document 5 describes an optical member in which a plurality of fine concavo-convex structures having antireflection properties are provided on the surface of the lens surface. In the optical member, an intermediate layer is formed between the fine concavo-convex structure and the lens surface. The film thickness of the intermediate layer is continuously increased from the lens central portion to the lens peripheral portion.
特開2015-148643号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 特開平10-160906号公報JP, 10-160906, A 特開2003-215310号公報JP, 2003-215310, A 特開2004-333908号公報JP 2004-333908 A 特開2009-139775号公報JP, 2009-139775, A
 特許文献1において、光学製品における光学多層膜の厚みの空間的な変動は定かでない。特許文献2~4によれば、レンズ面の周辺部における反射防止膜等のコーティングの厚みは、レンズ面の中央部におけるコーティングの厚みより大きい。このことは、温度変化に伴って反射防止膜等のコーティングにクラックが発生することを防止する観点から有利とは言い難い。 In Patent Document 1, the spatial variation of the thickness of the optical multilayer film in the optical product is not clear. According to Patent Documents 2 to 4, the thickness of the coating such as the antireflection film on the peripheral portion of the lens surface is larger than the thickness of the coating on the central portion of the lens surface. This cannot be said to be advantageous from the viewpoint of preventing the occurrence of cracks in the coating such as the antireflection film due to the temperature change.
 このような事情に鑑み、本発明は、温度変化に伴って反射防止膜等のコーティングにクラックが発生することを防止する観点から有利な光学素子を提供する。また、本発明は、このような光学素子の製造に適した製造方法を提供する。 In view of such circumstances, the present invention provides an optical element advantageous from the viewpoint of preventing the occurrence of cracks in the coating such as the antireflection film due to the temperature change. The present invention also provides a manufacturing method suitable for manufacturing such an optical element.
 本発明は、
 凸面又は凹面をなす中央部と、前記中央部の周囲に形成された周縁部とを含む主面を有する本体と、
 前記主面上に形成されたコーティングと、を備え、
 (i)d1<d0かつd1<d2の条件又は(ii)d2<d1<d0の条件を満たす、光学素子を提供する。
 d0は、前記中央部の中心における前記コーティングの厚みである。
 d1は、光軸に垂直な方向における前記中心からの距離が前記中央部と前記周縁部との境界と前記中心との距離の90%である位置における前記コーティングの厚みである。
 d2は、前記光軸に垂直な方向における前記中心からの距離が前記境界と前記中心との距離の110%である位置における前記コーティングの厚みである。
The present invention is
A main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion;
A coating formed on the main surface,
Provided is an optical element satisfying the conditions of (i) d 1 <d 0 and d 1 <d 2 or (ii) d 2 <d 1 <d 0 .
d 0 is the thickness of the coating at the center of the center.
d 1 is the thickness of the coating at a position where the distance from the center in the direction perpendicular to the optical axis is 90% of the distance between the center and the peripheral edge and the center.
d 2 is the thickness of the coating at a position where the distance from the center in the direction perpendicular to the optical axis is 110% of the distance between the boundary and the center.
 本発明は、
 凸面又は凹面をなす中央部と、前記中央部の周囲に形成された周縁部とを含む主面を有する本体の前記主面において、光軸に垂直な方向における前記中央部の中心からの距離が前記中央部と前記周縁部との境界と前記中心との距離の90%である位置を含む第一領域のコーティング液に対する濡れ性を、前記中心を含む第二領域の前記コーティング液に対する濡れ性よりも高めることと、
 前記主面に前記コーティング液を塗布してコーティングを形成することと、を備えた、
 光学素子の製造方法を提供する。
The present invention is
In the main surface of the main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion, the distance from the center of the central portion in the direction perpendicular to the optical axis is The wettability with respect to the coating liquid of the first region including the position that is 90% of the distance between the boundary between the central portion and the peripheral portion and the center is defined as follows: Also increase,
Applying the coating liquid to the main surface to form a coating,
A method for manufacturing an optical element is provided.
 本発明は、
 凸面又は凹面をなす中央部と、前記中央部の周囲に形成された周縁部とを含む主面を有する本体の前記主面に対し、蒸着によりコーティングを形成することを備え、
 前記蒸着において、光軸に垂直な方向における前記中央部の中心からの距離が前記中央部と前記周縁部との境界と前記中心との距離の90%である位置を含む第一領域に前記コーティングのための物質が付着する確率が、前記中心を含む第二領域に前記コーティングのための物質が付着する確率よりも低い、
 光学素子の製造方法を提供する。
The present invention is
A coating is formed by vapor deposition on the main surface of the main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion,
In the vapor deposition, the coating is applied to a first region including a position in which a distance from a center of the central portion in a direction perpendicular to an optical axis is 90% of a distance between a boundary between the central portion and the peripheral portion and the center. The probability of the substance for depositing is lower than the probability of depositing the substance for the coating in the second region including the center,
A method for manufacturing an optical element is provided.
 上記の光学素子は、温度変化に伴ってコーティングにクラックが発生することを防止する観点から有利である。上記の製造方法は、このような光学素子を製造するのに適している。 The above optical element is advantageous from the viewpoint of preventing cracks in the coating due to temperature changes. The above manufacturing method is suitable for manufacturing such an optical element.
図1Aは、本発明に係る光学素子の一例を示す断面図である。FIG. 1A is a sectional view showing an example of an optical element according to the present invention. 図1Bは、本発明に係る光学素子の別の一例を示す断面図である。FIG. 1B is a sectional view showing another example of the optical element according to the present invention. 図1Cは、本発明に係る光学素子のさらに別の一例を示す断面図である。FIG. 1C is a sectional view showing still another example of the optical element according to the present invention. 図1Dは、本発明に係る光学素子のさらに別の一例を示す断面図である。FIG. 1D is a sectional view showing still another example of the optical element according to the present invention. 図2は、比較例に係る光学素子を示す断面図である。FIG. 2 is a sectional view showing an optical element according to a comparative example. 図3Aは、本発明に係る光学素子の製造方法の一例を概念的に示す図である。FIG. 3A is a diagram conceptually showing an example of the method for manufacturing an optical element according to the present invention. 図3Bは、図3Aに示すマスクの平面図である。3B is a plan view of the mask shown in FIG. 3A. 図4Aは、本発明に係る光学素子の製造方法の別の一例を概念的に示す図である。FIG. 4A is a diagram conceptually showing another example of the method for manufacturing an optical element according to the present invention. 図4Bは、図4Aに示すマスクの平面図である。FIG. 4B is a plan view of the mask shown in FIG. 4A. 図5Aは、比較例に係る光学素子の温度サイクル試験前の外観を示す写真である。FIG. 5A is a photograph showing the appearance of the optical element according to the comparative example before the temperature cycle test. 図5Bは、比較例に係る光学素子の温度サイクル試験後の外観を示す写真である。FIG. 5B is a photograph showing the appearance of the optical element according to the comparative example after the temperature cycle test.
 本発明者は、光学素子に関する下記の新たな知見に基づいて本発明に係る光学素子を案出した。 The present inventor has devised the optical element according to the present invention based on the following new findings regarding the optical element.
 例えば、ガラス又は樹脂からなるレンズ等の光学素子が、その表面に反射防止膜等のコーティングを有していると、温度サイクル試験中又はその後にコーティングの表面又は内部にクラックが発生する可能性がある。本明細書において、「クラック」とは、コーティング等の層又は膜に生じる亀裂又はひび割れを意味する。温度サイクル試験の条件の一例は、光学素子の環境温度を-40℃~85℃の温度範囲で15分間かけて変化させるサイクルを500回繰り返すというものである。コーティングをなす材料の熱膨張係数と光学素子の本体の材料の熱膨張係数との違いにより、温度変化によって熱応力が発生して、クラックが発生すると考えられる。光学素子の本体が樹脂製であり、かつ、コーティングが金属酸化物等の無機材料の層である場合、クラックがより生じやすいと考えられる。クラックが生じると、その部分において光学性能が劣化したり、亀裂を通じて水分などが光学素子本体の材料に作用して、その材料の性質を劣化させたりするおそれがある。 For example, if an optical element such as a lens made of glass or resin has a coating such as an antireflection film on its surface, cracks may occur on the surface or inside of the coating during or after the temperature cycle test. is there. As used herein, the term “crack” means a crack or crack that occurs in a layer or film such as a coating. An example of the conditions of the temperature cycle test is that the cycle of changing the environmental temperature of the optical element in the temperature range of −40° C. to 85° C. over 15 minutes is repeated 500 times. It is considered that due to the difference between the coefficient of thermal expansion of the material forming the coating and the coefficient of thermal expansion of the material of the main body of the optical element, thermal stress is generated due to the temperature change and a crack is generated. When the main body of the optical element is made of resin and the coating is a layer of an inorganic material such as a metal oxide, it is considered that cracks are more likely to occur. When a crack is generated, the optical performance may be deteriorated at that portion, or moisture or the like may act on the material of the optical element body through the crack to deteriorate the property of the material.
 光学素子の環境温度が温度Tbから温度Taに変化したときに発生する熱応力σtは、下記の式(1)のように示される。Efはコーティングのヤング率[N/m2]であり、αsは光学素子本体の熱膨張係数[1/℃]であり、αfはコーティングの熱膨張係数[1/℃]であり、νfはコーティングのポアソン比である。
 σt=Ef・(αs-αf)・(Ta-Tb)/(1-νf)   (1)
The thermal stress σ t generated when the environmental temperature of the optical element changes from the temperature Tb to the temperature Ta is represented by the following formula (1). E f is the Young's modulus [N/m 2 ] of the coating, α s is the thermal expansion coefficient of the optical element body [1/° C.], α f is the thermal expansion coefficient of the coating [1/° C.], ν f is the Poisson's ratio of the coating.
σ t =E f ·(α s −α f )·(Ta−Tb)/(1-ν f )(1)
 熱応力σtによりコーティングに圧縮応力又は引っ張り応力が生じる。その結果、光学素子にたわみが発生する。そのたわみにより発生する応力σfは、stoneyの式と呼ばれる式(2)のように示される。Esは光学素子本体のヤング率[N/m2]であり、Dは光学素子本体の厚み[m]であり、νsは光学素子本体のポアソン比であり、Rは熱応力によって変形した光学素子本体の曲率半径[m]であり、dはコーティングの厚み[m]である。
 σf=Es・D2/{6・(1-νs)・R・d}   (2)
The thermal stress σ t causes compressive or tensile stress in the coating. As a result, the optical element is bent. The stress σ f generated by the deflection is expressed by the equation (2) called the Stoney equation. E s is the Young's modulus [N/m 2 ] of the optical element body, D is the thickness [m] of the optical element body, ν s is the Poisson's ratio of the optical element body, and R is deformed by thermal stress. It is the radius of curvature [m] of the optical element body, and d is the thickness [m] of the coating.
σ f =E s ·D 2 /{6·(1-ν s )·R·d} (2)
 式(2)において、S=Es・D2/{6・(1-νs)・R}を満たすSを用いると、式(2)はσf=S/dと表される。Sは、コーティングの単位幅あたりの力に相当する。σtは、温度変化と材料の熱膨張係数とに依存し、コーティングにおける単位幅当たりの力は、応力σfとコーティングの厚みdとの積に依存する。Sの値が大きいほどコーティングにかかる力は大きくなるので、dが大きいとコーティングの剥離及びクラックが発生しやすいと理解される。 When S that satisfies S=E s ·D 2 /{6·(1-ν s )·R} is used in the equation (2), the equation (2) is expressed as σ f =S/d. S corresponds to the force per unit width of the coating. σ t depends on the temperature change and the coefficient of thermal expansion of the material, and the force per unit width in the coating depends on the product of the stress σ f and the coating thickness d. Since the larger the value of S, the larger the force applied to the coating, it is understood that when d is large, peeling and cracking of the coating are likely to occur.
 特許文献2~5に記載の技術のように、光線の反射量の低減等の目的で、光学素子の周辺部におけるコーティングの厚みを、光学素子の中央部におけるコーティングの厚みより大きくする場合を考える。この場合、光学素子の周辺部におけるコーティングの厚みが大きく、光学素子の周辺部において温度変化によりコーティングにクラックが発生しやすいと考えられる。このため、光学素子の製造における歩留まりが低く、ひいては光学素子の製造の生産性が低くなる可能性がある。特に、光学素子におけるコーティングの形成は、コーティングの光学素子本体に対する密着性を向上させる観点から室温よりも高い温度でなされうる。このため、その後、室温に戻された光学素子においてコーティングをなす材料の熱膨張係数と光学素子本体の熱膨張係数との違いにより、熱応力が生じ、クラックが発生しやすい。 Consider the case where the thickness of the coating in the peripheral portion of the optical element is made larger than the thickness of the coating in the central portion of the optical element for the purpose of reducing the amount of reflection of light rays and the like, as in the techniques described in Patent Documents 2 to 5. .. In this case, the thickness of the coating in the peripheral portion of the optical element is large, and it is considered that the coating is likely to crack due to temperature changes in the peripheral portion of the optical element. Therefore, the yield in manufacturing the optical element may be low, and thus the productivity in manufacturing the optical element may be low. In particular, the formation of the coating on the optical element can be performed at a temperature higher than room temperature from the viewpoint of improving the adhesion of the coating to the optical element body. Therefore, thereafter, due to the difference between the coefficient of thermal expansion of the material forming the coating and the coefficient of thermal expansion of the optical element body in the optical element returned to room temperature, thermal stress is likely to occur and cracks are likely to occur.
 そこで、本発明者は、多大な試行錯誤を重ねた結果、温度変化に伴ってコーティングにクラックが発生することを防止する観点から有利な、コーティングの厚みの空間的な変動を新たに見出し、本発明に係る光学素子を案出した。 Therefore, as a result of repeated trial and error, the present inventor newly found a spatial variation in the thickness of the coating, which is advantageous from the viewpoint of preventing the coating from being cracked due to a change in temperature. An optical element according to the invention has been devised.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the following description relates to an example of the present invention, and the present invention is not limited to the following embodiments.
 図1A、図1B、図1C、及び図1Dに示す通り、光学素子1a、1b、1c、及び1dのそれぞれは、本体10と、コーティング20とを備えている。本体10は、主面15を有する。主面15は、中央部11と、周縁部12とを含んでいる。中央部11は、凸面又は凹面をなしている。光学素子1a及び光学素子1bにおいて中央部11は凸面をなしている。光学素子1c及び光学素子1dにおいて中央部11は凹面をなしている。周縁部12は、中央部11の周囲に形成されている。コーティング20は、主面15上に形成されている。光学素子1a~1dは、(i)d1<d0かつd1<d2の条件又は(ii)d2<d1<d0の条件を満たす。光学素子1a及び光学素子1cは、(i)d1<d0かつd1<d2の条件を満たす。光学素子1b及び光学素子1dは、(ii)d2<d1<d0の条件を満たす。d0は、中央部11の中心PCにおけるコーティング20の厚みである。d1は、光軸Aに垂直な方向における中心PCからの距離が境界Bと中心PCとの距離の90%である位置P90における、コーティング20の厚みである。境界Bは、中央部11と周縁部12との境界である。d2は、光軸Aに垂直な方向における中心PCからの距離が境界Bと中心PCとの距離の110%である位置P110における、コーティング20の厚みである。なお、厚みd0、d1、及びd2は、主面15の法線方向における厚みを意味する。 As shown in FIGS. 1A, 1B, 1C, and 1D, each of the optical elements 1a, 1b, 1c, and 1d includes a body 10 and a coating 20. The main body 10 has a main surface 15. The main surface 15 includes a central portion 11 and a peripheral portion 12. The central portion 11 has a convex surface or a concave surface. In the optical element 1a and the optical element 1b, the central portion 11 has a convex surface. In the optical element 1c and the optical element 1d, the central portion 11 has a concave surface. The peripheral portion 12 is formed around the central portion 11. The coating 20 is formed on the main surface 15. The optical elements 1a to 1d satisfy the conditions (i) d 1 <d 0 and d 1 <d 2 or (ii) d 2 <d 1 <d 0 . The optical elements 1a and 1c satisfy the conditions of (i) d 1 <d 0 and d 1 <d 2 . The optical elements 1b and 1d satisfy the condition (ii) d 2 <d 1 <d 0 . d 0 is the thickness of the coating 20 at the center P C of the central portion 11. d 1 is the thickness of the coating 20 at the position P 90 where the distance from the center P C in the direction perpendicular to the optical axis A is 90% of the distance between the boundary B and the center P C. The boundary B is a boundary between the central portion 11 and the peripheral portion 12. d 2 is the thickness of the coating 20 at the position P 110 where the distance from the center P C in the direction perpendicular to the optical axis A is 110% of the distance between the boundary B and the center P C. The thicknesses d 0 , d 1 and d 2 mean the thickness of the principal surface 15 in the normal direction.
 図2は、比較例に係る光学素子2を示す。光学素子2は、特に説明する部分を除き、光学素子1aと同様に構成されている。光学素子1aの構成要素に対応する光学素子2の構成要素には同一の符号を付し、詳細な説明を省略する。 FIG. 2 shows an optical element 2 according to a comparative example. The optical element 2 is configured in the same manner as the optical element 1a, except for the part particularly described. The constituent elements of the optical element 2 corresponding to the constituent elements of the optical element 1a are designated by the same reference numerals, and detailed description thereof will be omitted.
 光学素子2において、d2>d1>d0の条件が満たされている。この場合、d2及びd1がd0より大きく、コーティング20の位置P90の近くに発生する応力及びコーティング20の位置P110の近くに発生する応力が大きくなりやすい。また、これらの応力の向きは異なるので境界B付近でコーティング20を引き裂く力が働きやすい。このため、光学素子2では、温度変化に伴ってコーティング20にクラックが発生しやすいと考えられる。 In the optical element 2, the condition of d 2 >d 1 >d 0 is satisfied. In this case, d 2 and d 1 are larger than d 0 , and the stress generated near the position P 90 of the coating 20 and the stress generated near the position P 110 of the coating 20 are likely to be large. Further, since the directions of these stresses are different, a force that tears the coating 20 near the boundary B easily works. Therefore, in the optical element 2, it is considered that cracks are likely to occur in the coating 20 due to the temperature change.
 一方、光学素子1a及び光学素子1cのように、(i)d1<d0かつd1<d2の条件が満たされていると、コーティング20の位置P90の近くに発生する応力が小さくなり、境界B付近においてコーティング20を引き裂こうとする力が小さくなる。これにより、温度変化に伴ってコーティング20にクラックが発生しにくい。 On the other hand, when the conditions (i) d 1 <d 0 and d 1 <d 2 are satisfied as in the optical elements 1a and 1c, the stress generated near the position P 90 of the coating 20 is small. Therefore, the force to tear the coating 20 near the boundary B becomes small. As a result, cracks are unlikely to occur in the coating 20 with changes in temperature.
 光学素子1b及び光学素子1dのように、(ii)d2<d1<d0の条件が満たされていると、コーティング20の位置P90の近くに発生する応力及びコーティング20の位置P110の近くに発生する応力が小さくなりやすい。このため、境界B付近においてコーティング20を引き裂こうとする力が小さくなる。これにより、温度変化に伴ってコーティング20にクラックが発生しにくい。 If the condition (ii) d 2 <d 1 <d 0 is satisfied as in the optical element 1b and the optical element 1d, the stress generated near the position P 90 of the coating 20 and the position P 110 of the coating 20 are satisfied. The stress generated in the vicinity of is easily reduced. Therefore, the force to tear the coating 20 near the boundary B becomes small. As a result, cracks are unlikely to occur in the coating 20 with changes in temperature.
 光学素子1a及び光学素子1cのそれぞれは、1<d0/d1<2の条件、及び1<d2/d1<2の条件をさらに満たしていてもよい。これにより、温度変化に伴ってコーティング20にクラックがより発生しにくい。d0/d1の値は、1.05~1.5であってもよく、1.1~1.3であってもよい。d2/d1の値は、1.05~1.5であってもよく、1.1~1.2であってもよい。 Each of the optical element 1a and the optical element 1c may further satisfy the condition of 1<d 0 /d 1 <2 and the condition of 1<d 2 /d 1 <2. As a result, cracks are less likely to occur in the coating 20 with changes in temperature. The value of d 0 /d 1 may be 1.05 to 1.5 or 1.1 to 1.3. The value of d 2 /d 1 may be 1.05 to 1.5, or 1.1 to 1.2.
 光学素子1b及び光学素子1dのそれぞれは、1<d0/d1<2の条件、及び0<d2/d1<1の条件をさらに満たしていてもよい。これにより、温度変化に伴ってコーティング20にクラックがより発生しにくい。d0/d1の値は、1.05~1.5であってもよく、1.1~1.3であってもよい。d2/d1の値は、0.01~0.9であってもよく、0.1~0.7であってもよい。 Each of the optical element 1b and the optical element 1d may further satisfy the condition of 1<d 0 /d 1 <2 and the condition of 0<d 2 /d 1 <1. As a result, cracks are less likely to occur in the coating 20 with changes in temperature. The value of d 0 /d 1 may be 1.05 to 1.5 or 1.1 to 1.3. The value of d 2 /d 1 may be 0.01 to 0.9 or 0.1 to 0.7.
 光学素子1a~1dのそれぞれは、典型的には、レンズである。光学素子1a及び1bのそれぞれは、例えば平凸レンズである。光学素子1c及び1dのそれぞれは、例えば平凹レンズである。中央部11は、例えば、球面であってもよいし、非球面であってもよい。 Each of the optical elements 1a to 1d is typically a lens. Each of the optical elements 1a and 1b is, for example, a plano-convex lens. Each of the optical elements 1c and 1d is, for example, a plano-concave lens. The central portion 11 may be, for example, a spherical surface or an aspherical surface.
 周縁部12は、例えば、平坦面を備える。この平坦面は光軸Aに垂直な平面に平行である。この場合、コーティング20の位置P90の近くに発生する応力の向きが、コーティング20の位置P110の近くに発生する応力の向きと異なり、境界B付近においてコーティング20を引き裂こうとする力が発生する。しかし、光学素子1a~1dのそれぞれにおいて、上記の(i)の条件又は(ii)の条件が満たされているので、温度変化に伴ってコーティング20にクラックが発生しにくい。 The peripheral portion 12 has, for example, a flat surface. This flat surface is parallel to the plane perpendicular to the optical axis A. In this case, the direction of the stress generated near the position P 90 of the coating 20 is different from the direction of the stress generated near the position P 110 of the coating 20, and the force to tear the coating 20 near the boundary B is appear. However, in each of the optical elements 1a to 1d, since the above condition (i) or condition (ii) is satisfied, cracks are less likely to occur in the coating 20 due to temperature changes.
 本体10は、例えば、透光性を有する樹脂によって形成されている。この場合、コーティング20をなす材料の熱膨張係数と本体10の熱膨張係数との差の絶対値が大きくなりやすい。しかし、光学素子1a~1dのそれぞれにおいて、上記の(i)の条件又は(ii)の条件が満たされているので、温度変化に伴ってコーティング20にクラックが発生しにくい。透光性を有する樹脂は特に限定されない。透光性を有する樹脂として、例えば、アクリル樹脂、ポリカーボネート樹脂、及びポリオレフィン系樹脂を挙げることができる。本体10は、透光性を有するガラスによって形成されていてもよい。 The main body 10 is formed of, for example, a translucent resin. In this case, the absolute value of the difference between the coefficient of thermal expansion of the material forming the coating 20 and the coefficient of thermal expansion of the main body 10 tends to be large. However, in each of the optical elements 1a to 1d, since the above condition (i) or condition (ii) is satisfied, cracks are less likely to occur in the coating 20 due to temperature changes. The translucent resin is not particularly limited. Examples of the translucent resin include acrylic resin, polycarbonate resin, and polyolefin resin. The main body 10 may be formed of translucent glass.
 コーティング20は、主面上に形成された膜である限り、特に限定されない。コーティング20は、例えば、反射防止膜である。反射防止膜は、特定の波長範囲の反射を防止する。反射防止膜は、単層膜であってもよいし、多層膜であってもよい。反射防止膜は、例えば、本体10の屈折率よりも低い屈折率を有する材料によって形成された単層膜であってもよい。また、反射防止膜として機能するコーティング10は、高屈折率層と、低屈折率層とが代わる代わる積層された多層膜であってもよい。この場合、高屈折率層をなす材料は、例えば、酸化セリウム、酸化チタン、酸化タンタル、酸化ジルコニウム、又は窒化シリコンである。低屈折率層をなす材料は、例えば、酸化シリコン又はフッ化マグネシウムである。 The coating 20 is not particularly limited as long as it is a film formed on the main surface. The coating 20 is, for example, an antireflection film. The antireflection film prevents reflection in a specific wavelength range. The antireflection film may be a single layer film or a multilayer film. The antireflection film may be, for example, a single-layer film formed of a material having a refractive index lower than that of the main body 10. Further, the coating 10 functioning as an antireflection film may be a laminated multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked. In this case, the material forming the high refractive index layer is, for example, cerium oxide, titanium oxide, tantalum oxide, zirconium oxide, or silicon nitride. The material forming the low refractive index layer is, for example, silicon oxide or magnesium fluoride.
 光学素子1a~1dの製造方法の一例を説明する。本体10の主面15において、位置P90を含む第一領域R1のコーティング液に対する濡れ性を、中心PCを含む第二領域R2のコーティング液に対する濡れ性よりも高める。その後、主面15にコーティング液を塗布してコーティング20を形成する。コーティング液に対する濡れ性が高い第一領域R1では、コーティング液に対する濡れ性が低い第二領域R2に比べて、コーティング20の厚みが小さくなりやすい。このため、この方法は、光学素子1a~1dの製造に適している。コーティング液の塗布は、例えば、スピンコーティングによってなされる。 An example of a method of manufacturing the optical elements 1a to 1d will be described. On the main surface 15 of the main body 10, the wettability of the first region R1 including the position P 90 with the coating liquid is higher than the wettability of the second region R2 including the center P C with the coating liquid. After that, the coating liquid is applied to the main surface 15 to form the coating 20. In the first region R1 having high wettability with the coating liquid, the thickness of the coating 20 is likely to be smaller than in the second region R2 having low wettability with the coating liquid. Therefore, this method is suitable for manufacturing the optical elements 1a to 1d. The coating liquid is applied by, for example, spin coating.
 第一領域R1には、位置P110が含まれていてもよい。 The position P 110 may be included in the first region R1.
 第一領域R1のコーティング液に対する濡れ性を第二領域R2のコーティング液に対する濡れ性よりも高める方法は、特定の方法に限定されない。例えば、図3Aに示す通り、本体10の主面15上にマスク50を配置した状態で所定のプラズマPを主面15に対して照射することによって、第一領域R1のコーティング液に対する濡れ性を第二領域R2のコーティング液に対する濡れ性よりも高めることができる。 The method of increasing the wettability of the first region R1 with the coating liquid more than the wettability of the second region R2 with the coating liquid is not limited to a particular method. For example, as shown in FIG. 3A, by irradiating the main surface 15 with a predetermined plasma P in a state where the mask 50 is arranged on the main surface 15 of the main body 10, the wettability of the first region R1 with respect to the coating liquid is improved. The wettability of the second region R2 with respect to the coating liquid can be improved.
 図3Bに示す通り、マスク50は、環状の貫通孔を有する板状の部材である。マスク50は、中央部51と、外周部52と、支持部53とを有する。中央部51は円板状である。外周部52は、中央部51を取り囲む環状の部材であり、円状の貫通孔を有する。中央部51の軸線及び円状の貫通孔の軸線は一致している。中央部51の半径は、光軸Aに垂直な方向における中心PCからの距離が境界Bと中心PCとの距離の90%より小さい。加えて、外周部52の円状の貫通孔の半径は、光軸Aに垂直な方向における中心PCからの距離が境界Bと中心PCとの距離の90%より大きい。このため、中央部51の中心が光軸A上に位置するようにマスク50を配置することにより、環状の貫通孔を通過したプラズマが第一領域R1に選択的に照射される。その結果、第一領域R1のコーティング液に対する濡れ性を第二領域R2のコーティング液に対する濡れ性よりも高めることができる。 As shown in FIG. 3B, the mask 50 is a plate-shaped member having an annular through hole. The mask 50 has a central portion 51, an outer peripheral portion 52, and a support portion 53. The central portion 51 has a disc shape. The outer peripheral portion 52 is an annular member that surrounds the central portion 51 and has a circular through hole. The axis of the central portion 51 and the axis of the circular through hole coincide with each other. The radius of the central portion 51 is such that the distance from the center P C in the direction perpendicular to the optical axis A is smaller than 90% of the distance between the boundary B and the center P C. In addition, the radius of the circular through hole of the outer peripheral portion 52 is such that the distance from the center P C in the direction perpendicular to the optical axis A is larger than 90% of the distance between the boundary B and the center P C. Therefore, by disposing the mask 50 so that the center of the central portion 51 is located on the optical axis A, the plasma that has passed through the annular through hole is selectively applied to the first region R1. As a result, the wettability of the first region R1 with the coating liquid can be made higher than the wettability of the second region R2 with the coating liquid.
 紫外線(UV)照射に伴い発生するオゾンによって本体10の主面15の一部を選択的に改質することによって、第一領域R1のコーティング液に対する濡れ性を第二領域R2のコーティング液に対する濡れ性よりも高めてもよい。 By selectively modifying a part of the main surface 15 of the main body 10 with ozone generated by irradiation of ultraviolet rays (UV), the wettability of the first region R1 with the coating liquid can be improved. It may be higher than sex.
 光学素子1a~1dの製造方法の別の一例を説明する。この製造方法において、本体10の主面15に対し、蒸着によりコーティング20を形成する。この蒸着において、主面15における位置P90を含む第一領域R1にコーティング20のための物質が付着する確率が、中心PCを含む第二領域R2にコーティング20のための物質が付着する確率よりも低い。これにより、第一領域R1では、第二領域R2に比べて、コーティング20の厚みが小さくなりやすい。このため、この方法は、光学素子1a~1dの製造に適している。 Another example of the method of manufacturing the optical elements 1a to 1d will be described. In this manufacturing method, the coating 20 is formed on the main surface 15 of the main body 10 by vapor deposition. In this vapor deposition, the probability that the substance for the coating 20 adheres to the first region R1 including the position P 90 on the main surface 15 is the probability that the substance for the coating 20 adheres to the second region R2 including the center P C. Lower than. As a result, the thickness of the coating 20 in the first region R1 tends to be smaller than that in the second region R2. Therefore, this method is suitable for manufacturing the optical elements 1a to 1d.
 第一領域R1には、位置P110が含まれていてもよい。 The position P 110 may be included in the first region R1.
 蒸着は、物理蒸着であってもよいし、化学蒸着であってもよい。 The vapor deposition may be physical vapor deposition or chemical vapor deposition.
 第一領域R1にコーティング20のための物質が付着する確率を、第二領域R2にコーティング20のための物質が付着する確率よりも低減する方法は、特に限定されない。例えば、図4Aに示す蒸着装置70を用いて、光学素子1a~1dを製造できる。 The method of reducing the probability that the substance for the coating 20 adheres to the first region R1 is lower than the probability that the substance for the coating 20 adheres to the second region R2 is not particularly limited. For example, the vapor deposition apparatus 70 shown in FIG. 4A can be used to manufacture the optical elements 1a to 1d.
 蒸着装置70は、真空蒸着のための装置であり、真空チャンバー72と、ホルダー74と、マスク75と、蒸着源76とを備えている。ホルダー74、マスク75、及び蒸着源76は、真空チャンバー72の内部に配置されている。蒸着装置70において、本体10の主面15が蒸着源76を向くように本体10が配置される。ホルダー74は、回転可能に構成されている。本体10がホルダー74に固定された状態でホルダー74が回転する。本体10をホルダー74に固定する方法として、公知の方法を利用できる。例えば、V溝又はU溝などで本体10のコバ面を掴む方法を用いることができる。マスク75は、ホルダー74と、蒸着源76との間に配置されている。図4Bに示す通り、マスク75は、マスク75の中央からマスク75の周縁に向かって窄んだ切り欠きを有する。これにより、蒸着装置70における蒸着において、第一領域R1にコーティング20のための物質が付着する確率が、第二領域R2にコーティング20のための物質が付着する確率よりも低くなる。 The vapor deposition device 70 is a device for vacuum vapor deposition, and includes a vacuum chamber 72, a holder 74, a mask 75, and a vapor deposition source 76. The holder 74, the mask 75, and the vapor deposition source 76 are arranged inside the vacuum chamber 72. In the vapor deposition device 70, the main body 10 is arranged so that the main surface 15 of the main body 10 faces the vapor deposition source 76. The holder 74 is configured to be rotatable. The holder 74 rotates while the main body 10 is fixed to the holder 74. As a method for fixing the main body 10 to the holder 74, a known method can be used. For example, a method of gripping the edge surface of the main body 10 with a V groove or a U groove can be used. The mask 75 is arranged between the holder 74 and the vapor deposition source 76. As shown in FIG. 4B, the mask 75 has a notch narrowed from the center of the mask 75 toward the peripheral edge of the mask 75. Thereby, in the vapor deposition in the vapor deposition apparatus 70, the probability that the substance for the coating 20 adheres to the first region R1 is lower than the probability that the substance for the coating 20 adheres to the second region R2.
 以下、実施例により本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples below.
 <実施例1>
 ポリメチルメタクリレート製の平凸レンズを準備した。この平凸レンズの凸面を有する主面は、凸面をなす中央部と、その中央部の周囲に形成された周縁部を有していた。中央部の凸面は、4mmの曲率半径を有する球面であった。周縁部は、光軸に垂直な面に平行な平坦面をなしていた。平凸レンズの直径は7mmであり、凸面の有効直径は5mmであった。
<Example 1>
A plano-convex lens made of polymethylmethacrylate was prepared. The main surface having the convex surface of this plano-convex lens has a central portion forming a convex surface and a peripheral portion formed around the central portion. The convex surface at the center was a spherical surface having a radius of curvature of 4 mm. The peripheral portion had a flat surface parallel to the surface perpendicular to the optical axis. The diameter of the plano-convex lens was 7 mm, and the effective diameter of the convex surface was 5 mm.
 図3に示すマスク50と同様の態様のマスクを準備した。このマスクは、上記の平凸レンズにおける凸面の有効直径の80%~120%に相当する領域に対し、指向性のプラズマが照射されるように作製されていた。このマスクを、上記の平凸レンズの上方に配置して、大気圧プラズマ装置(ウェル社製、製品名:WADP-200A)を用いて平凸レンズの凸面を有する主面の表面改質処理を行った。この表面改質処理において、Ar(アルゴン)ガスを15slm(standard liter per minute)の流量で供給し、O2(酸素)を15sccm(standard cubic centimeter per minute)の流量で供給し、RF放電パワーを200Wに設定した。平凸レンズとマスクとは、それらの中心軸が一致するように配置し、平凸レンズとマスクとの間隔を、スペーサを用いて約1mmに調整した。平凸レンズとマスクとを、ワイヤー製のベルトコンベアで一方向に搬送しつつ、上方向からプラズマを照射した。また、マスクの支持部の影が平凸レンズの表面に生じるので、平凸レンズとマスクとの中心軸周りに位相を5°程度変えて、2回のプラズマ照射を行った。 A mask having the same mode as the mask 50 shown in FIG. 3 was prepared. This mask was manufactured such that the directional plasma was applied to a region corresponding to 80% to 120% of the effective diameter of the convex surface of the plano-convex lens. This mask was placed above the plano-convex lens, and the surface modification treatment of the main surface having the convex surface of the plano-convex lens was performed using an atmospheric pressure plasma device (Well, product name: WADP-200A). .. In this surface modification treatment, Ar (argon) gas is supplied at a flow rate of 15 slm (standard liter per minute), O 2 (oxygen) is supplied at a flow rate of 15 sccm (standard cubic centimeter per minute), and RF discharge power is supplied. It was set to 200W. The plano-convex lens and the mask were arranged so that their central axes coincided with each other, and the distance between the plano-convex lens and the mask was adjusted to about 1 mm using a spacer. The plano-convex lens and the mask were conveyed in one direction by a belt conveyor made of wire, and plasma was irradiated from above. Further, since the shadow of the supporting portion of the mask is generated on the surface of the plano-convex lens, the plasma irradiation was performed twice by changing the phase about 5° around the central axis of the plano-convex lens and the mask.
 テトラエトキシシラン(TEOS、東京化成工業社製)0.6g、メチルトリエトキシシラン(MTES、東京化成工業社製)1.18g、0.3重量%のギ酸(キシダ化学社製)0.82g、中空シリカゾル(日揮触媒化成社製、製品名:スルーリア4110、シリカ固形分:約25wt%)3g、及びエタノール(キシダ化学社製)22.4gを室温で混合し、35℃で3時間反応させて、コーティング液を調製した。 0.6 g of tetraethoxysilane (TEOS, manufactured by Tokyo Chemical Industry Co., Ltd.), 1.18 g of methyltriethoxysilane (MTES, manufactured by Tokyo Chemical Industry Co., Ltd.), 0.82 g of 0.3% by weight formic acid (manufactured by Kishida Chemical Co., Ltd.), 3 g of hollow silica sol (manufactured by JGC Catalysts & Chemicals, product name: Thruria 4110, silica solid content: about 25 wt%) and 22.4 g of ethanol (manufactured by Kishida Chemical Co., Ltd.) were mixed at room temperature and reacted at 35° C. for 3 hours. A coating solution was prepared.
 次に、スピンコータ(ミカサ社製、製品名:MS-B100)を用いて、平凸レンズにコーティング液を塗布し塗膜を形成した。平凸レンズの凸面とは反対側のフラットな面をスピンコータのスピン軸上に真空吸着により固定した。次に、平凸レンズの凸面を上方に向けた状態でスピンコータの回転数を徐々に上げ、その回転数を500rpm(revolutions per minute)に保った。その後、適量のコーティング液をシリンジで平凸レンズに向かって滴下した。次に、スピンコータの回転数を4000rpmまで上げて25秒間保ち、余剰なコーティング液をとばした。その後、平凸レンズを取り出し、平凸レンズを加熱オーブンに入れて、平凸レンズの周囲の温度を徐々に温度を上昇させた。その温度を200℃で10分間保ち、塗膜を乾燥させ、単層の反射防止膜を形成した。このようにして、実施例1に係る光学素子を作製した。 Next, using a spin coater (Mikasa, product name: MS-B100), the coating liquid was applied to the plano-convex lens to form a coating film. The flat surface opposite to the convex surface of the plano-convex lens was fixed on the spin axis of the spin coater by vacuum adsorption. Next, the rotation speed of the spin coater was gradually increased with the convex surface of the plano-convex lens facing upward, and the rotation speed was kept at 500 rpm (revolutions per minute). After that, an appropriate amount of the coating liquid was dropped toward the plano-convex lens with a syringe. Next, the rotation speed of the spin coater was raised to 4000 rpm and kept for 25 seconds, and the excess coating liquid was skipped. Then, the plano-convex lens was taken out, and the plano-convex lens was placed in a heating oven to gradually raise the temperature around the plano-convex lens. The temperature was kept at 200° C. for 10 minutes, and the coating film was dried to form a single-layer antireflection film. In this way, the optical element according to Example 1 was manufactured.
 顕微分光光度計(日本分光社製、製品名:MSV-5000)を用いて、実施例1に係る光学素子における反射防止膜の厚みを測定した。この測定において、平凸レンズの凸面の中心における反射防止膜の厚みd0と、凸面の直径の90%に相当する直径に対応する位置での凸面上の反射防止膜の厚みd1と、凸面の直径の110%に相当する直径に対応する位置での凸面の外側の平坦な周縁部上の反射防止膜の厚みd2とを測定した。その結果、実施例1に係る光学素子において、d0=115nm、d1=105nm、及びd2=120nmであり、(i)d1<d0かつd1<d2の条件が満たされていた。平凸レンズの凸面の端部付近の反射防止膜は、凸面に沿った反射防止膜における圧縮応力及び平坦な周縁部に沿った反射防止膜における圧縮応力により、2つの方向の応力を受けて引っ張られると考えられる。このため、平凸レンズの凸面の端部付近の反射防止膜の厚みが小さくなったと考えられる。 The thickness of the antireflection film in the optical element according to Example 1 was measured using a microspectrophotometer (manufactured by JASCO Corporation, product name: MSV-5000). In this measurement, the thickness d 0 of the antireflection film at the center of the convex surface of the plano-convex lens, the thickness d 1 of the antireflection film on the convex surface at the position corresponding to 90% of the diameter of the convex surface, and the thickness of the convex surface The thickness d 2 of the antireflection film on the flat peripheral portion outside the convex surface at the position corresponding to the diameter corresponding to 110% of the diameter was measured. As a result, in the optical element according to Example 1, d 0 =115 nm, d 1 =105 nm, and d 2 =120 nm, and (i) the conditions of d 1 <d 0 and d 1 <d 2 are satisfied. It was The antireflection film near the end of the convex surface of the plano-convex lens is pulled by receiving stress in two directions due to the compressive stress in the antireflection film along the convex surface and the compressive stress in the antireflection film along the flat peripheral edge. it is conceivable that. Therefore, it is considered that the thickness of the antireflection film near the end of the convex surface of the plano-convex lens was reduced.
 <実施例2>
 下記の点以外は、実施例1と同様にして、実施例2に係る光学素子を作製した。上記の平凸レンズにおける凸面の有効直径の80%~140%に相当する領域に対し、指向性のプラズマが照射されるように作製されたマスクを用いた。コーティング液の形成において、スピンコータ(ミカサ社製、製品名:MS-B100)を用いて、平凸レンズを固定した状態でスピンコータの回転数を徐々に上げて、1500rpmに保った。その後、適量のコーティング液を平凸レンズに向かって滴下した。その後、スピンコータの回転数をさらに上げて4000rpmで25秒間保った。その後、平凸レンズを取り出し、平凸レンズを加熱オーブンに入れて、平凸レンズの周囲の温度を徐々に上昇させた。その温度を200℃で10分間保ち、塗膜を乾燥させ、単層の反射防止膜を形成した。このようにして、実施例2に係る光学素子を得た。
<Example 2>
An optical element according to Example 2 was made in the same manner as Example 1 except for the following points. A mask manufactured so that directional plasma was irradiated to a region corresponding to 80% to 140% of the effective diameter of the convex surface of the plano-convex lens was used. In forming the coating liquid, a spin coater (manufactured by Mikasa, product name: MS-B100) was used, and the rotation speed of the spin coater was gradually increased and kept at 1500 rpm while the plano-convex lens was fixed. Then, an appropriate amount of the coating liquid was dripped toward the plano-convex lens. Then, the spin coater was further rotated at 4000 rpm for 25 seconds. Then, the plano-convex lens was taken out, and the plano-convex lens was placed in a heating oven to gradually raise the temperature around the plano-convex lens. The temperature was kept at 200° C. for 10 minutes, and the coating film was dried to form a single-layer antireflection film. Thus, the optical element according to Example 2 was obtained.
 実施例2に係る光学素子の反射防止膜の厚みd0、d1、及びd2を、実施例1と同様にして測定した。その結果、実施例2に係る光学素子において、d0=115nm、d1=105nm、及びd2=95nmであり、(ii)d2<d1<d0の条件が満たされていた。実施例2に係る光学素子では、実施例1に係る光学素子に比べて、周縁部がより広い面積で表面改質されており、周縁部における反射防止膜の厚みがより小さくなっていた。 The thicknesses d 0 , d 1 and d 2 of the antireflection film of the optical element according to Example 2 were measured in the same manner as in Example 1. As a result, in the optical element according to Example 2, d 0 =115 nm, d 1 =105 nm, and d 2 =95 nm, and (ii) the condition of d 2 <d 1 <d 0 was satisfied. In the optical element according to Example 2, as compared with the optical element according to Example 1, the peripheral portion was surface-modified with a wider area, and the thickness of the antireflection film at the peripheral portion was smaller.
 <実施例3>
 実施例1で用いた平凸レンズと同一の平凸レンズに対し、図4A及び図4Bに示す蒸着装置70と同様に構成された蒸着装置を用いて、平凸レンズの凸面を含む主面に対し真空蒸着を行い、反射防止膜を形成した。真空蒸着において、真空ポンプを用いて真空チャンバーの内部の圧力を約10-3Paまで減圧し、フッ化マグネシウム(MgF2)を加熱して蒸着源より蒸発させた。真空蒸着においてホルダーを所定の時間回転させた。真空蒸着の時間は、平凸レンズ上の反射防止膜の厚みが所定の厚みになるように調整した。このようにして、実施例3に係る光学素子を得た。
<Example 3>
For the same plano-convex lens as that used in Example 1, a vapor deposition apparatus configured in the same manner as the vapor deposition apparatus 70 shown in FIGS. 4A and 4B was used to perform vacuum vapor deposition on the main surface including the convex surface of the plano-convex lens. Then, an antireflection film was formed. In vacuum deposition, the pressure inside the vacuum chamber was reduced to about 10 −3 Pa using a vacuum pump, and magnesium fluoride (MgF 2 ) was heated and evaporated from the deposition source. The holder was rotated for a predetermined time in vacuum deposition. The vacuum deposition time was adjusted so that the antireflection film on the plano-convex lens had a predetermined thickness. Thus, the optical element according to Example 3 was obtained.
 実施例3に係る光学素子の反射防止膜の厚みd0、d1、及びd2を、実施例1と同様にして測定した。その結果、実施例3に係る光学素子において、d0=115nm、d1=105nm、及びd2=95nmであり、(ii)d2<d1<d0の条件が満たされていた。 The thicknesses d 0 , d 1 and d 2 of the antireflection film of the optical element according to Example 3 were measured in the same manner as in Example 1. As a result, in the optical element according to Example 3, d 0 =115 nm, d 1 =105 nm, and d 2 =95 nm, and (ii) the condition of d 2 <d 1 <d 0 was satisfied.
 <比較例1>
 下記の点以外は、実施例1と同様にして、比較例1に係る光学素子を作製した。比較例1に係る光学素子を作製において、上記の平凸レンズに対してプラズマを照射する処理は行わなかった。スピンコータ(ミカサ社製、製品名:MS-B100)を用いて、平凸レンズを固定した状態で適量のコーティング液を平凸レンズに向かって滴下した。その後、スピンコータの回転数を徐々に上げて4000rpmで25秒間保った。その後、平凸レンズを取り出し、平凸レンズを加熱オーブンに入れて、平凸レンズの周囲の温度を徐々に温度を上昇させた。その温度を200℃で10分間保ち、塗膜を乾燥させ、単層の反射防止膜を形成した。このようにして、比較例1に係る光学素子を得た。
<Comparative Example 1>
An optical element according to Comparative Example 1 was produced in the same manner as in Example 1 except for the following points. In the production of the optical element according to Comparative Example 1, the above plano-convex lens was not irradiated with plasma. Using a spin coater (manufactured by Mikasa, product name: MS-B100), an appropriate amount of the coating liquid was dropped toward the plano-convex lens with the plano-convex lens fixed. Then, the rotation speed of the spin coater was gradually increased and kept at 4000 rpm for 25 seconds. Then, the plano-convex lens was taken out, and the plano-convex lens was placed in a heating oven to gradually raise the temperature around the plano-convex lens. The temperature was kept at 200° C. for 10 minutes, and the coating film was dried to form a single-layer antireflection film. In this way, the optical element according to Comparative Example 1 was obtained.
 比較例1に係る光学素子の反射防止膜の厚みd0、d1、及びd2を、実施例1と同様にして測定した。その結果、比較例1に係る光学素子において、d0=115nm、d1=131nm、及びd2=150nmであった。 The thicknesses d 0 , d 1 and d 2 of the antireflection film of the optical element according to Comparative Example 1 were measured in the same manner as in Example 1. As a result, in the optical element according to Comparative Example 1, d 0 =115 nm, d 1 =131 nm, and d 2 =150 nm.
 <温度サイクル試験>
 各実施例に係る光学素子及び比較例1に係る光学素子に対し、温度サイクル試験を実施した。温度サイクル試験において、光学素子の周囲の温度を-40℃~85℃の温度範囲で15分間かけて変動させるサイクルを500回繰り返した。各実施例に係る光学素子において、温度サイクル試験後に反射防止膜の表面にクラックは発生していなかった。
<Temperature cycle test>
A temperature cycle test was performed on the optical element according to each example and the optical element according to Comparative Example 1. In the temperature cycle test, a cycle in which the temperature around the optical element was changed in the temperature range of −40° C. to 85° C. over 15 minutes was repeated 500 times. In the optical element according to each example, no crack was generated on the surface of the antireflection film after the temperature cycle test.
 一方、図5A及び図5Bに示す通り、比較例1に係る光学素子において、温度サイクル試験後に反射防止膜の表面にクラックが発生した。
 
On the other hand, as shown in FIGS. 5A and 5B, in the optical element according to Comparative Example 1, cracks occurred on the surface of the antireflection film after the temperature cycle test.

Claims (7)

  1.  凸面又は凹面をなす中央部と、前記中央部の周囲に形成された周縁部とを含む主面を有する本体と、
     前記主面上に形成されたコーティングと、を備え、
     (i)d1<d0かつd1<d2の条件又は(ii)d2<d1<d0の条件を満たす、光学素子。
    0は、前記中央部の中心における前記コーティングの厚みである。
    1は、光軸に垂直な方向における前記中心からの距離が前記中央部と前記周縁部との境界と前記中心との距離の90%である位置における前記コーティングの厚みである。
    2は、前記光軸に垂直な方向における前記中心からの距離が前記境界と前記中心との距離の110%である位置における前記コーティングの厚みである。
    A main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion;
    A coating formed on the main surface,
    An optical element satisfying the conditions of (i) d 1 <d 0 and d 1 <d 2 or (ii) d 2 <d 1 <d 0 .
    d 0 is the thickness of the coating at the center of the center.
    d 1 is the thickness of the coating at a position where the distance from the center in the direction perpendicular to the optical axis is 90% of the distance between the center and the peripheral edge and the center.
    d 2 is the thickness of the coating at a position where the distance from the center in the direction perpendicular to the optical axis is 110% of the distance between the boundary and the center.
  2.  前記周縁部は、平坦面をなす、請求項1に記載の光学素子。 The optical element according to claim 1, wherein the peripheral portion forms a flat surface.
  3.  前記コーティングは、反射防止膜である、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the coating is an antireflection film.
  4.  前記(i)の条件、1<d0/d1<2の条件、及び1<d2/d1<2の条件を満たす、請求項1~3のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 3, which satisfies the condition (i), the condition 1<d 0 /d 1 <2, and the condition 1<d 2 /d 1 <2.
  5.  前記(ii)の条件、1<d0/d1<2の条件、及び0<d2/d1<1の条件を満たす、請求項1~3のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 3, which satisfies the condition (ii), the condition 1<d 0 /d 1 <2, and the condition 0<d 2 /d 1 <1.
  6.  凸面又は凹面をなす中央部と、前記中央部の周囲に形成された周縁部とを含む主面を有する本体の前記主面において、光軸に垂直な方向における前記中央部の中心からの距離が前記中央部と前記周縁部との境界と前記中心との距離の90%である位置を含む第一領域のコーティング液に対する濡れ性を、前記中心を含む第二領域の前記コーティング液に対する濡れ性よりも高めることと、
     前記主面に前記コーティング液を塗布してコーティングを形成することと、を備えた、
     光学素子の製造方法。
    In the main surface of the main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion, the distance from the center of the central portion in the direction perpendicular to the optical axis is The wettability of the first region including the position that is 90% of the distance between the center and the boundary between the peripheral portion and the center from the wettability of the second region including the center to the coating liquid is Also increase,
    Applying the coating liquid to the main surface to form a coating,
    Optical element manufacturing method.
  7.  凸面又は凹面をなす中央部と、前記中央部の周囲に形成された周縁部とを含む主面を有する本体の前記主面に対し、蒸着によりコーティングを形成することを備え、
     前記蒸着において、光軸に垂直な方向における前記中央部の中心からの距離が前記中央部と前記周縁部との境界と前記中心との距離の90%である位置を含む第一領域に前記コーティングのための物質が付着する確率が、前記中心を含む第二領域に前記コーティングのための物質が付着する確率よりも低い、
     光学素子の製造方法。
    A coating is formed by vapor deposition on the main surface of the main body having a main surface including a central portion forming a convex surface or a concave surface and a peripheral portion formed around the central portion,
    In the vapor deposition, the coating is applied to a first region including a position where a distance from a center of the central portion in a direction perpendicular to an optical axis is 90% of a distance between a boundary between the central portion and the peripheral portion and the center. The probability of the substance for depositing is lower than the probability of depositing the substance for the coating in the second region including the center,
    Optical element manufacturing method.
PCT/JP2020/004180 2019-02-06 2020-02-04 Optical element and optical element manufacturing method WO2020162463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-019573 2019-02-06
JP2019019573 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162463A1 true WO2020162463A1 (en) 2020-08-13

Family

ID=71948005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004180 WO2020162463A1 (en) 2019-02-06 2020-02-04 Optical element and optical element manufacturing method

Country Status (2)

Country Link
TW (1) TW202037930A (en)
WO (1) WO2020162463A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916669A (en) * 1994-11-10 1999-06-29 2C Optics, Inc. Enhanced abrasion resistance radiation curable coating for substrates
JP2000353594A (en) * 1998-03-17 2000-12-19 Seiko Epson Corp Board for patterning thin film
JP2003222707A (en) * 2002-01-31 2003-08-08 Konica Corp Optical lens and optical information recording reproduction device
JP2003302502A (en) * 2002-04-09 2003-10-24 Canon Inc Optical element
JP2006195327A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Optical element, its manufacturing method, lens unit using it and electronic equipment using it
JP2009104732A (en) * 2007-10-25 2009-05-14 Hitachi Maxell Ltd Optical pickup lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916669A (en) * 1994-11-10 1999-06-29 2C Optics, Inc. Enhanced abrasion resistance radiation curable coating for substrates
JP2000353594A (en) * 1998-03-17 2000-12-19 Seiko Epson Corp Board for patterning thin film
JP2003222707A (en) * 2002-01-31 2003-08-08 Konica Corp Optical lens and optical information recording reproduction device
JP2003302502A (en) * 2002-04-09 2003-10-24 Canon Inc Optical element
JP2006195327A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Optical element, its manufacturing method, lens unit using it and electronic equipment using it
JP2009104732A (en) * 2007-10-25 2009-05-14 Hitachi Maxell Ltd Optical pickup lens

Also Published As

Publication number Publication date
TW202037930A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5304112B2 (en) Manufacturing method of glass substrate with thin film
JP5840448B2 (en) Antireflection film and method of manufacturing antireflection film
JP4910619B2 (en) Manufacturing method for eyeglass lenses
JP2006267561A (en) Optical element and manufacturing method thereof
EP1249717A2 (en) Antireflection coating and optical element using the same
JP6411517B2 (en) Antireflection film and optical member provided with antireflection film
JPS58217901A (en) Laminate vapor-deposited on both sides
JP6862192B2 (en) Optical element
JP2016139138A (en) Method of producing reflection-reducing layer system, and reflection-reducing layer system
US20060087739A1 (en) Low net stress multilayer thin film optical filter
US20060245056A1 (en) Thin-film structure with counteracting layer
US10644048B2 (en) Anti-reflective coating with high refractive index material at air interface
JP4623349B2 (en) Thin film type ND filter and manufacturing method thereof
WO2020162463A1 (en) Optical element and optical element manufacturing method
WO2021024834A1 (en) Antireflection film-equipped optical member and production method therefor
JP2007279203A (en) Multilayer antireflection layer and method for manufacturing the same, and plastic lens
JP2009139775A5 (en)
US6833600B2 (en) Optical component and method manufacturing the same
US20060187551A1 (en) Reflector and method for producing the same
JP2009251167A (en) Dielectric multilayer film
JP4281146B2 (en) Resin bonded optical element
US20080062523A1 (en) Optical diffraction grating and method of manufacture
CN112444901A (en) Optical device with embedded organic groups
JPS58223101A (en) Production of polygonal mirror
JP2000171622A (en) Internal reflection type optical element and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP