JP2006183911A - Hot water storage type water heater with sterilizing function - Google Patents

Hot water storage type water heater with sterilizing function Download PDF

Info

Publication number
JP2006183911A
JP2006183911A JP2004376135A JP2004376135A JP2006183911A JP 2006183911 A JP2006183911 A JP 2006183911A JP 2004376135 A JP2004376135 A JP 2004376135A JP 2004376135 A JP2004376135 A JP 2004376135A JP 2006183911 A JP2006183911 A JP 2006183911A
Authority
JP
Japan
Prior art keywords
hot water
silver ion
mixing
silver
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004376135A
Other languages
Japanese (ja)
Other versions
JP4513558B2 (en
Inventor
Masaya Yoshimura
雅也 吉村
Hirokazu Owatari
裕和 大渡
Yuzo Yamamoto
裕三 山本
Ichiro Otomo
一朗 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2004376135A priority Critical patent/JP4513558B2/en
Publication of JP2006183911A publication Critical patent/JP2006183911A/en
Application granted granted Critical
Publication of JP4513558B2 publication Critical patent/JP4513558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage type water heater with a sterilizing function that achieves uniform sterilizing action without causing any problem even if it is of the hot water storage tank type. <P>SOLUTION: To fill a bathtub 300 with hot water at a set hot water injection temperature, the hot water is supplied through a second hot water supply passage 54 after a hot-and-cold water mixing means 52 causes cold water from a bypass water supply passage 42 to mix with the hot water taken out of a hot water storage tank 3 to control the temperature of the hot water. When their mixing ratio computed for control of the temperature is low (the mixing ratio of cold water is low), the concentration of silver ions is set to a high value; when the mixing ratio assumes an intermediate value, the concentration of silver ions is set to a standard value; and when the mixing ratio is high (the mixing ratio of cold water is high), the concentration of silver ions is set to a low value. The electrodes 72, 73 of a silver ion generating means are caused to carry currents at a current value and for a current-carrying time such that the set concentration of silver ions is achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、給湯対象に給湯するための湯として貯湯タンク内に貯湯された湯を利用し、給湯温度の温調のために水道水の給水を混合するように構成されたいわゆる貯湯タンク方式の貯湯式給湯装置において、その給湯の際に給湯中に銀イオンを溶解させることにより殺菌を行うようにした殺菌機能付き貯湯式給湯装置に関し、特に貯湯タンク内の貯湯に含まれる塩素濃度が貯留時間の経過に従い低減変動することを考慮して殺菌の均一化を図る技術に係る。   The present invention uses a hot water stored in a hot water storage tank as hot water for supplying hot water to a hot water supply object, and a so-called hot water storage tank system configured to mix tap water supply for temperature control of the hot water supply temperature. The hot water storage type hot water supply device relates to a hot water storage type hot water supply device having a sterilization function in which silver ions are dissolved during the hot water supply, and in particular, the chlorine concentration contained in the hot water storage in the hot water storage tank is the storage time. The present invention relates to a technique for achieving uniform sterilization in consideration of the reduction and variation with the passage of time.

従来、銀電極を正極にして電気分解させることにより銀イオンを被処理水に溶解させ、この銀イオンの殺菌作用を利用して被処理水の殺菌を行うことについては知られている(例えば特許文献1参照)。そして、正極として銀電極を備え電気分解により銀イオンを溶解させる殺菌手段を給湯装置に対し適用し、給湯装置から給湯される浴槽水を殺菌しようとするものも提案されている(例えば特許文献2参照)。   Conventionally, it is known that silver ions are dissolved in water to be treated by electrolysis using a silver electrode as a positive electrode, and the water to be treated is sterilized using the sterilizing action of the silver ions (for example, patents). Reference 1). And the thing which tries to sterilize the bathtub water supplied from a hot water supply apparatus by applying the sterilization means which dissolves silver ion by electrolysis with a silver electrode as a positive electrode is proposed (for example, patent document 2). reference).

特開2004−190882号公報JP 2004-190882 A 特公平6−40859号公報Japanese Examined Patent Publication No. 6-40859

ところで、上記のイオンによる殺菌が適用される従来の給湯装置は瞬間式の給湯装置、すなわち、水道水の給水を受けて熱交換器を通過させる際に燃焼熱による熱交換加熱を行ない、加熱された湯をそのまま連続して給湯するという方式の給湯装置であるが、その銀イオンによる殺菌を貯湯タンク方式による給湯装置に適用することが考えられる。   By the way, the conventional hot water supply apparatus to which sterilization by ions is applied is an instantaneous hot water supply apparatus, that is, heat exchange heating by combustion heat is performed and heated when receiving tap water and passing through a heat exchanger. Although it is a hot water supply apparatus that continuously supplies hot water as it is, it is conceivable to apply sterilization by silver ions to a hot water supply apparatus using a hot water storage tank system.

しかしながら、貯湯タンク方式の場合には瞬間式による場合とは異なり給湯に利用される貯湯に含有される塩素濃度がその都度変化したものとなり、その結果、瞬間式の場合と同様に銀イオンの溶解を行うと、殺菌機能が不均質なものになってしまうおそれがあると考えられる。   However, in the case of the hot water storage tank system, the chlorine concentration contained in the hot water used for hot water supply changes each time, unlike the case of the instantaneous type, and as a result, the dissolution of silver ions is the same as in the case of the instantaneous type. If it is performed, the sterilizing function may be inhomogeneous.

すなわち、水道水には殺菌のために塩素が本来含まれており、瞬間式の場合であると、給水された水をそのまま加熱して給湯するため給湯中に含まれる塩素濃度は均一になり、この給湯に一定濃度で銀イオンを溶解させれば銀イオンと塩素との双方による一定の殺菌作用が得られることになる。ところが、貯湯タンク方式の場合であると、貯湯タンクに給水された水道水が例えばヒートポンプ等の外部熱源により予め加熱されて貯湯タンク内に貯留された状態に維持され、給湯使用の要求があれば貯湯タンクからその都度取り出されることになるため、貯湯タンクに貯留されたまま時間経過する間に塩素が消失していくことになる。このため、温調のために給水を混合したとしても、給湯中の塩素濃度は一定ではない上に本来よりも低くなり、銀イオンを一定濃度で溶解させるだけでは、塩素と銀イオンとを合わせた殺菌作用として一定のものが得られなくなり、殺菌作用自体の不安定化をも招くことになる。   In other words, the tap water originally contains chlorine for sterilization, and in the case of the instantaneous type, the concentration of chlorine contained in the hot water supply becomes uniform because the supplied water is heated as it is to supply hot water, If silver ions are dissolved at a constant concentration in this hot water supply, a certain bactericidal action by both silver ions and chlorine can be obtained. However, in the case of the hot water storage tank system, tap water supplied to the hot water storage tank is preheated by an external heat source such as a heat pump and maintained in the hot water storage tank. Since it will be taken out from the hot water storage tank each time, chlorine will disappear while time passes while being stored in the hot water storage tank. For this reason, even if the feed water is mixed for temperature control, the chlorine concentration in the hot water supply is not constant and lower than the original, and if only the silver ions are dissolved at a constant concentration, the chlorine and silver ions are combined. As a result, it is impossible to obtain a certain sterilizing action, and the sterilizing action itself becomes unstable.

かかる塩素濃度の低減化に対処するために、溶解させる銀イオン濃度を瞬間式の場合よりも高めることも考えられるが、一律に銀イオン濃度を高めると、銀電極の早期の摩耗を招いたり、給湯先が浴槽であればその浴槽壁への酸化銀の付着による汚損を招いたりという不都合発生が予想されることになる。又、塩素濃度を塩素濃度計等によりその都度計測し、計測結果によって銀イオンの溶解制御に反映させることも考えられるが、塩素濃度計を新たに設置することに伴い、かなりのコスト増を招くという不都合発生も予想されることになる。   In order to cope with the reduction of the chlorine concentration, it is conceivable to increase the silver ion concentration to be dissolved as compared with the instantaneous type, but if the silver ion concentration is uniformly increased, the silver electrode may be worn at an early stage, If the hot water supply destination is a bathtub, an inconvenience such as contamination due to adhesion of silver oxide to the bathtub wall is expected. It is also possible to measure the chlorine concentration each time with a chlorine concentration meter and reflect it in the dissolution control of silver ions based on the measurement results. However, the installation of a new chlorine concentration meter causes a considerable increase in cost. The occurrence of inconvenience is also expected.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、貯湯タンク方式の給湯装置であっても、均質な殺菌作用を実現させかつ不都合発生のない殺菌機能付き貯湯式給湯装置を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to provide a homogeneous sterilization function and a sterilization function that does not cause any inconvenience even in a hot water storage tank type hot water supply device. The object is to provide a hot water storage type hot water supply apparatus.

上記目的を達成するために、請求項1に係る発明では、内部に湯を貯湯する貯湯タンクと、この貯湯タンク内から取り出した湯に対し水を混合して温調する湯水混合手段と、温調後の湯を給湯する給湯路の途中に介装され一対の電極を用いた電気分解により銀イオンを給湯中に溶解させる銀イオン発生手段と、この銀イオン発生手段に対する通電制御により銀イオンの溶解作動を制御する銀イオン溶解制御手段とを備えたものとする。そして、上記銀イオン溶解制御手段として、上記湯水混合手段による温調のための混合において水の混合割合が低いほど銀イオンの溶解量を増大側に変更させる構成とした。   In order to achieve the above object, according to the first aspect of the present invention, a hot water storage tank for storing hot water therein, hot water mixing means for adjusting the temperature by mixing water with the hot water taken out from the hot water storage tank, Silver ion generating means for dissolving silver ions in the hot water by electrolysis using a pair of electrodes interposed in the middle of a hot water supply path for supplying hot water after conditioning, Silver ion dissolution control means for controlling the dissolution operation is provided. And as said silver ion melt | dissolution control means, it was set as the structure which changes the dissolution amount of a silver ion to the increase side, so that the mixing ratio of water is low in the mixing for temperature control by the said hot water mixing means.

この請求項1に係る発明の場合、貯湯タンクの湯と、水との混合により温調した給湯に対し銀イオン発生手段から銀イオンが溶解されるにあたり、水の混合割合が低いほど銀イオンの溶解量が増大されることになる。すなわち、水の混合割合が低いということは、貯湯タンクに貯湯されて貯留期間の経過により塩素が消失し今回の給湯使用のために取り出された湯の占める割合が高いということであり、通常の塩素濃度を有する水が少ないため給湯全体としては塩素濃度が低いことを表す。つまり、今回の給湯中の塩素濃度を塩素濃度計等によらずして簡易かつ容易に判定することが可能となって、その判定結果として塩素濃度が低ければ銀イオンの溶解量が増大される。この銀イオンの溶解量増大により、塩素濃度の低さを補って、給湯全体に対して塩素及び銀イオンの双方による殺菌作用を発揮させ得ることになる。これにより、水の混合割合がたとえ低くても、高い場合と同様に、塩素及び銀イオンの双方でもって給湯全体に対する殺菌作用を発揮させることが可能になり、均質な殺菌作用を実現させ得ることになる。しかも、水の混合割合が低いほど溶解量が増大されるというように、水の混合割合に応じて連続的に銀イオンの溶解量が変更されるため、上記の均質な殺菌作用をよりなめらかに実現させ得る。加えて、銀イオンの溶解量が増大されるのは、水の混合割合の低さに応じてであるため、一律に銀イオンの溶解量を増大させる場合のような不都合の発生もない。なお、上記の「水の混合割合が低いほど銀イオンの溶解量を増大側に変更させる」点を、さらに限定して、水の混合割合の高・低如何に反比例するように銀イオンの溶解量を減・増変更させる、というように把握することもできる。   In the case of the invention according to the first aspect, when silver ions are dissolved from the silver ion generating means with respect to the hot water supply controlled by mixing the hot water in the hot water storage tank and the water, the lower the mixing ratio of the water, the lower the silver ion content. The amount of dissolution will be increased. That is, the low mixing ratio of water means that the proportion of hot water stored in the hot water storage tank and the hot water taken out for the use of this hot water supply is high as chlorine disappears over the storage period. Since there is little water which has chlorine concentration, it represents that chlorine concentration is low as the whole hot water supply. That is, it is possible to easily and easily determine the chlorine concentration in the hot water supply this time without using a chlorine concentration meter or the like. If the determination result shows that the chlorine concentration is low, the amount of dissolved silver ions is increased. . By increasing the dissolution amount of silver ions, the low chlorine concentration can be compensated for and the bactericidal action of both chlorine and silver ions can be exerted on the entire hot water supply. As a result, even if the mixing ratio of water is low, it is possible to exert a bactericidal action on the entire hot water supply with both chlorine and silver ions as in the case of high water, and a homogeneous bactericidal action can be realized. become. Moreover, since the dissolution amount of silver ions is continuously changed according to the mixing ratio of water, such that the dissolution amount increases as the mixing ratio of water decreases, the above-mentioned homogeneous bactericidal action is made smoother. Can be realized. In addition, the amount of dissolution of silver ions is increased according to the low mixing ratio of water, so there is no inconvenience as in the case of uniformly increasing the amount of dissolution of silver ions. In addition, the above-mentioned “change the amount of dissolution of silver ions to the higher side as the mixing ratio of water is lower” is further limited, so that the dissolution of silver ions is inversely proportional to whether the mixing ratio of water is high or low. It can also be understood that the amount is reduced or increased.

請求項2に係る発明では、内部に湯を貯湯する貯湯タンクと、この貯湯タンク内から取り出した湯に対し水を混合して温調する湯水混合手段と、温調後の湯を給湯する給湯路の途中に介装され一対の電極を用いた電気分解により銀イオンを給湯中に溶解させる銀イオン発生手段と、この銀イオン発生手段に対する通電制御により銀イオンの溶解作動を制御する銀イオン溶解制御手段とを備えることとした。そして、上記銀イオン溶解制御手段として、上記湯水混合手段による温調のための混合において水の混合割合が低い場合には銀イオンの溶解量を増大側に変更させる一方、上記水の混合割合が高い場合には銀イオンの溶解量を低減側に変更させる構成とした。   In the invention which concerns on Claim 2, the hot water storage tank which stores hot water inside, the hot water mixing means which mixes water with the hot water taken out from this hot water storage tank, and temperature-controls, and the hot water supply which supplies hot water after temperature control Silver ion generating means for dissolving silver ions in hot water by electrolysis using a pair of electrodes interposed in the middle of the road, and silver ion dissolution for controlling the silver ion dissolving operation by controlling the conduction of the silver ion generating means And a control means. And as said silver ion dissolution control means, when the mixing ratio of water is low in the mixing for temperature control by the hot water mixing means, the amount of dissolution of silver ions is changed to the increasing side while the mixing ratio of water is When it is high, the amount of dissolution of silver ions is changed to the reduction side.

この請求項2に係る発明の場合、水の混合割合が低ければ銀イオンの溶解量が増大される一方、水の混合割合が高ければ銀イオンの溶解量が低減されるというように、水の混合割合が低くて塩素濃度が低い場合に銀イオンを増大させて殺菌作用を補うのみならず、水の混合割合が高くて塩素濃度が十分に確保できる場合には銀イオンを低減させて、塩素及び銀イオンの双方による殺菌作用の程度の均一化(均質化)が図られることになる。これにより、請求項1の場合と同様に、今回の給湯中の塩素濃度を塩素濃度計等によらずして簡易かつ容易に判定することが可能となって、塩素濃度計等の新設やそれに伴うコスト増を招くこともない。そして、この場合には、請求項1の場合と異なり、水の混合割合が低いか高いかという判別により銀イオンの溶解量の変更を行うようにしているため、銀イオン溶解制御手段による制御をより簡易に実現させ得ることになる。又、もちろん、銀イオンの溶解量が増大されるのは水の混合割合が低いときであり、水の混合割合が高いときには銀イオンの溶解量は低減されるため、一律に銀イオンの溶解量を増大させる場合のような不都合の発生もない。なお、本発明における「水の混合割合が低い場合には銀イオンの溶解量を増大側に変更させる一方、上記水の混合割合が高い場合には銀イオンの溶解量を低減側に変更させる」点を、さらに変更の基準や変更方法を具体化させて、混合割合の高低段階別に銀イオンの溶解量を段階的に逆傾向になるように変更する、というようにしてもよい。   In the case of the invention according to claim 2, when the mixing ratio of water is low, the dissolution amount of silver ions is increased, while when the mixing ratio of water is high, the dissolution amount of silver ions is decreased. When the mixing ratio is low and the chlorine concentration is low, not only the silver ions are increased to supplement the bactericidal action, but also when the mixing ratio of water is high and the chlorine concentration can be sufficiently secured, the silver ions are reduced to reduce chlorine. In addition, the degree of sterilization effect by both silver ions and silver ions is made uniform (homogenized). Thus, as in the case of claim 1, it is possible to easily and easily determine the chlorine concentration in the hot water supply this time without using a chlorine concentration meter, etc. There is no associated increase in costs. In this case, unlike the case of claim 1, since the amount of dissolved silver ions is changed by determining whether the mixing ratio of water is low or high, the control by the silver ion dissolution control means is performed. It can be realized more easily. Of course, the dissolution amount of silver ions is increased when the mixing ratio of water is low, and when the mixing ratio of water is high, the dissolution amount of silver ions is reduced. There is no inconvenience as in the case of increasing. In the present invention, “when the mixing ratio of water is low, the dissolution amount of silver ions is changed to the increase side, while when the mixing ratio of water is high, the dissolution amount of silver ions is changed to the reduction side”. In terms of the point, the standard of the change and the change method may be further embodied, and the amount of dissolution of silver ions may be changed in a stepwise reverse manner for each step of the mixing ratio.

以上の請求項1又は請求項2の殺菌機能付き貯湯式給湯装置における水の混合割合に基づく溶解量の変更についての具体的な制御として次のようにしてもよい。すなわち、銀イオン溶解制御手段として、上記湯水混合手段により湯に対し混合される水の比率である混合比についての情報出力を受け、この混合比に基づいて溶解させる銀イオン濃度を変更することにより銀イオンの溶解量を変更する構成としてもよい(請求項3)。このようにすることにより、制御内容をより具体化し得る上に、溶解量自体の変更ではなくて銀イオン濃度を基準にして溶解量の変更を行うようにしているため、より的確な変更の制御を実現させ得ることになる。   The following may be performed as specific control for changing the amount of dissolution based on the mixing ratio of water in the hot water storage type hot water supply apparatus with the sterilizing function of claim 1 or claim 2 described above. That is, as silver ion dissolution control means, by receiving information output about the mixing ratio, which is the ratio of water mixed with hot water by the hot water mixing means, by changing the concentration of silver ions to be dissolved based on this mixing ratio It is good also as a structure which changes the melt | dissolution amount of silver ion (Claim 3). In this way, the contents of control can be made more concrete, and the amount of dissolution is changed based on the silver ion concentration rather than the amount of dissolution itself, so more accurate control of the change is possible. Can be realized.

又、上記の請求項1又は請求項2の殺菌機能付き貯湯式給湯装置における溶解量の変更に関し、上記銀イオン溶解制御手段として、銀イオン発生手段に対する通電電流の電流値及び通電時間のいずれか一方又は双方を変更することにより銀イオンの溶解量を変更する構成としてもよい(請求項4)。電気分解に基づく銀イオンの溶解量は電流とその通電時間との積である電気量に比例するため、電流値を変更しても、通電時間を変更しても、あるいは、電流値及び通電時間の双方を変更しても、銀イオンの溶解量を変更し得る。これにより、銀イオン溶解制御手段による銀イオン溶解量の変更のための通電制御として一つの具体的手法を提供し得る。   In addition, regarding the change of the dissolution amount in the hot water storage type hot water supply apparatus with a sterilizing function according to claim 1 or claim 2, either the current value of the energization current to the silver ion generation means or the energization time as the silver ion dissolution control means It is good also as a structure which changes the melt | dissolution amount of silver ion by changing one or both (Claim 4). Since the dissolution amount of silver ions based on electrolysis is proportional to the amount of electricity, which is the product of the current and its energization time, even if the current value is changed, the energization time is changed, or the current value and energization time are Even if both are changed, the dissolution amount of silver ions can be changed. Thereby, one specific method can be provided as energization control for changing the silver ion dissolution amount by the silver ion dissolution control means.

以上、説明したように、請求項1〜請求項4のいずれかの殺菌機能付き貯湯式給湯装置によれば、貯湯タンクから取り出した湯に水を混合することにより温調した給湯に対し銀イオン発生手段から銀イオンを溶解させるにあたり、水の混合割合が低くて、貯湯タンクに貯湯されて貯留期間の経過により塩素が消失し今回の給湯使用のために取り出された湯の占める割合が高く、給湯全体としては塩素濃度が低い場合であっても、銀イオンの溶解量が増大されるため、この増大された銀イオンにより塩素濃度の低さを補って、給湯全体に対して塩素及び銀イオンの双方による殺菌作用を発揮させることができるようになる。これにより、水の混合割合がたとえ低くても、高い場合と同様に、均質な殺菌作用を実現させることができることになる。しかも、給湯中の塩素濃度を塩素濃度計等によらずして簡易かつ容易に判定することができ、塩素濃度計等の新設やそれに伴うコスト増を招く等の不都合発生がない上に、一律に銀イオンの溶解量を増大させる場合のような不都合の発生もない。   As described above, according to the hot water storage type hot water supply apparatus with a sterilizing function according to any one of claims 1 to 4, silver ions are used for hot water temperature controlled by mixing water with hot water taken out from the hot water storage tank. When dissolving silver ions from the generation means, the mixing ratio of water is low, the ratio of hot water stored in the hot water storage tank and chlorine disappearing as the storage period elapses is taken up for the use of this hot water supply, Even if the chlorine concentration is low for the entire hot water supply, the amount of dissolved silver ions is increased. Therefore, the increased silver ions compensate for the low chlorine concentration, and chlorine and silver ions are added to the entire hot water supply. The bactericidal action by both of them can be exhibited. Thereby, even if the mixing ratio of water is low, a uniform bactericidal action can be realized as in the case of high water. In addition, the chlorine concentration in the hot water supply can be easily and easily determined without using a chlorine concentration meter, etc., and there is no inconvenience such as the establishment of a new chlorine concentration meter or the associated cost increase, and it is uniform. In addition, there is no inconvenience as in the case of increasing the dissolution amount of silver ions.

特に、請求項1によれば、水の混合割合に応じて連続的に銀イオンの溶解量が変更されるため、均質な殺菌作用をよりなめらかにきめ細かく得ることができ、請求項2によれば、水の混合割合が低いか高いかという判別により銀イオンの溶解量の変更を行うようにしているため、銀イオン溶解制御手段による制御をより簡易に実現させることができる。   In particular, according to claim 1, since the dissolution amount of silver ions is continuously changed according to the mixing ratio of water, a homogeneous bactericidal action can be obtained more smoothly and finely. Since the dissolution amount of silver ions is changed by determining whether the mixing ratio of water is low or high, the control by the silver ion dissolution control means can be realized more easily.

又、請求項3によれば、制御内容をより具体化することができる上に、溶解量自体の変更ではなくて銀イオン濃度を基準にして溶解量の変更を行うようにしているため、銀イオンの溶解量の変更制御をより的確に実現させることができるようになる。   Further, according to the third aspect, the contents of control can be made more concrete, and the dissolution amount is changed based on the silver ion concentration, not the dissolution amount itself. The change control of the dissolved amount of ions can be realized more accurately.

さらに、請求項4によれば、銀イオン溶解制御手段による銀イオン溶解量の変更のための通電制御として具体的手法を提供することができる。   Furthermore, according to claim 4, a specific method can be provided as energization control for changing the silver ion dissolution amount by the silver ion dissolution control means.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る殺菌機能付き貯湯式給湯装置を示す。同図中、符号100は貯湯タンク3を備えた貯湯式給湯装置、符号200はその給湯装置100に接続されて上記貯湯タンク3内の湯水を加熱する外部熱源機器である。   FIG. 1 shows a hot water storage type hot water supply apparatus with a sterilizing function according to an embodiment of the present invention. In the figure, reference numeral 100 denotes a hot water storage type hot water supply apparatus provided with the hot water storage tank 3, and reference numeral 200 denotes an external heat source device that is connected to the hot water supply apparatus 100 and heats the hot water in the hot water storage tank 3.

上記貯湯式給湯装置100は、上記貯湯タンク3と、給水系4と、上記貯湯タンク3内の貯湯を取り出して給湯する給湯回路5と、上記貯湯タンク3内の貯湯との熱交換加熱により浴槽300内の湯水を追い焚き加熱する追い焚き回路6とを備えて構成されている。   The hot water storage type hot water supply apparatus 100 includes a hot water storage tank 3, a water supply system 4, a hot water supply circuit 5 that takes out hot water in the hot water storage tank 3 and supplies hot water, and a hot water storage heat in the hot water storage tank 3. A reheating circuit 6 for reheating and heating the hot water in 300 is provided.

上記給水系4は、上流端が上水道等に接続されて被圧水である水道水を上記貯湯タンク3と、給湯回路5の後述の湯水混合手段52とにそれぞれ給水するものである。図例の給水系は、上流端が上記の上水道等に接続され下流端が上記貯湯タンク3の底部に接続されたタンク給水路41と、このタンク給水路41の途中から分岐されて貯湯タンク3をバイパスして下流端が上記湯水混合手段52に接続されたバイパス給水路42とを備えて構成されている。この給水系4では、水道水圧力を給水圧として貯湯タンク3及び湯水混合手段52に給水され、そして貯湯タンク3内を充満状態に維持するための自動充填及び給湯回路5による給湯が上記給水圧に基づいて行われるようになっている。図1中の符号43は減圧弁であり、この減圧弁43により上記給水圧として所定の適正圧に減圧するようになっている。   The water supply system 4 supplies tap water, which is connected to a water supply or the like at the upstream end, to the hot water storage tank 3 and hot water mixing means 52 (to be described later) of the hot water supply circuit 5. The water supply system shown in the figure has a tank water supply channel 41 having an upstream end connected to the water supply and the like and a downstream end connected to the bottom of the hot water storage tank 3, and a hot water storage tank 3 branched from the tank water supply channel 41 in the middle. And a bypass water supply path 42 having a downstream end connected to the hot water / water mixing means 52. In this water supply system 4, tap water pressure is supplied to the hot water storage tank 3 and the hot water mixing means 52 as hot water supply pressure, and automatic filling and hot water supply by the hot water supply circuit 5 for maintaining the hot water storage tank 3 in a full state are the above described water supply pressures. Based on the above. Reference numeral 43 in FIG. 1 denotes a pressure reducing valve, and the pressure reducing valve 43 reduces the feed water pressure to a predetermined appropriate pressure.

上記給湯回路5は、出湯路51を通して貯湯タンク3から取り出した湯と上記バイパス給水路42からの水とを所定の混合比で混合することにより温調する湯水混合手段52と、温調後の湯を1又は2以上の給湯栓400に対し給湯する第1給湯路53と、この第1給湯路51から分岐して上記追い焚き回路6を通して浴槽300に対し湯張りのために給湯(注湯)する第2給湯路54と、この第2給湯路54に介装されて銀イオンを給湯中に溶解させる銀イオン発生手段7とを備えて構成されている。   The hot water supply circuit 5 includes hot water mixing means 52 for adjusting the temperature by mixing the hot water taken out from the hot water storage tank 3 through the hot water supply passage 51 and the water from the bypass water supply passage 42 at a predetermined mixing ratio, and after the temperature adjustment. A first hot water supply passage 53 for supplying hot water to one or more hot water taps 400 and a hot water supply for pouring water into the bathtub 300 through the reheating circuit 6 branched from the first hot water supply passage 51 (hot water injection) ) And a silver ion generating means 7 which is interposed in the second hot water supply path 54 and dissolves silver ions in the hot water supply.

上記湯水混合手段52は図示省略の混合弁を内蔵しており、この混合弁によりバイパス給水路42からの水を出湯路51からの湯に対し所定の混合比で混合させることにより、湯水混合手段52から第1給湯路53に出湯される湯の給湯温度を所定の設定給湯温度に温調するようになっている。上記の混合比とは、上記出湯路51からの湯に対しバイパス給水路42からの水を混合する割合で表され、例えば混合比が「2」であれば貯湯タンク3から取り出される湯量に対し2倍の水量を混合させることを意味する。かかる湯水混合手段52は、後述のコントローラ8から出力される混合比に係る指令信号を受けてその混合比での湯水混合を実現し得る上記混合弁の湯側及び水側の各開度への変更作動が行われるようになっている。上記のコントローラ8での混合比演算のために、上記湯水混合手段52の出湯路51側には貯湯タンク3から取り出された湯の温度を検出する貯湯温度センサ55が介装され、同じくバイパス給水路42側には給水される水の温度を検出する給水温度センサ56が介装され、第1給湯路53側には温調後の湯の温度を検出する給湯温度センサ57が介装されている。   The hot and cold mixing means 52 has a built-in mixing valve (not shown), and the mixing valve mixes water from the bypass water supply path 42 with hot water from the outlet hot water path 51 at a predetermined mixing ratio. The hot water supply temperature of hot water discharged from 52 to the first hot water supply passage 53 is adjusted to a predetermined set hot water supply temperature. The mixing ratio is expressed as a ratio of mixing the water from the bypass water supply passage 42 with the hot water from the hot water discharge passage 51. For example, if the mixing ratio is "2", the amount of hot water taken out from the hot water storage tank 3 is expressed. It means mixing twice the amount of water. The hot / cold water mixing means 52 receives a command signal related to the mixing ratio output from the controller 8 described later, and is capable of realizing hot water / water mixing at the mixing ratio. The change operation is performed. In order to calculate the mixing ratio in the controller 8, a hot water storage temperature sensor 55 for detecting the temperature of the hot water taken out from the hot water storage tank 3 is provided on the side of the hot water supply passage 51 of the hot water mixing means 52, and also by-pass water supply. A water supply temperature sensor 56 for detecting the temperature of the supplied water is provided on the side of the passage 42, and a hot water supply temperature sensor 57 for detecting the temperature of the hot water after temperature adjustment is provided on the first hot water supply passage 53 side. Yes.

上記第2給湯路54はその上流端が湯水混合手段52及び給湯温度センサ57よりも下流側位置の第1給湯路53から分岐され、下流端が追焚回路6の後述の戻り路61に合流されており、途中に注湯流量センサ58、注湯弁59及び上記銀イオン発生手段7が介装されている。この第2給湯路54は上記注湯弁59が開作動されることにより上記湯水混合手段52での温調後の湯を上記戻り路61に流入させ、この戻り路61を通して浴槽300に給湯、つまり注湯させるようになっている(以下、第2給湯路54による給湯を「注湯」として区別する)。その際、上記銀イオン発生手段7を注湯が通過する間にその注湯中に所定量の銀イオンが溶解されることになる。   The upstream end of the second hot water supply passage 54 is branched from the first hot water supply passage 53 at a position downstream of the hot water mixing means 52 and the hot water supply temperature sensor 57, and the downstream end joins a return passage 61 described later of the memorial circuit 6. In the middle, a pouring flow rate sensor 58, a pouring valve 59 and the silver ion generating means 7 are interposed. The second hot water supply passage 54 causes the hot water after temperature adjustment in the hot water mixing means 52 to flow into the return path 61 by opening the pouring valve 59, and hot water is supplied to the bathtub 300 through the return path 61. That is, the hot water is poured (hereinafter, the hot water supply by the second hot water supply passage 54 is distinguished as “hot water pouring”). At that time, a predetermined amount of silver ions is dissolved in the pouring while the pouring passes through the silver ion generating means 7.

上記の銀イオン発生手段7は、タンク71と、このタンク71内に配設された一対の電極72,73とを備えたものであり、電気分解により銀イオンを上記タンク71内を通過する湯水に溶解させるようになっている。上記タンク71は上記第2給湯路54の途中位置に直接に介装するか、第2給湯路54に接続したバイパス路に介装するかして配設され、これにより、第2給湯路54を流れる注湯が上記タンク71内を通過する間にその注湯に対し上記銀イオンが溶解されるようになっている。一対の電極72,73の内、少なくとも正極側の電極は銀又は銀を含む合金により形成され、通電を受けると電気分解により銀イオンを溶出するようになっている。この際、上記一対の電極72,73間での電極すり減り量の平準化を図るために、一対の電極72,73に対し所定時間の経過毎に極性変換により通電対象を交互に切換えるという交互通電を行う場合には、一対の電極72,73を共に上記の銀等により形成すればよい。   The silver ion generating means 7 includes a tank 71 and a pair of electrodes 72 and 73 disposed in the tank 71, and hot water that passes silver ions through the tank 71 by electrolysis. It is supposed to be dissolved. The tank 71 is disposed either directly in the middle of the second hot water supply path 54 or in a bypass path connected to the second hot water supply path 54, whereby the second hot water supply path 54 is arranged. While the pouring flowing through the tank 71 passes through the tank 71, the silver ions are dissolved in the pouring. Of the pair of electrodes 72 and 73, at least the positive electrode is formed of silver or an alloy containing silver, and silver ions are eluted by electrolysis when energized. At this time, in order to equalize the amount of electrode wear between the pair of electrodes 72 and 73, alternating energization is performed such that the energization target is alternately switched by polarity conversion every predetermined time for the pair of electrodes 72 and 73. When performing the above, both the pair of electrodes 72 and 73 may be formed of the above silver or the like.

一方、タンク給水路41からの給水により充満状態にされた上記貯湯タンク3内の湯水を所定温度の高温湯まで加熱昇温させる外部熱源機器200としては、種々のものが利用可能である。図例のものは、外部熱源機器200としてヒートポンプ20を利用したものであり、ヒートポンプ20の高温側の循環媒体を外部熱源として上記貯湯タンク3から循環供給される湯水を高温湯に変換、つまり上記循環媒体からの受熱により水を熱交換加熱して湯に変換させるようになっている。   On the other hand, as the external heat source device 200 that heats and raises the hot water in the hot water storage tank 3 filled with the water supplied from the tank water supply channel 41 to the high temperature hot water having a predetermined temperature, various devices can be used. In the example shown in the figure, the heat pump 20 is used as the external heat source device 200, and hot water circulated from the hot water storage tank 3 is converted into high temperature hot water using the circulating medium on the high temperature side of the heat pump 20 as an external heat source. Water is heat-exchanged and converted into hot water by receiving heat from the circulating medium.

上記ヒートポンプ20は、循環媒体の循環路21に対し圧縮機22と膨張弁23とが介装されており、圧縮機22により圧縮されて高温・高圧とされた循環媒体が第1熱交換器24において貯湯タンク3から循環ポンプ25の作動により循環路26を通して供給される水を熱交換加熱するようになっている。そして、膨張弁23により膨張されて低温・低圧とされた循環媒体が第2熱交換器27において外気との熱交換により吸熱した後に、上記圧縮機22において再度圧縮されて高温・高圧となるようになっている。かかるヒートポンプ20を運転作動させ循環ポンプ25を運転作動させることにより、貯湯タンク3の底部から取り出された低温の湯水(図1に点線の矢印参照)が第1熱交換器24を通過する間に熱交換加熱により昇温され、高温となった湯水が貯湯タンク3の頂部に戻されることになる。   In the heat pump 20, a compressor 22 and an expansion valve 23 are interposed in a circulation path 21 of the circulation medium, and the circulation medium compressed by the compressor 22 to a high temperature and a high pressure is the first heat exchanger 24. The water supplied from the hot water storage tank 3 through the circulation path 26 by the operation of the circulation pump 25 is heat-exchanged and heated. Then, after the circulating medium expanded by the expansion valve 23 and having a low temperature and a low pressure absorbs heat by heat exchange with the outside air in the second heat exchanger 27, it is compressed again in the compressor 22 so as to have a high temperature and a high pressure. It has become. By operating the heat pump 20 and the circulation pump 25, the low-temperature hot water (see the dotted arrow in FIG. 1) taken out from the bottom of the hot water storage tank 3 passes through the first heat exchanger 24. The temperature of the hot water heated by the heat exchange heating is returned to the top of the hot water storage tank 3.

上記の貯湯式給湯装置100は、CPU、メモリ等を備え各種の制御用プログラムが格納されたコントローラ8によって、給湯制御、注湯制御及び追い焚き制御等の各種の運転制御並びに上記銀イオン発生手段7に対する通電制御等がリモコン81からの出力及び上記の各種センサからの出力等に基づいて行われるようになっている。なお、外部熱源機器200の運転制御は、上記コントローラ8により、又は、別のコントローラにより貯湯タンク3内の貯湯の温度管理基準に従って行われるようになっている。   The hot water storage hot water supply apparatus 100 includes a CPU, a memory, and the like, and various operation controls such as a hot water supply control, a pouring control and a reheating control, and the silver ion generating means by a controller 8 in which various control programs are stored. 7 is performed based on the output from the remote controller 81 and the outputs from the various sensors described above. The operation control of the external heat source device 200 is performed by the controller 8 or by another controller in accordance with the temperature management standard of the hot water stored in the hot water storage tank 3.

上記コントローラ8は、図2に示すように、上記第1給湯路53により給湯栓400に対する給湯制御を行う給湯制御部(図示省略)と、追い焚き回路6の循環ポンプ64を作動制御することにより浴槽300内の湯水を所定温度まで焚き上げる追い焚き制御を行う追い焚き制御部(図示省略)と、第2給湯路54により浴槽300に湯張りする注湯制御を行う注湯制御部82と、上記銀イオン発生手段7に対する通電制御を行うことにより浴槽300内に落とし込まれる湯水(注湯される湯水)に対し銀イオンを溶解させる銀イオン溶解制御部83と、この銀イオン溶解制御部に対し溶解させる銀イオンの濃度を設定する銀イオン濃度設定部84とを備えている。   As shown in FIG. 2, the controller 8 controls the operation of a hot water supply control unit (not shown) that performs hot water supply control on the hot water tap 400 through the first hot water supply path 53 and a circulation pump 64 of the reheating circuit 6. A reheating control unit (not shown) for performing reheating control for raising hot water in the bathtub 300 to a predetermined temperature, a pouring control unit 82 for performing pouring control for filling the bathtub 300 with the second hot water supply path 54, A silver ion dissolution control unit 83 that dissolves silver ions in hot water dropped into the bathtub 300 by performing energization control on the silver ion generation means 7 and a silver ion dissolution control unit. And a silver ion concentration setting unit 84 for setting the concentration of silver ions to be dissolved.

以下、上記注湯制御部63、銀イオン溶解制御部83及び銀イオン濃度設定部84による各制御及び処理を図3のフローチャートを参照しつつ説明する。   Hereafter, each control and process by the said pouring control part 63, the silver ion melt | dissolution control part 83, and the silver ion concentration setting part 84 are demonstrated, referring the flowchart of FIG.

まず、リモコン81の湯張りスイッチ又はふろ自動スイッチがユーザによりON操作されると、上記注湯制御部82による注湯制御が開始され、同時に銀イオン溶解制御部83による通電制御及び銀イオン濃度設定部84による設定処理が開始される。注湯制御部82では、上記注湯弁59を開いて所定の設定注湯温度(設定給湯温度)の注湯になるように湯水混合手段52での混合比を演算する(ステップS1,S2)。この演算は例えば次式により行えばよい。   First, when the hot water filling switch or automatic bath switch of the remote control 81 is turned ON by the user, the pouring control by the pouring control unit 82 is started, and at the same time, energization control and silver ion concentration setting by the silver ion dissolution control unit 83 are started. Setting processing by the unit 84 is started. The pouring control unit 82 calculates the mixing ratio in the hot water mixing means 52 so that the pouring valve 59 is opened and pouring at a predetermined set pouring temperature (set hot water supply temperature) (steps S1 and S2). . For example, this calculation may be performed by the following equation.

Xm=(Th−Tm)/(Tm−Tw)
ここで、Xmは混合比、Thは貯湯温度センサによる検出温度、Tmは混合後(温調後)の給湯温度センサによる検出温度、Twは給水温度センサによる検出温度である。
Xm = (Th−Tm) / (Tm−Tw)
Here, Xm is the mixing ratio, Th is the temperature detected by the hot water storage temperature sensor, Tm is the temperature detected by the hot water temperature sensor after mixing (after temperature adjustment), and Tw is the temperature detected by the water temperature sensor.

そして、演算された混合比に関する指令を湯水混合手段52に出力しその混合比を実現するように混合弁の作動制御を行う(ステップS3)。これにより、設定注湯温度に温調された湯が第2給湯路54及び戻り路62を通して浴槽300に注湯される。この注湯は、ユーザが上記リモコン81に予め設定しておいた設定湯張量(落とし込み設定量)だけ浴槽300内に湯張りされるまで実行され(ステップS4でNO,ステップS2,S3)、設定湯張量の注湯が完了すれば上記注湯弁43を閉じ注湯制御を終了する。(ステップS4でYES,ステップS5)。設定湯張量の湯張りが完了したか否かは、注湯流量センサ58からの検出注湯流量の積算値(流量積算値)が上記設定湯張量より大か等しくなることにより判定する(ステップS4)。注湯制御を停止した後は、追い焚き指令等の出力を待って追い焚き制御に移行することになる。   And the instruction | command regarding the computed mixing ratio is output to the hot water mixing means 52, and operation control of a mixing valve is performed so that the mixing ratio may be implement | achieved (step S3). As a result, hot water whose temperature has been adjusted to the set pouring temperature is poured into the bathtub 300 through the second hot water supply passage 54 and the return passage 62. This pouring is executed until the hot water is filled in the bathtub 300 by the set hot water amount (dropping set amount) preset by the user in the remote control 81 (NO in step S4, steps S2 and S3). When pouring of the set hot water amount is completed, the pouring valve 43 is closed and pouring control is ended. (YES in step S4, step S5). Whether or not the hot water filling of the set hot water amount is completed is determined by whether the integrated value (flow integrated value) of the detected hot water flow rate from the hot water flow rate sensor 58 is greater than or equal to the above set hot water amount ( Step S4). After the pouring control is stopped, the control shifts to the reheating control after waiting for the output of the reheating command or the like.

一方、銀イオン溶解制御部83及び銀イオン濃度設定部84では、上記のステップS2で演算された混合比を読み込み(ステップS11)、読み込んだ混合比が予め範囲分けされた内のどの範囲の値となっているかを判定する(ステップS12及びS14)。この範囲分けは、演算された混合比が属するのは低値側範囲か、中間範囲か、あるいは、高値側範囲かによって、設定する銀イオン濃度を変化させるために予め設定されたものである。   On the other hand, the silver ion dissolution control unit 83 and the silver ion concentration setting unit 84 read the mixture ratio calculated in the above step S2 (step S11), and in which range of values the read mixture ratio is divided into ranges beforehand. Is determined (steps S12 and S14). This range division is preset in order to change the silver ion concentration to be set depending on whether the calculated mixing ratio belongs to the low value side range, the intermediate range, or the high value side range.

すなわち、図4(a)に示すように混合比が低値側であれば銀イオン濃度は高く設定し、混合比が高値側であれば銀イオン濃度は低く設定するというように、混合比と設定する銀イオン濃度とを反比例の関係とする混合比−銀イオン濃度の関係テーブルを設定する。かかる図4(a)の関係テーブルを予め記憶させておいて、ステップS11で読み込んだ混合比に基づいて上記関係テーブルから割り出した銀イオン濃度を設定するようにしてもよいが、本実施形態では、制御の単純化・簡易化のために、混合比範囲として複数に範囲分けし、設定する銀イオン濃度もその範囲分け数に対応して複数段階にしている。例えば、3つの範囲分けにして3つの段階の銀イオン濃度に変更設定する場合には、ステップS11の混合比が中間範囲(例えば混合比が「1〜3」の範囲)であれば設定する銀イオン濃度は標準濃度(例えば100ppb)とし(ステップS12でYES,ステップS13)、上記混合比が中間範囲ではなくて高値側(例えば混合比が「3」よりも高い範囲)であれば設定する銀イオン濃度を低濃度(例えば50ppb)とし(ステップS12でNO,ステップS14でYES,ステップS15)、上記混合比が低値側(例えば混合比が「1」よりも低い範囲)であれば銀イオン濃度を高濃度(例えば200ppb)とする(ステップS14でNO,ステップS16)。   That is, as shown in FIG. 4A, the silver ion concentration is set high when the mixing ratio is low, and the silver ion concentration is set low when the mixing ratio is high. A mixing ratio-silver ion concentration relationship table is set in which the silver ion concentration to be set is inversely proportional. The relationship table of FIG. 4A may be stored in advance, and the silver ion concentration calculated from the relationship table may be set based on the mixing ratio read in step S11. In order to simplify and simplify the control, the mixture ratio range is divided into a plurality of ranges, and the silver ion concentration to be set is set in a plurality of stages corresponding to the number of the range divisions. For example, in the case of changing and setting the three-stage silver ion concentration by dividing into three ranges, the silver to be set if the mixing ratio in step S11 is an intermediate range (for example, the mixing ratio is a range of “1 to 3”). The ion concentration is set to a standard concentration (for example, 100 ppb) (YES in step S12, step S13), and the silver to be set if the mixing ratio is not in the intermediate range but on the high value side (for example, the mixing ratio is higher than “3”). If the ion concentration is set to a low concentration (for example, 50 ppb) (NO in step S12, YES in step S14, step S15), and the above mixture ratio is on the low value side (for example, a range where the mixture ratio is lower than “1”), then silver ions The concentration is set to a high concentration (for example, 200 ppb) (NO in step S14, step S16).

以上の混合比の如何に基づく銀イオン濃度の変更設定は、第2給湯路54を通して浴槽300に注湯される湯に含まれる塩素濃度を、ステップS2で演算される混合比(ステップS11で読み込み)の値の如何によって簡易的に推測・判定し、その判定された塩素濃度の如何に応じて銀イオン濃度を変更設定することにより浴槽300内に湯張りされた浴槽水に対する殺菌作用を均質化するための処理である。   The change setting of the silver ion concentration based on the above mixing ratio is performed by reading the chlorine concentration contained in the hot water poured into the bath 300 through the second hot water supply channel 54 (reading in the step S11). ) Is easily estimated and determined according to the value of the value, and the silver ion concentration is changed and set according to the determined chlorine concentration, thereby homogenizing the sterilization effect on the bath water filled in the bath 300. It is a process to do.

図4(b)に示す関係図は混合比−塩素濃度について理論上から推定される関係例を示したものである。すなわち、例えば、混合される水(水道水)の塩素濃度を1ppmとし、湯の塩素濃度を0ppmとした場合に、混合比を1から4まで変化させて混合後の塩素濃度を割り出して表示したものである。この関係例により表される傾向を見れば、混合比が低ければ塩素濃度は低く、これを補うために銀イオン濃度を高くする一方、混合比が高ければ塩素濃度は高く、銀イオン濃度は低くすることにより、塩素と銀イオンとの双方を用いた殺菌作用を均質に得られるようになることが導かれる。   The relationship diagram shown in FIG. 4B shows an example of the relationship estimated from the theoretical viewpoint regarding the mixture ratio-chlorine concentration. That is, for example, when the chlorine concentration of mixed water (tap water) is 1 ppm and the chlorine concentration of hot water is 0 ppm, the mixing ratio is changed from 1 to 4, and the chlorine concentration after mixing is calculated and displayed. Is. Looking at the trend expressed by this relationship example, the chlorine concentration is low if the mixing ratio is low, and the silver ion concentration is increased to compensate for this, while the chlorine concentration is high and the silver ion concentration is low if the mixing ratio is high. By doing so, it is derived that a bactericidal action using both chlorine and silver ions can be obtained uniformly.

そして、ステップS13,S15,S16のいずれかにより設定された銀イオン濃度に基づいて銀イオン溶解のための電流値及び通電時間を決定する(ステップS17)。これは、銀イオンの溶解量は通電する電流値と通電時間との積(電気量)に比例するというファラデーの法則に従って定められる。まず、注湯流量センサからの検出流量で上記の設定湯張量を除することにより浴槽300への湯張りに要する時間値を演算し、この時間値よりも短かく上記通電時間を設定する。これは必要量の銀イオンの溶解が完了する前に注湯が終了してしまうことを回避するためである。次に、上記の設定湯張量に、設定された銀イオン濃度を乗じることにより銀イオンの必要全溶解量を演算し、この必要全溶解量と、上記の設定された通電時間とに基づいて必要電流値を演算により求める。以上で設定銀イオン濃度を達成させるために必要な電流値と通電時間との組み合わせが決定される。なお、電源設備の能力上の事情等に応じて電流値を先に設定し、通電時間を上記の湯張りに要する時間よりも短い範囲で後に設定するようにしてもよいし、いずれか一方を固定値として他方を変更設定することにより与えられた銀イオン濃度を実現させるようにしてもよい。   Then, based on the silver ion concentration set in any one of steps S13, S15, and S16, a current value and energization time for silver ion dissolution are determined (step S17). This is determined according to Faraday's law that the dissolution amount of silver ions is proportional to the product (electric amount) of the current value to be energized and the energization time. First, the time value required for the hot water filling to the bathtub 300 is calculated by dividing the set hot water amount by the detected flow rate from the pouring flow rate sensor, and the energization time is set shorter than this time value. This is to prevent the pouring from being completed before the required amount of silver ions is completely dissolved. Next, the required total dissolution amount of silver ions is calculated by multiplying the set hot water amount by the set silver ion concentration, and based on the required total dissolution amount and the above set energization time. The required current value is obtained by calculation. Thus, the combination of the current value and the energization time necessary to achieve the set silver ion concentration is determined. It should be noted that the current value may be set first in accordance with the circumstances of the capacity of the power supply facility, and the energization time may be set later within a range shorter than the time required for the hot water filling, or either one of them may be set. The given silver ion concentration may be realized by changing and setting the other as a fixed value.

次に、決定された電流値に関する出力制御信号と共に通電指令を上記銀イオン溶解制御部83から通電制御回路85に出力し、図示省略の電源回路と接続された通電制御回路85から銀イオン発生手段7の正極側の電極72又は73に通電させる(ステップS18)。これにより、注湯に対する銀イオンの溶解が開始され、この溶解が上記の通電時間の経過するまで継続され(ステップS19でNO,ステップS18)、上記通電時間が経過すれば通電を停止して制御を終了させる(ステップS19でYES)。   Next, an energization command is output from the silver ion dissolution control unit 83 to the energization control circuit 85 together with an output control signal relating to the determined current value, and the silver ion generating means from the energization control circuit 85 connected to a power supply circuit (not shown). 7 is energized to the positive electrode 72 or 73 (step S18). Thereby, dissolution of the silver ions into the pouring is started, and this dissolution is continued until the energization time elapses (NO in step S19, step S18). When the energization time elapses, the energization is stopped and controlled. (YES in step S19).

以上の本実施形態によれば、貯留期間の経過により塩素が消失してしまっている貯湯タンク3内の貯湯を用いて給湯(注湯)するように構成された貯湯タンク方式の給湯装置であっても、又、所定の給湯温度(注湯温度)に温調するために湯水混合手段52における混合比がどのように変更されたとしても、浴槽3に湯張りされる浴槽水に対し、塩素と銀イオンとを加えたトータルでの殺菌作用として常に一定かつ均質なものを発揮させることができ、上記の貯湯を用いることに起因する殺菌作用が低下する事態の発生を確実に回避することができる。そして、安定した殺菌作用が得られる上に、上記の塩素の消失対策として一律に銀イオン濃度を高める場合の電極の摩耗発生や浴槽3への酸化銀による汚損等の不都合発生を確実に回避することができる。しかも、給湯(浴槽300に注湯される湯)に含まれる塩素濃度を、塩素濃度計等の新設やそれに伴うコスト増を招くことなく、上記の如く混合比の如何によって簡易的に推測・判定することができる上、その判定の基礎を注湯制御(給湯制御)において本来演算されている混合比の出力を受けて利用しているため上記の塩素濃度の判定をより容易に行うことができる。   According to the above embodiment, the hot water storage tank type hot water supply device is configured to supply hot water (pour) using the hot water in the hot water storage tank 3 in which chlorine has disappeared as the storage period elapses. However, no matter how the mixing ratio in the hot water mixing means 52 is changed in order to adjust the temperature to a predetermined hot water supply temperature (pouring temperature), chlorine is added to the bath water filled in the bathtub 3. As a total sterilization effect of adding silver ions, it is possible to always exhibit a constant and homogeneous product, and reliably avoid the occurrence of a situation where the sterilization effect decreases due to the use of the above hot water storage it can. In addition to obtaining a stable bactericidal action, it is possible to reliably avoid the occurrence of inconveniences such as electrode wear and fouling of the bathtub 3 due to silver oxide when the silver ion concentration is uniformly increased as a measure against the disappearance of chlorine. be able to. Moreover, the chlorine concentration contained in the hot water supply (hot water poured into the bathtub 300) can be simply estimated and determined according to the mixing ratio as described above without causing the installation of a chlorine concentration meter or the like and the associated cost increase. In addition, the determination of the chlorine concentration can be performed more easily since the basis of the determination is based on the output of the mixing ratio originally calculated in the pouring control (hot water supply control). .

<他の実施形態>
なお、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態では、外部熱源機器200としてヒートポンプ20を利用したものを例示しているが、これに限らず、例えば貯湯タンク3内の湯水を太陽熱により加熱するソーラー温水器、又は、貯湯タンク3内の湯水を太陽熱の集熱媒体との熱交換により加熱するソーラー集熱器等の太陽熱を外部熱源として利用するもの、燃料電池システムで発生する反応熱(例えば改質器及び燃料電池セルの各反応により生じる廃熱)を外部熱源として利用するもの、あるいは、貯湯タンク3内の湯水を直接に加熱する電気ヒータを外部熱源として利用するもの(電気温水器)等のいずれを用いてもよい。要するに、給湯するための湯として貯湯タンク内の貯湯を用いるという方式の貯湯式給湯装置であれば、貯湯タンク内の湯水の加熱用の熱源が何であろうと、本発明を適用し得る。
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Other various embodiment is included. That is, in the said embodiment, although what utilized the heat pump 20 is illustrated as the external heat source apparatus 200, it is not restricted to this, For example, the solar water heater or hot water storage tank which heats the hot water in the hot water storage tank 3 with a solar heat 3 using solar heat as an external heat source such as a solar collector that heats hot water in the solar cell by heat exchange with a solar heat collecting medium, reaction heat generated in the fuel cell system (for example, reformer and fuel cell Either a waste heat generated by each reaction) may be used as an external heat source, or an electric heater that directly heats hot water in the hot water storage tank 3 may be used as an external heat source (electric water heater). . In short, the present invention can be applied to any hot water storage hot water supply system that uses hot water in a hot water storage tank as hot water for hot water supply, whatever the heat source for heating the hot water in the hot water storage tank.

上記実施形態での銀イオン溶解制御部83によるステップS17及びS18(図3参照)の代わりに、次のような通電制御を実行させてもよい。すなわち、注湯流量と、注湯流量の如何に比例した銀イオンの溶解量になるように種々の銀イオン濃度毎に電流値に関する出力制御値との関係テーブルを予め設定して記憶させておき、注湯流量センサにより検出される検出注湯流量と今回設定されている銀イオン濃度とに基づいて上記関係テーブルから出力制御値を割り出し、この出力制御値を通電制御回路85に出力することにより、注湯が実行されている間は連続して通電・溶解を行うようにしてもよい。   Instead of steps S17 and S18 (see FIG. 3) by the silver ion dissolution control unit 83 in the above embodiment, the following energization control may be executed. In other words, a relationship table between the pouring flow rate and the output control value related to the current value for each silver ion concentration is set in advance and stored so that the dissolution amount of silver ions is proportional to the pouring flow rate. By calculating an output control value from the relation table based on the detected pouring flow rate detected by the pouring flow rate sensor and the silver ion concentration set this time, and outputting the output control value to the energization control circuit 85 While the pouring is being performed, the current may be continuously supplied and melted.

本発明の実施形態を示す模式図である。It is a schematic diagram which shows embodiment of this invention. 注湯及び銀イオン溶解に係る部分のコントローラのブロック図である。It is a block diagram of the controller of the part which concerns on pouring and silver ion melt | dissolution. 注湯及び銀イオン溶解に係る制御を示すフローチャートである。It is a flowchart which shows the control which concerns on pouring and silver ion melt | dissolution. 図4(a)は混合比と、設定する浴槽の銀イオン濃度との関係図であり、図4(b)は混合比と、塩素濃度との関係図である。FIG. 4A is a relationship diagram between the mixing ratio and the silver ion concentration of the bathtub to be set, and FIG. 4B is a relationship diagram between the mixing ratio and the chlorine concentration.

符号の説明Explanation of symbols

3 貯湯タンク
7 銀イオン発生手段
42 バイパス給水路
52 湯水混合手段
54 第2給湯路(給湯路)
72,73 電極
83 銀イオン溶解制御部
84 銀イオン濃度設定部
100 貯湯式給湯装置
3 Hot water storage tank 7 Silver ion generating means 42 Bypass water supply path 52 Hot water mixing means 54 Second hot water supply path (hot water supply path)
72, 73 Electrode 83 Silver ion dissolution control unit 84 Silver ion concentration setting unit 100 Hot water storage type hot water supply apparatus

Claims (4)

内部に湯を貯湯する貯湯タンクと、この貯湯タンク内から取り出した湯に対し水を混合して温調する湯水混合手段と、温調後の湯を給湯する給湯路の途中に介装され一対の電極を用いた電気分解により銀イオンを給湯中に溶解させる銀イオン発生手段と、この銀イオン発生手段に対する通電制御により銀イオンの溶解作動を制御する銀イオン溶解制御手段とを備え、
上記銀イオン溶解制御手段は、上記湯水混合手段による温調のための混合において水の混合割合が低いほど銀イオンの溶解量を増大側に変更させるように構成されている、
殺菌機能付き貯湯式給湯装置。
A hot water storage tank for storing hot water inside, a hot water mixing means for adjusting the temperature by mixing water with the hot water taken out from the hot water storage tank, and a pair of hot water supply channels for supplying hot water after temperature adjustment Silver ion generating means for dissolving silver ions in the hot water by electrolysis using the electrode of, and silver ion dissolution control means for controlling the dissolution operation of silver ions by energization control to the silver ion generating means,
The silver ion dissolution control means is configured to change the dissolution amount of silver ions to the increase side as the mixing ratio of water is lower in the mixing for temperature control by the hot water mixing means,
Hot water storage water heater with sterilization function.
内部に湯を貯湯する貯湯タンクと、この貯湯タンク内から取り出した湯に対し水を混合して温調する湯水混合手段と、温調後の湯を給湯する給湯路の途中に介装され一対の電極を用いた電気分解により銀イオンを給湯中に溶解させる銀イオン発生手段と、この銀イオン発生手段に対する通電制御により銀イオンの溶解作動を制御する銀イオン溶解制御手段とを備え、
上記銀イオン溶解制御手段は、上記湯水混合手段による温調のための混合において水の混合割合が低い場合には銀イオンの溶解量を増大側に変更させる一方、上記水の混合割合が高い場合には銀イオンの溶解量を低減側に変更させるように構成されている、
殺菌機能付き貯湯式給湯装置。
A hot water storage tank for storing hot water inside, a hot water mixing means for adjusting the temperature by mixing water with the hot water taken out from the hot water storage tank, and a pair of hot water supply channels for supplying hot water after temperature adjustment Silver ion generating means for dissolving silver ions in the hot water by electrolysis using the electrode of, and silver ion dissolution control means for controlling the dissolution operation of silver ions by energization control to the silver ion generating means,
The silver ion dissolution control means changes the dissolution amount of silver ions to the increasing side when the mixing ratio of water is low in mixing for temperature control by the hot water mixing means, while the mixing ratio of water is high. Is configured to change the dissolution amount of silver ions to the reduction side,
Hot water storage water heater with sterilization function.
請求項1又は請求項2に記載の殺菌機能付き貯湯式給湯装置であって、
上記銀イオン溶解制御手段は、上記湯水混合手段により湯に対し混合される水の比率である混合比についての情報出力を受け、この混合比に基づいて溶解させる銀イオン濃度を変更することにより銀イオンの溶解量を変更するように構成されている、殺菌機能付き貯湯式給湯装置。
A hot water storage type hot water supply device with a sterilizing function according to claim 1 or 2,
The silver ion dissolution control means receives information output about the mixing ratio, which is the ratio of water mixed with hot water by the hot water mixing means, and changes the silver ion concentration to be dissolved based on this mixing ratio. A hot water storage type hot water supply device with a sterilizing function configured to change the amount of ions dissolved.
請求項1又は請求項2に記載の殺菌機能付き貯湯式給湯装置であって、
上記銀イオン溶解制御手段は、銀イオン発生手段に対する通電電流の電流値及び通電時間のいずれか一方又は双方を変更することにより銀イオンの溶解量を変更するように構成されている、殺菌機能付き貯湯式給湯装置。
A hot water storage type hot water supply device with a sterilizing function according to claim 1 or 2,
The silver ion dissolution control means is configured to change the dissolution amount of silver ions by changing either one or both of the current value and the conduction time of the energization current to the silver ion generation means, with a sterilization function Hot water storage water heater.
JP2004376135A 2004-12-27 2004-12-27 Hot water storage water heater with sterilization function Expired - Fee Related JP4513558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376135A JP4513558B2 (en) 2004-12-27 2004-12-27 Hot water storage water heater with sterilization function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376135A JP4513558B2 (en) 2004-12-27 2004-12-27 Hot water storage water heater with sterilization function

Publications (2)

Publication Number Publication Date
JP2006183911A true JP2006183911A (en) 2006-07-13
JP4513558B2 JP4513558B2 (en) 2010-07-28

Family

ID=36737155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376135A Expired - Fee Related JP4513558B2 (en) 2004-12-27 2004-12-27 Hot water storage water heater with sterilization function

Country Status (1)

Country Link
JP (1) JP4513558B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185631A (en) * 2006-01-16 2007-07-26 Noritz Corp Silver ion generator and bath hot water supply apparatus
JP2009183414A (en) * 2008-02-05 2009-08-20 Rinnai Corp Automatic cleaning system for bathtub or the like
JP2010257737A (en) * 2009-04-24 2010-11-11 Aisin Seiki Co Ltd Fuel cell system
JP2011043258A (en) * 2009-08-19 2011-03-03 Toshiba Carrier Corp Heat pump hot water supply system, and method of controlling the same
JP2011092858A (en) * 2009-10-29 2011-05-12 Toshiba Carrier Corp Silver ion-generating device and heat pump hot water supply system
JP2012013362A (en) * 2010-07-02 2012-01-19 Panasonic Corp Water heater
JP2012021715A (en) * 2010-07-15 2012-02-02 Panasonic Corp Dissolving device, and water heater with the same
JP2012026643A (en) * 2010-07-23 2012-02-09 Panasonic Corp Water heater
JP2012037077A (en) * 2010-08-04 2012-02-23 Panasonic Corp Dissolving device, and hot water supply device with the same
JP2012042147A (en) * 2010-08-20 2012-03-01 Panasonic Corp Dissolving apparatus, and water heater with the same
CN102455051A (en) * 2010-10-22 2012-05-16 东芝开利株式会社 Hot water supply device
JP2012097907A (en) * 2010-10-29 2012-05-24 Panasonic Corp Water heater
JP2012172949A (en) * 2011-02-24 2012-09-10 Panasonic Corp Dissolving device and hot water supply device including the same
JP2012180983A (en) * 2011-03-02 2012-09-20 Panasonic Corp Dissolving apparatus and water heater with the same
JP2012220074A (en) * 2011-04-07 2012-11-12 Panasonic Corp Dissolving device, and water heater including the same
JP2012237529A (en) * 2011-05-13 2012-12-06 Panasonic Corp Water heater
JP2012236173A (en) * 2011-05-13 2012-12-06 Panasonic Corp Water modifying means, and water heater with the same
JP2013002649A (en) * 2011-06-13 2013-01-07 Panasonic Corp Water heater
JP2013006146A (en) * 2011-06-24 2013-01-10 Mitsubishi Electric Corp Active oxygen species generator, water heater and air conditioner
JP2013015305A (en) * 2011-07-06 2013-01-24 Toshiba Carrier Corp Hot water supply apparatus
KR101386087B1 (en) 2009-12-15 2014-04-16 히타치 어플라이언스 가부시키가이샤 Hot water supply system
EP2306110A4 (en) * 2008-05-28 2016-08-03 Daikin Ind Ltd Heat pump type hot water supply device and method of sterilizing hot water
CN109081391A (en) * 2018-08-14 2018-12-25 北京工业大学 A kind of silver ion for building hot water supply system-heating power composite impact disinfection control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128904B2 (en) * 1979-06-21 1986-07-03 Aichi Jutaku Kogyo Kk
JPH0360616A (en) * 1989-07-28 1991-03-15 Noritz Corp Bath equipment with sterilizing function
JPH0852474A (en) * 1994-08-09 1996-02-27 Matsushita Electric Ind Co Ltd Electrode and ionized water generator
JPH1114157A (en) * 1997-06-24 1999-01-22 Matsushita Electric Ind Co Ltd Bath tub device
JP2000329424A (en) * 1999-05-20 2000-11-30 Science Kk Space heating and cooling hot water supply device comprising refrigerating cycle
JP2002079250A (en) * 2000-09-07 2002-03-19 Harman Kikaku:Kk Hypochlorous acid water making apparatus
JP2004190882A (en) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd Hot water supply device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128904B2 (en) * 1979-06-21 1986-07-03 Aichi Jutaku Kogyo Kk
JPH0360616A (en) * 1989-07-28 1991-03-15 Noritz Corp Bath equipment with sterilizing function
JPH0640859B2 (en) * 1989-07-28 1994-06-01 株式会社ノーリツ Bath equipment with sterilization function
JPH0852474A (en) * 1994-08-09 1996-02-27 Matsushita Electric Ind Co Ltd Electrode and ionized water generator
JPH1114157A (en) * 1997-06-24 1999-01-22 Matsushita Electric Ind Co Ltd Bath tub device
JP2000329424A (en) * 1999-05-20 2000-11-30 Science Kk Space heating and cooling hot water supply device comprising refrigerating cycle
JP2002079250A (en) * 2000-09-07 2002-03-19 Harman Kikaku:Kk Hypochlorous acid water making apparatus
JP2004190882A (en) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd Hot water supply device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185631A (en) * 2006-01-16 2007-07-26 Noritz Corp Silver ion generator and bath hot water supply apparatus
JP2009183414A (en) * 2008-02-05 2009-08-20 Rinnai Corp Automatic cleaning system for bathtub or the like
JP4673383B2 (en) * 2008-02-05 2011-04-20 リンナイ株式会社 Automatic cleaning system for bathtubs
EP2306110A4 (en) * 2008-05-28 2016-08-03 Daikin Ind Ltd Heat pump type hot water supply device and method of sterilizing hot water
JP2010257737A (en) * 2009-04-24 2010-11-11 Aisin Seiki Co Ltd Fuel cell system
JP2011043258A (en) * 2009-08-19 2011-03-03 Toshiba Carrier Corp Heat pump hot water supply system, and method of controlling the same
CN101995053A (en) * 2009-08-19 2011-03-30 东芝开利株式会社 Heat pump hot-water supply system and control method thereof
JP2011092858A (en) * 2009-10-29 2011-05-12 Toshiba Carrier Corp Silver ion-generating device and heat pump hot water supply system
KR101386087B1 (en) 2009-12-15 2014-04-16 히타치 어플라이언스 가부시키가이샤 Hot water supply system
JP2012013362A (en) * 2010-07-02 2012-01-19 Panasonic Corp Water heater
JP2012021715A (en) * 2010-07-15 2012-02-02 Panasonic Corp Dissolving device, and water heater with the same
JP2012026643A (en) * 2010-07-23 2012-02-09 Panasonic Corp Water heater
JP2012037077A (en) * 2010-08-04 2012-02-23 Panasonic Corp Dissolving device, and hot water supply device with the same
JP2012042147A (en) * 2010-08-20 2012-03-01 Panasonic Corp Dissolving apparatus, and water heater with the same
CN102455051A (en) * 2010-10-22 2012-05-16 东芝开利株式会社 Hot water supply device
JP2012097907A (en) * 2010-10-29 2012-05-24 Panasonic Corp Water heater
JP2012172949A (en) * 2011-02-24 2012-09-10 Panasonic Corp Dissolving device and hot water supply device including the same
JP2012180983A (en) * 2011-03-02 2012-09-20 Panasonic Corp Dissolving apparatus and water heater with the same
JP2012220074A (en) * 2011-04-07 2012-11-12 Panasonic Corp Dissolving device, and water heater including the same
JP2012237529A (en) * 2011-05-13 2012-12-06 Panasonic Corp Water heater
JP2012236173A (en) * 2011-05-13 2012-12-06 Panasonic Corp Water modifying means, and water heater with the same
JP2013002649A (en) * 2011-06-13 2013-01-07 Panasonic Corp Water heater
JP2013006146A (en) * 2011-06-24 2013-01-10 Mitsubishi Electric Corp Active oxygen species generator, water heater and air conditioner
JP2013015305A (en) * 2011-07-06 2013-01-24 Toshiba Carrier Corp Hot water supply apparatus
CN109081391A (en) * 2018-08-14 2018-12-25 北京工业大学 A kind of silver ion for building hot water supply system-heating power composite impact disinfection control
CN109081391B (en) * 2018-08-14 2021-07-16 北京工业大学 Silver ion-thermal force composite impact disinfection control method for building domestic hot water system

Also Published As

Publication number Publication date
JP4513558B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4513558B2 (en) Hot water storage water heater with sterilization function
JP2010210181A (en) Hot water supply system
JP2012093062A (en) Water heating system
JP2004360956A (en) Remaining hot water amount display device for storage type hot water supply device
JP2008116130A (en) Bath hot water supply method and device
JP2007003057A (en) Storage water heater
JP2008190822A (en) Hot water storage type hot water heater
JP2006322687A (en) Hot water supply apparatus with sterilizing function
JP2013181725A (en) Water heater, cogeneration system, and method for operating water heater
JP5986514B2 (en) Remote controller for heat source equipment
JP6388322B2 (en) Remote controller for hot water storage water heater
JP2010084995A (en) Storage type hot water supply system
JP2012063101A (en) Liquid heating supply device
JP4154363B2 (en) Hot water supply system
JP2007247985A (en) Heat pump hot water supply system
JP2004069217A (en) Heat medium feeding apparatus
JP2019078513A (en) Hot water supply system, hot water supply control program, hot water supply control method and water heater
JP6223136B2 (en) Cogeneration system
JP2002147870A (en) Solar water heater
JP2007085651A (en) Hot water storage type water heater
JP2001124356A (en) Method for controlling instantaneous hot water output for instantaneous hot water outputting device
JP4487140B2 (en) Hot water supply system
JP6120752B2 (en) Cogeneration system
JP2004257711A (en) Hot water storage type hot water supply system
JP2013231563A (en) Hot water machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees