JP2006193825A - Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods - Google Patents

Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods Download PDF

Info

Publication number
JP2006193825A
JP2006193825A JP2005225740A JP2005225740A JP2006193825A JP 2006193825 A JP2006193825 A JP 2006193825A JP 2005225740 A JP2005225740 A JP 2005225740A JP 2005225740 A JP2005225740 A JP 2005225740A JP 2006193825 A JP2006193825 A JP 2006193825A
Authority
JP
Japan
Prior art keywords
metal foil
perforated electrolytic
electrolytic metal
layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225740A
Other languages
Japanese (ja)
Inventor
Tetsuro Sato
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005225740A priority Critical patent/JP2006193825A/en
Priority to PCT/JP2005/022685 priority patent/WO2006064741A1/en
Publication of JP2006193825A publication Critical patent/JP2006193825A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic metal foil with an aperture, in which parameters such as the size, shape, position and depth of fine through-holes and the number of the fine through-holes per unit area, etc, can be designed according to the purpose. <P>SOLUTION: One side of the perforated electrolytic metal foil 1 is determined as a reference plane, and a plurality of fine through-holes 7 that penetrate to the other side are formed almost perpendicularly to the reference plane. Moreover, a carrier substrate and the perforated electrolytic metal foil are bonded together to improve the handleability of the perforated electrolytic metal foil having a plurality of fine through-holes in the thickness direction. In a production method for producing the same, an insulating protrusion is formed on the surface of the carrier substrate, and metal plating is performed on the surface of the carrier substrate on which the insulating protrusion is formed to form the perforated electrolytic metal foil on the surface of the carrier substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本件発明は、複数の微細貫通孔を有する孔開き電解金属箔、キャリア基材付孔開き電解金属箔及びこれらの製造方法に関する。   The present invention relates to a perforated electrolytic metal foil having a plurality of fine through-holes, a perforated electrolytic metal foil with a carrier substrate, and a method for producing them.

従来から、複数の微細貫通孔を持つ孔開き電解金属箔が様々な分野で使われている。例えば、孔開き電解金属箔には燃料電池や二次電池の集電体又は化学反応を促進する触媒の担持体としての用途がある。   Conventionally, perforated electrolytic metal foil having a plurality of fine through holes has been used in various fields. For example, perforated electrolytic metal foil has applications as a current collector for a fuel cell or a secondary battery or a support for a catalyst that promotes a chemical reaction.

特に、近年、携帯用PCやビデオカメラ等のポータブル電子機器用電源若しくは電気自動車用の電源として高容量の二次電池の需要が高まっており、二次電池用の集電体として複数の微細貫通孔を持つ孔開き電解金属箔が使用されている。   In particular, in recent years, a demand for a high-capacity secondary battery as a power source for portable electronic devices such as portable PCs and video cameras or a power source for electric vehicles is increasing, and a plurality of fine penetrations are used as a current collector for the secondary battery. A perforated electrolytic metal foil with holes is used.

このような市場の需要に応えるべく、箔の厚み方向に通じる微細貫通孔が形成された多孔質の電解金属箔が種々提案されている(特許文献1、2、及び3参照)。   In order to meet such market demand, various types of porous electrolytic metal foils having fine through holes formed in the thickness direction of the foil have been proposed (see Patent Documents 1, 2 and 3).

しかし、これらの特許文献に開示されている各製造方法による多孔質電解金属箔(孔開き電解金属箔)の微細貫通孔は製造上制御ができずランダムに(無作為に)形成されている。すなわち、当該特許文献に開示されている各製造方法によれば、意図的に微細貫通孔のサイズ、形状、位置、深さ、及び微細貫通孔の単位面積あたりの個数等のパラメータを任意に制御することができない。
特開平08−236120号公報 特開昭50−141540号公報 特開昭62−240787号公報
However, the fine through-holes of the porous electrolytic metal foil (perforated electrolytic metal foil) produced by each of the production methods disclosed in these patent documents cannot be controlled in production and are randomly formed (randomly). That is, according to each manufacturing method disclosed in the patent document, parameters such as the size, shape, position, depth, and the number of fine through holes per unit area are arbitrarily controlled intentionally. Can not do it.
Japanese Patent Laid-Open No. 08-236120 JP 50-141540 A Japanese Patent Laid-Open No. 62-240787

しかし、孔開き電解金属箔においては、ナノテクノロジー等の技術の急速かつ革新的進歩に伴う用途に応じて、当該微細貫通孔のサイズ、形状、位置、深さ、及び微細貫通孔の単位面積あたりの個数等のパラメータを合目的的に変化させたりすることで、より精度の高い微細貫通孔の形成が必要とされる場合が生じている。従って、この要求に合致した孔開き電解金属箔の提供及び提供手段が求められてきた。   However, in the case of perforated electrolytic metal foil, the size, shape, position, depth, and unit area of the fine through-holes according to the applications accompanying rapid and innovative advances in technology such as nanotechnology. In some cases, it is necessary to form fine through-holes with higher accuracy by changing parameters such as the number of holes for a purpose. Therefore, there has been a demand for provision and provision means of perforated electrolytic metal foil that meets this requirement.

そこで、本件発明者等は鋭意検討の結果、孔開き電解金属箔において、当該微細貫通孔のサイズ、形状、位置、深さ、及び微細貫通孔の単位面積あたりの個数等並びに当該孔開き電解金属箔の種類及び厚さを任意に制御可能な孔開き電解金属箔及び当該孔開き電解金属箔の製造方法を提供すべく、以下の発明に想到した。   Therefore, as a result of diligent study, the inventors of the present invention, as a result of perforating electrolytic metal foil, the size, shape, position, depth of the fine through hole, the number of fine through holes per unit area, and the perforated electrolytic metal. In order to provide a perforated electrolytic metal foil in which the type and thickness of the foil can be arbitrarily controlled and a method for producing the perforated electrolytic metal foil, the inventors have conceived the following invention.

孔開き電解金属箔: 本件発明に係る孔開き電解金属箔は、厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔であって、当該孔開き電解金属箔の一面側を基準面とし、その基準面に対し略垂直となるように、該金属面の他面側に貫通した複数個の微細貫通孔を備えることを特徴とするものである。 Perforated electrolytic metal foil: A perforated electrolytic metal foil according to the present invention is a perforated electrolytic metal foil having a plurality of fine through-holes in the thickness direction, wherein one surface side of the perforated electrolytic metal foil is a reference plane. And a plurality of fine through-holes penetrating on the other surface side of the metal surface so as to be substantially perpendicular to the reference surface.

そして、本件発明に係る孔開き電解金属箔を構成する成分は、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナ、又はこれらの合金、又は銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナのいずれかを組み合わせた積層構造のいずれかを備える物とすることが可能である。   And the component which comprises the perforated electrolytic metal foil which concerns on this invention is copper, gold | metal | money, silver, tin, nickel, cobalt, lead, iron, or platinum, or these alloys, or copper, gold | metal | money, silver, tin, It is possible to make it a thing provided with either of the laminated structure which combined either nickel, cobalt, lead, iron, or platinum.

また、本件発明に係る孔開き電解金属箔を構成する電解金属箔上には、防錆層を備えるものとして、長期保存性を確保するための防食性能の向上を図ることも可能である。   Moreover, on the electrolytic metal foil which comprises the perforated electrolytic metal foil which concerns on this invention, it is also possible to aim at the improvement of the anticorrosion performance for ensuring long-term preservation | save property as what is equipped with a rust prevention layer.

キャリア基材付孔開き電解金属箔: 本件発明に係るキャリア基材付孔開き電解金属箔は、厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔のハンドリング性を向上させるためキャリア基材と孔開き電解金属箔とが張り合わせられた状態であることを特徴とするものである。 A perforated electrolytic metal foil with a carrier base material: A perforated electrolytic metal foil with a carrier base material according to the present invention is a carrier for improving the handling property of a perforated electrolytic metal foil having a plurality of fine through holes in the thickness direction. The substrate and the perforated electrolytic metal foil are pasted together.

そして、本件発明に係るキャリア基材付孔開き電解金属箔においては、孔開き電解金属箔とキャリア基材との間に剥離層を設ける事が好ましい。この剥離層に関しては、後述する。   And in the perforated electrolytic metal foil with a carrier base material concerning this invention, it is preferable to provide a peeling layer between a perforated electrolytic metal foil and a carrier base material. This release layer will be described later.

また、本件発明に係るキャリア基材付孔開き電解金属箔においては、前記キャリア基材として、第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又はクラッド金属板を用いることで、孔開き電解金属層(箔)/第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるようにすることも出来る。   In the perforated electrolytic metal foil with a carrier base material according to the present invention, the carrier base material has a plurality of layers of a first metal layer /.../ nth metal layer (n is an integer of 2 or more). By using a clad metal foil or clad metal plate in a laminated state, a perforated electrolytic metal layer (foil) / first metal layer /.../ n-th metal layer (n is an integer of 2 or more) A plurality of layers may be in a laminated state.

更に、前記孔開き電解金属層(箔)/第1金属層/・・・・/第n金属層(nは、2以上の整数)のいずれかの層間に少なくとも一つの剥離層等を設ける事も好ましい。この剥離層等に関しては後述する。   Further, at least one release layer or the like is provided between any one of the perforated electrolytic metal layer (foil) / first metal layer /... / N-th metal layer (n is an integer of 2 or more). Is also preferable. This release layer will be described later.

キャリア基材付孔開き電解金属箔の製造方法: 本件発明に係るキャリア基材付孔開き電解金属箔の製造方法は、以下の工程a及び工程bを含むことを特徴とするものである。 Manufacturing method of perforated electrolytic metal foil with carrier base material: The manufacturing method of perforated electrolytic metal foil with a carrier base material according to the present invention includes the following steps a and b.

工程a.キャリア基材の表面に絶縁性突起部を複数箇所に形成する突起部形成工程;
工程b.前記キャリア基材の絶縁性突起部を形成した面に対し金属メッキを行い、前記キャリア基材の絶縁性突起部以外の領域に金属メッキ層を析出形成させ、キャリア基材表面に孔開き電解金属箔を形成し、キャリア箔付孔開き電解金属箔とする電析工程;
Step a. A protruding portion forming step of forming insulating protruding portions on the surface of the carrier substrate at a plurality of locations;
Step b. Metal plating is performed on the surface of the carrier base material on which the insulating protrusions are formed, and a metal plating layer is deposited and formed on a region other than the insulating protrusions of the carrier base material. Electrodeposition process to form foil and make a perforated electrolytic metal foil with carrier foil;

そして、本件発明に係るキャリア基材付孔開き電解金属箔の製造方法において、前記工程aで用いるキャリア基材は、以下に示すキャリア基材(A)〜キャリア基材(F)のいずれかを用いることが好ましい。   In the method for producing a perforated electrolytic metal foil with a carrier substrate according to the present invention, the carrier substrate used in the step a is any one of the carrier substrate (A) to the carrier substrate (F) shown below. It is preferable to use it.

キャリア基材(A): 単一層の金属箔又は金属板。
キャリア基材(B): 第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又は金属板。
キャリア基材(C): 第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔又は金属板。
キャリア基材(D): 剥離層を表面に設けた単一層の金属箔又は金属板。
キャリア基材(E): 剥離層/第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又は金属板。
キャリア基材(F): 剥離層/第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔又は金属板。
Carrier substrate (A): Single layer metal foil or metal plate.
Carrier base material (B): A clad metal foil or metal plate in which a plurality of layers of a first metal layer /... / N-th metal layer (n is an integer of 2 or more) are in a laminated state.
Carrier base material (C): any one of the first metal layers of the first metal layer /.../ n-th metal layer (n is an integer of 2 or more) /.../ n-th metal layer A clad metal foil or metal plate comprising at least one release layer in a carrier substrate and a plurality of layers in a laminated state.
Carrier substrate (D): A single layer metal foil or metal plate having a release layer on its surface.
Carrier base material (E): A clad metal foil or metal plate in which a plurality of layers of release layer / first metal layer /... / N-th metal layer (n is an integer of 2 or more) are in a laminated state.
Carrier substrate (F): any of release layer / first metal layer /.../ n-th metal layer (n is an integer of 2 or more) /.../ n-th metal layer A clad metal foil or metal plate comprising at least one carrier base peeling layer between the layers and a plurality of layers in a laminated state.

そして、本件発明に係るキャリア基材付孔開き電解金属箔の製造方法において、前記工程aで用いる基材に前記キャリア基材(A)〜キャリア基材(C)のいずれかを用いる場合であって、前記工程aと前記工程bとの間に剥離層形成工程を設ける事も好ましい。   In the method for producing a perforated electrolytic metal foil with a carrier substrate according to the present invention, any one of the carrier substrate (A) to the carrier substrate (C) is used as the substrate used in the step a. It is also preferable to provide a release layer forming step between the step a and the step b.

本件発明に係るキャリア基材付孔開き電解金属箔の製造方法で用いる前記剥離層は、銅、ニッケル、クロムを含む金属系剥離層又はトリアゾール化合物を含む有機系剥離層とすることが好ましい。   The release layer used in the method for producing a perforated electrolytic metal foil with a carrier substrate according to the present invention is preferably a metal release layer containing copper, nickel or chromium or an organic release layer containing a triazole compound.

そして、前記工程a(突起部形成工程)で形成する絶縁性突起部は、インクジェット法、スクリーン印刷法、グラビア印刷法、凸版印刷法、及び凹版印刷法のいずれかによって形成したものである事が好ましい。   The insulating protrusion formed in the step a (protrusion forming step) may be formed by any one of an inkjet method, a screen printing method, a gravure printing method, a relief printing method, and an intaglio printing method. preferable.

また、前記工程a(突起部形成工程)で形成する絶縁性突起部は、感光性フィルムを用いて形成したものであることも好ましい。   Moreover, it is also preferable that the insulating protrusion formed in the step a (projection forming step) is formed using a photosensitive film.

そして、前記工程b.(電析工程)における金属メッキは、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナのいずれかの金属メッキ、又は、これらの合金メッキとすることが好ましい。   And said process b. The metal plating in the (deposition step) is preferably a metal plating of copper, gold, silver, tin, nickel, cobalt, lead, iron, platinum, or an alloy plating thereof.

また、前記工程b.(電析工程)における金属メッキは、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナのいずれかから選ばれる金属メッキ層を複数積層させる事も好ましい。   The step b. The metal plating in the (electrodeposition process) is preferably performed by laminating a plurality of metal plating layers selected from any of copper, gold, silver, tin, nickel, cobalt, lead, iron, and platinum.

孔開き電解金属箔の製造方法: 本件発明に係る孔開き電解金属箔の製造方法は、上述のいずれかのキャリア基材付孔開き電解金属箔のキャリア基材を除去するという概念を特徴としたものである。 Method for producing perforated electrolytic metal foil: The method for producing perforated electrolytic metal foil according to the present invention is characterized by the concept of removing the carrier base material of any of the above-mentioned perforated electrolytic metal foil with a carrier base material. Is.

本件発明に係る孔開き電解金属箔は、その微細貫通孔のサイズ、位置、形状等を任意に調整することが可能である。従って、当該微細貫通孔を透過させる対象として、気体、固体、又は液体のいずれに対しても適用可能であり、必要とされるあらゆる分野の用途に応ずることが可能となる。従って、電池等の集電体又は化学反応を促進する触媒の担持体、微粉分級用スクリーン装置、固液分離処理用のスクリーン装置、微生物保管用容器の酸素供給口に使用されるネット、クリーンルーム用防塵フィルター、液体抗菌フィルター、液体に金属イオンを付与し飲料水等の液体を改質するための液体改質用フィルター、電磁波シールド、服地用材料、磁性用材料、導電用材料、その他の広範囲な分野に使用可能なものである。   In the perforated electrolytic metal foil according to the present invention, the size, position, shape and the like of the fine through-holes can be arbitrarily adjusted. Therefore, the present invention can be applied to any gas, solid, or liquid as a target to be permeated through the fine through-hole, and can be used in any field that is required. Therefore, current collectors such as batteries or catalyst carriers that promote chemical reactions, screen devices for fine powder classification, screen devices for solid-liquid separation processing, nets used for oxygen supply ports of microorganism storage containers, and for clean rooms Dust-proof filters, liquid antibacterial filters, liquid reforming filters for imparting metal ions to liquids and modifying liquids such as drinking water, electromagnetic shielding, clothing materials, magnetic materials, conductive materials, and a wide variety of other It can be used in the field.

また、キャリア基材付孔開き電解金属箔の構成を採用することにより、10μm未満の薄い孔開き電解金属箔に対する要求があっても対応可能である。孔開き電解金属箔を支持するキャリア基材の存在により、薄い孔開き電解金属箔のハンドリング性を容易に改善でき、工程内での孔開き電解金属箔の汚染、キズ発生を防止する。   Moreover, even if there exists a request | requirement with respect to a thin perforated electrolytic metal foil of less than 10 micrometers by employ | adopting the structure of a perforated electrolytic metal foil with a carrier base material, it can respond. Due to the presence of the carrier base material supporting the perforated electrolytic metal foil, the handling property of the thin perforated electrolytic metal foil can be easily improved, and the perforated electrolytic metal foil is prevented from being contaminated and scratched in the process.

更に、本件発明に係る孔開き電解金属箔は、最初にキャリア基材表面に電析形成し、剥ぎ取ることにより容易に製造することが可能であり、工業的生産に適した確実な製造方法であるため、高い生産歩留まりを確保できる。   Furthermore, the perforated electrolytic metal foil according to the present invention can be easily manufactured by first depositing and peeling off the surface of the carrier substrate, and is a reliable manufacturing method suitable for industrial production. Therefore, high production yield can be secured.

<孔開き電解金属箔>
本件発明に係る孔開き電解金属箔の形態に関して説明する。上述のように、本件発明に係る孔開き電解金属箔は、厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔であって、当該孔開き電解金属箔の一面側を基準面とし、その基準面に対し略垂直となるように、該金属面の他面側に貫通した複数個の微細貫通孔を備えることを特徴とするものである。ここで明記しておくが、後述の製造方法からも明らかなように、当該孔開き電解金属箔は、電解法で直接製造されるものであり、従来の無孔金属箔に対して事後的に開孔処理することにより得られる金属箔(例えばパンチングメタル)と区別されることに留意されたい。
<Perforated electrolytic metal foil>
The form of the perforated electrolytic metal foil according to the present invention will be described. As described above, the perforated electrolytic metal foil according to the present invention is a perforated electrolytic metal foil having a plurality of fine through holes in the thickness direction, and one surface side of the perforated electrolytic metal foil is used as a reference plane. A plurality of fine through holes penetrating on the other surface side of the metal surface are provided so as to be substantially perpendicular to the reference surface. As is clear from the manufacturing method described later, the perforated electrolytic metal foil is directly manufactured by an electrolysis method, and it is ex post facto with respect to a conventional non-porous metal foil. It should be noted that this is distinguished from a metal foil (for example, punching metal) obtained by the hole opening treatment.

上記孔開き電解金属箔の厚さに関しては、特段の限定はない。しかしながら、電解法で製造するものであることを考えれば、厚さ1μm〜400μmの範囲というのが常識的である。次に、微細貫通孔について述べる。ここで言う微細貫通孔は、後述するように、金属の電析膜を形成する際に、電析障害となる絶縁性の突起を形成し、その突起部に電析を起こさせず、その突起箇所が微細貫通孔を形成するものである。従って、突起部の高さ、断面サイズ等の形成精度により、微細貫通孔のサイズが左右される。従って、工業的な生産安定性から見れば、微細貫通孔の径は1μm〜300μmの範囲で形成することが好ましい。そして、本件発明に係る孔開き電解金属箔の用途、要求品質に応じて、適宜微細貫通孔のサイズ、及び、箔厚の調整を行えばよいのである。例えば、孔開き銅箔の場合には、市場要求として3μm〜35μmの厚さの銅箔であって、当該銅箔の片面からもう一方の面に貫通する微細貫通孔の直径が10μm〜200μm程度の略円形である製品に対する要求がある。   There is no particular limitation on the thickness of the perforated electrolytic metal foil. However, considering that it is manufactured by an electrolytic method, a thickness in the range of 1 μm to 400 μm is common sense. Next, the fine through hole will be described. As will be described later, the fine through hole referred to here forms an insulating projection that becomes an electrodeposition hindrance when forming a metal electrodeposition film, and does not cause electrodeposition on the projection. The location forms a fine through hole. Therefore, the size of the fine through hole depends on the formation accuracy such as the height of the protrusion and the cross-sectional size. Therefore, from the viewpoint of industrial production stability, the diameter of the fine through hole is preferably formed in the range of 1 μm to 300 μm. And according to the use and required quality of the perforated electrolytic metal foil according to the present invention, the size of the fine through hole and the thickness of the foil may be appropriately adjusted. For example, in the case of perforated copper foil, it is a copper foil having a thickness of 3 μm to 35 μm as a market requirement, and the diameter of a fine through hole penetrating from one surface of the copper foil to the other surface is about 10 μm to 200 μm. There is a demand for products that are substantially circular.

また、当該微細貫通孔は、一面側を基準面とし、その基準面に対し略垂直となるように、該金属面の他面側に貫通した複数個の微細貫通孔として存在することが好ましい。このような状態の微細貫通孔であることが、微細貫通孔経路が最も短く、リチウムイオン二次電池の負極形成材として用いた場合には、イオン移動を容易として好ましい。これに対し、例えば、電解金属箔の基準面から他面に到る微細貫通孔が、基準面から見て、ある程度斜めに形成された場合、またある程度の蛇行をした場合をも含む概念として記載している。また、金属箔の表面に現れる微細貫通孔の断面形状は、必ずしも円形である必要はなく、楕円形状、長方形状、菱形状、又はスリット状等の種々の形状で形成することができる。ただし、孔開き電解金属箔を金属板状キャリアから剥離する際に孔開き電解金属箔が剥離し易く、よって破損しにくいような円形、楕円形若しくは卵形の断面形状のように微細貫通孔形状の外縁に凸部がない滑らかな曲線で囲まれた断面形状であることが望ましい。   The fine through-holes preferably exist as a plurality of fine through-holes penetrating on the other surface side of the metal surface so that one surface side is a reference surface and is substantially perpendicular to the reference surface. The fine through-hole in such a state is preferable because it has the shortest fine through-hole route and is easy to move ions when used as a negative electrode forming material for a lithium ion secondary battery. On the other hand, for example, described as a concept including a case where the fine through hole extending from the reference surface to the other surface of the electrolytic metal foil is formed obliquely to some extent when viewed from the reference surface, and also to a certain degree of meandering is doing. Further, the cross-sectional shape of the fine through-hole appearing on the surface of the metal foil is not necessarily circular, and can be formed in various shapes such as an elliptical shape, a rectangular shape, a rhombus shape, or a slit shape. However, when the perforated electrolytic metal foil is peeled off from the metal plate carrier, the perforated electrolytic metal foil is easy to peel off, so that the cross-sectional shape of a circle, ellipse, or oval is difficult to break. It is desirable that the cross-sectional shape is surrounded by a smooth curve with no protrusions on the outer edge.

更に、箔の面内における当該微細貫通孔の配置は、用途を考慮して、微細貫通孔密度(単位面積中にある微細貫通孔の個数)、微細貫通孔の配列の規則性又は不規則性が決定される。従って、この微細貫通孔は、一定のピッチ間隔で配置させたり、まったくランダムのピッチ間隔としても良い。また、電解金属箔のある一定領域において当該微細貫通孔密度を高くする又は低くする等の設計も可能である。   Furthermore, the arrangement of the fine through-holes in the plane of the foil is determined by considering the application, fine through-hole density (number of fine through-holes in a unit area), regularity or irregularity of the arrangement of the fine through-holes. Is determined. Therefore, the fine through holes may be arranged at a constant pitch interval, or may be a completely random pitch interval. In addition, it is possible to design such that the fine through-hole density is increased or decreased in a certain region of the electrolytic metal foil.

そして、本件発明に係る孔開き電解金属箔を構成する成分は、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナ、又はこれらの合金、又は銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナのいずれかを組み合わせた積層構造のいずれかを備えるものとすることが可能である。即ち、i)銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナの群から選ばれる1種の単一の金属層からなる孔開き電解金属箔とするか、ii)銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナの群から選ばれる2種以上の銅−錫合金、ニッケル−銅合金、ニッケル−コバルト合金、ニッケル−鉄合金、金−プラチナ合金、ニッケル−銀合金等の合金層からなる孔開き電解金属箔とするか、iii)銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナの群から選ばれる2種以上の成分を2層以上のクラッド状態とした孔開き電解金属箔とするかである。   And the component which comprises the perforated electrolytic metal foil which concerns on this invention is copper, gold | metal | money, silver, tin, nickel, cobalt, lead, iron, or platinum, or these alloys, or copper, gold | metal | money, silver, tin, It is possible to provide any of a laminated structure in which any of nickel, cobalt, lead, iron, or platinum is combined. That is, i) a perforated electrolytic metal foil made of a single metal layer selected from the group consisting of copper, gold, silver, tin, nickel, cobalt, lead, iron and platinum, or ii) copper, gold Two or more kinds of copper-tin alloys selected from the group consisting of silver, tin, nickel, cobalt, lead, iron and platinum, nickel-copper alloys, nickel-cobalt alloys, nickel-iron alloys, gold-platinum alloys, nickel- A perforated electrolytic metal foil made of an alloy layer such as a silver alloy, or iii) two or more layers of two or more components selected from the group consisting of copper, gold, silver, tin, nickel, cobalt, lead, iron and platinum Or a perforated electrolytic metal foil in a clad state.

また、本件発明に係る孔開き電解金属箔を構成する電解金属箔上には、防錆層を備えるものとして、長期保存性を確保するための防食性能の向上を図ることも可能である。この防錆には有機防錆又は無機防錆を採用することが可能である。有機防錆には、ベンゾトリアゾール、イミダゾール等のトリアゾール化合物を用いることが、長期保存性及び電気的障害とならないことから好ましい。一方、無機防錆の場合には、銅に対する亜鉛等、孔開き電解金属箔の構成金属成分を考慮して、犠牲防食効果を発揮する金属成分を防錆成分として用いる。   Moreover, on the electrolytic metal foil which comprises the perforated electrolytic metal foil which concerns on this invention, it is also possible to aim at the improvement of the anticorrosion performance for ensuring long-term preservation | save property as what is equipped with a rust prevention layer. For this rust prevention, organic rust prevention or inorganic rust prevention can be adopted. For organic rust prevention, it is preferable to use a triazole compound such as benzotriazole or imidazole because it does not cause long-term storage and an electrical failure. On the other hand, in the case of inorganic rust prevention, a metal component exhibiting a sacrificial anticorrosive effect is used as the rust prevention component in consideration of the constituent metal components of the perforated electrolytic metal foil such as zinc for copper.

キャリア基材付孔開き電解金属箔: 本件発明に係るキャリア基材付孔開き電解金属箔は、厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔のハンドリング性を向上させるためキャリア基材と孔開き電解金属箔とが張り合わせられたことを特徴とするものである。このキャリア基材が存在し、孔開き電解金属箔を支持することで、孔開き電解金属箔が10μm未満の厚さで、折れ、シワの発生がしやすいものであっても、ハンドリング性が飛躍的に向上する。また、孔開き電解金属箔の層は、キャリア箔の片面のみでも、キャリア箔の両面に存在しても良い。 A perforated electrolytic metal foil with a carrier base material: A perforated electrolytic metal foil with a carrier base material according to the present invention is a carrier for improving the handling property of a perforated electrolytic metal foil having a plurality of fine through holes in the thickness direction. The substrate and the perforated electrolytic metal foil are pasted together. The carrier substrate is present and supports the perforated electrolytic metal foil, so that the perforated electrolytic metal foil has a thickness of less than 10 μm and is easy to bend and wrinkle. Improve. Moreover, the layer of perforated electrolytic metal foil may exist only on one side of the carrier foil or on both sides of the carrier foil.

本件発明に係るキャリア基材付孔開き電解金属箔を、最も簡潔に言い表せば、厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔のハンドリング性を向上させるためキャリア基材と孔開き電解金属箔とが張り合わせられた状態にあることを特徴とするものである。そして、前記キャリア基材付孔開き電解金属箔において、孔開き電解金属箔とキャリア基材との間に剥離層を設ける事も有用である。   The perforated electrolytic metal foil with a carrier base material according to the present invention can be expressed most simply, in order to improve the handling property of the perforated electrolytic metal foil having a plurality of fine through holes in the thickness direction. The open electrolytic metal foil is in a state of being bonded together. In the perforated electrolytic metal foil with a carrier base material, it is also useful to provide a release layer between the perforated electrolytic metal foil and the carrier base material.

更に、前記キャリア基材として、第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又はクラッド金属板を用いることも可能で、孔開き電解金属層(箔)/第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあることを特徴とするキャリア基材付孔開き電解金属箔となる。そして、前記孔開き電解金属層(箔)/第1金属層/・・・・/第n金属層(nは、2以上の整数)のいずれかの層間に少なくとも一つの剥離層等を設ける事も可能である。   Furthermore, a clad metal foil or a clad metal plate in which a plurality of layers of a first metal layer /.../ nth metal layer (n is an integer of 2 or more) are laminated may be used as the carrier substrate. A carrier group characterized in that a plurality of layers of a perforated electrolytic metal layer (foil) / first metal layer /.../ n-th metal layer (n is an integer of 2 or more) are in a laminated state. It becomes a perforated electrolytic metal foil with a material. Then, at least one release layer or the like is provided between any of the perforated electrolytic metal layer (foil) / first metal layer /.. ./Nth metal layer (n is an integer of 2 or more). Is also possible.

ここで言う、キャリア基材とは、箔状態又は板状態のもので、孔開き電解金属箔を電解析出しようとしたときには陰極としての機能を果たすものである。そして、社会通念を考慮して、本件発明では、厚さが300μm未満のものを「箔」、厚さ300μm以上のものを「板」と称することとする。このキャリア基材を構成する材質は、孔開き電解金属箔の製造時にはキャリア基材自体を陰極に分極して、その表面に電析させて形成するため、導電性を備える限り特段の材質限定は必要ない。従って、銅、チタン、アルミニウム、ステンレス等の箔や板である金属素材、プラスチック材の表面を金属成分でコーティングした素材(例えば、プラスチックフィルムの両面若しくは片面に金属導電層を備える構成のもの等)等を使用することが可能である。しかしながら、このキャリア基材には、金属材質を用いるのが一般的である。このキャリア基材に関しては、以下のキャリア基材(A)〜キャリア基材(F)のいずれかを用いることが好ましい。   Here, the carrier base material is in a foil state or a plate state, and functions as a cathode when electrolytically depositing a perforated electrolytic metal foil. In consideration of social conventions, in the present invention, those having a thickness of less than 300 μm are referred to as “foils”, and those having a thickness of 300 μm or more are referred to as “plates”. The material constituting the carrier base material is formed by polarizing the carrier base material itself to the cathode and electrodepositing on the surface at the time of manufacturing the perforated electrolytic metal foil. unnecessary. Therefore, metal materials such as copper, titanium, aluminum, and stainless steel, such as foils and plates, and materials in which the surface of a plastic material is coated with a metal component (for example, a structure having a metal conductive layer on both sides or one side of a plastic film). Etc. can be used. However, a metal material is generally used for the carrier substrate. Regarding this carrier base material, it is preferable to use any of the following carrier base materials (A) to (F).

キャリア基材(A)は、単一層の金属箔又は金属板である。キャリア基材(A)を用いることで、本件発明に係るキャリア基材付孔開き電解金属箔は、孔開き電解金属層(箔)/金属箔(又は金属板)の層構成を備えるものとなる。そして、このキャリア基材(A)の表面に孔開き電解金属箔を備えた状態を図1に示している。図1(a)はキャリア基材2の片面に孔開き電解金属箔1がある状態を模式的に示している。そして、図1(b)はキャリア基材2の両面に孔開き電解金属箔1がある状態を模式的に示している。図面中には、絶縁性突起部3を明示している。   The carrier substrate (A) is a single layer metal foil or metal plate. By using the carrier substrate (A), the perforated electrolytic metal foil with a carrier base according to the present invention has a layer configuration of perforated electrolytic metal layer (foil) / metal foil (or metal plate). . And the state which provided the perforated electrolytic metal foil on the surface of this carrier base material (A) is shown in FIG. FIG. 1A schematically shows a state in which a perforated electrolytic metal foil 1 is present on one side of a carrier substrate 2. FIG. 1B schematically shows a state in which the perforated electrolytic metal foil 1 is present on both surfaces of the carrier substrate 2. In the drawing, the insulating protrusion 3 is clearly shown.

キャリア基材(B)は、第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又は金属板である。そして、最も単純には、第1金属層と第2金属層とを積層した2層状態のクラッド金属箔又は金属板であり、この形態を図面を用いて説明する。キャリア基材(B)を用い、孔開き電解金属層(箔)/第1金属層/第2金属層の層構成を備えるものとすると、このような2層状態のクラッド金属箔又は金属板は、いずれか一方の層を導電性に優れた銅又は銀等の層として電解時の通電用途に用い、他方の層を機械的強度の高いニッケル、コバルト又はこれらの合金とする等して、キャリア基材自体の導電性と強度を確保するために好ましい。そして、このキャリア基材(B)の表面に孔開き電解金属箔を備えた状態を図2に示している。図2(a)はキャリア箔の片面に孔開き電解金属箔がある状態を模式的に示している。そして、図2(b)はキャリア箔の両面に孔開き電解金属箔がある状態を模式的に示している。このときの第1金属層と第2金属層とは、同一材質でも異種金属材質であっても構わない。なお、明記しておくが、第1金属層〜第n金属層までの全て層は、微量元素量で構成したnmレベルのものではなく、少なくともμmオーダーの厚さを備える層である。   The carrier substrate (B) is a clad metal foil or a metal plate in which a plurality of layers of a first metal layer /.../ n-th metal layer (n is an integer of 2 or more) are in a laminated state. And most simply, it is a clad metal foil or metal plate in a two-layer state in which a first metal layer and a second metal layer are laminated, and this embodiment will be described with reference to the drawings. When the carrier base material (B) is used and the layer structure of perforated electrolytic metal layer (foil) / first metal layer / second metal layer is provided, the clad metal foil or metal plate in such a two-layer state is One of the layers is used for energization during electrolysis as a layer of copper or silver having excellent conductivity, and the other layer is made of nickel, cobalt, or an alloy thereof having high mechanical strength. This is preferable in order to ensure the conductivity and strength of the substrate itself. FIG. 2 shows a state in which a perforated electrolytic metal foil is provided on the surface of the carrier substrate (B). FIG. 2 (a) schematically shows a state in which there is a perforated electrolytic metal foil on one side of the carrier foil. And FIG.2 (b) has shown typically the state which has a perforated electrolytic metal foil on both surfaces of carrier foil. At this time, the first metal layer and the second metal layer may be made of the same material or different metal materials. It should be noted that all the layers from the first metal layer to the nth metal layer are layers having a thickness of at least μm, not a nanometer level composed of a trace element amount.

キャリア基材(C)は、第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔又は金属板である。そして、最も単純には、第1金属層/キャリア基材内剥離層/第2金属層の3層状態のクラッド金属箔又は金属板であり、この構成を図面に用いて説明する。キャリア基材(C)を用い、孔開き電解金属層(箔)/第1金属層/キャリア基材内剥離層/第2金属層の層構成を備えるものとした状態を図3に示している。図3(a)はキャリア箔の片面に孔開き電解金属箔がある状態を模式的に示している。そして、図3(b)はキャリア箔の両面に孔開き電解金属箔がある状態を模式的に示している。このときの第1金属層と第2金属層とは、同一材質でも異種金属材質であっても構わない。そして、当該キャリア基材内剥離層は、第1金属層と第2金属層との間で剥離するために用いるもので前記キャリア基材内剥離層から分離することで、2枚のキャリア基材付孔開き電解金属箔を得ることが出来る。なお、明記しておくが、第1金属層〜第n金属層までの全て層は、微量元素量で構成したnmレベルのものではなく、少なくともμmオーダーの厚さを備える層である。   The carrier substrate (C) is one of the first metal layer of the first metal layer /.../ nth metal layer (n is an integer of 2 or more) /.../ nth metal layer. It is a clad metal foil or metal plate having at least one carrier substrate peeling layer between layers and having a plurality of layers laminated. And most simply, it is a clad metal foil or a metal plate in a three-layer state of first metal layer / peeling layer in carrier substrate / second metal layer, and this configuration will be described with reference to the drawings. FIG. 3 shows a state in which a carrier base material (C) is used and a perforated electrolytic metal layer (foil) / first metal layer / peeling layer in the carrier base material / second metal layer is provided. . FIG. 3A schematically shows a state in which there is a perforated electrolytic metal foil on one side of the carrier foil. And FIG.3 (b) has shown typically the state which has a perforated electrolytic metal foil in both surfaces of carrier foil. At this time, the first metal layer and the second metal layer may be made of the same material or different metal materials. The carrier base peeling layer is used for peeling between the first metal layer and the second metal layer, and is separated from the carrier base peeling layer so that two carrier bases are separated. A perforated electrolytic metal foil can be obtained. It should be noted that all the layers from the first metal layer to the nth metal layer are layers having a thickness of at least μm, not a nanometer level composed of a trace element amount.

キャリア基材(D)は、剥離層を表面に設けた単一層の金属箔又は金属板である。キャリア基材(D)を用いることで、本件発明に係るキャリア基材付孔開き電解金属箔は、孔開き電解金属層(箔)/剥離層/金属箔(又は金属板)の層構成を備えるものとなる。即ち、キャリア基材(A)の表面に予め剥離層を設けたものであり、当該剥離層は、キャリア基材と孔開き電解金属箔とを引き剥がして剥離するために用いるものである。このキャリア基材(C)の表面に孔開き電解金属箔を備えた状態を図4に示している。図4(a)はキャリア箔の片面に孔開き電解金属箔がある状態を模式的に示している。そして、図4(b)はキャリア箔の両面に孔開き電解金属箔がある状態を模式的に示している。後者の場合は、2枚の孔開き電解金属箔を一度に得ることが出来る。   The carrier substrate (D) is a single layer metal foil or metal plate having a release layer on the surface. By using the carrier base material (D), the perforated electrolytic metal foil with a carrier base material according to the present invention has a layer configuration of perforated electrolytic metal layer (foil) / release layer / metal foil (or metal plate). It will be a thing. That is, a release layer is provided in advance on the surface of the carrier substrate (A), and the release layer is used for peeling off and peeling the carrier substrate and the perforated electrolytic metal foil. FIG. 4 shows a state in which a perforated electrolytic metal foil is provided on the surface of this carrier substrate (C). FIG. 4A schematically shows a state in which there is a perforated electrolytic metal foil on one side of the carrier foil. And FIG.4 (b) has shown typically the state which has a perforated electrolytic metal foil in both surfaces of carrier foil. In the latter case, two perforated electrolytic metal foils can be obtained at a time.

キャリア基材(E)は、剥離層/第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又は金属板である。そして、最も単純には、剥離層/第1金属層/第2金属層の3層状態のクラッド金属箔又は金属板である。このキャリア基材(E)を用いることで、本件発明に係るキャリア基材付孔開き電解金属箔は、孔開き電解金属層(箔)/剥離層/第1金属層/第2金属層の層構成を備えるものとなる。即ち、キャリア基材(B)の表面に予め剥離層を設けたものであり、当該剥離層は、キャリア基材と孔開き電解金属箔とを引き剥がして剥離するために用いるものである。   The carrier substrate (E) is a clad metal foil or metal plate in which a plurality of layers of release layer / first metal layer /... / N-th metal layer (n is an integer of 2 or more) are laminated. . And most simply, it is a clad metal foil or a metal plate in a three-layer state of peeling layer / first metal layer / second metal layer. By using this carrier base material (E), the perforated electrolytic metal foil with a carrier base material according to the present invention is a perforated electrolytic metal layer (foil) / release layer / first metal layer / second metal layer. It will have a configuration. That is, a release layer is provided in advance on the surface of the carrier substrate (B), and the release layer is used for peeling off and peeling the carrier substrate and the perforated electrolytic metal foil.

キャリア基材(F)は、剥離層/第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔又は金属板である。そして、最も単純には、剥離層/第1金属層/キャリア基材内剥離層/第2金属層の4層状態のクラッド金属箔又は金属板である。キャリア基材(F)を用いることで、本件発明に係るキャリア基材付孔開き電解金属箔は、孔開き電解金属層(箔)/剥離層/第1金属層/キャリア基材内剥離層/第2金属層の層構成を備えるものとなる。即ち、キャリア基材(C)の表面に予め剥離層を設けたものであり、当該剥離層は、キャリア基材と孔開き電解金属箔とを引き剥がして剥離するために用いるものである。   The carrier substrate (F) is made of a release layer / first metal layer /.../ n-th metal layer (n is an integer of 2 or more) first metal layer /.../ n-th metal layer. It is a clad metal foil or metal plate in which at least one carrier substrate peeling layer is provided between any of the layers and a plurality of layers are laminated. The simplest is a clad metal foil or metal plate in a four-layer state of release layer / first metal layer / release layer in carrier substrate / second metal layer. By using the carrier base material (F), the perforated electrolytic metal foil with a carrier base material according to the present invention has a perforated electrolytic metal layer (foil) / a release layer / a first metal layer / a release layer in a carrier base material / The layer structure of the second metal layer is provided. That is, a release layer is provided in advance on the surface of the carrier substrate (C), and the release layer is used for peeling off and peeling the carrier substrate and the perforated electrolytic metal foil.

本件発明に於いて単に「剥離層」と称しているのは、キャリア基材と孔開き電解金属箔との間の剥離層であり、「キャリア基材内剥離層」というのはキャリア基材の内部に存在する剥離層のことである。従って、以上及び以下に於いて、「剥離層」及び「キャリア基材内剥離層」を含めて言う場合には「剥離層等」と称する。剥離層等は、無機系剥離層又は有機系剥離層のいずれかを用いることが好ましい。この剥離層等は、剥離層等を境にして層間での分離が可能なように設けるものである。剥離層等を無機系剥離層として用いるには、クロムメッキ、ニッケルメッキ、鉛メッキ、クロメート処理等を用いることが好ましい。そして、剥離層等を有機系剥離層として用いるには、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなるものを用いて形成したものが好ましい。   In the present invention, the term “release layer” is simply the release layer between the carrier substrate and the perforated electrolytic metal foil, and the “release layer in the carrier substrate” is the carrier substrate. It is a release layer that exists inside. Accordingly, in the above and the following, the term “release layer” and “release layer in carrier substrate” are referred to as “release layer and the like”. As the release layer, it is preferable to use either an inorganic release layer or an organic release layer. The release layer and the like are provided so that separation between layers is possible with the release layer and the like as a boundary. In order to use the release layer or the like as the inorganic release layer, it is preferable to use chromium plating, nickel plating, lead plating, chromate treatment, or the like. And in order to use a peeling layer etc. as an organic type peeling layer, what was formed using what consists of 1 type, or 2 or more types selected from a nitrogen-containing organic compound, a sulfur containing organic compound, and carboxylic acid is preferable. .

有機系剥離層を構成する成分を、より具体的に言えば、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸のうち、窒素含有有機化合物には、置換基を有する窒素含有有機化合物を含んでいる。具体的には、窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等を用いることが好ましい。   More specifically, the components constituting the organic release layer include, among nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids, the nitrogen-containing organic compound includes a nitrogen-containing organic compound having a substituent. Yes. Specifically, examples of the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, which are triazole compounds having a substituent, and 1H. It is preferable to use -1,2,4-triazole and 3-amino-1H-1,2,4-triazole.

硫黄含有有機化合物には、メルカプトベンゾチアゾール、チオシアヌル酸及び2−ベンズイミダゾールチオール等を用いることが好ましい。   As the sulfur-containing organic compound, it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.

カルボン酸は、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。以上に述べてきた剥離層に関する概念は、本件発明で言う剥離層全てに適用できる。   As the carboxylic acid, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like. The concept relating to the release layer described above can be applied to all release layers referred to in the present invention.

そして、本件発明に係るキャリア基材付孔開き電解金属箔においては、上述のキャリア基材(D)、キャリア基材(E)、キャリア基材(F)のいずれかを用いた場合のように、孔開き電解金属箔とキャリア基材との間に剥離層が位置するものとして、キャリア基材と孔開き電解金属箔とを引き剥がして剥離するために用いる事が好ましい。エッチング法でキャリア基材を溶解剥離することも可能であるが、製造コストの上昇に繋がるからである。   And in the perforated electrolytic metal foil with a carrier substrate according to the present invention, as in the case of using any of the carrier substrate (D), the carrier substrate (E), or the carrier substrate (F) described above. Assuming that the release layer is located between the perforated electrolytic metal foil and the carrier base material, it is preferable to use the carrier base material and the perforated electrolytic metal foil to separate and peel. This is because the carrier base material can be dissolved and peeled by an etching method, but this leads to an increase in manufacturing cost.

以上に述べてきたいずれかのキャリア基材及び剥離層と孔開き電解金属箔とを一定の積層構造をもって、組み合わせたものが、本件発明に係るキャリア基材付孔開き電解金属箔である。   The carrier base material-attached perforated electrolytic metal foil according to the present invention is a combination of any of the carrier base material and release layer described above and a perforated electrolytic metal foil having a certain laminated structure.

キャリア基材付孔開き電解金属箔の製造方法: 本件発明に係るキャリア基材付孔開き電解金属箔の製造方法は、以下の工程a及び工程bを含むことを特徴とする。 Manufacturing method of perforated electrolytic metal foil with carrier substrate: The manufacturing method of perforated electrolytic metal foil with carrier substrate according to the present invention includes the following steps a and b.

工程a.: この突起部形成工程は、キャリア基材の表面に絶縁性突起部を複数箇所に形成する工程である。キャリア基材とは、上述のように箔状若しくは板状のものである。このキャリア基材2の表面(片面若しくは両面)に、絶縁性突起部3を形成する。図7(a)にキャリア基材2の表面に絶縁性突起部3を形成した断面を模式的に示す。また、絶縁性突起部3の横断面形状は、円形、矩形、菱形、楕円形、スリット形状等の種々の形状の適用が可能である。また、絶縁性突起部3には、キャリア基材2の表面から上方に向かってやや先細りのテーパー付けが行われても良い。これによってキャリア基材2から孔開き電解金属箔1が剥離し易くなる。 Step a. : This protrusion part formation process is a process of forming an insulating protrusion part in multiple places on the surface of a carrier base material. The carrier substrate is a foil or plate as described above. Insulating protrusions 3 are formed on the surface (one side or both sides) of the carrier substrate 2. FIG. 7A schematically shows a cross section in which the insulating protrusions 3 are formed on the surface of the carrier substrate 2. Moreover, the cross-sectional shape of the insulating protrusion 3 can be applied in various shapes such as a circle, a rectangle, a rhombus, an ellipse, and a slit shape. The insulating protrusion 3 may be slightly tapered from the surface of the carrier substrate 2 upward. This facilitates the peeling of the perforated electrolytic metal foil 1 from the carrier substrate 2.

このときの絶縁性突起部3の形成方法には、複数の手段を採用することが可能である。その一つが印刷法を用いて絶縁性突起部を形成する方法である。例えば、熱硬化性樹脂インクを用いて、前記キャリア基材の表面に印刷法で絶縁性突起部を形成し、加熱硬化させれば、当該絶縁性突起部を形成することが可能となる。このような印刷法は、当該絶縁性突起部の形状や突起部の配置を自由自在に描くことが容易で、且つ、工程が簡素であり製造コストの削減に大きく寄与する。   At this time, a plurality of means can be adopted as a method of forming the insulating protrusion 3. One of them is a method of forming an insulating protrusion using a printing method. For example, if an insulating protrusion is formed on the surface of the carrier base material by a printing method using a thermosetting resin ink and is cured by heating, the insulating protrusion can be formed. Such a printing method can easily draw the shape of the insulating protrusions and the arrangement of the protrusions freely, has a simple process, and greatly contributes to a reduction in manufacturing cost.

ここで言う印刷法は、インクジェット法、スクリーン印刷法、グラビア印刷法、凸版印刷法、凹版印刷法のいずれを用いることも可能である。これらの印刷法による絶縁性突起部の形成は常法により行われる。中でも、インクジェット法を用いることが、設計の自由度及び対応能力の点から好ましい。インクジェット法は、キャリア基材の絶縁性突起部を形成する位置情報等をコンピュータ上で設計し、その設計情報をもってインクジェットプリンタを制御して、キャリア基材上の所望の位置に絶縁性突起部を描くことができる。なお、インクジェット法を用いる場合には、インクジェットノズルから噴射されるインクが金属板状キャリア箔1上に形成される際のワンジェット(一噴射)当たりのインク厚が薄いので、より凸部を高くしたい場合は同一パターンで複数回印刷することで所望の高さの絶縁性突起部を得るようにすることが好ましい。また、グラビア印刷法を用いる場合には、形成した絶縁性突起部の形状を安定化を図るためには、装置の持つ特性に合わせた微調整が必要となる点に留意すべきである。   As the printing method referred to here, any of an inkjet method, a screen printing method, a gravure printing method, a relief printing method, and an intaglio printing method can be used. Formation of the insulating protrusions by these printing methods is performed by a conventional method. Among these, it is preferable to use the ink jet method from the viewpoint of the degree of freedom in design and the ability to cope. In the ink jet method, position information and the like for forming the insulating protrusions of the carrier base material are designed on a computer, and the ink jet printer is controlled by the design information to place the insulating protrusions at a desired position on the carrier base material. I can draw. When the ink jet method is used, the ink thickness per one jet (one jet) when the ink ejected from the ink jet nozzle is formed on the metal plate-like carrier foil 1 is thin. If desired, it is preferable to obtain an insulating protrusion having a desired height by printing the same pattern a plurality of times. In addition, when using the gravure printing method, it should be noted that fine adjustment in accordance with the characteristics of the apparatus is required to stabilize the shape of the formed insulating protrusion.

また、もう一つの絶縁性突起部3の形成方法に関して説明する。即ち、フォトリソグラフィー技術を利用した方法である。即ち、以下の手順で絶縁性突起部を形成するのである。図8を参照しつつ、以下に説明する。   Further, another method for forming the insulating protrusion 3 will be described. That is, it is a method using photolithography technology. That is, the insulating protrusion is formed by the following procedure. This will be described below with reference to FIG.

最初に、図8(a)に示すように、キャリア基材2の表面に絶縁性の感光性レジスト層4(以下、単に「レジスト層4」と称する。)を形成するのである。ここで言うレジスト層4には、プリント配線板製造に用いるドライフィルム、液体レジスト等の感光性レジスト材の使用が可能である。ドライフィルムの場合には、ラミネータを用いて、キャリア基材2の表面に貼り付ける。液体レジストの場合には、スピンコーター等を用いて、キャリア基材2の表面にレジスト層3として構成することが好ましい。特に、ドライフィルムは、レジスト材がポリエチレンフィルムとポリエステルフィルムとの間で挟持された構造を持つフィルムであり、プリント配線板のエッチングレジストとして広く使用されている。このドライフィルムは、厚さに種々のバリエーションを持たせることが容易で、最終製品である、孔開き電解金属箔の厚さ幅を広く採ることが容易である。   First, as shown in FIG. 8A, an insulating photosensitive resist layer 4 (hereinafter simply referred to as “resist layer 4”) is formed on the surface of the carrier substrate 2. As the resist layer 4 referred to herein, a photosensitive resist material such as a dry film or a liquid resist used for manufacturing a printed wiring board can be used. In the case of a dry film, it is attached to the surface of the carrier substrate 2 using a laminator. In the case of a liquid resist, the resist layer 3 is preferably formed on the surface of the carrier substrate 2 using a spin coater or the like. In particular, a dry film is a film having a structure in which a resist material is sandwiched between a polyethylene film and a polyester film, and is widely used as an etching resist for printed wiring boards. This dry film can easily have various variations in thickness, and it is easy to widen the thickness width of the perforated electrolytic metal foil, which is the final product.

次に、図8(b)に示すように、キャリア基材2の表面に形成したレジスト層4に、所望の絶縁性突起部を形成するため、絶縁性突起部を形成するためフォトマスク5を介して露光する。当該露光には、一般に紫外線(UV光)を用いる(図8(b)では「UV」と記載している。)。   Next, as shown in FIG. 8B, in order to form a desired insulating protrusion on the resist layer 4 formed on the surface of the carrier substrate 2, a photomask 5 is formed to form the insulating protrusion. Through the exposure. In general, ultraviolet light (UV light) is used for the exposure (referred to as “UV” in FIG. 8B).

そして、前記露光処理されたレジスト層4を現像し、該レジスト層4の不要な部分を除去し前記絶縁性突起部3を形成する。この工程では、不要な部分のレジスト層3をアルカリ溶液(例えば1%〜5%程度の濃度の炭酸ナトリウム溶液等)で除去し、残留したレジスト部が前記絶縁性突起部3の形状を形成する。なお、図8に示した除去方法はネガタイプのレジストを使用した場合である。公知の現像処理を行うことによりポジタイプのレジストを使用した場合は、逆に露光処理されたレジスト層7が除去され、露光処理されていないレジスト層3がレジストマスクとして残存する。   Then, the exposed resist layer 4 is developed, unnecessary portions of the resist layer 4 are removed, and the insulating protrusions 3 are formed. In this step, an unnecessary portion of the resist layer 3 is removed with an alkaline solution (for example, a sodium carbonate solution having a concentration of about 1% to 5%), and the remaining resist portion forms the shape of the insulating protrusion 3. . The removal method shown in FIG. 8 is a case where a negative type resist is used. When a positive type resist is used by performing a known development process, the resist layer 7 that has been exposed is removed, and the resist layer 3 that has not been exposed remains as a resist mask.

なお、絶縁性突起部の形成を行う前に、キャリア基材の表面を、希硫酸又は希硫酸と過酸化水素との混合液等の酸溶液で酸洗し、その後、純水やイオン交換水等の水で水洗し、乾燥させて用いることが好ましい。キャリア基材に対する絶縁性突起部の定着性を確実にするためである。   Before forming the insulating protrusions, the surface of the carrier substrate is pickled with an acid solution such as dilute sulfuric acid or a mixture of dilute sulfuric acid and hydrogen peroxide, and then pure water or ion-exchanged water is used. It is preferable to use after washing with water such as water and drying. This is for ensuring the fixing property of the insulating protrusions to the carrier substrate.

工程b.この工程では、図7(b)として示したように、前記キャリア基材2の絶縁性突起部3を形成した面に対し、キャリア基材2をカソード分極して金属メッキを行い、前記キャリア基材2の絶縁性突起部3以外の領域に金属メッキ層を析出形成させ、キャリア基材2表面に孔開き電解金属箔1を形成し、キャリア箔付孔開き電解金属箔10とする。 Step b. In this step, as shown in FIG. 7 (b), the carrier base 2 is cathode-polarized on the surface of the carrier base 2 on which the insulating protrusions 3 are formed, and metal plating is performed. A metal plating layer is deposited in a region other than the insulating protrusion 3 of the material 2 to form a perforated electrolytic metal foil 1 on the surface of the carrier base material 2, thereby obtaining a perforated electrolytic metal foil 10 with a carrier foil.

そして、本件発明に係るキャリア基材付孔開き電解金属箔の製造方法において、キャリア基材は、上述のキャリア基材(A)〜キャリア基材(F)のいずれかを用いることが好ましい。ここでは、キャリア基材(A)〜キャリア基材(F)に関する説明は省略する。なお、キャリア基材は、そのキャリア基材自体を電極(陰極)として用いて、その表面に孔開き電解金属箔を構成する金属成分を析出させるように使用される。そして、必要に応じて、孔開き電解金属箔が基材に張り合わせられる等の加工が終了するまで、孔開き電解金属箔と一体として使用し、ハンドリング性の向上、孔開き電解金属箔の表面を汚染、傷発生から保護するのである。   And in the manufacturing method of perforated electrolytic metal foil with a carrier base material concerning this invention, it is preferable to use any one of the above-mentioned carrier base material (A)-carrier base material (F) as a carrier base material. Here, the description regarding the carrier substrate (A) to the carrier substrate (F) is omitted. The carrier substrate is used so that the metal component constituting the perforated electrolytic metal foil is deposited on the surface using the carrier substrate itself as an electrode (cathode). And, if necessary, use it as an integral part of the perforated electrolytic metal foil until the processing such as bonding the perforated electrolytic metal foil to the base material is completed. It protects against contamination and scratches.

但し、本件発明に係るキャリア基材付孔開き電解金属箔の製造方法において、前記工程aで用いる基材として、前記キャリア基材(A)〜キャリア基材(C)のいずれかを用いる場合には、前記工程aと前記工程bとの間に剥離層形成工程を設ける事も好ましい。この段階で剥離層形成工程を設けると、図7(a)の状態から図9(1)に示されるように、キャリア基材2の表面の絶縁性突起部の存在しない部位であって、金属メッキ層(孔開き電解金属箔)が形成される予定のキャリア基材表面に、上述したと同様の剥離層6(無機系若しくは有機系剥離層)を形成する。そして、このとき絶縁性突起部3とキャリア基材2との間に剥離層6は存在しない。しかし、厳密に考えれば、無機系剥離層を電解法で形成する場合を除き、有機系剥離層を形成しようとして有機剤をシャワーリング、浸漬法で吸着させようとすると、絶縁性突起部3の表面にも、当該有機剤が吸着する事もあり得る。   However, in the method for producing a perforated electrolytic metal foil with a carrier base material according to the present invention, when any one of the carrier base material (A) to the carrier base material (C) is used as the base material used in the step a. It is also preferable to provide a release layer forming step between the step a and the step b. When a release layer forming step is provided at this stage, as shown in FIG. 9 (1) from the state of FIG. 7 (a), the surface of the carrier base material 2 is a portion where there is no insulating protrusion, The same release layer 6 (inorganic or organic release layer) as described above is formed on the surface of the carrier base material on which the plated layer (perforated electrolytic metal foil) is to be formed. At this time, there is no release layer 6 between the insulating protrusion 3 and the carrier substrate 2. However, strictly speaking, except for the case where the inorganic release layer is formed by an electrolytic method, when the organic agent is adsorbed by showering or dipping in order to form the organic release layer, the insulating protrusion 3 The organic agent may be adsorbed on the surface.

そして、前記キャリア基材の絶縁性突起部3を形成した面に対し金属メッキを行うと、図9(2)に示すように、前記キャリア基材2の絶縁性突起部3以外の領域に金属メッキ層が析出し、キャリア基材2の表面に孔開き電解金属箔1となる層が形成され、キャリア基材付孔開き電解金属箔10となる。この剥離層6を設けることで、孔開き電解金属箔1をキャリア基材2から引き剥がすことが可能で、引き剥がすことによって図9(3)に示す如きように、微細貫通孔7を備える孔開き電解金属箔1が得られる。   Then, when metal plating is performed on the surface of the carrier base material on which the insulating protrusions 3 are formed, as shown in FIG. 9 (2), a metal is formed in a region other than the insulating protrusions 3 of the carrier base material 2. A plating layer is deposited, and a layer that becomes the perforated electrolytic metal foil 1 is formed on the surface of the carrier base material 2, so that a perforated electrolytic metal foil 10 with a carrier base material is obtained. By providing this release layer 6, the perforated electrolytic metal foil 1 can be peeled off from the carrier substrate 2, and as shown in FIG. An open electrolytic metal foil 1 is obtained.

次に、孔開き電解金属箔となる層を形成するために用いるメッキ方法に関して説明する。孔開き電解金属箔の構成成分は、上述のように、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナ、又はこれらの合金、又は銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナのいずれかを組み合わせた積層構造のいずれかを備えるものであり、所望のメッキが出来る限り、浴組成、メッキ条件等を任意に変更することが可能であり、特段の限定は要さない。また、孔開き電解金属箔の厚さは、電解メッキの電析時間を変更することにより調整される。一例として、本件発明に係る孔開き電解金属箔を構成するメッキ操業に用いることの出来るメッキ液組成、条件等を以下に例示する。   Next, a plating method used for forming a layer to be a perforated electrolytic metal foil will be described. As described above, the components of the perforated electrolytic metal foil are copper, gold, silver, tin, nickel, cobalt, lead, iron, or platinum, or an alloy thereof, or copper, gold, silver, tin, nickel, It has one of the laminated structures combining any of cobalt, lead, iron, or platinum, and the bath composition, plating conditions, etc. can be arbitrarily changed as long as the desired plating is possible. No limitation is required. Further, the thickness of the perforated electrolytic metal foil is adjusted by changing the electrodeposition time for electrolytic plating. As an example, the plating solution composition, conditions, etc. which can be used for the plating operation which comprises the perforated electrolytic metal foil which concerns on this invention are illustrated below.

最初に、孔開き電解金属箔を単一の金属成分にて構成する場合に関して述べる。孔開き電解金属箔を金又は銀で構成する場合には、一般的に用いられるシアン浴、非シアン浴のいずれをも使用することが可能である。好ましくは、非シアン浴を用いることが好ましい。シアン浴では、剥離層として有機系剥離層を採用した場合、その損傷が大きく、予め厚めの有機剥離層を形成する等の製造上の留意点が増え、工程管理が煩雑化する傾向が有るからである。   First, the case where the perforated electrolytic metal foil is composed of a single metal component will be described. When the perforated electrolytic metal foil is made of gold or silver, both a commonly used cyan bath and non-cyan bath can be used. Preferably, a non-cyan bath is used. In the cyanogen bath, when an organic release layer is used as the release layer, the damage is great, and there are increased manufacturing precautions such as forming a thick organic release layer in advance, which tends to complicate process management. It is.

孔開き電解金属箔を銅で構成する場合には、銅メッキ液として用いられる溶液を使用することが可能である。例えば、浴組成を、CuSO・5HO濃度180g/L〜240g/L及びHSO濃度180g/L〜210g/L、15〜30A/dmの電流密度、浴温を30〜50℃等をメッキ条件として設定する等である。その他、ピロリン酸カリウム浴等を用いる等である。 When the perforated electrolytic metal foil is made of copper, a solution used as a copper plating solution can be used. For example, the bath composition has a CuSO 4 .5H 2 O concentration of 180 g / L to 240 g / L and a H 2 SO 4 concentration of 180 g / L to 210 g / L, a current density of 15 to 30 A / dm 2 , and a bath temperature of 30 to 50 For example, the temperature is set as a plating condition. In addition, a potassium pyrophosphate bath or the like is used.

孔開き電解金属箔をスズで構成する場合には、スズメッキ液として用いられる溶液を使用することが可能である。例えば、(i)硫酸第1スズを用いたスズ濃度が5〜30g/L、液温20〜50℃、pH2〜4、電流密度0.3〜10A/dmの条件、(ii)硫酸第1スズを用いたスズ濃度が20〜40g/L、硫酸濃度70〜150g/L、液温20〜35℃、クレゾールスルホン酸濃度70〜120g/L、ゼラチン濃度1〜5g/L、ベータナフトール濃度0.5〜2g/L、電流密度0.3〜3A/dm等をメッキ条件として用いる等である。 When the perforated electrolytic metal foil is made of tin, a solution used as a tin plating solution can be used. For example, (i) a tin concentration using stannous sulfate is 5 to 30 g / L, a liquid temperature is 20 to 50 ° C., a pH is 2 to 4, and a current density is 0.3 to 10 A / dm 2 ; The tin concentration using 1 tin is 20-40 g / L, sulfuric acid concentration 70-150 g / L, liquid temperature 20-35 ° C., cresolsulfonic acid concentration 70-120 g / L, gelatin concentration 1-5 g / L, beta naphthol concentration For example, 0.5 to 2 g / L, a current density of 0.3 to 3 A / dm 2 and the like are used as plating conditions.

孔開き電解金属箔をニッケルで構成する場合には、ニッケルメッキ液として用いられる溶液を広く使用することが可能である。例えば、(i)硫酸ニッケルを用いニッケル濃度が5〜30g/L、液温20〜50℃、pH2〜4、電流密度0.3〜10A/dmの条件、(ii)硫酸ニッケルを用いたニッケル濃度5〜30g/L、ピロリン酸カリウム濃度50〜500g/L、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dmの条件、(iii)硫酸ニッケルを用いたニッケル濃度10〜70g/L、ホウ酸濃度20〜60g/L、液温20〜50℃、pH2〜4、電流密度1〜50A/dmをメッキ条件として設定することが好ましい。またその他一般のワット浴等のメッキ条件として用いる等である。 When the perforated electrolytic metal foil is made of nickel, a solution used as a nickel plating solution can be widely used. For example, (i) nickel sulfate is used, nickel concentration is 5 to 30 g / L, liquid temperature is 20 to 50 ° C., pH is 2 to 4, current density is 0.3 to 10 A / dm 2 , and (ii) nickel sulfate is used. Conditions of nickel concentration 5-30 g / L, potassium pyrophosphate concentration 50-500 g / L, liquid temperature 20-50 ° C., pH 8-11, current density 0.3-10 A / dm 2 , (iii) nickel sulfate was used It is preferable to set a nickel concentration of 10 to 70 g / L, a boric acid concentration of 20 to 60 g / L, a liquid temperature of 20 to 50 ° C., a pH of 2 to 4, and a current density of 1 to 50 A / dm 2 as plating conditions. In addition, it is used as plating conditions for other general Watt baths.

また、ニッケルの場合、リン酸系溶液を用いることで、ニッケル−リン合金メッキとすることも可能である。この場合、硫酸ニッケル濃度120〜180g/L、塩化ニッケル濃度35〜55g/L、HPO濃度30〜50g/L、HPO濃度20〜40g/L、液温70〜95℃、pH0.5〜1.5、電流密度5〜50A/dm等をメッキ条件として用いる等である。 In the case of nickel, nickel-phosphorus alloy plating can be obtained by using a phosphoric acid solution. In this case, nickel sulfate concentration 120-180 g / L, nickel chloride concentration 35-55 g / L, H 3 PO 4 concentration 30-50 g / L, H 3 PO 3 concentration 20-40 g / L, liquid temperature 70-95 ° C., For example, pH of 0.5 to 1.5, current density of 5 to 50 A / dm 2 or the like is used as plating conditions.

孔開き電解金属箔をコバルトで構成する場合には、コバルトメッキ液として用いられる溶液を使用することが可能である。例えば、(i)硫酸コバルトを用い、コバルト濃度5〜30g/L、クエン酸三ナトリウム濃度50〜500g/L、液温20〜50℃、pH2〜4、電流密度0.3〜10A/dmを条件として、(ii)硫酸コバルトを用い、コバルト濃度5〜30g/L、ピロリン酸カリウム濃度50〜500g/L、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dmの条件、(iii)硫酸コバルトを用いたコバルト濃度10〜70g/L、ホウ酸20〜60g/L、液温20〜50℃、pH2〜4、電流密度1〜50A/dmをメッキ条件として用いる等である。 When the perforated electrolytic metal foil is made of cobalt, a solution used as a cobalt plating solution can be used. For example, (i) using cobalt sulfate, cobalt concentration 5-30 g / L, trisodium citrate concentration 50-500 g / L, liquid temperature 20-50 ° C., pH 2-4, current density 0.3-10 A / dm 2 (Ii) using cobalt sulfate, cobalt concentration 5-30 g / L, potassium pyrophosphate concentration 50-500 g / L, liquid temperature 20-50 ° C., pH 8-11, current density 0.3-10 A / dm 2 conditions, (iii) cobalt concentration using cobalt sulfate 10~70g / L, boric acid 20 to 60 g / L, liquid temperature 20 to 50 ° C., pH 2 to 4, the current density 1~50A / dm 2 plating conditions And so on.

孔開き電解金属箔を鉛で構成する場合には、鉛メッキ液として用いられる溶液を使用することが可能である。例えば、ホウフッ化鉛濃度250〜400g/L、ホウフッ化水素酸濃度30〜50g/L、ホウ酸濃度10〜30g/L、膠濃度0.1〜0.5g/L、ベータナフトール濃度0.1〜1.0g/L、液温25〜50℃、電流密度1〜5A/dm等をメッキ条件として用いる等である。 When the perforated electrolytic metal foil is made of lead, a solution used as a lead plating solution can be used. For example, lead borofluoride concentration 250-400 g / L, borofluoric acid concentration 30-50 g / L, boric acid concentration 10-30 g / L, glue concentration 0.1-0.5 g / L, beta naphthol concentration 0.1 ˜1.0 g / L, liquid temperature of 25 to 50 ° C., current density of 1 to 5 A / dm 2 and the like are used as plating conditions.

孔開き電解金属箔を鉄で構成する場合には、鉄メッキ液として用いられる溶液を使用することが可能である。例えば、(i)硫酸第1鉄を用いた鉄濃度10〜60g/L、液温25〜50℃、pH2.5以下、電流密度1〜20A/dmの条件、(ii)硫酸第1鉄濃度200〜300g/L、塩化第1鉄濃度35〜50g/L、液温40〜60℃、pH3.5〜5.5、電流密度1〜20A/dm等をメッキ条件として用いる等である。 When the perforated electrolytic metal foil is made of iron, a solution used as an iron plating solution can be used. For example, (i) iron concentration using ferrous sulfate 10-60 g / L, liquid temperature 25-50 ° C., pH 2.5 or less, current density 1-20 A / dm 2 , (ii) ferrous sulfate A concentration of 200 to 300 g / L, a ferrous chloride concentration of 35 to 50 g / L, a liquid temperature of 40 to 60 ° C., a pH of 3.5 to 5.5, a current density of 1 to 20 A / dm 2, etc. are used as plating conditions. .

孔開き電解金属箔を鉛で構成する場合には、プラチナメッキ液として用いられる溶液を使用することが可能である。例えば、6〜10g/L濃度の(NHPtCl及び100〜140g/L濃度のNaHPO・12HOからなる溶液を用い、液温40〜70℃、電流密度0.2〜0.6A/dm等をメッキ条件として用いる等である。 When the perforated electrolytic metal foil is made of lead, a solution used as a platinum plating solution can be used. For example, using a solution composed of (NH 4 ) 2 PtCl having a concentration of 6 to 10 g / L and Na 2 HPO 4 · 12H 2 O having a concentration of 100 to 140 g / L, a liquid temperature of 40 to 70 ° C., a current density of 0.2 to For example, 0.6 A / dm 2 or the like is used as a plating condition.

次に、孔開き電解金属箔を合金メッキによって合金成分にて構成する場合に関して述べる。この合金メッキとしては、多くの合金組成を考えることが出来るため、以下には一例を示すのみとする。例えば、孔開き電解金属箔を銀−パラジウム合金で構成する場合には、銀−パラジウム合金メッキとして、シアン化銀カリウム、塩化パラジウム、酸性ピロリン酸カリウム、及びチオシアン酸カリウムを含む電解メッキ浴等の公知のメッキ浴及びメッキ条件を用いればよい。   Next, the case where the perforated electrolytic metal foil is composed of alloy components by alloy plating will be described. Since many alloy compositions can be considered as this alloy plating, only an example is shown below. For example, when the perforated electrolytic metal foil is composed of a silver-palladium alloy, an electroplating bath containing silver cyanide potassium, palladium chloride, potassium acid pyrophosphate, and potassium thiocyanate is used as the silver-palladium alloy plating. A known plating bath and plating conditions may be used.

孔開き電解金属箔をニッケル−亜鉛合金で構成する場合には、硫酸ニッケルを用いニッケル濃度1〜2.5g/L、ピロリン酸亜鉛を用いて亜鉛濃度0.1〜1g/L、ピロリン酸カリウム濃度50〜500g/L、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dm等の条件が好ましい。 When the perforated electrolytic metal foil is composed of a nickel-zinc alloy, nickel sulfate is used, nickel concentration is 1 to 2.5 g / L, zinc pyrophosphate is used, zinc concentration is 0.1 to 1 g / L, potassium pyrophosphate Conditions such as a concentration of 50 to 500 g / L, a liquid temperature of 20 to 50 ° C., a pH of 8 to 11, and a current density of 0.3 to 10 A / dm 2 are preferable.

孔開き電解金属箔をニッケル−コバルト合金で構成する場合には、硫酸コバルト濃度80〜180g/L、硫酸ニッケル濃度80〜120g/L、ホウ酸濃度20〜40g/L、塩化カリウム濃度10〜15g/L、リン酸2水素ナトリウム濃度0.1〜15g/L、液温30〜50℃、pH3.5〜4.5、電流密度1〜10A/dm等の条件が好ましい。 When the perforated electrolytic metal foil is composed of a nickel-cobalt alloy, the cobalt sulfate concentration is 80 to 180 g / L, the nickel sulfate concentration is 80 to 120 g / L, the boric acid concentration is 20 to 40 g / L, and the potassium chloride concentration is 10 to 15 g. / L, sodium dihydrogen phosphate concentration of 0.1 to 15 g / L, liquid temperature of 30 to 50 ° C., pH of 3.5 to 4.5, and current density of 1 to 10 A / dm 2 are preferable.

孔開き電解金属箔をニッケル−リン合金で構成する場合には、硫酸ニッケル120〜180g/l、塩化ニッケル35〜55g/l、HPO30〜50g/l、HPO20〜40g/l、液温70〜95℃、pH0.5〜1.5、電流密度5〜50A/dmの条件等が好ましい。 When the perforated electrolytic metal foil is composed of a nickel-phosphorus alloy, nickel sulfate 120 to 180 g / l, nickel chloride 35 to 55 g / l, H 3 PO 4 30 to 50 g / l, H 3 PO 3 20 to 40 g / L, liquid temperature of 70 to 95 ° C., pH of 0.5 to 1.5, and current density of 5 to 50 A / dm 2 are preferable.

孔開き電解金属箔を鉛−スズ合金で構成する場合には、硫酸第1スズ20〜40g/l、酢酸鉛15〜25g/l、ピロリン酸ナトリウム100〜200g/l、EDTA・2ナトリウム15〜25g/l、PEG−3000 0.8〜1.5g/l、ホルマリン37%水溶液0.3〜1ml/l、液温45〜55℃、pH8〜10、電流密度5〜20A/dmの条件等が好ましい。 When the perforated electrolytic metal foil is composed of a lead-tin alloy, stannous sulfate 20-40 g / l, lead acetate 15-25 g / l, sodium pyrophosphate 100-200 g / l, EDTA disodium 15-15 25 g / l, PEG-3000 0.8-1.5 g / l, formalin 37% aqueous solution 0.3-1 ml / l, liquid temperature 45-55 ° C., pH 8-10, current density 5-20 A / dm 2 Etc. are preferred.

孔開き電解金属箔を鉄−ニッケル−コバルト合金で構成する場合には、硫酸コバルト50〜300g/l、硫酸ニッケル50〜300g/l、硫酸第1鉄50〜300g/l、ホウ酸30〜50g/l、液温45〜55℃、pH4〜5、電流密度1〜10A/dmの条件等が好ましい。 When the perforated electrolytic metal foil is composed of an iron-nickel-cobalt alloy, cobalt sulfate 50 to 300 g / l, nickel sulfate 50 to 300 g / l, ferrous sulfate 50 to 300 g / l, boric acid 30 to 50 g / L, liquid temperature of 45 to 55 ° C., pH of 4 to 5, current density of 1 to 10 A / dm 2 and the like are preferable.

さらに、孔開き電解金属箔を複数の金属層で構成しようとする場合には、種々の金属メッキ、例えば、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、又はプラチナのいずれかを順序よくッキして、複数層の積層構造を構成する。このときのメッキ浴組成及び条件は、上述の単一層を構成するメッキ方法を順に採用すればよいため、ここでの説明は省略する。   Furthermore, when the perforated electrolytic metal foil is to be composed of a plurality of metal layers, various metal platings such as copper, gold, silver, tin, nickel, cobalt, lead, iron, or platinum are used. Check in order to form a multi-layer stack. As the plating bath composition and conditions at this time, the plating method for forming the above-described single layer may be adopted in order, and thus description thereof is omitted here.

以上のようにして製造した孔開き電解金属箔は、その長期保存性を確保するため、最表面に防錆処理を施すことが好ましい。ここで言う防錆層は、クロメート、亜鉛、又はBTA等のトリアゾール化合物による層を適用することができる。この防錆層の形成に関しては、公知の手法の全てを用いる事が可能である。   The perforated electrolytic metal foil produced as described above is preferably subjected to rust prevention treatment on the outermost surface in order to ensure long-term storage. As the rust-preventing layer, a layer made of a triazole compound such as chromate, zinc, or BTA can be applied. Regarding the formation of the rust-preventing layer, it is possible to use all known methods.

孔開き電解金属箔の製造方法: 本件発明に係る孔開き電解金属箔の製造方法は、上述のいずれかのキャリア基材付孔開き電解金属箔のキャリア基材を除去するという概念を特徴としたものである。キャリア基材は、そのキャリア基材自体を電極(陰極)として用いて、その表面に孔開き電解金属箔を構成する金属成分を析出させるように使用される。従って、電解法で孔開き電解金属箔の形成後にキャリア基材を除去すれば、孔開き電解金属箔となる。 Method for producing perforated electrolytic metal foil: The method for producing perforated electrolytic metal foil according to the present invention is characterized by the concept of removing the carrier base material of any of the above-mentioned perforated electrolytic metal foil with a carrier base material. Is. The carrier base material is used so that the metal component constituting the perforated electrolytic metal foil is deposited on the surface of the carrier base material itself as an electrode (cathode). Therefore, if the carrier base material is removed after the formation of the perforated electrolytic metal foil by the electrolytic method, a perforated electrolytic metal foil is obtained.

このときのキャリア基材の除去は、図9(e)に示すように、孔開き電解金属箔とキャリア基材との間に剥離層が存在すれば、孔開き電解金属箔とキャリア基材とを引き剥がして分離することが可能である。このとき、孔開き電解金属箔1の微細貫通孔7内に絶縁性突起部3が残留する場合には、アルカリ系溶液で膨潤して除去することが好ましい。これに対し、図7(b)に示すように、孔開き電解金属箔1とキャリア基材2との間に剥離層6が存在しない場合には、エッチング法によりキャリア基材2を溶解除去することで、図7(c)に示すように孔開き電解金属箔1を得ることが可能である。係る場合、孔開き電解金属箔1側の表面の全体をエッチングレジストで被覆して、キャリア基材2側からエッチングを行うことが好ましい。そして、孔開き電解金属箔1が銅で、キャリア基材2がニッケルの場合のように、銅を溶解させることなく、ニッケルのみを溶解させる選択エッチング液を採用することも好ましい。係る場合、孔開き電解金属箔の表面の全体をエッチングレジストで被覆する必要が無くなるからである。   As shown in FIG. 9 (e), the carrier substrate is removed at this time if there is a release layer between the perforated electrolytic metal foil and the carrier base material. Can be separated. At this time, when the insulating protrusion 3 remains in the fine through-hole 7 of the perforated electrolytic metal foil 1, it is preferably removed by swelling with an alkaline solution. On the other hand, as shown in FIG. 7B, when the peeling layer 6 does not exist between the perforated electrolytic metal foil 1 and the carrier substrate 2, the carrier substrate 2 is dissolved and removed by an etching method. Thus, the perforated electrolytic metal foil 1 can be obtained as shown in FIG. In such a case, it is preferable that the entire surface on the perforated electrolytic metal foil 1 side is covered with an etching resist and etching is performed from the carrier base material 2 side. And it is also preferable to employ | adopt the selective etching liquid which melt | dissolves only nickel, without melt | dissolving copper like the case where the perforated electrolytic metal foil 1 is copper and the carrier base material 2 is nickel. In such a case, it is not necessary to coat the entire surface of the perforated electrolytic metal foil with an etching resist.

また、孔開き電解金属箔3をキャリア基材2から剥離する方法として、キャリア基材付孔開き電解金属箔10の状態で、アルカリ系溶液に浸漬し、孔開き電解金属箔1の微細貫通孔7内を埋設した絶縁性突起部3を膨潤除去し、その後、キャリア基材2を除去して、孔開き電解金属箔1とすることも可能である。   In addition, as a method of peeling the perforated electrolytic metal foil 3 from the carrier base material 2, the fine perforated holes of the perforated electrolytic metal foil 1 are immersed in an alkaline solution in the state of the perforated electrolytic metal foil 10 with a carrier base material. It is also possible to make the perforated electrolytic metal foil 1 by swelling and removing the insulating protrusion 3 embedded in the inside 7 and then removing the carrier base material 2.

また、孔開き電解金属箔がキャリア基材から引き剥がされた後に、防錆処理を施すことにより、当該孔開き電解金属箔の両面に防錆処理を施し、より確実な耐酸化性を得ることが出来長期保存性を確実なものとできる。なお、図面中では、防錆処理層の記述は省略している。   Moreover, after the perforated electrolytic metal foil is peeled off from the carrier base material, a rust preventive treatment is performed on both sides of the perforated electrolytic metal foil to obtain more reliable oxidation resistance. And long-term storage can be ensured. In the drawings, the description of the antirust treatment layer is omitted.

この実施例では、上記キャリア基材(A)として、単一層の金属箔(35μm厚の銅箔)を希硫酸で酸洗し、その後水洗し、乾燥して清浄化を行った。次に、酸洗後の当該銅箔の光沢面に、20μm厚のドライフィルムをラミネータにより貼り付け、レジスト膜を形成した。   In this example, a single layer metal foil (35 μm thick copper foil) was pickled with dilute sulfuric acid as the carrier substrate (A), then washed with water, dried and cleaned. Next, a dry film having a thickness of 20 μm was attached to the glossy surface of the copper foil after pickling with a laminator to form a resist film.

次に、当該レジスト膜上にフォトマスクを配置して、直径25μmの円形状で且つ当該円形状の中心間距離が50μmとなるよう格子状配置となるパターンが形成できるように露光し、現像し、絶縁性突起部を形成した。   Next, a photomask is arranged on the resist film, and exposure and development are performed so that a circular pattern having a diameter of 25 μm and a pattern in a grid pattern can be formed so that the distance between the centers of the circular shapes is 50 μm. Insulating protrusions were formed.

そして、上記絶縁性突起部が形成されたキャリア基材(銅箔)の、キャリア基材の露出部に、カルボキシベンゾトリアゾールを5g/1濃度で含む水溶液をシャワーリングして、剥離層を形成した。以上のようにして、キャリア基材の孔開き電解金属箔の析出面(以下、単に「析出面」と称する。)を形成した。   Then, an aqueous solution containing carboxybenzotriazole at a concentration of 5 g / 1 was showered on the exposed portion of the carrier base material (copper foil) on which the insulating protrusions were formed to form a release layer. . As described above, the precipitation surface (hereinafter simply referred to as “deposition surface”) of the perforated electrolytic metal foil of the carrier substrate was formed.

前記析出面の形成が終了すると、表1に掲げる12種類の電解液及びメッキ条件で、10μm厚の孔開き電解金属箔を析出形成した。なお、アノード電極は不溶性電極(DSE)を使用し、電源は直流電源を使用した(以下同様)。   When the formation of the precipitation surface was completed, a 10 μm-thick perforated electrolytic metal foil was formed by precipitation using the 12 types of electrolytic solutions and plating conditions listed in Table 1. Note that an insoluble electrode (DSE) was used as the anode electrode, and a DC power source was used as the power source (the same applies hereinafter).

以上のようにして、当該析出面に金属成分を電析させると、キャリア基材付孔開き電解金属箔となる。そして、その絶縁性突起部の存在位置には、銅電析は起こらず、電析した銅膜は20μm径の微細貫通孔を備える孔開き電解金属箔とキャリア基材とが張り合わせられたキャリア基材付孔開き電解金属箔となった。   When a metal component is electrodeposited on the deposition surface as described above, a perforated electrolytic metal foil with a carrier substrate is obtained. Then, no copper electrodeposition occurs at the position where the insulating protrusions exist, and the electrodeposited copper film has a carrier substrate in which a perforated electrolytic metal foil having fine through-holes with a diameter of 20 μm and a carrier substrate are bonded together. It became a perforated electrolytic metal foil with a material.

そこで、キャリア基材付孔開き電解金属箔を、3%濃度の水酸化ナトリウム水溶液中に浸漬し、孔開き電解金属箔の微細貫通孔内に残留していた絶縁性突起部のレジスト成分を膨潤させ除去し、孔開き電解金属箔を引き剥がした。その結果、図10の拡大模式図として示した如き微細貫通孔7を備える孔開き電解金属箔1を得た。   Therefore, the perforated electrolytic metal foil with a carrier substrate is immersed in a 3% aqueous sodium hydroxide solution to swell the resist component of the insulating protrusions remaining in the fine through holes of the perforated electrolytic metal foil. And the perforated electrolytic metal foil was peeled off. As a result, a perforated electrolytic metal foil 1 having fine through holes 7 as shown in the enlarged schematic diagram of FIG. 10 was obtained.

更に、以上のようにして得られた孔開き電解金属箔(孔開き電解銅箔)1は、1g/L濃度のベンゾトリアゾール水溶液に10秒間浸漬し、引き上げることにより有機防錆処理を両面に施した。この防錆処理は、条件1、条件8、条件9、条件12の条件で孔開き電解金属箔を形成した場合にのみ行った。   Furthermore, the perforated electrolytic metal foil (perforated electrolytic copper foil) 1 obtained as described above is immersed in a 1 g / L benzotriazole aqueous solution for 10 seconds and pulled up to perform organic rust prevention treatment on both sides. did. This rust prevention treatment was performed only when the perforated electrolytic metal foil was formed under the conditions of Condition 1, Condition 8, Condition 9, and Condition 12.

この実施例(条件1)により得られた孔開き電解金属箔(孔開き電解銅箔)の代表的観察写真を示す。即ち、倍率500倍のSEM観察像を図11に示し、当該孔開き電解金属箔(孔開き電解銅箔)の微細貫通孔の倍率3000倍のSEM観察像を図12に示した。この観察結果は、表1に示す孔開き電解金属箔の製造条件が変わっても同じである。なお、孔開き電解金属箔は写真撮影の便宜上ゴム製のマット上に置いた。よって、あたかもバリや鱗のように見える孔開き電解金属箔の下地の当該ゴム製のマットのSEM写真像は本件発明とは全く無関係であり、箔に美麗な微細貫通孔が形成されていることが理解できる。   The typical observation photograph of the perforated electrolytic metal foil (perforated electrolytic copper foil) obtained by this Example (Condition 1) is shown. That is, an SEM observation image at a magnification of 500 times is shown in FIG. 11, and an SEM observation image at a magnification of 3000 times of fine through holes of the perforated electrolytic metal foil (perforated electrolytic copper foil) is shown in FIG. This observation result is the same even if the manufacturing conditions of the perforated electrolytic metal foil shown in Table 1 are changed. The perforated electrolytic metal foil was placed on a rubber mat for convenience of photography. Therefore, the SEM photographic image of the rubber mat under the perforated electrolytic metal foil that looks like burrs and scales is completely unrelated to the present invention, and beautiful fine through holes are formed in the foil. Can understand.

この実施例では、上記キャリア基材(B)として、第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔を用いた。ここで用いたクラッド金属箔をより具体的に言えば、20μm厚さの圧延ニッケル箔の表面に、電解で10μm厚さのコバルト層を設けたものを用いた。このクラッド箔を実施例1と同様に酸洗し、約25μm厚のドライフィルムをラミネータにより貼り付け、レジスト膜を形成した。そして、以下、実施例1の場合と同様に条件1〜条件12迄に適用したと同様に、表1に掲げる種々の電解液及びメッキ条件で、20μm厚の12種類の孔開き電解金属箔を析出形成した。   In this embodiment, a clad metal foil in which a plurality of layers of a first metal layer /... ./N-th metal layer (n is an integer of 2 or more) is laminated is used as the carrier substrate (B). It was. More specifically, the clad metal foil used here was obtained by providing a cobalt layer having a thickness of 10 μm by electrolysis on the surface of a rolled nickel foil having a thickness of 20 μm. This clad foil was pickled in the same manner as in Example 1, and a dry film having a thickness of about 25 μm was attached by a laminator to form a resist film. Then, 12 kinds of perforated electrolytic metal foils with a thickness of 20 μm were formed under various electrolytic solutions and plating conditions listed in Table 1 in the same manner as in Example 1 in the case where the conditions 1 to 12 were applied. Precipitation was formed.

以上のようにして、当該析出面に金属成分を電析させると、実施例1の場合と同様に、20μm径の微細貫通孔を備える孔開き電解金属箔とキャリア基材とが張り合わせられたキャリア基材付孔開き電解金属箔となり、そのキャリア基材付孔開き電解金属箔から、キャリア基材を除去し、孔開き電解金属箔を得た。なお、得られた孔開き電解金属箔に対する防錆処理は、条件1、条件8、条件9、条件12の条件で孔開き電解金属箔を形成した場合にのみ行った。   As described above, when a metal component is electrodeposited on the deposition surface, a carrier in which a perforated electrolytic metal foil having fine through-holes with a diameter of 20 μm and a carrier base material are bonded together as in the case of Example 1. A perforated electrolytic metal foil with a base material was obtained, and the carrier base material was removed from the perforated electrolytic metal foil with a carrier base material to obtain a perforated electrolytic metal foil. In addition, the antirust process with respect to the obtained perforated electrolytic metal foil was performed only when the perforated electrolytic metal foil was formed on condition 1, condition 8, condition 9, and condition 12.

この実施例により得られた孔開き電解金属箔(孔開き電解銅箔)の代表的観察写真は、前述の倍率500倍のSEM観察像(図11)、倍率3000倍のSEM観察像(図12)と同様であるため掲載を省略する。この観察結果は、表1に示す孔開き電解金属箔の製造条件が変わっても同じである。観察の結果、実施例1と同様に、孔開き電解金属箔には美麗な微細貫通孔が形成されていることが確認できた。   Representative observation photographs of the perforated electrolytic metal foil (perforated electrolytic copper foil) obtained in this example are the SEM observation image (FIG. 11) at a magnification of 500 times and the SEM observation image (FIG. 12) at a magnification of 3000 times. ) Is omitted because it is the same as). This observation result is the same even if the manufacturing conditions of the perforated electrolytic metal foil shown in Table 1 are changed. As a result of observation, as in Example 1, it was confirmed that beautiful fine through holes were formed in the perforated electrolytic metal foil.

この実施例では、上記キャリア基材(C)として、第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔を用いた。ここで用いたクラッド金属箔をより具体的に言えば、10μm厚さの圧延ニッケル箔の片面に、カルボキシベンゾトリアゾールを5g/1濃度で含む水溶液をシャワーリングしてキャリア基材内剥離層を形成し、そのキャリア基材内剥離層上に、条件5のニッケル電解液とメッキ条件とで10μm厚さのニッケル層を設けたものを用いた。このクラッド箔を実施例1と同様に酸洗し、約25μm厚のドライフィルムをラミネータにより、当該クラッド箔の両面に貼り付け、レジスト膜を形成した。そして、以下、実施例1の場合と同様に、クラッド箔の両面に絶縁性突起部を設け、孔開き電解金属箔とキャリア基材との間の剥離層を形成し、条件1〜条件12迄に適用したと同様に、表1に掲げる種々の電解液及びメッキ条件で、当該クラッド箔の両面に20μm厚の12種類の孔開き電解金属箔をキャリア基材上に析出形成した。   In this embodiment, as the carrier substrate (C), the first metal layer of the first metal layer /... / Nth metal layer (n is an integer of 2 or more) /. A clad metal foil having at least one carrier base peeling layer between any one of the metal layers and having a plurality of laminated layers was used. More specifically, the clad metal foil used here is showered with an aqueous solution containing carboxybenzotriazole at a concentration of 5 g / 1 on one side of a 10 μm-thick rolled nickel foil to form a release layer in the carrier substrate. Then, on the release layer in the carrier substrate, a nickel layer having a thickness of 10 μm was used under the condition 5 nickel electrolyte and plating conditions. This clad foil was pickled in the same manner as in Example 1, and a dry film having a thickness of about 25 μm was attached to both sides of the clad foil with a laminator to form a resist film. Then, similarly to the case of Example 1, insulating protrusions are provided on both sides of the clad foil, and a release layer is formed between the perforated electrolytic metal foil and the carrier substrate. In the same manner as in Example 1, 12 types of perforated electrolytic metal foils having a thickness of 20 μm were deposited on both surfaces of the clad foil on the carrier base material under various electrolytic solutions and plating conditions listed in Table 1.

以上のようにして、当該析出面に金属成分を電析させると、20μm径の微細貫通孔を備える孔開き電解金属箔が、キャリア基材の両面に張り合わせられたキャリア基材付孔開き電解金属箔となる。そして、ニッケル層とニッケル層との中間にあるキャリア基材内剥離層から分離することにより、2枚の孔開き電解金属箔/剥離層(但し、絶縁性突起部とキャリア基材との間には剥離層は無い)/ニッケル層(キャリア基材として機能)が得られた。この実施例では、これをキャリア基材付孔開き電解金属箔と称する。   As described above, when a metal component is electrodeposited on the deposition surface, a perforated electrolytic metal with a carrier base material, in which a perforated electrolytic metal foil having fine through-holes with a diameter of 20 μm is bonded to both surfaces of the carrier base material. It becomes a foil. Then, by separating from the release layer in the carrier base material between the nickel layer and the nickel layer, two perforated electrolytic metal foil / peeling layers (however, between the insulating protrusion and the carrier base material) There was no release layer) / nickel layer (functioning as a carrier substrate). In this example, this is called a perforated electrolytic metal foil with a carrier substrate.

そして、このキャリア基材付孔開き電解金属箔から、キャリア基材を除去し、孔開き電解金属箔を得た。なお、得られた孔開き電解金属箔に対する防錆処理は、条件1、条件8、条件9、条件12の条件で孔開き電解金属箔を形成した場合にのみ行った。   And the carrier base material was removed from this perforated electrolytic metal foil with a carrier base material to obtain a perforated electrolytic metal foil. In addition, the antirust process with respect to the obtained perforated electrolytic metal foil was performed only when the perforated electrolytic metal foil was formed on condition 1, condition 8, condition 9, and condition 12.

この実施例により得られた孔開き電解金属箔(孔開き電解銅箔)の代表的観察写真は、前述の倍率500倍のSEM観察像(図11)、倍率3000倍のSEM観察像(図12)と同様であるため掲載を省略する。この観察結果は、表1に示す孔開き電解金属箔の製造条件が変わっても同じである。観察の結果、実施例1と同様に、孔開き電解金属箔には美麗な微細貫通孔が形成されていることが確認できた。   Representative observation photographs of the perforated electrolytic metal foil (perforated electrolytic copper foil) obtained in this example are the SEM observation image (FIG. 11) at a magnification of 500 times and the SEM observation image (FIG. 12) at a magnification of 3000 times. ) Is omitted because it is the same as). This observation result is the same even if the manufacturing conditions of the perforated electrolytic metal foil shown in Table 1 are changed. As a result of observation, as in Example 1, it was confirmed that beautiful fine through holes were formed in the perforated electrolytic metal foil.

この実施例では、上記キャリア基材(D)として、実施例1で用いた単一層の金属箔(35μm厚の銅箔)の片面に、予め剥離層を形成したものを用いた。従って、当該剥離層は、キャリア基材と絶縁性突起部との間にも存在する。そして、このキャリア基材(D)を用いる場合には、実施例1で用いた酸洗処理及び剥離層の事後的形成は省略した。即ち、その剥離層上に20μm厚のドライフィルムをラミネータにより貼り付け、レジスト膜を形成した。以下、実施例1と同様にして、絶縁性突起部を形成し、この表面を孔開き電解金属箔の析出面(以下、単に「析出面」と称する。)とした。   In this example, as the carrier substrate (D), a single layer metal foil (35 μm thick copper foil) used in Example 1 with a release layer formed in advance was used. Therefore, the release layer is also present between the carrier substrate and the insulating protrusion. And when using this carrier base material (D), the post-formation of the pickling process and peeling layer which were used in Example 1 was abbreviate | omitted. That is, a dry film having a thickness of 20 μm was pasted on the release layer with a laminator to form a resist film. Hereinafter, in the same manner as in Example 1, insulating protrusions were formed, and this surface was used as a deposition surface of the perforated electrolytic metal foil (hereinafter simply referred to as “deposition surface”).

そして、前記析出面の形成が終了すると、表1に掲げる12種類の電解液及びメッキ条件で、10μm厚の孔開き電解金属箔を析出形成した。以下、実施例1と同様にして、キャリア基材付孔開き電解金属箔を得て、更に孔開き電解金属箔を得た。   Then, when the formation of the deposition surface was completed, a 10 μm-thick perforated electrolytic metal foil was deposited and formed using the 12 types of electrolytic solutions and plating conditions listed in Table 1. Thereafter, in the same manner as in Example 1, a perforated electrolytic metal foil with a carrier substrate was obtained, and further a perforated electrolytic metal foil was obtained.

この実施例により得られた孔開き電解金属箔(孔開き電解銅箔)の代表的観察写真は、前述の倍率500倍のSEM観察像(図11)、倍率3000倍のSEM観察像(図12)と同様であるため掲載を省略する。この観察結果は、表1に示す孔開き電解金属箔の製造条件が変わっても同じである。観察の結果、実施例1と同様に、孔開き電解金属箔には美麗な微細貫通孔が形成されていることが確認できた。   Representative observation photographs of the perforated electrolytic metal foil (perforated electrolytic copper foil) obtained in this example are the SEM observation image (FIG. 11) at a magnification of 500 times and the SEM observation image (FIG. 12) at a magnification of 3000 times. ) Is omitted because it is the same as). This observation result is the same even if the manufacturing conditions of the perforated electrolytic metal foil shown in Table 1 are changed. As a result of observation, as in Example 1, it was confirmed that beautiful fine through holes were formed in the perforated electrolytic metal foil.

この実施例では、上記キャリア基材(E)として、実施例2で用いた20μm厚さの圧延ニッケル箔の表面に、電解で10μm厚さのコバルト層を設け、そのコバルト層上に、予め剥離層を形成したものを用いた。従って、当該剥離層は、キャリア基材と絶縁性突起部との間にも存在する。そして、このキャリア基材(E)を用いる場合には、実施例1で用いた酸洗処理及び剥離層の事後的形成は省略した。即ち、その剥離層上に25μm厚のドライフィルムをラミネータにより貼り付け、レジスト膜を形成した。以下、実施例2と同様にして、絶縁性突起部を形成し、この表面を孔開き電解金属箔の析出面(以下、単に「析出面」と称する。)とした。   In this example, as the carrier base material (E), a cobalt layer having a thickness of 10 μm is provided by electrolysis on the surface of the rolled nickel foil having a thickness of 20 μm used in Example 2, and is peeled in advance on the cobalt layer. What formed the layer was used. Therefore, the release layer is also present between the carrier substrate and the insulating protrusion. And when using this carrier base material (E), the post-formation of the pickling process and peeling layer which were used in Example 1 was abbreviate | omitted. That is, a 25 μm-thick dry film was pasted on the release layer with a laminator to form a resist film. Hereinafter, in the same manner as in Example 2, insulating protrusions were formed, and this surface was used as a deposition surface of the perforated electrolytic metal foil (hereinafter simply referred to as “deposition surface”).

そして、前記析出面の形成が終了すると、表1に掲げる12種類の電解液及びメッキ条件で、10μm厚の孔開き電解金属箔を析出形成した。以下、実施例2と同様にして、キャリア基材付孔開き電解金属箔を得て、更に孔開き電解金属箔を得た。   Then, when the formation of the deposition surface was completed, a 10 μm-thick perforated electrolytic metal foil was deposited and formed using the 12 types of electrolytic solutions and plating conditions listed in Table 1. Thereafter, in the same manner as in Example 2, a perforated electrolytic metal foil with a carrier substrate was obtained, and further a perforated electrolytic metal foil was obtained.

この実施例により得られた孔開き電解金属箔(孔開き電解銅箔)の代表的観察写真は、前述の倍率500倍のSEM観察像(図11)、倍率3000倍のSEM観察像(図12)と同様であるため掲載を省略する。この観察結果は、表1に示す孔開き電解金属箔の製造条件が変わっても同じである。観察の結果、実施例1と同様に、孔開き電解金属箔には美麗な微細貫通孔が形成されていることが確認できた。   Representative observation photographs of the perforated electrolytic metal foil (perforated electrolytic copper foil) obtained in this example are the SEM observation image (FIG. 11) at a magnification of 500 times and the SEM observation image (FIG. 12) at a magnification of 3000 times. ) Is omitted because it is the same as). This observation result is the same even if the manufacturing conditions of the perforated electrolytic metal foil shown in Table 1 are changed. As a result of observation, as in Example 1, it was confirmed that beautiful fine through holes were formed in the perforated electrolytic metal foil.

この実施例では、上記キャリア基材(F)として、実施例3で用いた10μm厚さの圧延ニッケル箔の片面に、カルボキシベンゾトリアゾールを5g/1濃度で含む水溶液をシャワーリングしてキャリア基材内剥離層を形成し、そのキャリア基材内剥離層上に、条件5のニッケル電解液とメッキ条件とで10μm厚さのニッケル層を設けたものを用い、その両面に予め剥離層を形成したものを用いた。従って、当該剥離層は、キャリア基材と絶縁性突起部との間にも存在する。そして、このキャリア基材(F)を用いる場合には、実施例1で用いた酸洗処理及び剥離層の事後的形成は省略した。即ち、その両面の剥離層上に25μm厚のドライフィルムをラミネータにより貼り付け、レジスト膜を形成した。以下、実施例3と同様にして、両面に絶縁性突起部を形成し、この両面を孔開き電解金属箔の析出面(以下、単に「析出面」と称する。)とした。   In this example, as the carrier base material (F), an aqueous solution containing carboxybenzotriazole at a concentration of 5 g / 1 is showered on one side of the 10 μm-thick rolled nickel foil used in Example 3 to form the carrier base material. An inner release layer was formed, and a 10 μm thick nickel layer was provided on the carrier substrate inner release layer under the condition 5 nickel electrolyte and plating conditions, and the release layer was formed on both sides in advance. A thing was used. Therefore, the release layer is also present between the carrier substrate and the insulating protrusion. And when using this carrier base material (F), the post-formation of the pickling process and peeling layer which were used in Example 1 was abbreviate | omitted. That is, a 25 μm-thick dry film was pasted on the release layers on both sides with a laminator to form a resist film. Hereinafter, in the same manner as in Example 3, insulating projections were formed on both surfaces, and both surfaces were used as the deposition surface of the perforated electrolytic metal foil (hereinafter simply referred to as “deposition surface”).

そして、前記析出面の形成が終了すると、表1に掲げる12種類の電解液及びメッキ条件で、10μm厚の孔開き電解金属箔を両面に析出形成した。以下、実施例3と同様にして、キャリア基材付孔開き電解金属箔を得て、更に孔開き電解金属箔を得た。   Then, when the formation of the deposition surface was completed, a 10 μm-thick perforated electrolytic metal foil was deposited on both surfaces under the 12 types of electrolytic solutions and plating conditions listed in Table 1. Thereafter, in the same manner as in Example 3, a perforated electrolytic metal foil with a carrier substrate was obtained, and further a perforated electrolytic metal foil was obtained.

この実施例により得られた孔開き電解金属箔(孔開き電解銅箔)の代表的観察写真は、前述の倍率500倍のSEM観察像(図11)、倍率3000倍のSEM観察像(図12)と同様であるため掲載を省略する。この観察結果は、表1に示す孔開き電解金属箔の製造条件が変わっても同じである。観察の結果、実施例1と同様に、孔開き電解金属箔には美麗な微細貫通孔が形成されていることが確認できた。   Representative observation photographs of the perforated electrolytic metal foil (perforated electrolytic copper foil) obtained in this example are the SEM observation image (FIG. 11) at a magnification of 500 times and the SEM observation image (FIG. 12) at a magnification of 3000 times. ) Is omitted because it is the same as). This observation result is the same even if the manufacturing conditions of the perforated electrolytic metal foil shown in Table 1 are changed. As a result of observation, as in Example 1, it was confirmed that beautiful fine through holes were formed in the perforated electrolytic metal foil.

本件発明に係る孔開き電解金属箔は、微細貫通孔を設計に応じた任意の形状、単位面積あたり任意の個数で作り込むことが可能である。従って、種々の広範な用途での使用が可能となる。例えば、電池等の集電体又は化学反応を促進する触媒の担持体、超微粉用のスクリーン装置、クリーンルーム用の防塵・気体用フィルター(特に導電性の孔開き金属箔にあっては静電気により集塵が可能)、浄水器用フィルター(特に強磁性体の孔開き電解金属箔にあっては磁力を当該金属箔に施されたフィルターを介した飲料水が作製可能)、抗菌用フィルター、電磁シールド(特に導電性の孔開き金属箔)、微生物保管用ボックスの通気孔用ネット、マット内部又は下部に孔開き金属箔が配置され当該箔がアース接続された静電気発生防止用マット、撥水性かつ通気性があるテフロン(登録商標)系素材等の服地間に孔開き金属箔が挟持された服地、その他広範囲の産業上の利用分野に適用可能である。   In the perforated electrolytic metal foil according to the present invention, fine through-holes can be formed in any shape according to the design and any number per unit area. Therefore, it can be used in various wide applications. For example, current collectors such as batteries or catalyst carriers that promote chemical reactions, screen devices for ultrafine powder, dustproof / gas filters for clean rooms (especially conductive perforated metal foils are collected by static electricity). Dust), filters for water purifiers (especially in the case of ferromagnetic perforated electrolytic metal foil, it is possible to produce drinking water through a filter with magnetic force applied to the metal foil), antibacterial filters, electromagnetic shields ( In particular, conductive perforated metal foil), vent hole nets for microorganism storage boxes, anti-static mats with perforated metal foil placed inside or under the mat and connected to the ground, water repellent and breathable It is applicable to a wide range of industrial application fields, such as a cloth in which a perforated metal foil is sandwiched between cloths such as Teflon (registered trademark) materials.

そして、本件発明に係る孔開き電解金属箔は、キャリア基材付孔開き電解金属箔の形態で市場に提供することが可能で、孔開き電解金属箔が10μm未満の厚さとなっても良好なハンドリング性を確保することが出来、作業効率を大幅に改善することが可能である。しかも、用途によっては、キャリア基材付孔開き電解金属箔の状態そのままで製品に使用することも可能となる。   The perforated electrolytic metal foil according to the present invention can be provided to the market in the form of a perforated electrolytic metal foil with a carrier substrate, and the perforated electrolytic metal foil is good even when the thickness of the perforated electrolytic metal foil is less than 10 μm. Handling properties can be ensured, and work efficiency can be greatly improved. Moreover, depending on the application, it can be used in a product as it is in the state of a perforated electrolytic metal foil with a carrier substrate.

更に、本件発明に係る孔開き電解金属箔及びキャリア基材付孔開き電解金属箔の製造方法は、キャリア基材付孔開き電解金属箔の製造方法を基本として、そこからキャリア基材を除去することにより、孔開き電解金属箔が容易に得られる。   Furthermore, the manufacturing method of the perforated electrolytic metal foil and the perforated electrolytic metal foil with a carrier base material according to the present invention is based on the manufacturing method of the perforated electrolytic metal foil with a carrier base material, and the carrier base material is removed therefrom. Thus, a perforated electrolytic metal foil can be easily obtained.

本件発明に係るキャリア基材付孔開き電解金属箔の断面模式図である(キャリア基材(A)を用いた場合。)。It is a cross-sectional schematic diagram of the perforated electrolytic metal foil with a carrier base material according to the present invention (when the carrier base material (A) is used). 本件発明に係るキャリア基材付孔開き電解金属箔の断面模式図である(キャリア基材(B)を用いた場合。)。It is a cross-sectional schematic diagram of the perforated electrolytic metal foil with a carrier base material according to the present invention (when the carrier base material (B) is used). 本件発明に係るキャリア基材付孔開き電解金属箔の断面模式図である(キャリア基材(C)を用いた場合。)。It is a cross-sectional schematic diagram of the perforated electrolytic metal foil with a carrier base material according to the present invention (when the carrier base material (C) is used). 本件発明に係るキャリア基材付孔開き電解金属箔の断面模式図である(キャリア基材(D)を用いた場合。)。It is a cross-sectional schematic diagram of the perforated electrolytic metal foil with a carrier substrate according to the present invention (when the carrier substrate (D) is used). 本件発明に係るキャリア基材付孔開き電解金属箔の断面模式図である(キャリア基材(E)を用いた場合。)。It is a cross-sectional schematic diagram of the perforated electrolytic metal foil with a carrier base material according to the present invention (when the carrier base material (E) is used). 本件発明に係るキャリア基材付孔開き電解金属箔の断面模式図である(キャリア基材(F)を用いた場合。)。It is a cross-sectional schematic diagram of the perforated electrolytic metal foil with a carrier base material according to the present invention (when the carrier base material (F) is used). キャリア基材の表面に絶縁性突起部を形成し、孔開き電解金属箔を得るまでの手順を模式的に示した図である。It is the figure which showed typically the procedure until it forms an insulating protrusion part in the surface of a carrier base material, and obtains a perforated electrolytic metal foil. キャリア基材の表面に絶縁性突起部を形成する工程を概念的に説明するための図である(レジスト法)。It is a figure for demonstrating notionally the process of forming an insulating protrusion part in the surface of a carrier base material (resist method). キャリア基材の表面に絶縁性突起部を形成し、孔開き電解金属箔を得るまでの手順を模式的に示した図である。It is the figure which showed typically the procedure until it forms an insulating protrusion part in the surface of a carrier base material, and obtains a perforated electrolytic metal foil. 本件発明に係る孔開き電解金属箔の微細貫通孔の配置を理解するため、平面的に見た場合の概念模式図である。In order to understand arrangement | positioning of the fine through-hole of the perforated electrolytic metal foil which concerns on this invention, it is a conceptual schematic diagram at the time of seeing planarly. 本件発明に係る実施例により製造された孔開き電解金属箔の走査顕微鏡観察像の写真(倍率500倍)である。It is a photograph (500-times multiplication factor) of the scanning microscope observation image of the apertured electrolysis metal foil manufactured by the Example which concerns on this invention. 本件発明に係る実施例により製造された孔開き電解金属箔に配置された複数の微細貫通孔の走査顕微鏡観察像の写真(倍率300倍)である。It is a photograph (300-times multiplication factor) of the scanning microscope observation image of the several fine through-hole arrange | positioned at the perforated electrolytic metal foil manufactured by the Example which concerns on this invention.

符号の説明Explanation of symbols

1 孔開き電解金属箔
2 キャリア基材
3 絶縁性突起部
4 レジスト層
5 フォトマスク
6 剥離層
7 微細貫通孔
10 キャリア基材付孔開き電解金属箔
11 第1金属層
12 第2金属層
20 キャリア基材内剥離層
DESCRIPTION OF SYMBOLS 1 Perforated electrolytic metal foil 2 Carrier base material 3 Insulating protrusion 4 Resist layer 5 Photomask 6 Peeling layer 7 Fine through-hole 10 Perforated electrolytic metal foil with carrier base material 11 First metal layer 12 Second metal layer 20 Carrier Release layer in substrate

Claims (16)

厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔であって、
当該孔開き電解金属箔の一面側を基準面とし、その基準面に対し略垂直となるように、該金属面の他面側に貫通した複数個の微細貫通孔を備えることを特徴とする孔開き電解金属箔。
A perforated electrolytic metal foil having a plurality of fine through holes in the thickness direction,
A hole comprising a plurality of fine through-holes penetrating on the other surface side of the metal surface so that one surface side of the perforated electrolytic metal foil is a reference surface and substantially perpendicular to the reference surface Open electrolytic metal foil.
前記孔開き電解金属箔の金属が、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナ、又はこれらの合金、又は金、銀、錫、ニッケル、コバルト、鉛、鉄、若しくはプラチナのいずれかを組み合わせた積層構造のいずれかを備えることを特徴とする請求項1に記載の孔開き電解金属箔。 The metal of the perforated electrolytic metal foil is copper, gold, silver, tin, nickel, cobalt, lead, iron, platinum, or an alloy thereof, or gold, silver, tin, nickel, cobalt, lead, iron, or 2. The perforated electrolytic metal foil according to claim 1, comprising any one of a laminated structure in which any one of platinum is combined. 当該孔開き電解金属箔上に防錆層が形成されていることを特徴とする請求項1又は請求項2に記載の孔開き電解金属箔。 The perforated electrolytic metal foil according to claim 1 or 2, wherein a rust prevention layer is formed on the perforated electrolytic metal foil. 厚さ方向に複数の微細貫通孔を備えた孔開き電解金属箔のハンドリング性を向上させるためキャリア基材と孔開き電解金属箔とが張り合わせられた状態にあることを特徴とするキャリア基材付孔開き電解金属箔。 With carrier base material, wherein the carrier base material and the perforated electrolytic metal foil are in a state of being bonded together in order to improve the handling property of the perforated electrolytic metal foil having a plurality of fine through holes in the thickness direction Perforated electrolytic metal foil. 前記キャリア基材付孔開き電解金属箔において、孔開き電解金属箔とキャリア基材との間に剥離層を設けた請求項4に記載のキャリア基材付孔開き電解金属箔。 The perforated electrolytic metal foil with a carrier base material according to claim 4, wherein a release layer is provided between the perforated electrolytic metal foil and the carrier base material in the perforated electrolytic metal foil with a carrier base material. 前記キャリア基材として、第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又はクラッド金属板を用いることで、
孔開き電解金属層(箔)/第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあることを特徴とする請求項4に記載のキャリア基材付孔開き電解金属箔。
By using a clad metal foil or a clad metal plate in which a plurality of layers of a first metal layer /.../ nth metal layer (n is an integer of 2 or more) are laminated as the carrier substrate,
5. A plurality of layers of perforated electrolytic metal layer (foil) / first metal layer /.../ nth metal layer (n is an integer of 2 or more) are in a laminated state. Perforated electrolytic metal foil with carrier substrate.
前記孔開き電解金属層(箔)/第1金属層・・・・/第n金属層(nは、2以上の整数)のいずれかの層間に少なくとも一つの剥離層等を設けた請求項6に記載のキャリア基材付孔開き電解金属箔。 7. At least one release layer or the like is provided between any of the perforated electrolytic metal layer (foil) / first metal layer... / N-th metal layer (n is an integer of 2 or more). A perforated electrolytic metal foil with a carrier base material as described in 1. 請求項4〜請求項7のいずれかに記載のキャリア基材付孔開き電解金属箔の製造方法であって、
以下の工程a及び工程bを含むことを特徴とするキャリア基材付孔開き電解金属箔の製造方法。
工程a.キャリア基材の表面に絶縁性突起部を複数箇所に形成する突起部形成工程;
工程b.前記キャリア基材の絶縁性突起部を形成した面に対し金属メッキを行い、前記キャリア基材の絶縁性突起部以外の領域に金属メッキ層を析出形成させ、キャリア基材表面に孔開き電解金属箔を形成し、キャリア基材付孔開き電解金属箔とする電析工程;
A method for producing a perforated electrolytic metal foil with a carrier base material according to any one of claims 4 to 7,
A method for producing a perforated electrolytic metal foil with a carrier substrate, comprising the following steps a and b.
Step a. A protruding portion forming step of forming insulating protruding portions on the surface of the carrier substrate at a plurality of locations;
Step b. Metal plating is performed on the surface of the carrier base material on which the insulating protrusions are formed, and a metal plating layer is deposited and formed on a region other than the insulating protrusions of the carrier base material. Electrodeposition process of forming a foil and forming a perforated electrolytic metal foil with a carrier substrate;
前記工程aで用いるキャリア基材は、以下に示すキャリア基材(A)〜キャリア基材(F)のいずれかである請求項8に記載のキャリア基材付孔開き電解金属箔の製造方法。
キャリア基材(A): 単一層の金属箔又は金属板。
キャリア基材(B): 第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又は金属板。
キャリア基材(C): 第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔又は金属板。
キャリア基材(D): 剥離層を表面に設けた単一層の金属箔又は金属板。
キャリア基材(E): 剥離層/第1金属層/・・・・/第n金属層(nは、2以上の整数)の複数層が積層状態にあるクラッド金属箔又は金属板。
キャリア基材(F): 剥離層/第1金属層/・・・・/第n金属層(nは、2以上の整数)の第1金属層/・・・・/第n金属層のいずれかの層間に少なくとも一つのキャリア基材内剥離層を備え複数層が積層状態にあるクラッド金属箔又は金属板。
The method for producing a perforated electrolytic metal foil with a carrier base material according to claim 8, wherein the carrier base material used in the step a is any one of the following carrier base material (A) to carrier base material (F).
Carrier substrate (A): Single layer metal foil or metal plate.
Carrier base material (B): A clad metal foil or metal plate in which a plurality of layers of a first metal layer /... / N-th metal layer (n is an integer of 2 or more) are in a laminated state.
Carrier base material (C): any one of the first metal layers of the first metal layer /.../ n-th metal layer (n is an integer of 2 or more) /.../ n-th metal layer A clad metal foil or metal plate comprising at least one release layer in a carrier substrate and a plurality of layers in a laminated state.
Carrier substrate (D): A single layer metal foil or metal plate having a release layer on its surface.
Carrier base material (E): A clad metal foil or metal plate in which a plurality of layers of release layer / first metal layer /... / N-th metal layer (n is an integer of 2 or more) are in a laminated state.
Carrier substrate (F): any of release layer / first metal layer /.../ n-th metal layer (n is an integer of 2 or more) /.../ n-th metal layer A clad metal foil or metal plate comprising at least one carrier base peeling layer between the layers and a plurality of layers in a laminated state.
前記工程aで用いる基材に前記キャリア基材(A)〜キャリア基材(C)のいずれかを用いる場合であって、前記工程aと前記工程bとの間に剥離層形成工程を設ける請求項8又は請求項9に記載のキャリア基材付孔開き電解金属箔の製造方法。 A case where any one of the carrier base material (A) to the carrier base material (C) is used as the base material used in the step a, and a release layer forming step is provided between the step a and the step b. Item 10. A method for producing a perforated electrolytic metal foil with a carrier substrate according to Item 8 or Item 9. 前記剥離層は、銅、ニッケル、クロムを含む金属系剥離層又はトリアゾール化合物を含む有機系剥離層である請求項9又は請求項10に記載のキャリア基材付孔開き電解金属箔の製造方法。 The method for producing a perforated electrolytic metal foil with a carrier substrate according to claim 9 or 10, wherein the release layer is a metal release layer containing copper, nickel, or chromium or an organic release layer containing a triazole compound. 前記工程aで形成する絶縁性突起部は、インクジェット法、スクリーン印刷法、グラビア印刷法、凸版印刷法、及び凹版印刷法のいずれかによって形成したものである請求項8〜請求項11のいずれかに記載のキャリア基材付孔開き電解金属箔の製造方法。 The insulating protrusion formed in the step a is formed by any one of an ink jet method, a screen printing method, a gravure printing method, a relief printing method, and an intaglio printing method. A method for producing a perforated electrolytic metal foil with a carrier substrate as described in 1. 前記工程aで形成する絶縁性突起部は、感光性フィルムを用いて形成したものである請求項8〜請求項11のいずれかに記載のキャリア基材付孔開き電解金属箔の製造方法。 The method for producing a perforated electrolytic metal foil with a carrier substrate according to any one of claims 8 to 11, wherein the insulating protrusion formed in the step a is formed using a photosensitive film. 前記工程b.(電析工程)における金属メッキは、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナのいずれかの金属メッキ、又は、これらの合金メッキである請求項8〜請求項13のいずれかに記載のキャリア基材付孔開き電解金属箔の製造方法。 Step b. The metal plating in (Electrodeposition process) is any one of copper, gold, silver, tin, nickel, cobalt, lead, iron, platinum, or alloy plating thereof. A method for producing a perforated electrolytic metal foil with a carrier substrate according to any one of the above. 前記工程b.(電析工程)における金属メッキは、銅、金、銀、錫、ニッケル、コバルト、鉛、鉄、プラチナのいずれかから選ばれる金属メッキ層を複数積層させる請求項8〜請求項13のいずれかに記載のキャリア基材付孔開き電解金属箔の製造方法。 Step b. The metal plating in (Electrodeposition process) is any one of claims 8 to 13, wherein a plurality of metal plating layers selected from copper, gold, silver, tin, nickel, cobalt, lead, iron, and platinum are laminated. A method for producing a perforated electrolytic metal foil with a carrier substrate as described in 1. 請求項1〜請求項3のいずれかに記載の孔開き電解金属箔の製造方法であって、
前記請求項8〜請求項15のいずれかに記載のキャリア基材付孔開き電解金属箔のキャリア基材を除去することを特徴とした孔開き電解金属箔の製造方法。
A method for producing a perforated electrolytic metal foil according to any one of claims 1 to 3,
A method for producing a perforated electrolytic metal foil, wherein the carrier base material of the perforated electrolytic metal foil with a carrier base according to any one of claims 8 to 15 is removed.
JP2005225740A 2004-12-13 2005-08-03 Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods Pending JP2006193825A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005225740A JP2006193825A (en) 2004-12-13 2005-08-03 Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods
PCT/JP2005/022685 WO2006064741A1 (en) 2004-12-13 2005-12-09 Holed electrolytic metallic foil, holed electrolytic metallic foil with carrier base material, and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004360209 2004-12-13
JP2005225740A JP2006193825A (en) 2004-12-13 2005-08-03 Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods

Publications (1)

Publication Number Publication Date
JP2006193825A true JP2006193825A (en) 2006-07-27

Family

ID=36587797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225740A Pending JP2006193825A (en) 2004-12-13 2005-08-03 Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods

Country Status (2)

Country Link
JP (1) JP2006193825A (en)
WO (1) WO2006064741A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137568A1 (en) * 2009-05-25 2010-12-02 三井金属鉱業株式会社 Perforated metal foil with substrate, method for manufacturing perforated metal foil with substrate, perforated metal foil, and method for manufacturing perforated metal foil
CN102931414A (en) * 2012-11-01 2013-02-13 彩虹集团公司 Preparation process for copper foil for lithium ion battery current collector
WO2013054786A1 (en) * 2011-10-14 2013-04-18 日立化成株式会社 Method for producing metal filters
JP2013255487A (en) * 2012-05-14 2013-12-26 Hitachi Chemical Co Ltd Metal filter for capturing cancer cell, metal filter sheet for capturing cancer cell, device for capturing cancer cell, and methods for manufacturing the same
JP2014125652A (en) * 2012-12-26 2014-07-07 Hitachi Chemical Co Ltd Method for manufacturing metal filter
JP2016132251A (en) * 2015-01-22 2016-07-25 セーレン株式会社 Method for manufacturing porous metal foil having support and permeable metal foil
JP2016530140A (en) * 2013-09-19 2016-09-29 トレデガー フィルム プロダクツ コーポレイション Method for making a molding screen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993153A (en) * 2015-07-13 2015-10-21 深圳市信宇人科技有限公司 Production method of microporous copper foil, microporous copper foil and production device thereof
EP3627599A4 (en) * 2017-05-18 2020-05-27 FUJIFILM Corporation Perforated metal foil, perforated metal foil manufacturing method, secondary battery negative electrode, and secondary battery positive electrode
JP7283349B2 (en) * 2019-10-25 2023-05-30 株式会社豊田自動織機 Manufacturing method of electrode foil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838835A (en) * 1971-09-21 1973-06-07
JPS60141887A (en) * 1983-12-28 1985-07-26 Seiko Epson Corp Manufacture of electroformed precision parts
JP2001313447A (en) * 2000-04-28 2001-11-09 Mitsui Mining & Smelting Co Ltd Copper foil for printed-wiring board, metal foil with career foil, and semi-additive process of printed-wiring board
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2002184409A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nickel hydrogen battery, its manufacturing method, and negative electrode for nickel hydrogen battery
JP2002184411A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2003220364A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Precise sieve plate and classifier using the same
WO2004051768A1 (en) * 2002-11-29 2004-06-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
JP2004273531A (en) * 2003-03-05 2004-09-30 Shinko Electric Ind Co Ltd Copper-foil composite sheet for printed wiring board and method of manufacturing printed wiring board using the sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838835A (en) * 1971-09-21 1973-06-07
JPS60141887A (en) * 1983-12-28 1985-07-26 Seiko Epson Corp Manufacture of electroformed precision parts
JP2001313447A (en) * 2000-04-28 2001-11-09 Mitsui Mining & Smelting Co Ltd Copper foil for printed-wiring board, metal foil with career foil, and semi-additive process of printed-wiring board
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2002184409A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nickel hydrogen battery, its manufacturing method, and negative electrode for nickel hydrogen battery
JP2002184411A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2003220364A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Precise sieve plate and classifier using the same
WO2004051768A1 (en) * 2002-11-29 2004-06-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
JP2004273531A (en) * 2003-03-05 2004-09-30 Shinko Electric Ind Co Ltd Copper-foil composite sheet for printed wiring board and method of manufacturing printed wiring board using the sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137568A1 (en) * 2009-05-25 2010-12-02 三井金属鉱業株式会社 Perforated metal foil with substrate, method for manufacturing perforated metal foil with substrate, perforated metal foil, and method for manufacturing perforated metal foil
JPWO2013054786A1 (en) * 2011-10-14 2015-03-30 日立化成株式会社 Metal filter manufacturing method
US10258906B2 (en) 2011-10-14 2019-04-16 Hitachi Chemical Company, Ltd. Metal filter and method for concentrating cancer cells
WO2013054786A1 (en) * 2011-10-14 2013-04-18 日立化成株式会社 Method for producing metal filters
CN103874788A (en) * 2011-10-14 2014-06-18 日立化成株式会社 Method for producing metal filters
CN103874788B (en) * 2011-10-14 2018-08-21 日立化成株式会社 The manufacturing method of metallic filter
US20140238863A1 (en) * 2011-10-14 2014-08-28 Hitachi Chemical Company, Ltd. Method for producing metal filters
JP2013255487A (en) * 2012-05-14 2013-12-26 Hitachi Chemical Co Ltd Metal filter for capturing cancer cell, metal filter sheet for capturing cancer cell, device for capturing cancer cell, and methods for manufacturing the same
US10246684B2 (en) 2012-05-14 2019-04-02 Hitachi Chemical Company, Ltd. Cancer cell-trapping metal filter, cancer cell-trapping metal filter sheet, cancer cell-trapping device, and manufacturing methods therefor
CN102931414A (en) * 2012-11-01 2013-02-13 彩虹集团公司 Preparation process for copper foil for lithium ion battery current collector
JP2014125652A (en) * 2012-12-26 2014-07-07 Hitachi Chemical Co Ltd Method for manufacturing metal filter
JP2016530140A (en) * 2013-09-19 2016-09-29 トレデガー フィルム プロダクツ コーポレイション Method for making a molding screen
US10556376B2 (en) 2013-09-19 2020-02-11 Tredegar Film Products Corporation Method of making forming screens
JP2016132251A (en) * 2015-01-22 2016-07-25 セーレン株式会社 Method for manufacturing porous metal foil having support and permeable metal foil

Also Published As

Publication number Publication date
WO2006064741A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP2006193825A (en) Perforated electrolytic metal foil, perforated electrolytic metal foil with carrier substrate and their production methods
US9955583B2 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
CN100571483C (en) The ultrathin copper foil of band carrier and the circuit board that uses the ultrathin copper foil of band carrier
JP6640567B2 (en) Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board
JP6784806B2 (en) Copper foil with carrier foil and copper-clad laminate
JP2014139336A (en) Copper foil with carrier
TWI593548B (en) Attached to the metal substrate
TW462210B (en) Composite material used in making printed wiring boards
TWI626151B (en) Copper foil for manufacturing printed wiring board, copper foil with carrier, copper-clad laminate, and method for producing printed wiring board using the same
KR20160034915A (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
KR20190121327A (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN108124391A (en) The manufacturing method of composite metallic material, copper-clad laminated board and the copper-clad laminated board
TWI650240B (en) Printed circuit board manufacturing method
JP2012057191A (en) Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
JP6353193B2 (en) Copper foil with carrier, method for producing a copper-clad laminate using the copper foil with carrier, method for producing a printed wiring board using the copper foil with carrier, and method for producing a printed wiring board
JP2001210932A (en) Method of manufacturing printed wiring board
CN103732798B (en) The manufacture method of conductive substrate and collector plate used for solar batteries for forming the wiring pattern of collector plate used for solar batteries
JP6360659B2 (en) Copper foil with carrier, method of producing a printed wiring board using the copper foil with carrier, method of producing a copper clad laminate using the copper foil with carrier, and method of producing a printed wiring board
TWI655083B (en) Multilayer carrier foil
JP5575320B2 (en) Copper foil with carrier
JP5373993B1 (en) Copper foil with carrier
TW202041119A (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
TW200926926A (en) Method for manufacturing plated through hole in printed circuit board
TW201842625A (en) Conductive substrate and method for producing conductive substrate
JP2007250747A (en) Printed wiring board and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111124