JP2006190375A - 磁気ディスク装置 - Google Patents

磁気ディスク装置 Download PDF

Info

Publication number
JP2006190375A
JP2006190375A JP2005000509A JP2005000509A JP2006190375A JP 2006190375 A JP2006190375 A JP 2006190375A JP 2005000509 A JP2005000509 A JP 2005000509A JP 2005000509 A JP2005000509 A JP 2005000509A JP 2006190375 A JP2006190375 A JP 2006190375A
Authority
JP
Japan
Prior art keywords
base
magnetic disk
elastic support
frame
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000509A
Other languages
English (en)
Inventor
Masahiko Sega
雅彦 瀬賀
Makoto Nagahiro
真 長廣
Jiro Kaneko
次郎 金子
Gentaro Nakamura
元太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2005000509A priority Critical patent/JP2006190375A/ja
Priority to US11/327,846 priority patent/US7535672B2/en
Publication of JP2006190375A publication Critical patent/JP2006190375A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/04Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
    • G11B25/043Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/02Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
    • G11B33/08Insulation or absorption of undesired vibrations or sounds

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

【課題】シーク動作で発生する偶力又は外乱によるHDDの面内回転モード、外乱によるスピンドルのスラスト・モード及びコニカル・モード、筐体連成スラスト・モード及びスピンドル倒れモード等の振動により、磁気ヘッドの位置決め精度が低下する。
【解決手段】弾性支持部材31は柱状部分38を有し、ベース10の隅部に対向する面に凹部35と、凹部35の上下に縦フィンの突起33が設けられている。ベース10の隅部には、ディスク面と平行な水平フィン34が設けられていて、水平フィン34は弾性支持部材31の凹部35に挿入される。縦フィンの突起33はベース10に接触し、水平フィン34の上下両面の振動特性の基本特性を支配する。柱状部分38には、ジグザグ形状の部位32が設けられ、フレーム12に接触するように実装される。
【選択図】図1A

Description

本発明は磁気ディスク装置に係り、特に磁気ディスク装置のシーク動作により発生する偶力、外乱作用時の、磁気ヘッドの位置決め精度向上に関するものである。
近年磁気ディスク装置では、記録容量増大のため、記録密度の向上が求められている。そのためには、磁気ヘッドの位置決め精度を上げることが重要であるが、位置決め精度向上の阻害要因としては、ディスクの回転による風力に起因する位置決め誤差や、アクチュエータの位置決め動作による機構系の振動による位置決め誤差や、磁気ディスク装置の外部から振動が加わった場合に生じる位置決め誤差などが挙げられる。これらの位置決め誤差を低減するためには、位置決め制御の制御帯域を広くするか、あるいは機構系自体の振動を低減することが必要である。
これらのうち、磁気ディスク装置の外部から振動が加わった場合や、アクチュエータの位置決め動作によりベースに発生する偶力で生じる振動が問題になっている。例えば、サーバ等の筐体に複数の磁気ディスク装置を搭載した条件では、他のディスク装置の動作によってこのような外乱を生じる。アクセスタイムを向上させながらも、つまり、筐体内の周囲の磁気ディスク装置でシーク時に発生する振動が増加しているにも拘らず、近年の高密度装置においては、必要な位置決め精度の向上や、コスト低減のため磁気ディスクを搭載する筐体の剛性低下や、制御帯域が低い等の要因によって大きな課題となっている。また、アクチュエータの位置決め動作時にVCMに生ずる反力とピボットにコイルから伝わる推力からなる偶力により、ベースが筐体の剛性をばね定数する固有振動数で剛体的に振動する面内回転モードも、同様に問題となっている。
磁気ディスク装置全体の剛体的な面内回転モードにおいては、ディスク上の目標トラックは装置全体の回転に応じて位置がずれるのに対して、アクチュエータは慣性により回転せずにそのままの位置に留まろうとするため、位置決め誤差となる。この問題の解決方法として特許文献1に、ヘッド・ディスク・アセンブリ(HDA)を円筒又は湾曲形状の支持部材でフレームに、面内回転周波数20Hz程度で柔軟に支持することで、磁気ディスク装置全体を慣性モーメントとし筐体の剛性をばねとする面内回転モードの固有振動数と周波数を離し、筐体の外乱を振動絶縁し、偶力による残留振動を励起し難くし、サーボ圧縮を期待できる機構を提供している。
特開2001−291363号公報
外部から振動が加わった場合に生じる磁気ディスク装置の振動モードには、主に以下のようなものがある。まず磁気ディスク装置全体のディスク面垂直軸周りの慣性モーメントと搭載筐体のバネからなる振動系に周囲の磁気ディスク装置のシークによるディスク面内の回転外乱により励起される磁気ディスク装置全体の剛体的な面内回転モード。スピンドルがマス、スピンドルのスラスト方向の軸受剛性とベースの面外剛性がバネとなり、ディスクの面外方向に入ってきた並進外乱で励起されるスピンドルのスラスト・モード。スピンドルのディスク直径回りの慣性モーメント、スピンドルのラジアル方向の軸受剛性とベースの面外剛性がバネとなり、ベースの面外方向の回転外乱で励起されるスピンドルの倒れモードであるコニカル・モード。上述の面内回転モードは、キャリッジの位置決め動作によりベースに発生する偶力で生じる振動モードでもある。
更に上述のスラスト・モードとコニカル・モードは磁気ディスク装置単独で見られるモードであるが、このスラスト・モードとコニカル・モードは、筐体の剛性により搭載筐体と絡んだ新たな連成モードが出来る場合がある。磁気ディスク装置から見るとスピンドルのスラスト変形が倒れを生じさせる筐体からの強制振動とも言える。この連成モードを筐体スラスト連成モード、筐体スピンドル倒れ連成モードと呼ぶことにする。この筐体スラスト連成モード、筐体スピンドル倒れ連成モードは減衰の小さい筐体との連成モードであるため、スラスト・モードとコニカル・モードに比べ振動が大きく、位置決め精度上影響がより大きい。
上記特許文献1に記載された支持部材の材質は、大きく分けて薄板金属ばねとゴム/ゲルの二種類が挙げられている。面内回転モードに関しては、20Hz設計をすれば、いずれの材質でも特性に大きな差はない。しかしながら、特許文献1には記述されていないが、スピンドルのスラスト・モードやコニカル・モード及び、筐体スラスト連成モードや筐体スピンドル倒れ連成モードに関しては差が出てくる。ゴム/ゲルの場合は、スピンドルのスラスト・モードやコニカル・モード及び、筐体スラスト連成モードや筐体スピンドル倒れ連成モードに関しても、振動絶縁の効果はあるが、薄板金属ばねでは効果がなくなる。なぜならば、面外方向は金属板ばねの剪断変形のため、非常に剛性が大きいからである。
また、ゴム/ゲルの場合は、円筒形状又は湾曲形状のため、HDAの面外方向はゴム/ゲルの剪断変形となり、HDAの自重による変形が大きく、フォーム・ファクタを守るため、HDAとフレーム又はPCBの隙間をかなり大きく確保する必要がある。そのため、HDAの面外方向の実装スペースが制約を受ける。具体的には、円板枚数の制約や、VCMを厚く出来ないための力定数不足によるアクセス能力の制約などが考えられる。また、衝撃や強い振動が加わった際、ゴム/ゲルの円筒形状又は湾曲形状のため座屈し易く、そのため支持部材がダメージを受けることも十分考えられる。
一方、HDAの面内方向はゴム/ゲルの曲げ変形のため、更に、HDAの自重による変形が更に大きくなる。ベース又はカバーとフレームの隙間をより大きく確保する必要があるので、同様に実装スペースが狭くなる等の制約を受ける。
HDAの面外方向と面内方向とでは、どちらの制約が厳しいかと言うと、やはり面外方向である。円板枚数(容量)の制約や、VCMを厚く出来ないための力定数不足によるアクセス能力の制約は深刻であるからである。
本発明の目的は、外乱又は偶力による磁気ディスク装置全体の剛体的な面内回転モード、外乱によるスピンドルのスラスト・モード及びコニカル・モード、筐体スラスト連成モード及び筐体スピンドル倒れ連成モード等による位置決め精度悪化を改善する磁気ディスク装置を提供することである。
上記目的を達成するために、本発明の磁気ディスク装置においては、磁気ディスクを搭載するスピンドルと、該スピンドルに回転駆動力を与えるスピンドル・モータと、前記スピンドルを回転可能に軸受を介して支持するベースと、該ベースに取り付けられ前記磁気ディスクに対する情報の書き込み及び読み出しを行う磁気ヘッドを支持するアクチュエータと、前記ベースの周囲を覆うフレームと、該フレームと前記ベースの間に配置され前記ベースから突出する水平フィンが挿入される凹部を有する柱状の弾性支持部材とを有することを特徴とする。
前記弾性支持部材は、前記ベースの四隅の少なくとも2箇所に配置される。
前記水平フィンは、前記弾性支持部材を前記ベースに取り付けるための金具であっても良い。
前記弾性支持部材は、前記フレームに接触するジグザグ形状部分を有する。
前記凹部の上下の柱状の弾性支持部材の側面に前記ベースに接触する突起を有する。
前記弾性支持部材は、内部に水平板を有するのが望ましい。
前記弾性支持部材は、オイルと該オイルを封入する弾性材からなる封入部で構成されるオイル・ダンパを備えていても良い。
前記オイル・ダンパは、前記封入部を分割する仕切り壁を有し、該仕切り壁にオリフィスが設けられていても良い。
前記フレームはフォーム・ファクタの規格に入っていることが望ましい。
上記目的を達成するために、本発明の磁気ディスク装置においては、磁気ディスクを搭載するスピンドルと、該スピンドルに回転駆動力を与えるスピンドル・モータと、前記スピンドルを回転可能に軸受を介して支持するベースと、該ベースに取り付けられ前記磁気ディスクに対する情報の書き込み及び読み出しを行う磁気ヘッドを支持するアクチュエータと、前記ベースの周囲を覆うフレームと、該フレームと前記ベースの間に配置され前記ベースから突出する水平フィンが挿入される凹部を有する柱状の弾性支持部材と、前記フレームに取り付けられ電子部品を実装する回路基板と、前記ベース上の部品と前記回路基板の電子部品を接続するU字形状を成し2つの直線部分の外側に隙間が設けられたFPCとを有ことを特徴とする。
本発明によれば、外乱又は偶力による磁気ディスク装置全体の剛体的な面内回転モード、外乱によるスピンドルのスラスト・モード及びコニカル・モード、筐体スラスト連成モード及び筐体スピンドル倒れ連成モード等による位置決め精度悪化を改善することができる。
本発明では、面外方向に関しては、周囲をHDA(Head Disk Assembly)のベースとフレームで囲われた弾性支持部材の圧縮変形でHDAを、面内方向に関しては剪断変形でHDAを、フレームに支持する。その為ベースから水平なフィン状の部材が弾性支持部材を支持している。更に、PCB(Printed Circuit Board)もフレームに取り付け、HDAとPCBは、電気的接続に関し剛性の小さいケーブル類で接続した構造を取る。この構造では、弾性支持部材は、面外方向に関しは圧縮変形し、面内方向に関しは剪断変形をする。変形の剛性は、圧縮、剪断、曲げの順に高いので、ベース又はカバーとフレームの隙間を小さく設計可能となる。
その代わり、面内回転周波数20Hz程度を実現するには、弾性支持部材の面外方向に直角の断面積を小さく、つまり、細長くする必要がある。細長い為と剛性が小さくなる為、HDAがフレームにぶつからないように隙間の設計をするのが困難になってくる。面外方向に関しては、衝撃や強い振動が作用した時の座屈で弾性支持部材がダメージを受たり、面内方向の剪断変形でHDAの自重を支える際、クリープで隙間管理がおかしくなる。HDAがフレーム又はストッパに接触すると剛性が大きくなり、予定した振動特性が得られなくなる。これを避ける為に、弾性支持部材の剪断変形方向の周囲をベースとフレームで囲む。ただ囲むだけでは、面内回転モードの固有振動数を低く出来ない場合もあるので、弾性支持部材の一部に、曲げ部、突起部、凹み部などの剛性の小さい部位を設けて、弾性部材がベース又はフレームに接触する構造を取る。これにより、隙間設計が容易になり、期待する振動特性が得られる。
以下本発明の実施例について図面を用いて詳細に説明する。図3A,図3B,図3Cに本発明の第1の実施例である磁気ディスク装置(HDD:Hard Disk Drive)の構成を示す。図3Aは平面図、図3Bは側面図、図3Cは底面図である。アクチュエータ1の先端にはサスペンション2を介して磁気ヘッド(図示せず)を搭載したスライダ3が取り付けられている。ボイス・コイル・モータ(VCM)5のコイル(VCM5の中にあるので見えず)に電流を流すことによりVCM5とコイルの間に力が発生し、軸受部6を中心にアクチュエータ1が揺動し、スライダ3をスピンドル・モータ8に搭載した磁気ディスク7上の任意の半径位置に位置決めすることができる。
磁気ディスク7を搭載したスピンドル・モータ8等からなるスピンドル9、アクチュエータ1、VCM5等が配設されるベース10は、四隅の弾性支持部材31を介してフレーム12に支持される。ベース10と対になって磁気ディスク装置の機構部分(HDA:Head Disk Assembly)13の密閉を保つカバーは、内容物を説明できるようにするため図示していない。また、左上隅の弾性支持部材31が見えるように、フレーム12の一部である三角の補強部品も省略している。図3Aでは、HDA13を振動絶縁するための隙間14を見ることが出来る。フレーム12には、図3Cに示すように回路基板(PCB:Printed Circuit Board)15がねじ16にて固定されている。PCB15にはスピンドル・モータ8用の穴が隙間を持って開けられている。PCB15とHDA13はFPC(Flexible Printed Circuit)17によって、電気的に接続されている。フレーム12には、図3Bおよび図3Cに示すように顧客筐体へ取り付けるためのねじ穴18、19が、側面に6箇所、底面に4箇所、設けられている。
ここで、弾性支持部材のおおよその寸法イメージが分るように、概略の振動計算を示す。HDAとしては3.5型のHDDを取り上げる。直径5mm、高さ8mmの円筒形状の弾性支持部材を8個使い、四隅にベースからの水平フィンの上下に、円筒の軸をディスクの面外方向に実装する。剛性は、ゴムの場合で、Hs50と仮定する。
日本鉄道車両工業会発行「防振ゴム」によると、横弾性係数Gは、
G=(53+7.77xHs)/(100−Hs)kgf/cm
の式で示されているので、Hs50では、
G=(53+7.77x50)/(100−50)=8.83kgf/cm
となる。
円筒の圧縮変形方向の剛性Kcは、円筒1個では
Kc=(ALx I/h)xG kgf/cm
となる。
ここで、
AL:円筒の円形断面積、
h:円筒の軸方向の高さ
I :形状係数 I =3+4.935xS
S:S=d/(4xh)
d:円筒の直径
である。
よって、
AL=0.25xπ=0.1963
S=0.5/(4x0.8)=0.1563、I =3+4.935x0.1563=3.12
Kc=(0.1963x3.12/0.8)x8.83=6.76 kgf/cm =0.676 kgf/mm
となる。
また、円筒の剪断方向の剛性Ksは、円筒1個では
Ks=(ALxJ/h)xG kgf/cm
となる。
ここで、
J:形状係数 J=1/(1+0.444x(h/d)
である。
よって、
J=1/(1+0.444x(0.8/0.5))=0.468
Ks=(0.1963x0.468/0.8)x8.83=1.014 kgf/cm =0.1014 kgf/mm
となる。
例えば、3.5型HDDで、厚みが25.4mm前後のHDDの重量は約750g、面内方向の回転慣性は約1380kg・mm、25.4x101.6mm前後の断面に垂直な面外方向の軸回りの回転慣性は約960kg・mmである。
よって、面内回転モードの回転ばね定数は、
Kθi =0.1014x75x8=4560 kgf・mm
となる。
ここで、75mmはHDDの面内回転中心から弾性支持部材までのスパンとする。
以上より、面内回転モードの固有振動数は
fθin =1/(2xπ)x√(4560/(1380/9800))≒29Hz
また、25.4x101.6mm前後の断面に垂直な面外方向の軸回りの回転ばね定数は、
Kθout =0.676x45x8=10950 kgf・mm
となる。
ここで、50mmはHDAの面外方向の軸周りの回転中心から弾性支持部材までのスパンとする。
以上より、
面外回転モードの固有振動数は
fθout =1/(2xπ)x√(10950/(480/9800))≒75Hz
HDAのスラスト方向の固有振動数は
fout =1/(2xπ)x√(0.676x8/(0.75/9800))≒42Hz
一方、HDAの自重によるたわみは、面内方向δinと面外方向δoutは、
δin=0.75/(0.1014x8)≒0.92mm
δout=0.75/(0.676x8)≒0.13mm
となる。
これらの計算値は、Hs50の場合で、ゴムの硬度としては低い方で、Φ5x8mmの寸法から考えると、面内回転モードが20Hz程度に及ばないにも拘らず、すでに不安定なサイズとなっている。
ゴム硬度としては柔らかすぎて、防振ゴムとしてはあまり使われないが、Hs30になると前述の式より、
fθin≒20Hz
fθout≒51Hz
fout≒29Hz
δin≒2.0mm
δout≒0.3mm
となり、面内回転モードの固有振動数が20Hz程度となる。
ここで、表1に示す、Hs30〜50の場合の各支持モードの固有振動数と問題モードの振動数との比を見てみると、一番低周波数のフル・スパン・シーク時の加振成分140Hzの場合も、その次のコニカルの370Hzも支持系の周波数との比は5〜7倍で、同程度の比を確保していることが分る。正確には加振力の大きさも勘案しないといけないが、この程度の特性比較でも、HDAの面内回転モードを低周波数に持ってこないといけないことは理解できる。
Figure 2006190375
このように、面内回転モードが30Hz程度ならゴム材で、20Hz程度ならゴムより柔らかいゲルのような材料で、低周波数の可能性が見出される。しかしながら、円筒形状のような一般の防振ゴムの形状にあるような構造では、細長く不安定で座屈やクリープなどの問題を解決する必要がある。
次に図1A,図1B及び図4A,図4Bを参照して弾性支持部材31の構造を詳細に説明する。図1Aはベース10の隅部と弾性支持部材31とフレーム12の隅部の関係を示す図で、図1Bは弾性支持部材31をベース10側から見た図である。図4Aはベース10およびフレーム12の隅部を上から見た図で、図4BのB−B断面図であり、図4Bは図4AのA−A断面図である。弾性支持部材31は断面が台形状の柱状部分38を有し、ベース10の隅部に設けられたディスク面と平行な水平フィン34が挿入される凹部37の上下両面に振動特性の基本特性を支配する弾性支持部材31の柱状部分38が実装される。よって、HDDの剛体的な面内回転モードには、弾性支持部材31の柱状部分38の剪断剛性が関与し、スピンドルのスラスト・モード、コニカル・モード及び筐体スラスト連成モードや筐体スピンドル倒れ連成モードに関係するHDDの面外及び面外回転モードは、弾性支持部材31の柱状部分38の圧縮剛性が関与することになる。
水平フィン34の上下両面の弾性支持部材31の柱状部分38の基本寸法は、先程数値を上げて説明した寸法に似たものになるが、当然細長いので、不安定性をなくすためと、面内方向たわみδinが1〜2mmになるので、クリープでHDDのベース10がフレーム12に剛性の高い部材同士の衝突をしないように、符号32のようなジグザグ形状の部位や33のような縦フィンの突起を設け、フレーム12やベース10に接触させておく。面外方向に関し、ジグザグ形状部分32や縦フィン突起33は、HDAの厚み方向の一部に設けられているのと圧縮変形より剛性の小さい剪断変形のため、剛性的にHDDの面外及び面外回転モードの振動数には大きく影響しない。また、より低い周波数であるべき面内回転モードに関しても、ジグザグ形状部分32はより剛性の小さい曲げ変形、縦フィン突起33も面内回転方向にはより剛性の小さい曲げ変形なので、面内回転モードの振動数には大きく影響せず、期待する振動特性は保持される。ただし、ジグザグ形状部分32のばね特性は、たわむほど接触して来て、非線形な特性になるので、HDAの自重を支えきって、面内方向たわみδinが1〜2mmになっても、急激にばね定数が大きくならないような設計が必要である。
以上の説明から分るように、特に面内方向のたわみδinを確保するには、例えば、3.5型のフォーム・ファクタのHDDには95mmの円板が実装可能であるが、95mmの円板ではこのような機構を採ることは困難なので、世の中に出ている円板サイズとしては84mmのような小さい円板サイズを採用する必要がある。84mmであれば、95−84=11mm、直径が短いので、片側5.5mmの隙間を確保でき、面内方向たわみδinが1〜2mmも吸収可能となる。なお、HDAの側面と上下面のデッド・ストッパ35と36は、ジグザグ形状部分32で持ち堪えられないG値以上の衝撃や強い振動が作用した時、HDA13とフレーム12の剛性の高い部材同士の衝突を回避するためのデッド・ストップである。なお、上記実施例では弾性支持部材の断面を台形状としたが、これに限られることはなく、図2A,図2Bに示すように四角形でも良い。
次に、図5A,図5Bを参照して第2の変形例を説明する。図5Aは図5BのH−H線断面図であり、図5Bは図5AのG−G線断面図である。弾性支持部材41は、ベース10の隅部にねじ45で取り付けられるディスク面と平行な取付金具44に設けられていて、取付金具44の上下両面に振動特性の基本特性を支配する弾性支持部材41の柱状部分48が実装される。よって、HDDの剛体的な面内回転モードには、弾性支持部材41の柱状部分48の剪断剛性が関与し、スピンドルのスラスト・モードやコニカル・モード及び筐体スラスト連成モードや筐体スピンドル倒れ連成モードに関係するHDDの面外及び面外回転モードは、弾性支持部材41の柱状部分48の圧縮剛性が関与することになる。
取付金具44の上下両面の弾性支持部材41の柱状部分48の基本寸法は、上記第1の実施例で説明した寸法に似たものになるが、当然細長いので、不安定性をなくすためと、面内方向たわみδinが1〜2mmになるので、クリープでHDDの剛性の高いベース10が剛性の高いフレーム12に衝突をしないように、42のようなジグザグ形状の部位や43のような縦フィンの突起を設け、フレーム12やベース10に接触させておく。面外方向に関し、ジグザグ形状部分42や縦フィン突起43は、HDAの厚み方向の一部に設けられているのと剪断変形のため、剛性的にHDDの面外及び面外回転モードの振動数には大きく影響しない。また、より低い周波数であるべき面内回転モードに関しても、ジグザグ形状部分42はより剛性の小さい曲げ変形、縦フィン突起43も面内回転方向にはより剛性の小さい曲げ変形なので、面内回転モードの振動数には大きく影響せず、期待する振動特性は保持される。ただし、ジグザグ形状部分42のばね特性は非線形な特性なるので、HDAの自重を支え切って、面内方向たわみδoutが1〜2mmになっても、急激にばね定数が大きくならないような設計が必要である。
図6A、図6Bを参照して第3の実施例を説明する。図6Aは図6BのJ−J線断面図であり、図6Bは図6AのI−I線断面図である。弾性支持部材51は、ベース10の隅部からディスク面と平行な水平フィン54が設けられていて、水平フィン54の上下両面に振動特性の基本特性を支配する弾性支持部材51の柱状部分58が実装される。ここまでは、上記第1の実施例と同じであるが、弾性支持部材51は第1の実施例よりも剛性が小さい材料を用いている。このことは、面内回転モードの周波数を下げられることを意味しているが、そのままでは同時にHDAの自重による面外方向のたわみも増えることも意味している。まず、せっかく下げた面内回転モードの周波数をあまり上げずに、面外方向のたわみを減らす為に、本実施例では柱状部分58の途中に水平板57を設ける。剛性の小さい弾性支持部材51の細長い柱状部分58は、面外方向のHDAの自重を支持すると、柱状部分58の中央が膨れて面外方向のたわみが大きくなるが、水平板57を設けることにより、細長さの程度が改善し柱状部分58の中央が膨れ難くなり、面外方向のたわみが大きくならなくなる。その割りに、剪断方向の剛性はあまり大きくならないので、面内回転モードの周波数を下げる効果は期待できる。
したがって、HDDの剛体的な面内回転モードには、弾性支持部材51の水平板57で仕切られた柱状部分58の剪断剛性が関与し、スピンドルのスラスト・モードやコニカル・モード及び筐体スラスト連成モードや筐体スピンドル倒れ連成モードに関係するHDDの面外及び面外回転モードは、弾性支持部材31の水平板57で仕切られた柱状部分58の圧縮剛性が関与することになる。水平フィン54の上下両面の弾性支持部材51の柱状部分58の基本寸法は、水平板57も含め上記第1の実施例の寸法に似たものになるが、第1の実施例と比較すると、面内回転モードの周波数は下がり、面外及び面外回転モードの周波数は同程度な設計が可能となる。当然ながら、面外方向のたわみδoutは同程度であるが、面内方向たわみδinは1〜2mmよりは、周波数が下がるに伴い大きくなる。
弾性支持部材51は、細長さからくる座屈などの不安定さを小さくする為、既に水平板57を設けているが、更に、より剛性が落ちた弾性部材を用いているため、ジグザグ形状部分のかわりに52のような凹み部55の入った部位や53のような縦フィンの突起を複数設け、フレーム12やベース10に接触させておく。縦フィン突起53は面内回転方向には曲げ変形なので、数は増えているが面内回転モードの振動数には大きく影響しない。凹み部分55は剛性の落ちた弾性部材のため、HDAの厚み方向の一部でなくとも、また、曲げ変形でなくとも、面内回転モードの振動数に大きく影響しなくなり、凹み部一箇所でも十分になり、座屈などの不安定さに注意した設計になる。ただし、凹み部分55のばね特性は非線形な特性なるので、HDAの自重を支え切っても、期待するばね定数が大きくならないような設計が必要である。さらに、剛性の小さい弾性部材では、切れ込みや縦フィン突起は不要になり、弾性支持部材をフレームやベースで取囲むようになる。
図7A、図7Bを参照して第4の実施例を説明する。図7Aは図7BのD−D線断面図であり、図7Bは図7AのC−C線断面図である。オイル・ダンパ付き弾性支持部材61は、ベース10の隅部からディスク面と平行な水平フィン64が設けられていて、水平フィン64の上下両面に振動特性の基本特性を支配する弾性支持部材61の柱状部分68が実装される。したがって、HDDの剛体的な面内回転モードには、弾性支持部材61の柱状部分68の剪断剛性が関与し、スピンドルのスラスト・モードやコニカル・モード及び筐体スラスト連成モードや筐体スピンドル倒れ連成モードに関係するHDDの面外及び面外回転モードは、弾性支持部材61の柱状部分68の圧縮剛性が関与することになる。水平フィン64の上下両面の弾性支持部材61の柱状部分68の基本寸法は、上記第1の実施例の寸法に似たものになる。
本実施例の特徴は、弾性支持部材61の柱状部分68以外にオイル・ダンパ67を設けている点にある。オイル・ダンパ67は、オイル部63とそれを封入している弾性材料からなる封入部62からなっている。オイル・ダンパ67の減衰は水平フィン64が、外乱や自己シーク偶力により動き、オイルを攪拌することにより得られる。弾性支持部材61の減衰性に比べ、大きな減衰特性が得られ、よりすぐれた振動特性が期待できる。封入部62も薄厚の弾性材料で作られているので、また、封入部62の周囲の一部は拘束を受けず膨らむ事が出来るようになっているので、フレーム12やベース10に接触させても、大きな剛性アップにはならない。周囲をフレーム12やベース10で囲まれている構造なので、柱状部分68の材質として、上記第1及び第2の実施例より剛性の小さい弾性材料を使用したり、より細長い寸法でも実装可能である。つまり、低周波数支持に対して座屈やクリープなどの不安定さの少ない構造である。しかしながら、第1及び第2の実施例より低周波数支持を実現するには、自重による面内方向たわみδinが1〜2mm以上必要なのは上記第3の実施例と同じで、そのような柱状部分68とオイル・ダンパ67の形状を設計する必要がある。また、このオイル・ダンパ付き弾性支持部材61は、上記第2の実施例のような取付金具タイプや第3の実施例のような水平板と組み合わせることが可能である。
図8A、図8Bを参照して第5の実施例を説明する。図8Aは図8BのF−F線断面図であり、図8Bは図8AのE−E線断面図である。上記第4の実施例と同じオイル・ダンパ付き弾性支持部材71であるが、第4の実施例と異なる点はオイル部73が縦の仕切り壁79で二つの部屋に分かれ、仕切り壁79にオリフィス80を設けている点である。外乱や自己シーク偶力により水平フィン74が動く際、オイルがオリフィス80を通過する抵抗で更に減衰効果を得るものである。水平フィン74の動きから、縦の仕切り壁79の場合は、面内回転モードに減衰効果があり、面外及び面外回転モードには効果が薄い。面外及び面外回転モードに効かせる為には、水平の仕切り壁にすると良い。
図9A,図9B,図9Cに、上記第1の実施例の変形例を示す。基本的には第1の実施例と同じであるが、PCB15のコネクタ120の種類が違う。第1の実施例では図3Aに示したようにワイドSCSIと呼ばれるコネクタ20で幅が広い。図9Aは通常のSCSIのコネクタ120で少し幅が狭い。その他にファイバ・チャネルのコネクタがあるが、SCSIよりも幅が狭い。したがって、SCSIやファイバ・チャネルのコネクタ120の場合、弾性支持部材31の実装スペースを容易に確保できることを示している。
次に、PCB15とHDA13の電気的接続を行うFPC17の実装構造について説明する。図10は図3AのFPC17そのものを示す例で、図3AのK−K線断面図である。HDA13の側面から、Uの字形状のFPC17を介して、PCB15に電気的な接続がされている。その際、FPC17のUの字形状の直線部201と202は、HDA13やフレーム12に接触しないように隙間を確保している。勿論、Uの字形状の底の稜線203も他の部品と接触させない。特許文献1に記載されているような曲げ部が二箇所以上あるような形状では接触していても、二箇所の曲げ部の間がねじれ変形し、HDA13の面内回転モードの周波数に悪影響を及ぼさない。しかしながら、曲げ部が一箇所より増えた分FPCの実装スペースを確保する必要があるため、HDA内の他の部品の実装スペースを圧迫する不利な点がある。その点、FPC17をUの字形状とし、直線部201と202のHDA13やフレーム12との隙間を設けることにより、Uの字形状の底の稜線203が容易にねじれ変形することが出来るので、省実装スペースを実現しつつ低剛性でHDA13を支持可能となる。もし、隙間がなければ稜線203がねじれ難くなり、面内回転モードの周波数がアップし振動特性の劣化や、衝撃や強い振動が作用した場合FPC17の損傷を招く。面外及び面外回転モードに関しては、FPC17は曲げ変形なので問題はない。
フレーム12の材質及び構造は、HDAを低周波数で支持している為、材質としては板金のような金属材料だけでなく、プラスチックのような高分子材料や紙などのパルプ材料でも可能である。フレーム12のねじ穴18,19は、インサート・モールドやかしめなどで設けることが出来る。高分子材料やパルプ材料は、材料自体が衝撃緩和の特性を有しているので、弾性支持部材の減衰性のある低周波数特性と、座屈防止用に弾性支持部材の一部に、曲げ部、突起部、凹み部などの剛性の小さい部位を設けて、弾性部材がベース又はフレームに接触する構造による耐衝撃特性にプラスされ、優れた耐衝撃特性を有するようになる。
フレーム構造の一つを図10に示してある。フレーム12は、厚み方向に204部と205部の2つに分かれた構造になっており、分割線が図10に208として示されている。205部の穴206に、204部のつめ207が挿入されることにより勘合される。
図11にFPCの実装構造の他の例を示す。図10と違って、HDA13の底面から、Uの字形状のFPC251を介して、PCB15に電気的な接続がされている。その際、FPC251のUの字形状の261部、262部、稜線263は、HDA13、PCB15、フレーム12に接触しないように隙間を確保している。図11では、面内回転モードに関しては、FPC251はねじり変形で、面外及び面外回転モードに関しては、FPC251は曲げ変形となっている。図11にはフレーム構造の他の例を示してある。フレーム12の215部と216部は勘合され、テープ217で止めてある。
図12A、図12BにFPCの実装構造のさらに他の例を示す。HDA13の上面から見た図が図12Aで、矢印MからHDA13の側面を見た図を図12Bに示している。但し、図12BはFPC252が見えるように、フレーム12は省略している。HDA13の側面から、Uの字形状のFPC252を介して、PCB15に電気的な接続がされている。但し、単純なUの字ではなく、PCB15側のFPC252は直角に曲がってPCB15に取り付けられている。その際、FPC252のUの字形状の271部、272部、稜線273は、HDA13やフレーム12に接触しないように隙間を確保している。この実装方法では、面内回転モードに関しては、FPC252は曲げ変形で、面外及び面外回転モードに関しては、FPC252はねじれ変形となっている。
図13にFPCの実装構造のさらに他の例を示す。図12Aと違って、HDA13の底面から、Uの字形状のFPC253を介して、PCB15に電気的な接続がされている。その際、FPC253のUの字形状の281部、282部、稜線283は、HDA13やPCB15に接触しないように隙間を確保している。この実装方法では、面内回転モードに関しては、FPC253は曲げ変形で、面外及び面外回転モードに関しては、FPC253はねじれ変形となっている。
以上の説明のとおり、本発明の実施例によれば、実装スペースの制約を最小限に止め、シーク動作で発生する偶力及び外乱によるHDDの面内回転モード、外乱によるスピンドルのスラスト・モード及びコニカル・モード、筐体スラスト連成モード及びスピンドル倒れモード等の振動を低減して位置決め誤差を改善することにより、高記録密度の磁気ディスク装置を提供することができる。また、トラック移動は目標トラックからの乖離量がデータの読み書きが可能と判断できる所定の量以下に振動が低減したとき完了するが、振動の低減によりトラック移動時間が短縮でき、データアクセス性能が向上する。
本発明の第1の実施例によるHDAの支持構造を示す図である。 図1Aの弾性支持部材を反対側から見た斜視図である。 弾性支持部材の変形例を示す図である。 図2Aの弾性支持部材を反対側から見た斜視図である。 本発明の第1の実施例によるHDAの支持構造を採用した磁気ディスク装置の平面図である。 図3Aの磁気ディスク装置の側面図である。 図3Aの磁気ディスク装置の底面図である。 図3Aの磁気ディスク装置の隅部示す図で、図4BのB−B線断面図である。 図4AのA−A線断面図である。 第2の実施例によるHDAの支持構造を示す図であり、図5BのG−G線断面図である。 図5AのH−H線断面図である。 第3の実施例によるHDAの支持構造を示す図であり、図6BのI−I線断面図である。 図6AのJ−J線断面図である。 第4の実施例によるHDAの支持構造を示す図であり、図7BのC−C線断面図である。 図7AのD−D線断面図である。 第5の実施例によるHDAの支持構造を示す図であり、図8BのE−E線断面図である。 図8AのF−F線断面図である。 図3Aの磁気ディスク装置の変形例を示す平面図である。 図9Aの磁気ディスク装置の側面図である。 図9Aの磁気ディスク装置の底面図である。 FPCの実装構造を示す図で、図3AのK−K線断面図である。 FPCの実装構造の他の例を示す図である。 FPCの実装構造の他の例を示す図である。 図12AのM方向から見た図である。 FPCの実装構造の他の例を示す図である。
符号の説明
1…アクチュエータ、2…サスペンション、3…スライダ、5…VCM、6…軸受け部、7…磁気ディスク、8…スピンドル・モータ、9…スピンドル、10…ベース、12…フレーム、13…HDA、14…隙間、15…PCB、16,45…ねじ、
17,251,252,253…FPC、18,19…ねじ穴、20、120…コネクタ、31、41,51,61,71…弾性支持部材、32、42…ジグザク形状部材、33,43…縦フィン突起、34,54,64,74…水平フィン、35,36…ストッパ、37…凹部、38,48,58,68,78…柱状部分、44…取付金具、52…凹み部分、57…水平板、62,72…封入部、63,73…オイル部、67,77…オイル・ダンパ、80…オリフィス。

Claims (10)

  1. 磁気ディスクを搭載するスピンドルと、該スピンドルに回転駆動力を与えるスピンドル・モータと、前記スピンドルを回転可能に軸受を介して支持するベースと、該ベースに取り付けられ前記磁気ディスクに対する情報の書き込み及び読み出しを行う磁気ヘッドを支持するアクチュエータと、前記ベースの周囲を覆うフレームと、該フレームと前記ベースの間に配置され前記ベースから突出する水平フィンが挿入される凹部を有する柱状の弾性支持部材とを有することを特徴とする磁気ディスク装置。
  2. 前記弾性支持部材は、前記ベースの四隅の少なくとも2箇所に配置されることを特徴とする請求項1記載の磁気ディスク装置。
  3. 前記水平フィンは、前記弾性支持部材を前記ベースに取り付けるための金具であることを特徴とする請求項1記載の磁気ディスク装置。
  4. 前記弾性支持部材は、前記フレームに接触するジグザグ形状部分を有することを特徴とする請求項1記載の磁気ディスク装置。
  5. 前記凹部の上下の柱状の弾性支持部材の側面に前記ベースに接触する突起を有することを特徴とする請求項1記載の磁気ディスク装置。
  6. 前記弾性支持部材は、内部に水平板を有することを特徴とする請求項1記載の磁気ディスク装置。
  7. 前記弾性支持部材は、オイルと該オイルを封入する弾性材からなる封入部で構成されるオイル・ダンパを有することを特徴とする請求項1記載の磁気ディスク装置。
  8. 前記オイル・ダンパは、前記封入部を分割する仕切り壁を有し、該仕切り壁にオリフィスが設けられていることを特徴とする請求項7記載の磁気ディスク装置。
  9. 前記フレームはフォーム・ファクタの規格に入っていることを特徴とする請求項1記載の磁気ディスク装置。
  10. 磁気ディスクを搭載するスピンドルと、該スピンドルに回転駆動力を与えるスピンドル・モータと、前記スピンドルを回転可能に軸受を介して支持するベースと、該ベースに取り付けられ前記磁気ディスクに対する情報の書き込み及び読み出しを行う磁気ヘッドを支持するアクチュエータと、前記ベースの周囲を覆うフレームと、該フレームと前記ベースの間に配置され前記ベースから突出する水平フィンが挿入される凹部を有する柱状の弾性支持部材と、前記フレームに取り付けられ電子部品を実装する回路基板と、前記ベース上の部品と前記回路基板の電子部品を接続するU字形状を成し2つの直線部分の外側に隙間が設けられたFPCとを有ことを特徴とする磁気ディスク装置。
JP2005000509A 2005-01-05 2005-01-05 磁気ディスク装置 Pending JP2006190375A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005000509A JP2006190375A (ja) 2005-01-05 2005-01-05 磁気ディスク装置
US11/327,846 US7535672B2 (en) 2005-01-05 2006-01-05 Magnetic disk drive with elastic support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000509A JP2006190375A (ja) 2005-01-05 2005-01-05 磁気ディスク装置

Publications (1)

Publication Number Publication Date
JP2006190375A true JP2006190375A (ja) 2006-07-20

Family

ID=36683601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000509A Pending JP2006190375A (ja) 2005-01-05 2005-01-05 磁気ディスク装置

Country Status (2)

Country Link
US (1) US7535672B2 (ja)
JP (1) JP2006190375A (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332648A (ja) * 2005-05-20 2006-12-07 Sumitomo Electric Ind Ltd フレキシブル基板を用いた多ピン同軸モジュールと回路基板の結線構造
US8164849B1 (en) 2007-12-10 2012-04-24 Western Digital Technologies, Inc. Information storage device with a conductive shield having free and forced heat convection configurations
US7701705B1 (en) 2007-12-10 2010-04-20 Western Digital Technologies, Inc. Information storage device with sheet metal projections and elastomeric inserts
US8004791B2 (en) * 2008-02-22 2011-08-23 Western Digital Technologies, Inc. Information storage device with a bridge controller and a plurality of electrically coupled conductive shields
US8390952B1 (en) 2008-02-22 2013-03-05 Western Digital Technologies, Inc. Information storage device having a conductive shield with a peripheral capacitive flange
US8300352B1 (en) 2009-06-18 2012-10-30 Western Digital Technologies, Inc. Disk drive having mounting inserts with cantilevered beams
US9892762B1 (en) 2011-11-30 2018-02-13 Western Digital Technologies, Inc. Self retaining elastomeric seal
US9994380B1 (en) 2011-11-30 2018-06-12 Western Digital Technologies, Inc. Ruggedized enclosure for data storage device
USD795874S1 (en) 2011-11-30 2017-08-29 Western Digital Technologies, Inc. Ruggedized enclosure for a data storage device
US8705201B2 (en) 2011-12-20 2014-04-22 Western Digital Technologies, Inc. Information storage device with a damping insert sheet between a housing bay and a disk drive
US8462460B1 (en) 2012-03-29 2013-06-11 Western Digital Technologies, Inc. Shock mount and retainer for a disk drive enclosure
US9147436B2 (en) * 2012-04-25 2015-09-29 Western Digital Technologies, Inc. Slim form factor disk drive comprising disk drive enclosure having an insular raised region
US8547658B1 (en) 2012-10-18 2013-10-01 Western Digital Technologies, Inc. Data storage device enclosure enabling use of a common shock mount across different products
US9099163B1 (en) 2013-03-14 2015-08-04 Western Digital Technologies, Inc. Hard disk drive (HDD) mounting system for shock and vibration
CN104182001B (zh) * 2013-05-28 2017-08-11 英业达科技有限公司 隔震机架
US9360900B1 (en) 2013-08-21 2016-06-07 Western Digital Technologies, Inc. Captivating shock mounts for data storage devices using retention clips
US9247660B2 (en) * 2014-04-28 2016-01-26 HGST Netherlands, B.V. Isolator system for a segmented frame for a storage drive
US9361947B1 (en) * 2015-06-10 2016-06-07 Western Digital Technologies, Inc. Hard disk drive motor cup support
CN105278873B (zh) * 2015-09-14 2018-10-19 浪潮(北京)电子信息产业有限公司 一种磁盘块的分配方法及装置
US10019043B2 (en) * 2015-12-14 2018-07-10 Western Digital Technologies, Inc. Hard disk drive with a vibration isolation frame
US11169572B2 (en) * 2019-08-07 2021-11-09 Hand Held Products, Inc. Protective housing for a mobile device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195213B2 (ja) * 1995-12-18 2001-08-06 株式会社日立製作所 回転形情報記録再生装置
DE69827841T2 (de) * 1998-09-29 2005-11-03 Mitsubishi Denki K.K. Eckteilverstärkngsvorrichtung für gestell einer plattenvorrichtung
JP2000163944A (ja) 1998-11-27 2000-06-16 Hitachi Ltd 磁気ディスク装置
JP2001291363A (ja) 2000-04-07 2001-10-19 Hitachi Ltd 磁気ディスク装置
JP2003045168A (ja) * 2001-08-01 2003-02-14 Sony Corp ディスクドライブ装置
US6831830B2 (en) * 2002-03-20 2004-12-14 Convergent Systems Solutions, Llc Digital storage element in a host device and method
KR100528344B1 (ko) * 2003-08-25 2005-11-15 삼성전자주식회사 내장형 디스크 드라이브의 취부 구조
JP5076790B2 (ja) * 2006-12-20 2012-11-21 パナソニック株式会社 衝撃保護装置

Also Published As

Publication number Publication date
US7535672B2 (en) 2009-05-19
US20060158775A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP2006190375A (ja) 磁気ディスク装置
US6879466B1 (en) Disk drive including an actuator with a constrained layer damper disposed upon an actuator body lateral surface
US8345387B1 (en) Disk drive with transverse plane damper
CN1260706C (zh) 硬盘驱动器的磁头平衡架装置
US7606001B2 (en) Vibration reducing head suspension mechanism for a magnetic disc unit
JPH0632202B2 (ja) ディスク装置の防振構造
JP2003517692A (ja) ディスク・ドライブのサスペンションの衝撃防止用クッション
JP2007109379A (ja) ハードディスクドライブ
EP1049075B1 (en) Head suspension and disk drive unit
US20060268451A1 (en) Disk device
US7230798B2 (en) Head support device and disk drive using the same
US6687094B2 (en) Head actuator for a data storage head having a low mass with lateral stiffness
US20060256477A1 (en) Slider touch-down preventing system, head stack assembly and disk drive unit with the same
KR20020087101A (ko) 동적 대칭 작동기
US11217275B2 (en) Disk device having head-support arms with reduced thickness regions that overlie disk regions when in a parked state
US20030165033A1 (en) Head support device and recording regenerator having this head support device
KR100362582B1 (ko) 하드디스크 드라이브의 헤드 유동 제한장치 및 방법
KR20030066717A (ko) 서스펜션 및 디스크 장치
US6771469B2 (en) Disc drive inertial head-slap arrestor
US7755866B1 (en) Vertically coupling actuator arm for disc drives
CN1224004C (zh) 硬盘驱动器的致动器
JP2004303398A (ja) ヘッド支持装置およびそれを用いたディスク装置
EP1758124A1 (en) Disk drive unit
JP2000076811A (ja) 磁気ディスク装置
JP7400463B2 (ja) 記録再生装置