JP5022654B2 - Optical element and manufacturing method thereof - Google Patents

Optical element and manufacturing method thereof Download PDF

Info

Publication number
JP5022654B2
JP5022654B2 JP2006258629A JP2006258629A JP5022654B2 JP 5022654 B2 JP5022654 B2 JP 5022654B2 JP 2006258629 A JP2006258629 A JP 2006258629A JP 2006258629 A JP2006258629 A JP 2006258629A JP 5022654 B2 JP5022654 B2 JP 5022654B2
Authority
JP
Japan
Prior art keywords
optical element
film
hfo
ion beam
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006258629A
Other languages
Japanese (ja)
Other versions
JP2008076941A (en
Inventor
孝彦 平井
啓明 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006258629A priority Critical patent/JP5022654B2/en
Publication of JP2008076941A publication Critical patent/JP2008076941A/en
Application granted granted Critical
Publication of JP5022654B2 publication Critical patent/JP5022654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光素子,受光素子,レンズ等の光学素子及びその製造方法に関する。   The present invention relates to an optical element such as a light emitting element, a light receiving element, and a lens, and a method for manufacturing the same.

従来より、高硬度,耐湿性を目的とした光学素子の保護膜としてはSiO膜が利用されている。
特開2001−174612号公報
Conventionally, a SiO 2 film has been used as a protective film for optical elements aimed at high hardness and moisture resistance.
JP 2001-174612 A

しかしながら、SiO膜は0.3〜6.0[μm]の範囲内の波長を有する光しか透過しないために、保護膜として適用可能な光学素子の種類に制約がある。このような背景から、高硬度,耐湿性,耐熱性,化学的安定性等の性質を備え、紫外線領域から赤外線領域の広い波長領域(0.3〜12.0[μm])の光を透過可能な保護膜の提供が望まれている。 However, since the SiO 2 film transmits only light having a wavelength in the range of 0.3 to 6.0 [μm], there are restrictions on the types of optical elements that can be used as the protective film. Against such a background, it has properties such as high hardness, moisture resistance, heat resistance, chemical stability, and transmits light in a wide wavelength range (0.3 to 12.0 [μm]) from the ultraviolet range to the infrared range. It is desired to provide a possible protective film.

本発明は、このような課題を解決するためになされたものであり、その目的は、高硬度,耐湿性,耐熱性,化学的安定性等の性質を備え、紫外線領域から赤外線領域の広い波長領域の光を透過可能な保護膜を備える光学素子及びその製造方法を提供することにある。   The present invention has been made to solve such problems, and its purpose is to provide properties such as high hardness, moisture resistance, heat resistance, chemical stability, etc., and a wide wavelength from the ultraviolet region to the infrared region. An object of the present invention is to provide an optical element including a protective film capable of transmitting light in a region and a manufacturing method thereof.

上記課題を解決するために、本発明に係る光学素子の製造方法は、光学素子基板の表面にイオンビームアシスト蒸着法によりHfO 膜を光学素子基板の保護膜として成膜する工程を有し、前記イオンビームアシスト蒸着法によりHfO 膜を成膜する際、前記光学素子基板の表面に到達するイオンの数を前記光学素子基板の表面に到達する蒸着原子数で除算した値を選定することにより前記HfO 膜の結晶構造を制御する。
In order to solve the above problems, the method of manufacturing an optical element according to the present invention includes a step of forming an HfO 2 film as a protective film of the optical element substrate by an ion beam assisted deposition method on the surface of the optical element substrate. By selecting a value obtained by dividing the number of ions reaching the surface of the optical element substrate by the number of deposited atoms reaching the surface of the optical element substrate when forming the HfO 2 film by the ion beam assisted deposition method. The crystal structure of the HfO 2 film is controlled.

本発明に係る光学素子及びその製造方法によれば、高硬度,耐湿性,耐熱性,化学的安定性等の性質を備え、紫外線領域から赤外線領域の広い波長領域の光を透過可能な保護膜を備える光学素子を提供することができる。   According to the optical element and the manufacturing method thereof according to the present invention, the protective film has properties such as high hardness, moisture resistance, heat resistance, chemical stability, and the like and can transmit light in a wide wavelength region from the ultraviolet region to the infrared region. An optical element can be provided.

以下、図面を参照して、本発明の実施形態となる光学素子の構成及びその製造方法について詳しく説明する。   Hereinafter, with reference to the drawings, a configuration of an optical element according to an embodiment of the present invention and a manufacturing method thereof will be described in detail.

〔光学素子の構成〕
本発明の実施形態となる光学素子は、図1に示すように、光学素子基板1と、光学素子基板1表面上に成膜された酸化ハフニウム(HfO)膜2とを備える。光学素子基板1の表面上に化学的安定性を有するHfO膜(膜厚1.0[μm]程度)を成膜することにより、図2に示すようにHfO膜を成膜しない場合と比較して光学素子基板表面のビッカース硬度が増加(2000[Hv]以上)するので、HfO膜を光学素子基板1表面の保護膜として機能させることができる。また、HfO膜は0.3〜10.0[μm]の波長領域の光を透過する性質を有するので、紫外線領域から赤外線領域の広い波長領域の光を透過可能な保護膜を備える光学素子を提供することができる。また、HfO膜の融点は約2812[℃]と高温であるので、HfO膜を成膜することにより光学素子の耐熱性を向上させることもできる。また、HfO膜は耐湿性に優れるので、HfO膜を成膜することにより光学素子の耐湿性を向上させることもできる。
[Configuration of optical element]
As shown in FIG. 1, an optical element according to an embodiment of the present invention includes an optical element substrate 1 and a hafnium oxide (HfO 2 ) film 2 formed on the surface of the optical element substrate 1. By forming the HfO 2 film (thickness of approximately 1.0 [μm]) having a chemical stability on the surface of the optical element substrate 1, and when not forming a HfO 2 film as shown in FIG. 2 In comparison, since the Vickers hardness on the surface of the optical element substrate is increased (2000 [Hv] or more), the HfO 2 film can function as a protective film on the surface of the optical element substrate 1. Further, since the HfO 2 film has a property of transmitting light in the wavelength region of 0.3 to 10.0 [μm], an optical element including a protective film capable of transmitting light in a wide wavelength region from the ultraviolet region to the infrared region Can be provided. Further, since the melting point of the HfO 2 film has a high temperature of about 2812 [° C.], it is also possible to improve the heat resistance of the optical element by depositing the HfO 2 film. Further, since the HfO 2 film is excellent in moisture resistance, the moisture resistance of the optical element can be improved by forming the HfO 2 film.

〔光学素子の製造方法〕
上記光学素子は、図3に示すようなRFイオンビーム銃11から光学素子基板1表面に向けてイオンビームを照射しながら蒸着材料が充填された坩堝12を加熱することにより光学素子基板1表面上に成膜するイオンビームアシスト蒸着装置13により製造される。具体的には、RFイオンビーム銃11からO(酸素)イオンビームを照射しながらHfOが充填された坩堝12を加熱することにより、光学素子基板1表面上にHfOを蒸着させる。イオンビームアシスト蒸着装置13により成膜することにより、PVD(Physical Vapor Deposition)法と比較して、緻密、且つ、高耐久性を有する膜を形成することができると共に、高い成膜レートで膜を形成することができる。
[Method of manufacturing optical element]
The optical element is formed on the surface of the optical element substrate 1 by heating a crucible 12 filled with a deposition material while irradiating an ion beam from the RF ion beam gun 11 to the surface of the optical element substrate 1 as shown in FIG. It is manufactured by an ion beam assisted vapor deposition apparatus 13 for forming a film. Specifically, HfO 2 is deposited on the surface of the optical element substrate 1 by heating the crucible 12 filled with HfO 2 while irradiating an O 2 (oxygen) ion beam from the RF ion beam gun 11. By forming the film with the ion beam assisted vapor deposition apparatus 13, it is possible to form a dense and highly durable film as compared with the PVD (Physical Vapor Deposition) method, and at a high film formation rate. Can be formed.

HfO膜の成膜レートは、水晶センサ14によって検出され、所定の大きさになるように調整されている。また、赤外光源15から光学素子基板1の裏面に向けて赤外線光を照射し、光学素子基板1とHfO膜を透過してきた赤外線光を赤外光センサ16によって検出すると共に、可視光センサ17によって光学素子基板1の裏面において反射した光を検出する光学センサ18によって、製造された光学素子の性能を評価することができる。 The film formation rate of the HfO 2 film is detected by the crystal sensor 14 and adjusted to be a predetermined size. Further, infrared light is irradiated from the infrared light source 15 toward the back surface of the optical element substrate 1, and the infrared light transmitted through the optical element substrate 1 and the HfO 2 film is detected by the infrared light sensor 16, and the visible light sensor. The optical sensor 18 that detects the light reflected on the back surface of the optical element substrate 1 by 17 can evaluate the performance of the manufactured optical element.

HfO膜の結晶構造は、図4及び図5に示すX線回折図形から明らかなように、イオンビーム加速電圧や輸送比(RFイオンビーム銃11からのイオンビームの照射条件)を選定することにより制御することができる。図4及び図5に示すX線回折図形はそれぞれ、輸送比を1.0に固定した状態でイオンビーム加速電圧を0〜1000[V]の範囲内で変化させた時のHfO膜の結晶方位の変化、及びイオン加速電圧を700[V]に固定した状態で輸送比を0.0〜1.0の範囲内で変化させた時のHfO膜の結晶方位の変化を示す。これにより、様々な光学素子基板1に密着性の良いHfO膜を成膜することができる。「輸送比」とは、光学素子基板1表面に到達するイオンの数を光学素子基板1表面に到達する蒸着原子の数で割った値を示す。 As is clear from the X-ray diffraction patterns shown in FIGS. 4 and 5, the crystal structure of the HfO 2 film should be selected from the ion beam acceleration voltage and the transport ratio (the irradiation conditions of the ion beam from the RF ion beam gun 11). Can be controlled. The X-ray diffraction patterns shown in FIGS. 4 and 5 are the crystals of the HfO 2 film when the ion beam acceleration voltage is changed within the range of 0 to 1000 [V] with the transport ratio fixed at 1.0. A change in orientation and a change in crystal orientation of the HfO 2 film when the transport ratio is changed within the range of 0.0 to 1.0 with the ion acceleration voltage fixed at 700 [V] are shown. Thereby, it is possible to form HfO 2 films with good adhesion on various optical element substrates 1. The “transport ratio” indicates a value obtained by dividing the number of ions reaching the surface of the optical element substrate 1 by the number of vapor deposition atoms reaching the surface of the optical element substrate 1.

HfO膜における光の屈折率は、図6及び図7に示すように、イオンビーム加速電圧や輸送比を選定することにより制御することができる。図6及び図7はそれぞれ、輸送比を0.7に固定した状態でイオンビーム加速電圧を700〜1000[V]の範囲内で変化させた時のHfO膜における光の屈折率の変化、及びイオン加速電圧を700[V]に固定した状態で輸送比を0.0〜1.0の範囲内で変化させた時のHfO膜における屈折率の変化を示す。これにより、光学設計に幅を持たせることができる。 The refractive index of light in the HfO 2 film can be controlled by selecting the ion beam acceleration voltage and the transport ratio as shown in FIGS. FIGS. 6 and 7 respectively show changes in the refractive index of light in the HfO 2 film when the ion beam acceleration voltage is changed within the range of 700 to 1000 [V] with the transport ratio fixed at 0.7. and it shows a change in the refractive index in the HfO 2 film when the transport ratio was varied in the range of 0.0 to 1.0 in a state of fixing the ion acceleration voltage 700 [V]. Thereby, the width can be given to the optical design.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

本発明の実施形態となる光学素子の構成を示す断面図である。It is sectional drawing which shows the structure of the optical element used as embodiment of this invention. 光学素子基板表面にHfO膜を形成した場合と形成しない場合における光学素子のビッカース硬度の変化を示す図である。Is a graph showing changes in Vickers hardness of the optical element when the optical element substrate surface is not formed with the case of forming the HfO 2 film. 図1に示す光学素子を製造する際に用いられるイオンビームアシスト蒸着装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the ion beam assist vapor deposition apparatus used when manufacturing the optical element shown in FIG. イオンビーム加速電圧の変化に伴うHfO膜の結晶方位の変化を示すX線回折図形である。It is an X-ray diffraction pattern showing a change in crystal orientation of the HfO 2 film accompanying a change in ion beam acceleration voltage. 輸送比の変化に伴うHfO膜の結晶方位の変化を示すX線回折図形である。A change in the crystal orientation of the HfO 2 film with changes in transfer value is an X-ray diffraction pattern shown. イオンビーム加速電圧の変化に伴うHfO膜における光の屈折率の変化を示す図である。It is a diagram illustrating a change in refractive index of light in the HfO 2 film due to the change of the ion beam acceleration voltage. 輸送比の変化に伴うHfO膜における光の屈折率の変化を示す図である。It is a diagram illustrating a change in refractive index of light in the HfO 2 film with changes in transport ratio.

符号の説明Explanation of symbols

1:光学素子基板
2:HfO
11:RFイオン銃
12:坩堝
13:イオンビームアシスト蒸着装置
14:水晶センサ
15:赤外光源
16:赤外光センサ
17:可視光センサ
18:光学モニタ
1: optical element substrate 2: HfO 2 film 11: RF ion gun 12: crucible 13: ion beam assisted vapor deposition device 14: quartz sensor 15: infrared light source 16: infrared light sensor 17: visible light sensor 18: optical monitor

Claims (2)

光学素子基板の表面にイオンビームアシスト蒸着法によりHfO膜を光学素子基板の保護膜として成膜する工程を有し、前記イオンビームアシスト蒸着法によりHfO 膜を成膜する際、前記光学素子基板の表面に到達するイオンの数を前記光学素子基板の表面に到達する蒸着原子数で除算した値を選定することにより前記HfO 膜の結晶構造を制御することを特徴とする光学素子の製造方法。 When it has a step of deposition of the HfO 2 film by ion beam assisted deposition on the surface of the optical element substrate as a protective film for optical element substrate, forming a HfO 2 film by the ion beam assisted deposition, the optical element Manufacturing the optical element, wherein the crystal structure of the HfO 2 film is controlled by selecting a value obtained by dividing the number of ions reaching the surface of the substrate by the number of vapor deposition atoms reaching the surface of the optical element substrate. Method. 請求項に記載の光学素子の製造方法において、イオンビームアシスト蒸着法によりHfO膜を成膜する際、イオンビーム加速電圧を選定することにより前記HfO膜の結晶構造を制御することを特徴とする光学素子の製造方法。 2. The method of manufacturing an optical element according to claim 1 , wherein when the HfO 2 film is formed by an ion beam assisted deposition method, the crystal structure of the HfO 2 film is controlled by selecting an ion beam acceleration voltage. A method for manufacturing an optical element.
JP2006258629A 2006-09-25 2006-09-25 Optical element and manufacturing method thereof Active JP5022654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258629A JP5022654B2 (en) 2006-09-25 2006-09-25 Optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258629A JP5022654B2 (en) 2006-09-25 2006-09-25 Optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008076941A JP2008076941A (en) 2008-04-03
JP5022654B2 true JP5022654B2 (en) 2012-09-12

Family

ID=39349033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258629A Active JP5022654B2 (en) 2006-09-25 2006-09-25 Optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5022654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133342A (en) * 2017-09-06 2020-05-08 日本电产株式会社 Lens and lens assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517264B2 (en) * 1994-02-23 2004-04-12 ペンタックス株式会社 Moisture resistant anti-reflective coating
JP3735975B2 (en) * 1995-11-17 2006-01-18 ソニー株式会社 Wavelength conversion element
JP2001098373A (en) * 1999-09-29 2001-04-10 Teikoku Chem Ind Corp Ltd Production of titanium oxide thiin film
KR100336621B1 (en) * 2000-02-15 2002-05-16 박호군 Method of depositing an io or ito thin film on polymer substrate
TW200513805A (en) * 2003-08-26 2005-04-16 Nippon Kogaku Kk Optical device and exposure apparatus
JP4876595B2 (en) * 2006-01-26 2012-02-15 パナソニック電工株式会社 Infrared filter and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008076941A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US8559094B2 (en) Thermochromic smart window and method of manufacturing the same
US11402559B2 (en) Optical filter with layers having refractive index greater than 3
JP2016513753A5 (en)
EA201171346A1 (en) METHOD FOR DEPOSITING THIN FILMS AND PRODUCT RECEIVED
JP2016527397A5 (en)
JP5685350B2 (en) TRANSFER MASK FOR DEPOSITION ON A SPECIFIC LOCATION OF A SUBSTRATE AND METHOD FOR PRODUCING THE TRANSFER MASK
KR100736664B1 (en) Substrate with ITO transparent conductive film and method for producing same
JP4531380B2 (en) Gas barrier sheet
JP5022654B2 (en) Optical element and manufacturing method thereof
JP2008304497A (en) Method of forming optical thin film, optical substrate and device for forming the optical thin film
US20170090082A1 (en) Nano Bi-material Electromagnetic Spectrum Shifter
JP2008304497A5 (en)
US10745289B2 (en) Vanadium oxide film and process for producing same
KR102101645B1 (en) Automatic temperature-adaptive thermal-sensitive coating thin-film and manufacturing method thereof
JP4876595B2 (en) Infrared filter and manufacturing method thereof
US20190169739A1 (en) An interference coating or its part consisting layers with different porosity
JP2010210253A (en) Localized plasmon resonance sensor
JP2011127199A (en) Transparent body and method for producing it
JPH10186130A (en) Production of optical interference filter
JP2008064976A (en) Mirror for optical communication
JP2006195327A (en) Optical element, its manufacturing method, lens unit using it and electronic equipment using it
CN108614313A (en) The adjustable method for reducing optical surface reflectivity
JP2008158345A (en) Method for manufacturing optical filter
TWI472636B (en) Coating method and shading element using the method
JP2007005249A (en) Manufacturing method and manufacturing device of organic el element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5022654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3