JP4876595B2 - Infrared filter and manufacturing method thereof - Google Patents

Infrared filter and manufacturing method thereof Download PDF

Info

Publication number
JP4876595B2
JP4876595B2 JP2006017694A JP2006017694A JP4876595B2 JP 4876595 B2 JP4876595 B2 JP 4876595B2 JP 2006017694 A JP2006017694 A JP 2006017694A JP 2006017694 A JP2006017694 A JP 2006017694A JP 4876595 B2 JP4876595 B2 JP 4876595B2
Authority
JP
Japan
Prior art keywords
film
hfo
plane
infrared filter
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006017694A
Other languages
Japanese (ja)
Other versions
JP2007199378A (en
Inventor
孝彦 平井
啓明 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006017694A priority Critical patent/JP4876595B2/en
Publication of JP2007199378A publication Critical patent/JP2007199378A/en
Application granted granted Critical
Publication of JP4876595B2 publication Critical patent/JP4876595B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)

Description

本発明は、人体や動物等の対象物を検知するセンサに適用して好適な赤外線フィルタ及びその製造方法に関する。   The present invention relates to an infrared filter suitable for application to a sensor for detecting an object such as a human body or an animal, and a method for manufacturing the same.

従来より、多層積層された膜それぞれの界面における光の干渉現象を利用することにより赤外線波長領域の光のみを透過させる赤外線フィルタが知られている(特許文献1参照)。
特開2004−317701号公報
2. Description of the Related Art Conventionally, an infrared filter that transmits only light in the infrared wavelength region by using a light interference phenomenon at each interface of multilayered films is known (see Patent Document 1).
JP 2004-317701 A

しかしながら、従来の赤外線フィルタは、多層膜構造の一部にZnS(硫化亜鉛)を使用しているために、成膜時に発生する異臭を避けるために専用の成膜室を設ける必要がある等、製造時や廃棄時の取り扱いが困難であった。   However, since the conventional infrared filter uses ZnS (zinc sulfide) in a part of the multilayer film structure, it is necessary to provide a dedicated film forming chamber in order to avoid a bad odor generated during film formation, Handling at the time of manufacture and disposal was difficult.

本発明は、このような課題を解決するためになされたものであり、その目的は、製造時や廃棄時の取り扱いが容易な赤外線フィルタ及びその製造方法を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide an infrared filter that can be easily handled at the time of manufacture and disposal and a method for manufacturing the same.

上記課題を解決するために、本発明に係る赤外線フィルタは、赤外線を透過する基板と、基板表面上に交互に多層積層されたGe膜及びHfO膜とを備え、HfO膜は(111)面又は(−111)面を主とする面方向に配向した結晶構造を有することを特徴とする。また、本発明に係る赤外線フィルタの製造方法は、イオンビームアシスト蒸着法を利用して赤外線を透過する基板表面上にGe膜とHfO膜を交互に多層積層する工程と、HfO膜が(111)面又は(−111)面を主とする面方向に配向した結晶構造を有するようにイオン加速電圧を調整する工程とを有することを特徴とする。 In order to solve the above-described problems, an infrared filter according to the present invention includes a substrate that transmits infrared rays, and Ge films and HfO 2 films that are alternately laminated on the substrate surface. The HfO 2 film is (111). It has a crystal structure oriented in a plane direction mainly having a plane or a (−111) plane. The infrared filter manufacturing method according to the present invention includes a step of alternately stacking Ge films and HfO 2 films on a substrate surface that transmits infrared rays using an ion beam assisted deposition method, and an HfO 2 film ( A step of adjusting the ion acceleration voltage so as to have a crystal structure oriented in a plane direction mainly having a (111) plane or a (−111) plane.

本発明に係る赤外線フィルタ及びその製造方法によれば、多層膜構造を形成する際にZnSを使用しないので、製造時や廃棄時における赤外線フィルタの取り扱いを容易にすることができる。また、本発明に係る赤外線フィルタ及びその製造方法によれば、HfO膜は(111)面又は(−111)面を主とする面方向に配向した結晶構造を有するので、Ge膜とHfO膜の密着力が高まり、高強度の赤外線フィルタを提供することができる。 According to the infrared filter and the manufacturing method thereof according to the present invention, since ZnS is not used when forming the multilayer structure, the infrared filter can be easily handled at the time of manufacturing and disposal. In addition, according to the infrared filter and the manufacturing method thereof according to the present invention, the HfO 2 film has a crystal structure oriented in the plane direction mainly having the (111) plane or the (−111) plane, and thus the Ge film and the HfO 2 film. The adhesion strength of the film is increased, and a high-strength infrared filter can be provided.

以下、図面を参照して、本発明の実施形態となる赤外線フィルタの構成及びその製造方法について詳しく説明する。   Hereinafter, with reference to the drawings, a configuration of an infrared filter according to an embodiment of the present invention and a manufacturing method thereof will be described in detail.

〔赤外線フィルタの構成〕
本発明の実施形態となる赤外線フィルタ1は、図1に示すように、赤外線を透過する基板2と、基板2表面上に交互に多層積層されたGe膜(ゲルマニウム膜)及びHfO膜(ハフニウム酸化膜)とを備える。
[Configuration of infrared filter]
As shown in FIG. 1, an infrared filter 1 according to an embodiment of the present invention includes a substrate 2 that transmits infrared rays, a Ge film (germanium film) and an HfO 2 film (hafnium) that are alternately laminated on the surface of the substrate 2. Oxide film).

〔赤外線フィルタの製造方法〕
上記赤外線フィルタ1は、図2に示すようなRFイオンビーム銃11からSiウェハ等の基板2表面に向けてイオンビームを照射しながら蒸着材料が充填された坩堝12を加熱することにより基板2表面上に成膜するイオンビームアシスト蒸着装置13により製造される。具体的には、基板2表面上にGe膜を成膜する際は、RFイオンビーム銃11からAr(アルゴン)イオンビームを照射しながら坩堝12を加熱することにより、基板2表面上にGeを蒸着させる。また、基板2表面上にHfO膜を成膜する際は、RFイオンビーム銃11からO(酸素)イオンビームを照射しながら坩堝12を加熱することにより、基板2表面上にHfOを蒸着させる。なお、各膜の成膜レートは、水晶センサ14によって検出され、所定の大きさになるように調整されている。そして、赤外光源15から基板2の裏面に向けて赤外線光を照射し、基板2と多層膜を透過してきた赤外線光を赤外光センサ16によって検出すると共に、可視光センサ17によって基板2の裏面において反射した光を検出する光学センサ18によって、製造された赤外線フィルタ1の性能を評価する。
[Infrared filter manufacturing method]
The infrared filter 1 is formed by heating a crucible 12 filled with a vapor deposition material while irradiating an ion beam from an RF ion beam gun 11 as shown in FIG. It is manufactured by an ion beam assisted vapor deposition apparatus 13 that forms a film thereon. Specifically, when a Ge film is formed on the surface of the substrate 2, the crucible 12 is heated while irradiating an Ar (argon) ion beam from the RF ion beam gun 11, so that Ge is formed on the surface of the substrate 2. Evaporate. Further, when the HfO 2 film is formed on the surface of the substrate 2, the crucible 12 is heated while irradiating the O 2 (oxygen) ion beam from the RF ion beam gun 11, whereby HfO 2 is formed on the surface of the substrate 2. Evaporate. The film formation rate of each film is detected by the quartz sensor 14 and adjusted to a predetermined size. Then, infrared light is irradiated from the infrared light source 15 toward the back surface of the substrate 2, the infrared light transmitted through the substrate 2 and the multilayer film is detected by the infrared light sensor 16, and the visible light sensor 17 detects the infrared light of the substrate 2. The performance of the manufactured infrared filter 1 is evaluated by the optical sensor 18 that detects the light reflected on the back surface.

なお、基板2表面上に形成される多層膜における光の屈折率は、RFイオンビーム銃11からのイオンビームの照射条件、換言すれば、輸送比を調整することにより制御することができる。なお、「輸送比」とは、基板2表面に到達するイオンの数を基板2表面に到達する蒸着原子の数で割った値を示す。具体的には、HfO膜における光の屈折率を調整する場合には、基板温度を300[℃],蒸着レートを2.0[Å/sec]で固定した状態で輸送比を変化させることにより、図3に示すようにHfO膜における光の屈折率を1.99〜2.89の範囲で調整することができる。なお、HfO膜における光の屈折率が2.04以下である場合には、多層膜はテープ試験(市販のセロテープ(登録商標)を膜表面に貼り付け、表面垂直方向に一定の力で引っ張ることにより、膜が剥がれるか否かを評価することにより、Ge膜とHfO膜の密着力を調べる試験)に合格しなかったので、HfO膜における光の屈折率は2.06以上であることが望ましい。 The refractive index of light in the multilayer film formed on the surface of the substrate 2 can be controlled by adjusting the irradiation conditions of the ion beam from the RF ion beam gun 11, in other words, the transport ratio. The “transport ratio” indicates a value obtained by dividing the number of ions reaching the surface of the substrate 2 by the number of vapor deposition atoms reaching the surface of the substrate 2. Specifically, when adjusting the refractive index of light in the HfO 2 film, the transport ratio is changed with the substrate temperature fixed at 300 [° C.] and the vapor deposition rate at 2.0 [Å / sec]. Thus, as shown in FIG. 3, the refractive index of light in the HfO 2 film can be adjusted in the range of 1.99 to 2.89. When the refractive index of light in the HfO 2 film is 2.04 or less, the multilayer film is a tape test (a commercially available cello tape (registered trademark) is applied to the film surface and pulled with a constant force in the surface vertical direction. Therefore, by evaluating whether or not the film is peeled off, the test for examining the adhesion between the Ge film and the HfO 2 film) was not passed, so that the refractive index of light in the HfO 2 film is 2.06 or more. It is desirable.

また、基板温度を300[℃],蒸着レートを2.0[Å/sec]で固定した状態でイオン加速電圧を700〜1000[V]の範囲で変化させた場合には、図4(a)のX線回折図形に示すように、イオン加速電圧が900[V]以上である時はHfO膜は(111)面と(−111)面を主とした面方向に配向した結晶構造を有し、イオン加速電圧が900[V]以下である時はHfO膜は(002)面を主とした面方向に配向した結晶構造を有することがわかった。そして、イオン加速電圧を変化させて製造した赤外線フィルタについて上述のテープ試験を行った所、イオン加速電圧を900[V]以上として製造した赤外線フィルタはテープ試験に合格したのに対し、イオン加速電圧を900[V]以下として製造した赤外線フィルタはテープ試験に不合格であった。このことから、イオン加速電圧を900[V]以上程度とし、HfO膜は(111)面と(−111)面を主とした面方向に配向した結晶構造を有するようにすることにより、Ge膜とHfO膜の密着力が強い赤外線フィルタが製造できることがわかった。 When the ion acceleration voltage is changed in the range of 700 to 1000 [V] while the substrate temperature is fixed at 300 [° C.] and the deposition rate is fixed at 2.0 [Å / sec], FIG. ) When the ion acceleration voltage is 900 [V] or higher, the HfO 2 film has a crystal structure in which the (111) plane and the (−111) plane are mainly oriented in the plane direction. It was found that when the ion acceleration voltage was 900 [V] or less, the HfO 2 film had a crystal structure oriented in the plane direction mainly composed of the (002) plane. And when the above-mentioned tape test was performed about the infrared filter manufactured by changing the ion acceleration voltage, the infrared filter manufactured with an ion acceleration voltage of 900 [V] or higher passed the tape test, whereas the ion acceleration voltage Infrared filter manufactured with a V value of 900 [V] or less failed the tape test. From this, the ion acceleration voltage is set to about 900 [V] or more, and the HfO 2 film has a crystal structure oriented in the plane direction mainly composed of the (111) plane and the (−111) plane, whereby Ge It was found that an infrared filter having strong adhesion between the film and the HfO 2 film can be produced.

以上の説明から明らかなように、本発明の実施形態となる赤外線フィルタ1は、赤外線を透過する基板2と、基板2表面上に交互に多層積層されたGe膜及びHfO膜とを備え、HfO膜は(111)面と(−111)面を主とする面方向に配向した結晶構造を有する。そして、このような構成によれば、多層膜構造を形成する際にZnSを使用することがないので、製造時や廃棄時における赤外線フィルタの取り扱いを容易にすることができる。 As is clear from the above description, the infrared filter 1 according to an embodiment of the present invention includes a substrate 2 that transmits infrared rays, and Ge films and HfO 2 films that are alternately laminated on the surface of the substrate 2. The HfO 2 film has a crystal structure in which the (111) plane and the (−111) plane are oriented in the plane direction. And according to such a structure, since ZnS is not used when forming a multilayer film structure, handling of the infrared filter at the time of manufacture or disposal can be facilitated.

また、本発明の実施形態となる赤外線フィルタ1によれば、HfO膜は(111)面と(−111)面を主とする面方向に配向した結晶構造を有するので、Ge膜とHfO膜の密着力が高まり、強度が高い赤外線フィルタを提供することができる。また、本発明の実施形態となる赤外線フィルタ1によれば、Ge膜及びHfO膜はイオンビームアシスト蒸着法により成膜されるので、イオンの衝突効果によって緻密で密着性のよい多層膜を成膜することができる。 In addition, according to the infrared filter 1 according to the embodiment of the present invention, the HfO 2 film has a crystal structure oriented in the plane direction mainly including the (111) plane and the (−111) plane, and therefore, the Ge film and the HfO 2 film. It is possible to provide an infrared filter having high adhesion strength and high strength. Further, according to the infrared filter 1 according to the embodiment of the present invention, the Ge film and the HfO 2 film are formed by the ion beam assisted vapor deposition method. Therefore, a dense multilayer film with good adhesion is formed by the ion collision effect. Can be membrane.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。例えば、多層膜を成膜する際は、図5(b)に示すように、50[μm]程度の膜厚を有するNi−Fe等のメタルマスクを4インチのSiウェハ21のメッシュ域R(有効径φ90。メッシュ域R内を構成する各メッシュの寸法は図5(a)に示す)にマスキングすることによりダイジングラインを付けるようにしてもよい。このような構成によれば、HfO膜のような硬質膜であっても容易にダイジングを行うことができる。このように、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。 As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. For example, when forming a multilayer film, as shown in FIG. 5B, a metal mask such as Ni—Fe having a film thickness of about 50 μm is used as a mesh area R ( Effective diameter φ 90. The size of each mesh constituting the mesh area R may be masked as shown in FIG. According to such a configuration, dicing can be easily performed even with a hard film such as an HfO 2 film. As described above, it is a matter of course that all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are included in the scope of the present invention.

本発明の実施形態となる赤外線フィルタの構成を示す断面図である。It is sectional drawing which shows the structure of the infrared filter used as embodiment of this invention. 図1に示す赤外線フィルタを製造する際に用いられるイオンビームアシスト蒸着装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the ion beam assist vapor deposition apparatus used when manufacturing the infrared filter shown in FIG. 輸送比の変化に対するHfO膜における光の屈折率の変化を示す図である。It is a diagram illustrating a change in refractive index of light in the HfO 2 film relative to the change in transport ratio. イオン加速電圧の変化に対するHfO膜の結晶方位の変化を示すX線回折図形である。The X-ray diffraction diagram showing the change of the crystal orientation of the HfO 2 film with respect to changes in the ion acceleration voltage. 成膜時に基板にマスキングされるダイジングラインを示す図である。It is a figure which shows the dicing line masked by the board | substrate at the time of film-forming.

符号の説明Explanation of symbols

1:赤外線フィルタ
2:基板
11:RFイオン銃
12:坩堝
13:イオンビームアシスト蒸着装置
14:水晶センサ
15:赤外光源
16:赤外光センサ
17:可視光センサ
18:光学モニタ
21:Siウェハ
R:メッシュ域
1: Infrared filter 2: Substrate 11: RF ion gun 12: Crucible 13: Ion beam assisted deposition apparatus 14: Crystal sensor 15: Infrared light source 16: Infrared light sensor 17: Visible light sensor 18: Optical monitor 21: Si wafer R: Mesh area

Claims (2)

赤外線を透過する基板と、
前記基板表面上に交互に多層積層されたGe膜及びHfO膜とを備え、
前記HfO膜は(111)面又は(−111)面を主とする面方向に配向した結晶構造を有すること
を特徴とする赤外線フィルタ。
A substrate that transmits infrared light;
Comprising Ge films and HfO 2 films alternately stacked on the substrate surface;
2. The infrared filter according to claim 1, wherein the HfO 2 film has a crystal structure oriented in a plane direction mainly having a (111) plane or a (−111) plane.
イオンビームアシスト蒸着法を利用して赤外線を透過する基板表面上にGe膜とHfO膜を交互に多層積層する工程と、
HfO膜が(111)面又は(−111)面を主とする面方向に配向した結晶構造を有するようにイオン加速電圧を調整する工程と
を有することを特徴とする赤外線フィルタの製造方法。
A step of alternately laminating a Ge film and an HfO 2 film on a substrate surface that transmits infrared rays using an ion beam assisted deposition method;
Adjusting the ion accelerating voltage so that the HfO 2 film has a crystal structure oriented in a plane direction mainly having a (111) plane or a (−111) plane.
JP2006017694A 2006-01-26 2006-01-26 Infrared filter and manufacturing method thereof Expired - Fee Related JP4876595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017694A JP4876595B2 (en) 2006-01-26 2006-01-26 Infrared filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017694A JP4876595B2 (en) 2006-01-26 2006-01-26 Infrared filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007199378A JP2007199378A (en) 2007-08-09
JP4876595B2 true JP4876595B2 (en) 2012-02-15

Family

ID=38454055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017694A Expired - Fee Related JP4876595B2 (en) 2006-01-26 2006-01-26 Infrared filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4876595B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022654B2 (en) * 2006-09-25 2012-09-12 パナソニック株式会社 Optical element and manufacturing method thereof
JP5234316B2 (en) * 2007-12-27 2013-07-10 三菱マテリアル株式会社 Deposition method
JP2014032213A (en) * 2010-11-30 2014-02-20 Fujifilm Corp Optical functional film for infrared rays
CN105137514B (en) * 2015-09-11 2017-07-28 兰州空间技术物理研究所 4.2~4.45 μm pass through medium-wave infrared optical filter and preparation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191215A (en) * 1993-12-27 1995-07-28 Canon Inc Laser mask and its production
JP3262669B2 (en) * 1994-03-17 2002-03-04 アルプス電気株式会社 Soft magnetic alloy powder, method for producing the same and soft magnetic alloy compact
JP2003302520A (en) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd Reflection mirror for infrared laser and method for manufacturing the same
JP2004053719A (en) * 2002-07-17 2004-02-19 Matsushita Electric Works Ltd Infrared transmi filter
JP2004053720A (en) * 2002-07-17 2004-02-19 Matsushita Electric Works Ltd Method for manufacturing infrared transmitting filter
JP2004317701A (en) * 2003-04-15 2004-11-11 Alps Electric Co Ltd Multilayer film optical filter and optical component
JP4401880B2 (en) * 2004-07-09 2010-01-20 光伸光学工業株式会社 Multiple band pass filter

Also Published As

Publication number Publication date
JP2007199378A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US8263172B2 (en) Method for producing optical element having multi-layered film
JP4876595B2 (en) Infrared filter and manufacturing method thereof
JP2010196168A5 (en)
WO2014157652A1 (en) Gas-barrier laminate and method for manufacturing gas-barrier laminate
WO2018135241A1 (en) Peelable substrate and laser lift-off method
WO2019138875A1 (en) Functional element, method for manufacturing functional element, and electronic device
JP2017049573A (en) Half tone phase shift type photomask blank, method for producing the same, and half tone phase shift type photomask
JP4623349B2 (en) Thin film type ND filter and manufacturing method thereof
JP2010128259A (en) Absorption type multilayer film nd filter and method of manufacturing the same
JPS5986220A (en) Mask for forming pattern of lacquer by x-ray lithographic printing, method of producing same and method of producing semiconductor device by x-ray lithographic printing
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2007316283A (en) Infrared filter and method of manufacturing the same
JP2009003214A (en) Absorption type multilayer film nd filter, its manufacturing apparatus, and manufacturing method of absorption type multilayer film nd filter
JP4466457B2 (en) Absorption-type multilayer ND filter and manufacturing method thereof
JP4797919B2 (en) Transparent gas barrier film and method for producing the same
JP2010210253A (en) Localized plasmon resonance sensor
Zaitsu et al. Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition
JP2009288293A (en) Optical filter, method for depositing film of the same and apparatus for adjusting quantity of image pickup light
JP2020064260A (en) Optical filter, light intensity adjustment device, and imaging apparatus
JP2009288294A (en) Optical filter, film deposition method of the same, manufacturing apparatus for the same, and imaging light quantity control device
JP2008032757A (en) Optical element with laser damage suppression film
JP2009102717A (en) Film forming method for optical filter, optical filter, and imaging light intensity reducing device
JP2007240790A (en) Absorption type multilayered nd filter and manufacturing method therefor
JP2007093804A (en) Ultraviolet/infrared cut filter and manufacturing method thereof
TW202200855A (en) Nitride laminate, and method for manufacturing nitride laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees