JP2019052827A - Hot water supply system, hot water supply control method and water heater - Google Patents

Hot water supply system, hot water supply control method and water heater Download PDF

Info

Publication number
JP2019052827A
JP2019052827A JP2017179044A JP2017179044A JP2019052827A JP 2019052827 A JP2019052827 A JP 2019052827A JP 2017179044 A JP2017179044 A JP 2017179044A JP 2017179044 A JP2017179044 A JP 2017179044A JP 2019052827 A JP2019052827 A JP 2019052827A
Authority
JP
Japan
Prior art keywords
temperature
hot water
heat
heat exchanger
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017179044A
Other languages
Japanese (ja)
Other versions
JP6857105B2 (en
Inventor
敏也 辰己
Toshiya Tatsumi
敏也 辰己
秀人 小池
Hideto Koike
秀人 小池
和樹 高木
Kazuki Takagi
和樹 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purpose Co Ltd
Original Assignee
Purpose Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purpose Co Ltd filed Critical Purpose Co Ltd
Priority to JP2017179044A priority Critical patent/JP6857105B2/en
Publication of JP2019052827A publication Critical patent/JP2019052827A/en
Priority to JP2021045331A priority patent/JP7178125B2/en
Application granted granted Critical
Publication of JP6857105B2 publication Critical patent/JP6857105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To enhance heat storage use efficiency and reduce pressure loss to enable efficient hot water supply.SOLUTION: A hot water supply system includes: a thermal storage tank (8) for storing a heating medium (ME1); a heat exchanger (10) for exchanging heat of the heating medium with supply water; a temperature sensor (22) for detecting a temperature of the heating medium circulating in the heat exchanger; water amount control means (water amount control section 12) for distributing the supply water to the heat exchanger and a bypass passage (bypass pipe 16) and controlling the distribution amount of the supply water caused to flow in the heat exchanger and the bypass passage; a pump (9) for circulating the heating medium in the thermal storage tank to the heat exchanger through a circulation passage; and a control section (20) that determines whether hot water delivery at a set temperature is possible based on a detection temperature of the heating medium, controls the distribution amount of the supply water caused to flow in the heat exchanger and the bypass passage by the water amount control means to a fixed value or releases water flowing in the heat exchanger when hot water supply at the set temperature cannot be performed, and controls the heating medium circulation in the heat exchanger to a target temperature set lower than the detection temperature of the heating medium only by a predetermined temperature.SELECTED DRAWING: Figure 1

Description

本発明は、蓄熱タンクの熱媒を給水に熱交換する熱交換器の制御技術に関する。
The present invention relates to a heat exchanger control technique for exchanging heat from a heat storage tank heat supply to feed water.

排熱を熱媒に熱交換し、この熱媒を蓄熱タンクに溜めて蓄熱することが行われている。この蓄熱タンクでは、下層側から低い温度の熱媒を加熱し、高温化して蓄熱タンクの上層側に戻す下層側から上層側に上昇勾配を持たせた所謂階層蓄熱方式が採用されている。このような蓄熱方式を利用した蓄熱タンクからの蓄熱利用は、上層側から熱媒を取出し、温水に熱交換することが行われている。
このような熱交換に関し、蓄熱タンクの熱媒を給水に熱交換した際、蓄熱タンクの蓄熱量によっては設定温度に給水を加熱する際、不足熱量が生じる。この不足熱量を補助加熱源によって補填し、設定温度に温水温度を上昇させることが知られている(特許文献1)。
Exhaust heat is exchanged with a heat medium, and the heat medium is stored in a heat storage tank to store heat. In this heat storage tank, a so-called hierarchical heat storage system is employed in which a low-temperature heat medium is heated from the lower layer side, and the temperature rises to return to the upper layer side of the heat storage tank so as to have an upward gradient from the lower layer side to the upper layer side. The use of heat storage from a heat storage tank using such a heat storage system is performed by taking out a heat medium from the upper layer side and exchanging heat with hot water.
With regard to such heat exchange, when the heat medium of the heat storage tank is heat-exchanged to the feed water, an insufficient amount of heat is generated when the feed water is heated to the set temperature depending on the heat storage amount of the heat storage tank. It is known that this insufficient heat quantity is compensated by an auxiliary heating source, and the hot water temperature is raised to a set temperature (Patent Document 1).

特開2011−214793号公報JP 2011-214793 A

ところで、特許文献1記載の技術は、蓄熱タンクの蓄熱を給水加熱に効率的に利用でき、その実用性は高く評価されている。
しかしながら、蓄熱タンクの蓄熱が少ない場合でも、給水加熱に全面的に利用しようとすれば、熱交換器に流れる給水に対して熱媒の循環量を極限まで増加させることになる。このような制御では、熱交換器たとえば、プレート熱交換器では給水通路が細く、圧力損失を無視することができない。
また、蓄熱タンクにおける階層蓄熱の成層状態を乱すことは、熱交換効率が高くても蓄熱利用効率を低下させてしまうという課題がある。
そこで、この発明の目的は上記課題に鑑み、蓄熱の利用効率を高め、圧力損失の低減を図って効率的な給湯を実現することにある。
By the way, the technique of patent document 1 can utilize efficiently the heat storage of a heat storage tank for feed water heating, The practicality is highly evaluated.
However, even if there is little heat storage in the heat storage tank, if it is intended to use it for heating the feed water, the circulation amount of the heat medium will be increased to the limit with respect to the feed water flowing through the heat exchanger. In such control, in a heat exchanger, for example, a plate heat exchanger, the water supply passage is narrow and the pressure loss cannot be ignored.
Moreover, disturbing the stratified state of the tiered heat storage in the heat storage tank has the problem of reducing the heat storage utilization efficiency even if the heat exchange efficiency is high.
In view of the above problems, an object of the present invention is to increase the efficiency of heat storage and reduce pressure loss to realize efficient hot water supply.

上記目的を達成するため、本発明の給湯システムの一側面によれば、熱媒を溜める蓄熱タンクと、前記熱媒の熱を給水に熱交換する熱交換器を備える給湯システムであって、前記熱交換器に循環する前記熱媒の温度を検出する温度センサーと、給水を前記熱交換器とバイパス路に分配し、該給水の前記熱交換器および前記バイパス路に流す分配量を調整する水量調整手段と、前記蓄熱タンクの熱媒を循環路により前記熱交換器に循環させるポンプと、設定温度による出湯が可能かを前記熱媒の検出温度により判断し、設定温度による給湯ができない場合、前記水量調整手段により前記熱交換器および前記バイパス路に流す前記給水の分配量を固定値に制御し、または前記熱交換器の通水を解除し、前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の目標温度を設定して前記ポンプを制御する制御部を備える。
この給湯システムにおいて、さらに、前記制御部は、設定温度による出湯が可能な場合、熱交換により給水を設定温度から所定温度だけ高い温度に前記熱交換器の熱交換温度を制御し、設定温度による出湯が不可の場合、熱交換により給水を前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の熱交換温度を制御する構成としてよい。
この給湯システムにおいて、前記熱交換器を用いて温水を生成し出湯する給湯部と、前記給湯部の出湯温度が前記設定温度未満であれば、前記温水を設定温度に加熱して出湯させる補助加熱部を備えてよい。
In order to achieve the above object, according to one aspect of the hot water supply system of the present invention, there is provided a hot water supply system including a heat storage tank that stores a heat medium, and a heat exchanger that exchanges heat of the heat medium with water. A temperature sensor that detects the temperature of the heat medium circulating in the heat exchanger, and a water amount that distributes the feed water to the heat exchanger and the bypass passage, and adjusts a distribution amount that flows to the heat exchanger and the bypass passage of the feed water When adjusting means, a pump that circulates the heat medium in the heat storage tank to the heat exchanger through a circulation path, and determining whether hot water can be discharged at a set temperature based on the detected temperature of the heat medium, and hot water supply at the set temperature is not possible, The distribution amount of the water supplied to the heat exchanger and the bypass passage is controlled to a fixed value by the water amount adjusting means, or the water flow of the heat exchanger is canceled, and is lower than the detected temperature of the heat medium by a predetermined temperature. Warm By setting the target temperature of the heat exchanger comprises a control unit for controlling the pump.
In this hot water supply system, the control unit further controls the heat exchange temperature of the heat exchanger from the preset temperature to a temperature higher than the preset temperature by heat exchange when the hot water can be discharged at the preset temperature, When hot water is not available, the heat exchange temperature of the heat exchanger may be controlled to a temperature that is lower than the detected temperature of the heat medium by a predetermined temperature.
In this hot water supply system, a hot water supply unit that generates hot water using the heat exchanger and outputs hot water, and auxiliary heating that heats the hot water to a set temperature and discharges the hot water if the hot water temperature of the hot water supply unit is lower than the set temperature. May be provided.

上記目的を達成するため、本発明の給湯制御方法の一側面によれば、熱媒を溜める蓄熱タンクと、前記熱媒の熱を給水に熱交換する熱交換器を用いる給湯制御方法であって、前記熱交換器に循環する前記熱媒の温度を検出する工程と、給水を水量調整手段により前記熱交換器とバイパス路に分配し、該給水の前記熱交換器および前記バイパス路に流す分配量を調整する工程と、前記蓄熱タンクの熱媒を循環路により前記熱交換器に循環させる工程と、設定温度による出湯が可能かを前記熱媒の温度により判断する工程と、設定温度による給湯ができない場合、前記水量調整手段により前記熱交換器および前記バイパス路に流す前記給水の分配量を固定値に制御し、または前記熱交換器の通水を解除し、前記熱媒の検出温度より所定温度だけ低い温度に設定した目標温度に熱媒循環を制御する工程とを含む。
この給湯制御方法において、さらに、設定温度による出湯が可能な場合、熱交換により給水を設定温度から所定温度だけ高い温度に前記熱交換器の熱交換温度を制御する工程と、設定温度による出湯が不可の場合、熱交換により給水を前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の熱交換温度を制御する工程を含んでよい。
この給湯制御方法において、さらに、前記熱交換器を用いて温水を生成し出湯する工程と、出湯温度が前記設定温度未満であれば、前記温水を設定温度に加熱して出湯させる工程を含んでよい。
In order to achieve the above object, according to one aspect of the hot water control method of the present invention, there is provided a hot water control method using a heat storage tank for storing a heat medium and a heat exchanger for exchanging heat of the heat medium with water. A step of detecting the temperature of the heat medium circulating in the heat exchanger, and distributing water supply to the heat exchanger and the bypass passage by a water amount adjusting means, and flowing the water supply to the heat exchanger and the bypass passage A step of adjusting the amount, a step of circulating the heat medium of the heat storage tank to the heat exchanger through a circulation path, a step of determining whether hot water can be discharged at a set temperature based on the temperature of the heat medium, and hot water supply at a set temperature If it is not possible to control the distribution amount of the feed water flowing through the heat exchanger and the bypass passage to a fixed value by the water amount adjusting means, or cancel the water flow of the heat exchanger, from the detected temperature of the heat medium Low by predetermined temperature And controlling a heat medium circulation to the target temperature set on the temperature.
In this hot water supply control method, when the hot water can be discharged at the set temperature, the step of controlling the heat exchange temperature of the heat exchanger to a temperature higher than the set temperature by a heat exchange by the heat exchange, If not possible, the method may include a step of controlling the heat exchange temperature of the heat exchanger to a temperature lower than the detected temperature of the heat medium by a predetermined temperature.
The hot water supply control method further includes a step of generating hot water using the heat exchanger and discharging the hot water, and a step of heating the hot water to the set temperature and discharging the hot water if the hot water temperature is lower than the set temperature. Good.

本発明の給湯装置の一側面によれば、熱媒を溜める蓄熱タンクと、前記熱媒の熱を給水に熱交換する熱交換器を備える給湯装置であって、前記熱交換器に循環する前記熱媒の温度を検出する温度センサーと、給水を前記熱交換器とバイパス路に分配し、該給水の前記熱交換器および前記バイパス路に流す分配量を調整する水量調整手段と、前記蓄熱タンクの熱媒を循環路により前記熱交換器に循環させるポンプと、設定温度による出湯が可能かを前記熱媒の検出温度により判断し、設定温度による給湯ができない場合、前記水量調整手段により前記熱交換器および前記バイパス路に流す前記給水の分配量を固定値に制御し、または前記熱交換器の通水を解除し、前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の目標温度を設定して前記ポンプを制御する制御部を備える。
この給湯装置において、該給湯装置と別個または一体に備え、出湯温度が前記設定温度未満であれば、前記温水を設定温度に加熱して出湯させる補助加熱部を備えてよい。
According to one aspect of the hot water supply apparatus of the present invention, the hot water supply apparatus includes a heat storage tank that stores a heat medium and a heat exchanger that exchanges heat of the heat medium with water, and the heat exchanger circulates to the heat exchanger. A temperature sensor for detecting the temperature of the heat medium, water supply adjusting means for distributing the supply water to the heat exchanger and the bypass passage, and adjusting a distribution amount of the supply water flowing to the heat exchanger and the bypass passage, and the heat storage tank A pump that circulates the heating medium to the heat exchanger through a circulation path, and whether the hot water can be discharged at a set temperature is determined based on the detected temperature of the heating medium. The distribution amount of the feed water flowing through the exchanger and the bypass passage is controlled to a fixed value, or the water flow of the heat exchanger is canceled, and the heat exchanger has a temperature lower than the detected temperature of the heat medium by a predetermined temperature. Set target temperature A control unit for controlling the pump Te.
This hot water supply apparatus may be provided separately or integrally with the hot water supply apparatus, and may include an auxiliary heating unit that heats the hot water to the set temperature and discharges the hot water if the hot water temperature is lower than the set temperature.

本発明によれば、次のいずれかの効果が得られる。   According to the present invention, any of the following effects can be obtained.

(1) 蓄熱タンクの蓄熱が設定温度の出湯に必要な熱量に到達していない場合でも、蓄熱タンクの熱媒の利用をするので、熱媒熱量の有効利用を図ることができる。
(2) 蓄熱タンクの蓄熱が設定温度の出湯に必要な熱量に到達していない場合、熱交換器に流れる熱交換給水量を低減でき、熱交換器側での圧力損失を低減できる。
(3) 熱交換器に熱媒を循環させる際に、一般的に循環ポンプが用いられるが、循環量を低減できるので、循環ポンプのポンプ回転数を低減でき、消費電力を抑制できる。
(4) 蓄熱タンクの蓄熱が設定温度の出湯に必要な熱量に到達していない場合、蓄熱タンクの熱媒の利用量を低減させるので、熱媒の成層状態を乱すことがなく、熱媒熱量の効率的な利用を図ることができる。
(1) Even when the heat storage in the heat storage tank does not reach the amount of heat necessary for hot water at the set temperature, the heat medium in the heat storage tank is used, so that the heat medium heat amount can be effectively used.
(2) When the heat storage in the heat storage tank does not reach the amount of heat required for hot water at the set temperature, the amount of heat exchange water supplied to the heat exchanger can be reduced, and the pressure loss on the heat exchanger side can be reduced.
(3) When circulating the heat medium in the heat exchanger, a circulation pump is generally used. However, since the amount of circulation can be reduced, the number of revolutions of the circulation pump can be reduced, and power consumption can be suppressed.
(4) If the heat storage in the heat storage tank does not reach the amount of heat required for hot water at the set temperature, the amount of heat medium used in the heat storage tank will be reduced, so the heat medium heat quantity will not be disturbed. Can be used efficiently.

一実施の形態に係る給湯システムを示す図である。It is a figure which shows the hot water supply system which concerns on one embodiment. 給湯制御方法の一例を示すフローチャートである。It is a flowchart which shows an example of the hot water supply control method. 実施例1に係る給湯システムを示す図である。1 is a diagram illustrating a hot water supply system according to Embodiment 1. FIG. 制御系統を示すブロック図である。It is a block diagram which shows a control system. Aは給湯設定温度=35〔℃〕を得る場合の給水温度、出湯温度、熱交水量および最低熱媒温度を示すテーブル、Bは給湯設定温度=40〔℃〕を得る場合の給水温度、出湯温度、熱交水量および最低熱媒温度を示すテーブル、Cは給湯設定温度=45〔℃〕を得る場合の給水温度、出湯温度、熱交水量および最低熱媒温度を示すテーブルである。A is a table showing the feed water temperature, hot water temperature, amount of heat exchange, and minimum heat transfer medium temperature when hot water set temperature = 35 [° C.], and B is the feed water temperature, hot water when hot water set temperature = 40 [° C.] is obtained. C is a table showing the temperature, the amount of heat exchange, and the minimum heat transfer medium temperature, and C is a table showing the water supply temperature, the hot water temperature, the amount of heat exchange, and the minimum heat transfer temperature when obtaining the hot water supply set temperature = 45 [° C.]. 設定温度をパラメータとした場合の給水温度に対する最低熱媒温度を示す図である。It is a figure which shows the minimum heat-medium temperature with respect to feed water temperature at the time of setting temperature as a parameter. 蓄熱に対応する給湯動作を説明するための図である。It is a figure for demonstrating the hot water supply operation | movement corresponding to heat storage. 蓄熱が低い場合、給湯回路を示す図である。It is a figure which shows a hot-water supply circuit when heat storage is low. 給湯システムの処理手順を包括的に示す図である。It is a figure which shows the process sequence of a hot water supply system comprehensively. 燃料電池ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a fuel cell unit. 給湯ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a hot water supply unit. Aはミキシング弁の制御を示すフローチャート、Bはミキシング弁の制御を示すフローチャートである。A is a flowchart showing the control of the mixing valve, and B is a flowchart showing the control of the mixing valve. ミキシング弁の制御を示すフローチャートである。It is a flowchart which shows control of a mixing valve. バックアップ給湯ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a backup hot-water supply unit. 実施例2に係る給湯システムを示す図である。It is a figure which shows the hot water supply system which concerns on Example 2. FIG. 実施例3に係る給湯システムを示す図である。It is a figure which shows the hot water supply system which concerns on Example 3. FIG.

〔一実施の形態〕
図1は、本発明の一実施の形態に係る給湯システムを示している。図1に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。
この給湯システム2には給湯部4および補助加熱部6が備えられる。給湯部4は熱媒ME1の熱を給水Wに熱交換し、温水HWを補助加熱部6に導く。補助加熱部6では、給湯部4からの温水HWが設定温度であれば、その温水HWをそのまま出湯し、設定温度未満であれば、補助加熱により設定温度まで昇温させ、設定温度の温水HWを出湯する。
[One embodiment]
FIG. 1 shows a hot water supply system according to an embodiment of the present invention. The configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.
The hot water supply system 2 includes a hot water supply unit 4 and an auxiliary heating unit 6. The hot water supply unit 4 exchanges heat of the heat medium ME1 with the water supply W, and guides the hot water HW to the auxiliary heating unit 6. In the auxiliary heating unit 6, if the hot water HW from the hot water supply unit 4 is a set temperature, the hot water HW is discharged as it is, and if it is lower than the set temperature, the temperature is raised to the set temperature by auxiliary heating, and the set temperature hot water HW Take out the hot water.

給湯部4には蓄熱タンク8、ポンプ9、熱交換器10および水量調整部12が備えられる。蓄熱タンク8には熱媒ME1により蓄熱される。蓄熱タンク8の下層側から取り出される熱媒ME1が図示しない熱源側に循環して加熱され、高温化した熱媒ME1が蓄熱タンク8の上層側に戻される。これにより、蓄熱タンク8には下層から上層に向かって上昇する成層状態で蓄熱が行われる。
ポンプ9は、熱媒ME1の熱を給水Wに熱交換する際に動作させ、熱交換器10に熱媒ME1を循環させる。
熱交換器10にはたとえば、プレート熱交換器が用いられる。熱交換時、蓄熱タンク8の上層側から循環路13に取り出された熱媒ME1はポンプ9を動作させることにより、循環路13を通して熱交換器10に循環し、熱交換後に蓄熱タンク8の下層側に戻される。
水量調整部12は熱交換器10の水量調整手段の一例であり、給水Wを熱交換器10とバイパス路の一例であるバイパス管16に分配し、熱交換器10の通水量を調整する。給水管14からの給水Wは水量調整部12を通して熱交換器10の入側に流れ、または出側のバイパス管16より出湯管18に流れる。この水量調整部12では、制御部20に開度が制御されるミキシング弁M1が備えられ、熱交換器10とバイパス管16に流す給水Wの分配量が調整される。
The hot water supply unit 4 includes a heat storage tank 8, a pump 9, a heat exchanger 10, and a water amount adjustment unit 12. The heat storage tank 8 stores heat by the heat medium ME1. The heat medium ME1 taken out from the lower layer side of the heat storage tank 8 is circulated and heated to a heat source side (not shown), and the heated heat medium ME1 is returned to the upper layer side of the heat storage tank 8. Thereby, heat storage is performed in the heat storage tank 8 in a stratified state rising from the lower layer toward the upper layer.
The pump 9 is operated when the heat of the heat medium ME1 is exchanged with the feed water W, and the heat medium ME1 is circulated through the heat exchanger 10.
For example, a plate heat exchanger is used as the heat exchanger 10. At the time of heat exchange, the heat medium ME1 taken out from the upper layer side of the heat storage tank 8 to the circulation path 13 is circulated to the heat exchanger 10 through the circulation path 13 by operating the pump 9, and after heat exchange, the lower layer of the heat storage tank 8 Back to the side.
The water amount adjusting unit 12 is an example of a water amount adjusting unit of the heat exchanger 10, distributes the water supply W to the heat exchanger 10 and a bypass pipe 16 that is an example of a bypass path, and adjusts the water flow rate of the heat exchanger 10. The water supply W from the water supply pipe 14 flows to the inlet side of the heat exchanger 10 through the water amount adjustment unit 12 or flows from the outlet side bypass pipe 16 to the hot water discharge pipe 18. In the water amount adjusting unit 12, the control unit 20 is provided with a mixing valve M <b> 1 whose opening degree is controlled, and the distribution amount of the water supply W flowing through the heat exchanger 10 and the bypass pipe 16 is adjusted.

蓄熱タンク8から熱交換器10に循環する熱媒ME1の温度は温度センサー22で検出される。出湯管18の温水HWにバイパス管16の給水Wを混合した温水HWの温度は、温度センサー24により検出される。
制御部20は、設定温度による出湯が可能かを熱媒ME1の検出温度により判断し、設定温度による給湯ができない場合、水量調整部12により熱交換器10およびバイパス管9に流す給水の分配量を固定値に制御し、または熱交換器10の通水を解除する。このとき、熱媒ME1の検出温度より所定温度だけ低い温度に熱交換器10の熱交換の目標温度を設定してポンプ9を制御する。したがって、給湯部4側の給湯制御は、蓄熱タンク8から熱交換器10に流す熱媒ME1の検出温度が(=高レベル、低レベルまたは最低レベル)に応じて異なる。
a)高レベル:
蓄熱タンク8の蓄熱が、給水Wから設定温度の温水HWで出湯が可能な熱量であれば、その検出温度に応じて熱交換器10に流れる水量を増減させる。
b)低レベル:
蓄熱が給水Wとの熱交換には利用できるものの、設定温度の温水HWでの出湯が不可能なレベルであれば、熱交換器10側の水量を設定温度出湯時より低い固定値に切り換える。この低い値は、設定温度の出湯が可能な場合の熱交換器10側の給水量の二分の一、三分の一または三分の一未満とすればよい。
c)最低レベル:
蓄熱が給水Wとの熱交換には利用できない程度の最低レベルであれば、熱交換器10側の水量を0に抑制し、給水Wをバイパス管16に通過させる。
The temperature of the heat medium ME 1 circulating from the heat storage tank 8 to the heat exchanger 10 is detected by the temperature sensor 22. The temperature of the hot water HW obtained by mixing the hot water HW of the tap water pipe 18 with the feed water W of the bypass pipe 16 is detected by the temperature sensor 24.
The control unit 20 determines whether the hot water can be discharged at the set temperature based on the detected temperature of the heat medium ME1, and when the hot water cannot be supplied at the set temperature, the distribution amount of the water supplied to the heat exchanger 10 and the bypass pipe 9 by the water amount adjusting unit 12 Is controlled to a fixed value or the water flow of the heat exchanger 10 is canceled. At this time, the target temperature for heat exchange of the heat exchanger 10 is set to a temperature lower than the detected temperature of the heat medium ME1 by a predetermined temperature, and the pump 9 is controlled. Therefore, the hot water supply control on the hot water supply unit 4 side differs depending on the detected temperature of the heat medium ME1 flowing from the heat storage tank 8 to the heat exchanger 10 (= high level, low level or minimum level).
a) High level:
If the heat storage in the heat storage tank 8 is the amount of heat that can be discharged from the feed water W with the hot water HW at the set temperature, the amount of water flowing through the heat exchanger 10 is increased or decreased according to the detected temperature.
b) Low level:
If the heat storage can be used for heat exchange with the feed water W but the level of hot water with the set temperature hot water HW is not possible, the amount of water on the heat exchanger 10 side is switched to a fixed value lower than that at the set temperature hot water. This low value may be set to 1/2, 1/3, or less than 1/3 of the amount of water supplied on the heat exchanger 10 side when the set temperature can be discharged.
c) Minimum level:
If the heat storage is at a minimum level that cannot be used for heat exchange with the feed water W, the amount of water on the heat exchanger 10 side is suppressed to 0 and the feed water W is passed through the bypass pipe 16.

このように、給湯部4から設定温度の温水HW、設定温度未満の温水HWまたは給水Wの何れかが補助加熱部6に供給される。補助加熱部6には温水HWの加熱手段として熱交換器26、28が備えられる。補助加熱部6の給水管30に流入する温水HWの温度は温度センサー32で検出し、この検出温度が設定温度より低い場合には温水HWを設定温度に昇温させる補助加熱モードに切り換えられる。
この補助加熱モードでは、熱交換器26に熱媒ME2を循環させて熱源34を動作させるとともに温水HWを循環させ、温水HWに熱媒ME2の熱を熱交換する。
給水管30から熱交換器26に流れる温水HWの流量は水量調整部38により調整される。水量調整部38には、制御部20により温水HWの検出温度に応じて分配量を制御可能なたとえば、ミキシング弁M2が用いられる。バイパス管36側に流れる温水量と熱交換器26側に流れる温水量が調整される。これにより、水量調整部38で得られた混合温水HWが出湯管40から出湯する。
補助加熱部6側の給湯制御は、給湯部4からの温水HWの検出温度(設定温度以上または設定温度未満)により異なる。
d)温水HWの検出温度≧設定温度:
給湯部4から補助加熱部6に入る温水HWの温度が設定温度以上であれば、補助加熱モードに移行させることなく、その温水HWを出湯させる。
e)温水HWの検出温度<設定温度:
給湯部4から補助加熱部6に入る温水HWの温度が設定温度未満であれば、補助加熱モードに移行し、熱媒ME2の熱を温水HWに熱交換し、設定温度の温水HWを出湯させる。給湯部4を通過した給水Wが補助加熱部6に流入する場合にも同様である。
As described above, the hot water HW having a set temperature, the hot water HW having a temperature lower than the set temperature, or the water supply W is supplied to the auxiliary heating unit 6 from the hot water supply unit 4. The auxiliary heating unit 6 includes heat exchangers 26 and 28 as heating means for the hot water HW. The temperature of the hot water HW flowing into the water supply pipe 30 of the auxiliary heating unit 6 is detected by the temperature sensor 32. When the detected temperature is lower than the set temperature, the mode is switched to the auxiliary heating mode in which the hot water HW is heated to the set temperature.
In the auxiliary heating mode, the heat medium ME2 is circulated through the heat exchanger 26 to operate the heat source 34 and the hot water HW is circulated, and the heat of the heat medium ME2 is exchanged with the hot water HW.
The flow rate of the hot water HW flowing from the water supply pipe 30 to the heat exchanger 26 is adjusted by the water amount adjusting unit 38. For example, a mixing valve M <b> 2 that can control the distribution amount according to the detected temperature of the hot water HW by the control unit 20 is used for the water amount adjustment unit 38. The amount of hot water flowing to the bypass pipe 36 side and the amount of hot water flowing to the heat exchanger 26 side are adjusted. Thereby, the mixed hot water HW obtained by the water amount adjusting unit 38 is discharged from the hot water discharge pipe 40.
The hot water supply control on the auxiliary heating unit 6 side varies depending on the detected temperature of the hot water HW from the hot water supply unit 4 (above or below the set temperature).
d) Detection temperature of hot water HW ≧ set temperature:
If the temperature of the hot water HW entering the auxiliary heating unit 6 from the hot water supply unit 4 is equal to or higher than the set temperature, the hot water HW is discharged without shifting to the auxiliary heating mode.
e) Detection temperature of hot water HW <set temperature:
If the temperature of the hot water HW entering the auxiliary heating unit 6 from the hot water supply unit 4 is lower than the set temperature, the mode is shifted to the auxiliary heating mode, the heat of the heat medium ME2 is exchanged with the hot water HW, and the hot water HW at the set temperature is discharged. . The same applies when the water supply W that has passed through the hot water supply unit 4 flows into the auxiliary heating unit 6.

<給湯制御>
図2はこの給湯システム2の給湯制御の処理手順を示している。この処理手順では、蓄熱タンク8の熱媒ME1の温度が所定温度以上かを判断する(S11)。熱媒ME1の温度が所定温度以上であれば(S11のYES)、水量調整部12の制御により、設定温度の温水HWを生成する(S12)。この場合、給湯部4から設定温度の温水HWが供給されるので、補助加熱部6は補助加熱モードに移行することなく(S16のYES)、出湯管40から設定温度の温水HWを得られる(S17)。
<Hot water control>
FIG. 2 shows a processing procedure of hot water supply control of the hot water supply system 2. In this processing procedure, it is determined whether the temperature of the heat medium ME1 in the heat storage tank 8 is equal to or higher than a predetermined temperature (S11). If the temperature of the heat medium ME1 is equal to or higher than the predetermined temperature (YES in S11), the hot water HW having a set temperature is generated by the control of the water amount adjusting unit 12 (S12). In this case, since the hot water HW having the set temperature is supplied from the hot water supply unit 4, the auxiliary heating unit 6 can obtain the hot water HW having the set temperature from the hot water discharge pipe 40 without shifting to the auxiliary heating mode (YES in S16) ( S17).

熱媒ME1の温度が所定温度未満であれば(S11のNO)、熱媒ME1の温度が給水Wとの熱交換が可能な温度かを判断する(S13)。
熱媒ME1の温度が給水Wとの熱交換可能な温度であれば(S13のYES)、水量調整部12の制御により給水Wの熱交換器10およびバイパス管16の分配量を固定値に切り替える(S14)。
熱媒ME1の温度が給水Wとの熱交換が不可である温度であれば(S13のNO)、熱交換器10に給水Wを通すことなく、給湯部4から補助加熱部6に流す(S15)。
If the temperature of the heat medium ME1 is lower than the predetermined temperature (NO in S11), it is determined whether the temperature of the heat medium ME1 is a temperature at which heat exchange with the feed water W is possible (S13).
If the temperature of the heat medium ME1 is a temperature at which heat exchange with the feed water W is possible (YES in S13), the distribution amount of the heat exchanger 10 and the bypass pipe 16 of the feed water W is switched to a fixed value by the control of the water amount adjusting unit 12. (S14).
If the temperature of the heat medium ME1 is a temperature at which heat exchange with the feed water W is impossible (NO in S13), the hot water is passed from the hot water supply unit 4 to the auxiliary heating unit 6 without passing the feed water W through the heat exchanger 10 (S15). ).

補助加熱部6では、給水管30に流れる給水Wまたは温水HWが設定温度以上かを判断する(S16)。設定温度以上であれば(S16のYES)、補助加熱を行うことなく給湯する(S17)。設定温度未満であれば(S16のNO)、補助加熱モードに移行し、給水Wまたは温水HWを熱媒ME2の熱と熱交換して昇温させ、設定温度での給湯を行う(S18)。   The auxiliary heating unit 6 determines whether the feed water W or the hot water HW flowing through the feed water pipe 30 is equal to or higher than a set temperature (S16). If the temperature is equal to or higher than the set temperature (YES in S16), hot water is supplied without performing auxiliary heating (S17). If the temperature is lower than the set temperature (NO in S16), the mode is shifted to the auxiliary heating mode, the water supply W or the hot water HW is heated up by exchanging heat with the heat of the heat medium ME2, and hot water is supplied at the set temperature (S18).

<一実施の形態の効果>
この一実施の形態によれば次の効果が得られる。
(1) 給湯部4で設定温度の温水HWが得られない場合、給湯部4側の熱交換器10に流れる水量が抑制されるので、熱交換器10による圧力損失を低減することができる。
(2) 給湯部4で設定温度の温水HWが得られない場合、補助加熱部6の補助加熱により設定温度に昇温させた温水HWの給湯が行える。
(3) 熱交換器10に流す給水量を蓄熱に応じて加減するので、蓄熱タンク8の熱媒ME1の利用効率を高め、蓄熱タンク8側の成層状態を乱すことがない。
<Effect of one embodiment>
According to this embodiment, the following effects can be obtained.
(1) When the hot water HW having the set temperature cannot be obtained in the hot water supply section 4, the amount of water flowing into the heat exchanger 10 on the hot water supply section 4 side is suppressed, so that the pressure loss due to the heat exchanger 10 can be reduced.
(2) When the hot water HW having the set temperature cannot be obtained in the hot water supply unit 4, the hot water HW heated to the set temperature by the auxiliary heating of the auxiliary heating unit 6 can be supplied.
(3) Since the amount of water supplied to the heat exchanger 10 is adjusted according to the heat storage, the utilization efficiency of the heat medium ME1 of the heat storage tank 8 is increased, and the stratified state on the heat storage tank 8 side is not disturbed.

図3は、実施例1に係る給湯システムを示している。図3において、図1と同一部分には同一符号を付している。
この実施例1の給湯システム2では燃料電池ユニット42、給湯ユニット44およびバックアップ給湯ユニット46が備えられる。
燃料電池ユニット42には燃料電池48、熱交換器50および循環ポンプ52が備えられる。燃料電池48は熱源の一例であり、発電時の発熱を熱源に利用する。熱交換器50は、燃料電池48の排気ME3の熱を蓄熱タンク8側の熱媒ME1に熱交換する。循環ポンプ52は熱媒ME1の循環路54に設置され、駆動時、蓄熱タンク8の下層側から熱媒ME1を熱交換器50に循環させるとともに、熱交換後の熱媒ME1を蓄熱タンク8の上層側に戻す。
燃料電池48の発電時、循環ポンプ52を駆動し、蓄熱タンク8の下層側から熱媒ME1を熱交換器50に循環させ、熱媒ME1に排気ME3の熱を熱交換し、加熱された熱媒ME1が蓄熱タンク8の上層側に戻される。これにより、蓄熱タンク8で成層蓄熱が行われる。熱交換器50の入側には温度センサー56が設置され、蓄熱タンク8の下層側の熱媒ME1の温度が検出される。熱交換器50の出側には温度センサー58が設置され、蓄熱タンク8の上層側に戻される熱媒ME1の温度が検出される。
FIG. 3 shows a hot water supply system according to the first embodiment. In FIG. 3, the same parts as those in FIG.
The hot water supply system 2 according to the first embodiment includes a fuel cell unit 42, a hot water supply unit 44, and a backup hot water supply unit 46.
The fuel cell unit 42 includes a fuel cell 48, a heat exchanger 50, and a circulation pump 52. The fuel cell 48 is an example of a heat source, and heat generated during power generation is used as a heat source. The heat exchanger 50 exchanges heat of the exhaust ME3 of the fuel cell 48 with the heat medium ME1 on the heat storage tank 8 side. The circulation pump 52 is installed in the circulation path 54 of the heat medium ME1. When driven, the circulation pump 52 circulates the heat medium ME1 from the lower layer side of the heat storage tank 8 to the heat exchanger 50, and the heat medium ME1 after heat exchange of the heat storage tank 8 Return to the upper layer.
During power generation of the fuel cell 48, the circulation pump 52 is driven, the heat medium ME1 is circulated from the lower layer side of the heat storage tank 8 to the heat exchanger 50, the heat of the exhaust ME3 is exchanged with the heat medium ME1, and the heated heat The medium ME1 is returned to the upper layer side of the heat storage tank 8. Thereby, stratified heat storage is performed in the heat storage tank 8. A temperature sensor 56 is installed on the entry side of the heat exchanger 50, and the temperature of the heat medium ME1 on the lower layer side of the heat storage tank 8 is detected. A temperature sensor 58 is installed on the outlet side of the heat exchanger 50, and the temperature of the heat medium ME1 returned to the upper layer side of the heat storage tank 8 is detected.

給湯ユニット44には蓄熱タンク8とともに、プレート熱交換器60が備えられる。プレート熱交換器60に蓄熱タンク8の熱媒ME1を流す循環路62には与熱ポンプ64および温度センサー22が備えられる。与熱ポンプ64の駆動時、蓄熱タンク8の上層部から熱媒ME1がプレート熱交換器60に循環し、蓄熱タンク8の下層側に戻される。温度センサー22は蓄熱タンク8の上層側の熱媒温度を検出する。蓄熱タンク8に設置された温度センサー66はタンク内の熱媒ME1の温度を検出する。
給水管14には水道管などが接続され、給水Wが供給される。給水管14にはミキシング弁68、水量センサー70、温度センサー72が備えられるとともに、ミキシング弁68およびバイパス管16を介して出湯管18が接続されている。出湯管18には水制御弁74、温度センサー76、78が備えられる。バイパス管16は、ミキシング弁68により分流させた給水Wを出湯管18側に流し込む。水制御弁74は、出湯管18から出湯する温水HWまたは給水Wの水量を制御する。温度センサー76はプレート熱交換器60の出側の温水温度を検出する。温度センサー78は、温水HWと給水Wとをミキシングした温水HWの温度を検出する。
The hot water supply unit 44 includes a heat storage tank 8 and a plate heat exchanger 60. A circulation path 62 for flowing the heat medium ME1 of the heat storage tank 8 to the plate heat exchanger 60 is provided with a heat pump 64 and a temperature sensor 22. When the heat pump 64 is driven, the heat medium ME1 circulates from the upper layer portion of the heat storage tank 8 to the plate heat exchanger 60 and is returned to the lower layer side of the heat storage tank 8. The temperature sensor 22 detects the heat medium temperature on the upper layer side of the heat storage tank 8. A temperature sensor 66 installed in the heat storage tank 8 detects the temperature of the heat medium ME1 in the tank.
A water pipe or the like is connected to the water supply pipe 14 and water supply W is supplied. The water supply pipe 14 is provided with a mixing valve 68, a water amount sensor 70, and a temperature sensor 72, and a hot water discharge pipe 18 is connected via the mixing valve 68 and the bypass pipe 16. The outlet pipe 18 is provided with a water control valve 74 and temperature sensors 76 and 78. The bypass pipe 16 feeds the water supply W divided by the mixing valve 68 to the outlet pipe 18 side. The water control valve 74 controls the amount of hot water HW or feed water W discharged from the hot water discharge pipe 18. The temperature sensor 76 detects the hot water temperature on the outlet side of the plate heat exchanger 60. The temperature sensor 78 detects the temperature of the hot water HW obtained by mixing the hot water HW and the feed water W.

バックアップ給湯ユニット46には、プレート熱交換器80および熱交換器82が備えられる。プレート熱交換器80には入側に給水管30、その出側に出湯管40が備えられる。給水管30には給湯ユニット44から給水Wまたは温水HWを流し込み、温度センサー84、水量センサー85、水制御弁86が備えられるとともに、バイパス管36を分岐させるミキシング弁88が接続されている。温度センサー84は、給湯ユニット44から流入する温水HWまたは給水Wの温度を検出する。水量センサー85は、給湯ユニット44から流入する温水HWまたは給水Wの水量を検出し、水制御弁86は、その水量を制御する。
出湯管40には温度センサー90、92が備えられる。温度センサー90はプレート熱交換器80の出側の温水温度を検出する。温度センサー92はバイパス管36からの給水Wまたは温水HWと出湯管40側の温水HWとを混合した温水HWの温度を検出する。
プレート熱交換器80には循環路94が備えられ、熱媒ME2を循環させる。循環路94には熱交換器82、循環ポンプ96、開放タンク98、温度センサー100が備えられる。循環ポンプ96は、駆動時、熱媒ME2を循環路94に循環させる。プレート熱交換器80は、熱媒ME2の熱を給水Wまたは温水HWに熱交換する。熱交換器82は、バーナー102の燃焼熱を熱媒ME2に熱交換する。開放タンク98は、循環路94に循環する熱媒ME2の体積変動を吸収する。
The backup hot water supply unit 46 includes a plate heat exchanger 80 and a heat exchanger 82. The plate heat exchanger 80 is provided with a water supply pipe 30 on the inlet side and a hot water outlet pipe 40 on the outlet side thereof. The water supply pipe 30 is supplied with the water supply W or the hot water HW from the hot water supply unit 44, and is provided with a temperature sensor 84, a water amount sensor 85, a water control valve 86, and a mixing valve 88 for branching the bypass pipe 36. The temperature sensor 84 detects the temperature of the hot water HW flowing from the hot water supply unit 44 or the water supply W. The water amount sensor 85 detects the amount of hot water HW or water supply W flowing from the hot water supply unit 44, and the water control valve 86 controls the amount of water.
The outlet pipe 40 is provided with temperature sensors 90 and 92. The temperature sensor 90 detects the hot water temperature on the outlet side of the plate heat exchanger 80. The temperature sensor 92 detects the temperature of the hot water HW obtained by mixing the supply water W or the hot water HW from the bypass pipe 36 and the hot water HW on the outlet pipe 40 side.
The plate heat exchanger 80 is provided with a circulation path 94 to circulate the heat medium ME2. The circulation path 94 includes a heat exchanger 82, a circulation pump 96, an open tank 98, and a temperature sensor 100. The circulation pump 96 circulates the heat medium ME2 through the circulation path 94 when driven. The plate heat exchanger 80 exchanges heat of the heat medium ME2 into the feed water W or the hot water HW. The heat exchanger 82 exchanges the combustion heat of the burner 102 with the heat medium ME2. The open tank 98 absorbs the volume fluctuation of the heat medium ME2 circulating in the circulation path 94.

<給湯システム2の制御部20>
図4は、給湯システム2の制御部20(図1)を示している。この制御部20には電池制御部104、給湯ユニット制御部106、バックアップ制御部108、リモコン制御部110が備えられる。電池制御部104は燃料電池ユニット42を制御する。給湯ユニット制御部106は給湯ユニット44を制御する。バックアップ制御部108はバックアップ給湯ユニット46を制御する。リモコン制御部110はリモコン装置に備えられ、電池制御部104、給湯ユニット制御部106およびバックアップ制御部108と有線または無線により連係する。
電池制御部104はコンピュータで構成され、プロセッサ112、メモリ部114、入出力部(I/O)116、システム通信部118が備えられる。プロセッサ112はメモリ部114にあるOS(Operating System)や電池制御プログラムを実行する。メモリ部114にはROM(Read-Only Memory)やRAM(Random-Access Memory)を備え、OSや電池制御プログラムを格納する。システム通信部118はリモコン制御部110、給湯ユニット制御部106のシステム通信部126、バックアップ制御部108のシステム通信部134と制御データの送受を行う。I/O116には温度センサー56、58の検出温度が制御情報として入力されるとともに、循環ポンプ52の制御出力が得られる。
<Control unit 20 of hot water supply system 2>
FIG. 4 shows the control unit 20 (FIG. 1) of the hot water supply system 2. The control unit 20 includes a battery control unit 104, a hot water supply unit control unit 106, a backup control unit 108, and a remote control unit 110. The battery control unit 104 controls the fuel cell unit 42. The hot water supply unit control unit 106 controls the hot water supply unit 44. The backup control unit 108 controls the backup hot water supply unit 46. Remote control unit 110 is provided in the remote control device, and is linked to battery control unit 104, hot water supply unit control unit 106, and backup control unit 108 by wire or wirelessly.
The battery control unit 104 is configured by a computer, and includes a processor 112, a memory unit 114, an input / output unit (I / O) 116, and a system communication unit 118. The processor 112 executes an OS (Operating System) and a battery control program in the memory unit 114. The memory unit 114 includes a ROM (Read-Only Memory) and a RAM (Random-Access Memory), and stores an OS and a battery control program. The system communication unit 118 transmits and receives control data to and from the remote control unit 110, the system communication unit 126 of the hot water supply unit control unit 106, and the system communication unit 134 of the backup control unit 108. The temperature detected by the temperature sensors 56 and 58 is input to the I / O 116 as control information, and the control output of the circulation pump 52 is obtained.

給湯ユニット制御部106はコンピュータで構成され、プロセッサ120、メモリ部122、入出力部(I/O)124、システム通信部126が備えられる。プロセッサ120はメモリ部122にあるOSや給湯制御プログラムを実行する。メモリ部122にはROM、EEPROM(Electrically Erasable Programmable Read-Only Memory )やRAMを備え、OSや給湯制御プログラムを格納する。システム通信部126はリモコン制御部110、電池制御部104のシステム通信部118、バックアップ制御部108のシステム通信部134と制御データの送受を行う。I/O124には温度センサー22、66、72、76、78の検出温度、水量センサー70の検出水量が制御情報として入力されるとともに、与熱ポンプ64およびミキシング弁68の制御出力が得られる。
バックアップ制御部108はコンピュータで構成され、プロセッサ128、メモリ部130、入出力部(I/O)132、システム通信部134が備えられる。プロセッサ128はメモリ部130にあるOSやバックアップ制御プログラムを実行する。メモリ部130にはROM、EEPROMやRAMを備え、OSやバックアップ制御プログラムを格納する。システム通信部134はリモコン制御部110、電池制御部104のシステム通信部118、給湯ユニット制御部106のシステム通信部126と制御データの送受を行う。I/O132には温度センサー84、90、92、100の検出温度、水量センサー85の検出水量が制御情報として入力されるとともに、循環ポンプ96およびミキシング弁88の制御出力が得られる。
The hot water supply unit control unit 106 is configured by a computer, and includes a processor 120, a memory unit 122, an input / output unit (I / O) 124, and a system communication unit 126. The processor 120 executes an OS and a hot water supply control program in the memory unit 122. The memory unit 122 includes a ROM, an EEPROM (Electrically Erasable Programmable Read-Only Memory), and a RAM, and stores an OS and a hot water supply control program. The system communication unit 126 transmits and receives control data to and from the remote control unit 110, the system communication unit 118 of the battery control unit 104, and the system communication unit 134 of the backup control unit 108. The I / O 124 receives the detected temperatures of the temperature sensors 22, 66, 72, 76, and 78 and the detected water amount of the water amount sensor 70 as control information and obtains control outputs of the heat pump 64 and the mixing valve 68.
The backup control unit 108 is configured by a computer, and includes a processor 128, a memory unit 130, an input / output unit (I / O) 132, and a system communication unit 134. The processor 128 executes the OS and backup control program in the memory unit 130. The memory unit 130 includes a ROM, an EEPROM, and a RAM, and stores an OS and a backup control program. The system communication unit 134 transmits and receives control data to and from the remote control unit 110, the system communication unit 118 of the battery control unit 104, and the system communication unit 126 of the hot water supply unit control unit 106. The I / O 132 receives the detected temperatures of the temperature sensors 84, 90, 92, and 100 and the detected water amount of the water amount sensor 85 as control information, and obtains control outputs of the circulation pump 96 and the mixing valve 88.

<熱媒ME1による給湯制御>
図5のAは、給湯設定温度(以下単に「設定温度」と称する)が35〔℃〕の場合の給水温度と最低熱媒温度の関係、図5のBは、設定温度が40〔℃〕の場合の給水温度と最低熱媒温度の関係、図5のCは、設定温度が45〔℃〕の場合の給水温度と最低熱媒温度の関係を示している。
これらの関係から、図6は、設定温度をパラメータとする給水温度と最低熱媒温度の関係グラフで示している。図6において、Aは設定温度=35〔℃〕、Bは設定温度=40〔℃〕、Cは設定温度=45〔℃〕の場合である。
この関係からたとえば、給水温度が15〔℃〕で設定温度が40〔℃〕であれば、最低熱媒温度は60〔℃〕であることが必要である。
<Hot-water supply control by heating medium ME1>
5A shows the relationship between the hot water supply temperature and the minimum heating medium temperature when the hot water supply set temperature (hereinafter, simply referred to as “set temperature”) is 35 ° C., and FIG. 5B shows the set temperature of 40 ° C. FIG. 5C shows the relationship between the feed water temperature and the minimum heat medium temperature when the set temperature is 45 [° C.].
From these relationships, FIG. 6 shows a relationship graph between the feed water temperature and the minimum heat medium temperature using the set temperature as a parameter. In FIG. 6, A is a set temperature = 35 [° C.], B is a set temperature = 40 [° C.], and C is a set temperature = 45 [° C.].
From this relationship, for example, if the feed water temperature is 15 [° C.] and the set temperature is 40 [° C.], the minimum heat medium temperature needs to be 60 [° C.].

<熱媒ME1で設定温度の給湯が可能な場合>
図7のAは、熱媒ME1で設定温度の給湯が可能な場合の動作を示している。図7のAにおいて、太線は給水W、温水HW、熱媒ME1の流動を示している。
熱媒ME1で設定温度の給湯が可能な場合、給湯ユニット44では、温度センサー76の検出温度To1が設定温度よりたとえば、5〔℃〕だけ高い値(設定温度+5〔℃〕)(熱交換の第1の目標温度)になるように、与熱ポンプ64の回転数を制御する。温度センサー78の検出温度Tm1が設定温度になるように、ミキシング弁68のポートa、bの開度を制御する。
<When hot water of set temperature is possible with heat medium ME1>
A of FIG. 7 has shown operation | movement in case hot water supply of preset temperature is possible with heat-medium ME1. In A of FIG. 7, the thick line has shown the flow of the water supply W, the warm water HW, and the heat medium ME1.
When hot water supply at the set temperature is possible with the heat medium ME1, the hot water supply unit 44 has a value (set temperature + 5 [° C.]) that the detected temperature To1 of the temperature sensor 76 is higher than the set temperature by, for example, 5 [° C.] The number of rotations of the heat pump 64 is controlled so as to be the first target temperature. The opening degree of the ports a and b of the mixing valve 68 is controlled so that the detected temperature Tm1 of the temperature sensor 78 becomes the set temperature.

このとき、バックアップ給湯ユニット46では、温度センサー84の検出温度Ti2が設定温度以上となるので、ミキシング弁88はポートd側を100〔%〕の開度に制御する。バーナー102は燃焼させないので、ミキシング弁88はポートc側の通水がない。たとえば、設定温度=40〔℃〕、温度センサー72の検出温度Ti1=20〔℃〕の場合、ミキシング弁68のポートa側の流量およびポートb側の流量の比率は、a:b=4:1とすればよい。バックアップ給湯ユニット46のミキシング弁88ではポートd側が100〔%〕の水量となる。つまり、熱媒ME1で設定温度の給湯が可能な場合には、給湯システム2に流れる全水量の五分の四が熱交換器60に流れ、全水量の五分の一がバイパス管16に流れる。これにより、全水量の五分の四が熱交換器60の影響を受けることになる。   At this time, in the backup hot water supply unit 46, since the detected temperature Ti2 of the temperature sensor 84 is equal to or higher than the set temperature, the mixing valve 88 controls the opening of the port d side to 100 [%]. Since the burner 102 is not combusted, the mixing valve 88 has no water flow on the port c side. For example, when the set temperature = 40 [° C.] and the detection temperature Ti1 of the temperature sensor 72 = 20 [° C.], the ratio of the flow rate on the port a side and the flow rate on the port b side of the mixing valve 68 is a: b = 4: 1 may be used. In the mixing valve 88 of the backup hot water supply unit 46, the water amount is 100% on the port d side. That is, when hot water supply at the set temperature is possible with the heat medium ME1, four-fifths of the total amount of water flowing to the hot-water supply system 2 flows to the heat exchanger 60, and one-fifth of the total amount of water flows to the bypass pipe 16. . As a result, four-fifths of the total amount of water is affected by the heat exchanger 60.

<熱媒ME1では設定温度の給湯ができない場合>
図7のBは、熱媒ME1で設定温度の給湯ができない場合の動作を示している。図7のBにおいて、太線は給水W、温水HW、熱媒ME1、ME2の流動を示している。
この場合、プレート熱交換器60に対する熱媒タンク8からの熱媒ME1の循環量を抑制するとともに、給水Wの分配量を低減させる制御を行う。熱媒ME1では設定温度の給湯ができない場合、給湯ユニット44では、温度センサー76の検出温度To1が温度センサー22の検出温度T1よりたとえば、5〔℃〕だけ低い値(T1−5〔℃〕)になるように、与熱ポンプ64の回転数を制御する。つまり、プレート熱交換器60の熱交換の目標温度として、検出温度T1よりたとえば、5〔℃〕だけ低い値(T1−5〔℃〕)に制御し、プレート熱交換器60に対する熱媒ME1の循環量を低減させる。このとき、温度センサー78の検出温度Tmlが限りなく設定温度に近づくようにミキシング弁68の開度を制御する。この場合、ミキシング弁68のポートa側に100〔%〕の給水Wが流れる。
<When the heating medium ME1 cannot supply hot water at the set temperature>
B of FIG. 7 shows an operation in the case where hot water at a set temperature cannot be supplied by the heat medium ME1. In B of FIG. 7, the thick line has shown the flow of the water supply W, the warm water HW, and the heat medium ME1 and ME2.
In this case, the circulation amount of the heat medium ME1 from the heat medium tank 8 with respect to the plate heat exchanger 60 is suppressed, and control for reducing the distribution amount of the feed water W is performed. In the hot water supply unit 44, when the heating medium ME1 cannot supply hot water at the set temperature, the detected temperature To1 of the temperature sensor 76 is lower than the detected temperature T1 of the temperature sensor 22 by, for example, 5 [° C.] (T1-5 [° C.]). The rotational speed of the heat pump 64 is controlled so that That is, the target temperature for heat exchange of the plate heat exchanger 60 is controlled to a value (T1-5 [° C.]) lower than the detected temperature T1, for example, by 5 [° C.], and the heat medium ME1 with respect to the plate heat exchanger 60 is controlled. Reduce circulation. At this time, the opening degree of the mixing valve 68 is controlled so that the detected temperature Tml of the temperature sensor 78 approaches the set temperature as much as possible. In this case, 100% water supply W flows to the port a side of the mixing valve 68.

このとき、バックアップ給湯ユニット46では、循環ポンプ96を動作させるとともに、バーナー102を燃焼させ、温度センサー100の検出温度TjがTj=80〔℃〕になるように制御する。この場合、温度センサー84の検出温度Ti2は、Ti2=T1−5〔℃〕であるから、温度センサー90の検出温度To2≒80〔℃〕の温水HWとミキシングし、温度センサー92の検出温度Tm2が設定温度になるように、ミキシング弁88の開度を制御する。
この場合、温度センサー84の検出温度Ti2と、温度センサー90の検出温度To2を比較すると、設定温度は40〔℃〕付近になるため、温度センサー84の検出温度Ti2が温度センサー90の検出温度To2より設定温度に近い値である。このため、ミキシング弁88のポートc、dの流量を比較すると、c側流量<d側流量となる。
At this time, in the backup hot water supply unit 46, the circulation pump 96 is operated and the burner 102 is combusted, and the temperature Tj detected by the temperature sensor 100 is controlled to be Tj = 80 [° C.]. In this case, since the detected temperature Ti2 of the temperature sensor 84 is Ti2 = T1-5 [° C.], it is mixed with the hot water HW of the detected temperature To2≈80 [° C.] of the temperature sensor 90, and the detected temperature Tm2 of the temperature sensor 92 is detected. The opening of the mixing valve 88 is controlled so that becomes the set temperature.
In this case, when the detected temperature Ti2 of the temperature sensor 84 and the detected temperature To2 of the temperature sensor 90 are compared, the set temperature is around 40 [° C.], so that the detected temperature Ti2 of the temperature sensor 84 becomes the detected temperature To2 of the temperature sensor 90. It is a value closer to the set temperature. For this reason, when the flow rates of the ports c and d of the mixing valve 88 are compared, c-side flow rate <d-side flow rate.

たとえば、設定温度=40〔℃〕、Ti1=20〔℃〕の場合、T1=40〔℃〕とすると、To1=35〔℃〕となる。この場合、ミキシング弁68のポートa側流量:ポートb側流量を対比すると、a側流量:b側流量=1:0となる。
このとき、Ti2=35〔℃〕であるから、To2≒80〔℃〕の温水HWとTi2=35〔℃〕の温水HWをミキシングし、Tm2=40〔℃〕に制御すると、ミキシング弁88のポートc側流量およびポートd側流量は、c側流量:d側流量≒1:8となる。
従って、給湯システム2の全水量の100〔%〕が熱交換器60の影響を受け、全水量の九分の一が熱交換器80の影響を受けることになる。このとき、熱交換器60、80による圧力損失が最大となる。このような給水形態による圧力損失の改善が本発明の課題であり、斯かる課題は図8に示す制御により改善される。
For example, when the set temperature = 40 [° C.] and Ti1 = 20 [° C.], if T1 = 40 [° C.], then To1 = 35 [° C.]. In this case, when the port a side flow rate: port b side flow rate of the mixing valve 68 is compared, a side flow rate: b side flow rate = 1: 0.
At this time, since Ti2 = 35 [° C.], the hot water HW of To2≈80 [° C.] and the hot water HW of Ti2 = 35 [° C.] are mixed and controlled to Tm2 = 40 [° C.], the mixing valve 88 The port c side flow rate and the port d side flow rate are c side flow rate: d side flow rate≈1: 8.
Accordingly, 100% of the total amount of water in the hot water supply system 2 is affected by the heat exchanger 60, and one ninth of the total amount of water is affected by the heat exchanger 80. At this time, the pressure loss due to the heat exchangers 60 and 80 is maximized. The improvement of the pressure loss by such a water supply form is the subject of this invention, and such a subject is improved by control shown in FIG.

<熱媒ME1による熱交換不可の場合>
図7のCは、熱媒ME1による熱交換不可の場合の動作を示している。図7のCにおいて、太線は給水W、熱媒ME2の流動を示している。
熱媒ME1による熱交換不可の場合、給湯ユニット44では蓄熱が低く、給湯のための熱交換に利用できないため、ミキシング弁68はポートb側に100〔%〕の給水Wを流すように制御し、与熱ポンプ64は停止状態とする。
この場合、給水Wの100〔%〕が給湯ユニット44を通過し、バックアップ給湯ユニット46に流れ込むので、温度センサー78の検出温度Tmlは、温度センサー84の検出温度Ti1と同じ温度になる。
<When heat exchange with heat medium ME1 is not possible>
C of FIG. 7 has shown operation | movement in case heat exchange by the heat medium ME1 is impossible. In C of FIG. 7, the thick line has shown the flow of the feed water W and the heat medium ME2.
When heat exchange by the heat medium ME1 is not possible, the hot water supply unit 44 has low heat storage and cannot be used for heat exchange for hot water supply. Therefore, the mixing valve 68 is controlled to flow 100% of the water supply W to the port b side. The heat pump 64 is stopped.
In this case, since 100% of the water supply W passes through the hot water supply unit 44 and flows into the backup hot water supply unit 46, the detected temperature Tml of the temperature sensor 78 becomes the same temperature as the detected temperature Ti1 of the temperature sensor 84.

バックアップ給湯ユニット46では、循環ポンプ96を動作させ、バーナー102を燃焼させ、温度センサー100の検出温度TjをTj=80〔℃〕に制御する。
この場合、温度センサー84の検出温度Ti2は、設定温度未満であるから、温度センサー90の検出温度To2≒80〔℃〕の温水HWと、給水Wとを混合し、温度センサー92の検出温度Tm2が設定温度になるように、ミキシング弁88の開度を制御する。
設定温度は40〔℃〕に近い値になるため、検出温度Ti2は検出温度To2より設定温度に近い値であるので、ミキシング弁88のポートc側流量、ポートd側流量を対比すると、c側流量<d側流量となる。
In the backup hot water supply unit 46, the circulation pump 96 is operated to burn the burner 102, and the detected temperature Tj of the temperature sensor 100 is controlled to Tj = 80 [° C.].
In this case, since the detected temperature Ti2 of the temperature sensor 84 is lower than the set temperature, the hot water HW of the detected temperature To2 of the temperature sensor 90 is mixed with the feed water W and the detected temperature Tm2 of the temperature sensor 92 is mixed. The opening of the mixing valve 88 is controlled so that becomes the set temperature.
Since the set temperature is a value close to 40 [° C.], the detected temperature Ti2 is closer to the set temperature than the detected temperature To2, and therefore, when comparing the port c side flow rate and the port d side flow rate of the mixing valve 88, the c side The flow rate is smaller than the d-side flow rate.

たとえば、設定温度=40〔℃〕、Ti1=20〔℃〕の場合、温度センサー22の検出温度T1をT1=20〔℃〕とすると、与熱ポンプ64は停止状態となる。
ミキシング弁68のポートa側流量およびポートb側流量を対比すると、a側流量:b側流量=0:1となり、ポートb側に全水量のl00〔%〕が流れる。
検出温度Ti2=20〔℃〕になるので、検出温度To2≒80〔℃〕の温水HWと、検出温度Ti2の給水Wをミキシングして設定温度=40〔℃〕に制御する場合、ミキシング弁88のポートc側流量、ポートd側流量を対比すると、c側流量:d側流量≒1:2となる。従って、全水量の三分の一が熱交換器80の影響を受け、熱交換器60による圧力損失は生じない。
For example, when the set temperature = 40 [° C.] and Ti1 = 20 [° C.], if the detected temperature T1 of the temperature sensor 22 is T1 = 20 [° C.], the heat pump 64 is stopped.
When the port a side flow rate and the port b side flow rate of the mixing valve 68 are compared, a side flow rate: b side flow rate = 0: 1, and 100% of the total water amount flows to the port b side.
Since the detected temperature Ti2 = 20 [° C.], when mixing the hot water HW with the detected temperature To2≈80 [° C.] and the feed water W with the detected temperature Ti2 to control the set temperature = 40 [° C.], the mixing valve 88 When comparing the port c side flow rate and the port d side flow rate, the c side flow rate: d side flow rate ≈ 1: 2. Therefore, one third of the total amount of water is affected by the heat exchanger 80, and no pressure loss is caused by the heat exchanger 60.

<熱媒ME1の蓄熱が低い場合の熱交換器60、80の給水量の制御>
図8は、熱媒ME1の蓄熱が低い場合の熱交換器60、80の給水量の制御を示している。
給湯ユニット44では、検出温度To1が検出温度T1より一定温度たとえば、5〔℃〕だけ低い値(T1−5〔℃〕)(熱交換の第2の目標温度)になるように、与熱ポンプ64の回転数を制御する。つまり、蓄熱タンク8から熱交換器60への熱媒ME1の循環量を抑制するように与熱ポンプ64の回転数を低減させる。このとき、検出温度Tm1の値に関係なく、ミキシング弁68の開度制御を行い、ポートa側に流れる水量を制限する。これにより、熱交換器60による圧力損失を低減できる。
この圧力損失を低減するには、ミキシング弁68の制御について、次の制御パターンから選択すればよい。
(1) 制御パターン1:ポートa側水量およびポートb側水量の固定値化(分配量の一定化)
ミキシング弁68のポートa側とポートb側に設定する水量を固定値とする。たとえば、a側流量:b側流量=1:1とする。この場合、ポートa側流量を減少させることが好ましい。
<Control of water supply amount of heat exchangers 60 and 80 when heat storage of heat medium ME1 is low>
FIG. 8 shows control of the water supply amount of the heat exchangers 60 and 80 when the heat storage of the heat medium ME1 is low.
In the hot water supply unit 44, the heating pump is set so that the detected temperature To1 is a value (T1-5 [° C]) lower than the detected temperature T1, for example, 5 [° C] (second target temperature for heat exchange). The number of revolutions of 64 is controlled. That is, the rotational speed of the heat pump 64 is reduced so as to suppress the circulation amount of the heat medium ME1 from the heat storage tank 8 to the heat exchanger 60. At this time, regardless of the value of the detected temperature Tm1, the degree of opening of the mixing valve 68 is controlled to limit the amount of water flowing to the port a side. Thereby, the pressure loss by the heat exchanger 60 can be reduced.
In order to reduce the pressure loss, the control of the mixing valve 68 may be selected from the following control patterns.
(1) Control pattern 1: Fixed value of port a side water amount and port b side water amount (constant distribution amount)
The amount of water set on the port a side and the port b side of the mixing valve 68 is a fixed value. For example, a side flow rate: b side flow rate = 1: 1. In this case, it is preferable to reduce the port a side flow rate.

(2) 制御パターン2:蓄熱が設定温度の給湯が可能な場合のミキシング弁68の開度を基準に、ポートa側の開度を所定値に絞る。
給水温度や設定温度に応じてミキシング弁68の開度は変化するが、蓄熱が設定温度の給湯が可能な場合のミキシング弁68の開度を基準に、ポートa側の開度を1/2や1/3に絞った開度にする。
たとえば、蓄熱が設定温度の給湯が可能な場合に、a側流量:b側流量=4:1であれば、a側流量:b側流量=2:3またはa側流量:b側流量=4:11のように変更する。
(2) Control pattern 2: The opening on the port a side is reduced to a predetermined value based on the opening of the mixing valve 68 when hot water can be supplied at a set temperature.
Although the opening degree of the mixing valve 68 changes according to the feed water temperature and the set temperature, the opening degree on the port a side is halved on the basis of the opening degree of the mixing valve 68 when the hot water can be stored at the set temperature. Set the aperture to 1/3.
For example, when hot water supply at a set temperature is possible for heat storage, if a-side flow rate: b-side flow rate = 4: 1, a-side flow rate: b-side flow rate = 2: 3 or a-side flow rate: b-side flow rate = 4. : Change to 11

(3) 制御パターン3:制御パターン2では、ミキシング弁68の開度が所定値に固定化されるが、制御パターン3では、検出温度To1により、その開度を変化させる。たとえば、給水温度=20〔℃〕、設定温度=40〔℃〕の場合、ミキシング弁68のa側流量:b側流量=4:1を基準に、検出温度To1=35〔℃〕では、a側流量:b側流量=3:2、検出温度To1=30〔℃〕ではa側流量:b側流量=2:3、検出温度To1=25〔℃〕ではa側流量:b側流量=1:4にミキシング弁68の全水量の分配量を変更する。このような分配量の変更によれば、給湯ユニット44で得られる温水HWが設定温度に近いほど、バックアップ給湯ユニット46による加熱量を低減でき、バックアップ給湯ユニット46側で生じる圧力損失が少なく、給水温度に近づくにつれ、バックアップ給湯ユニット46による加熱量が増加し、その結果、バックアップ給湯ユニット46で生じる圧力損失が増加する。
つまり、蓄熱が設定温度の給湯を得るに充分な熱量であれば、ミキシング弁68の開度制御を温度センサー78の検出温度Tm1が設定温度になるように行い、その開度を基準に蓄熱量の低減に伴って段階的に切り換えることにより、熱交換器60、80による圧力損失を低減させるだけでなく変動量も低減することができる。
(3) Control pattern 3: In the control pattern 2, the opening of the mixing valve 68 is fixed to a predetermined value. In the control pattern 3, the opening is changed according to the detected temperature To1. For example, when the feed water temperature = 20 [° C.] and the set temperature = 40 [° C.], with the detected temperature To1 = 35 [° C.] based on the a side flow rate: b side flow rate = 4: 1 of the mixing valve 68, a Side flow rate: b side flow rate = 3: 2, detection temperature To1 = 30 [° C.] a side flow rate: b side flow rate = 2: 3, detection temperature To1 = 25 [° C.] a side flow rate: b side flow rate = 1 : The distribution amount of the total water amount of the mixing valve 68 is changed to 4. According to such a change in the distribution amount, the closer the hot water HW obtained in the hot water supply unit 44 is to the set temperature, the more the heating amount by the backup hot water supply unit 46 can be reduced, and the less pressure loss occurs on the backup hot water supply unit 46 side. As the temperature approaches, the amount of heating by the backup hot water supply unit 46 increases, and as a result, the pressure loss generated in the backup hot water supply unit 46 increases.
In other words, if the heat storage is sufficient for obtaining hot water at the set temperature, the opening degree of the mixing valve 68 is controlled so that the detected temperature Tm1 of the temperature sensor 78 becomes the set temperature, and the amount of heat storage is based on the opening degree. By switching in stages along with the reduction, the pressure loss due to the heat exchangers 60 and 80 can be reduced as well as the fluctuation amount.

図8の場合では、制御パターン1ないし3のいずれを選択しても、バックアップ給湯ユニット46では、循環ポンプ96を動作させ、バーナー102を燃焼させ、温度センサー100の検出温度Tj=80〔℃〕に制御する。
温度センサー84の検出温度Ti2は検出温度T1より5〔℃〕だけ低い値(T1−5〔℃〕)〜Ti1〔℃〕であるから、この温水HWと、検出温度To2≒80〔℃〕の温水HWをミキシングし、検出温度Tm2が設定温度になるようにミキシング弁88の開度を制御する。検出温度Ti2は検出温度To2より設定温度に近いので、ミキシング弁88のポートc側流量、ポートd側流量はc側流量<d側流量となる。
たとえば、設定温度=40〔℃〕、Ti1=20〔℃〕の場合、T1=40〔℃〕とすると、To1=35〔℃〕となる。このとき、制御パターン2では、ミキシング弁68のポートa側流量、ポートb側流量はa側流量:b側流量=2:3(1/2に絞った場合)に制御され、検出温度Tm1=26〔℃〕となる。検出温度Ti2=26〔℃〕であれば、検出温度To2≒80〔℃〕とミキシングし、検出温度Tm2=40〔℃〕にミキシング弁88の開度を制御すれば、c側流量:d側流量≒1:3となる。従って、全水量の五分の二が熱交換器60の影響を受け、四分の一が熱交換器80の影響を受けることになる。この制御パターンでは圧力損失は蓄熱が設定温度の給湯が可能な場合に比較して小さくなる。
In the case of FIG. 8, regardless of which of control patterns 1 to 3 is selected, the backup hot water supply unit 46 operates the circulation pump 96 to burn the burner 102 and the detected temperature Tj of the temperature sensor 100 = 80 [° C.]. To control.
Since the detection temperature Ti2 of the temperature sensor 84 is a value (T1-5 [° C]) to Ti1 [° C] lower than the detection temperature T1 by 5 [° C], the hot water HW and the detection temperature To2≈80 [° C] The hot water HW is mixed and the opening degree of the mixing valve 88 is controlled so that the detected temperature Tm2 becomes the set temperature. Since the detected temperature Ti2 is closer to the set temperature than the detected temperature To2, the port c side flow rate and the port d side flow rate of the mixing valve 88 are c side flow rate <d side flow rate.
For example, when the set temperature = 40 [° C.] and Ti1 = 20 [° C.], if T1 = 40 [° C.], then To1 = 35 [° C.]. At this time, in the control pattern 2, the port a side flow rate and the port b side flow rate of the mixing valve 68 are controlled to a side flow rate: b side flow rate = 2: 3 (when reduced to 1/2), and the detected temperature Tm1 = 26 [° C.]. If the detection temperature Ti2 = 26 [° C.], the detection temperature To2≈80 [° C.] is mixed, and if the opening of the mixing valve 88 is controlled to the detection temperature Tm2 = 40 [° C.], the c side flow rate: d side The flow rate is about 1: 3. Therefore, two-fifths of the total amount of water is affected by the heat exchanger 60, and one-fourth is affected by the heat exchanger 80. In this control pattern, the pressure loss is smaller than when heat storage is possible at a set temperature.

<給湯システム2の制御>
図9は、給湯システム2の制御の処理手順を示している。この制御にはリモコン制御部110、電池制御部104、給湯ユニット制御部106およびバックアップ制御部108の各制御が含まれ、各制御が連係して実行される。
リモコン制御部110ではイニシャライズ(S101)の後、入力受付処理(S102)、表示出力処理(S103)が繰り返し実行される。表示出力処理では電池制御部104、給湯ユニット制御部106またはバックアップ制御部108で得られる状態情報をLCD(Liquid Crystal Display)に表示する。
<Control of hot water supply system 2>
FIG. 9 shows a control processing procedure of the hot water supply system 2. This control includes each control of the remote control unit 110, the battery control unit 104, the hot water supply unit control unit 106, and the backup control unit 108, and each control is executed in cooperation.
In the remote control unit 110, after initialization (S101), input reception processing (S102) and display output processing (S103) are repeatedly executed. In the display output process, status information obtained by the battery control unit 104, the hot water supply unit control unit 106 or the backup control unit 108 is displayed on an LCD (Liquid Crystal Display).

電池制御部104ではイニシャライズ(S104)の後、入力受付処理(S102)により運転スイッチのON/OFFを受け、図10に示す熱回収処理(S105)に移行し、この熱回収処理で得られる状態情報をリモコン制御部110に提供する。
給湯ユニット制御部106ではイニシャライズ(S106)の後、入力受付処理(S102)により設定温度の指示を受け、図11に示す給湯処理(S107)に移行し、この給湯処理で得られる状態情報をリモコン制御部110に提供する。
バックアップ制御部108ではイニシャライズ(S108)の後、入力受付処理(S102)により設定温度の指示を受け、図14に示すバックアップ給湯処理(S109)に移行し、このバックアップ給湯処理で得られる状態情報をリモコン制御部110に提供する。
In the battery control unit 104, after initialization (S104), the operation is switched on / off by the input reception process (S102), the process proceeds to the heat recovery process (S105) shown in FIG. 10, and the state obtained by this heat recovery process Information is provided to the remote control unit 110.
After initialization (S106), hot water supply unit control unit 106 receives an instruction for a set temperature in input reception process (S102), and proceeds to hot water supply process (S107) shown in FIG. Provided to the control unit 110.
After the initialization (S108), the backup control unit 108 receives an instruction of the set temperature by the input reception process (S102), and proceeds to the backup hot water supply process (S109) shown in FIG. Provided to the remote control unit 110.

<熱回収処理>
図10は、電池制御部104による熱回収処理の処理手順を示している。この処理手順ではリモコン制御部110の入力受付処理(S102)の運転スイッチの操作を監視し(S201)、運転スイッチ=ONであれば(S201のYES)、燃料電池48を駆動し(S202)、温度センサー58の出力温度がたとえば、75〔℃〕になるように循環ポンプ52の回転を制御する。
運転スイッチ=OFFであれば(S201のNO)、燃料電池48を停止し(S204)、循環ポンプ52を停止させる。
<Heat recovery process>
FIG. 10 shows a processing procedure of heat recovery processing by the battery control unit 104. In this processing procedure, the operation of the operation switch in the input acceptance process (S102) of the remote control unit 110 is monitored (S201). If the operation switch is ON (YES in S201), the fuel cell 48 is driven (S202), The rotation of the circulation pump 52 is controlled so that the output temperature of the temperature sensor 58 is, for example, 75 [° C.].
If the operation switch is OFF (NO in S201), the fuel cell 48 is stopped (S204), and the circulation pump 52 is stopped.

<給湯処理>
図11は、給湯ユニット44の給湯処理の処理手順を示している。この処理手順では、給湯使用か否かを判断し(S301)、給湯使用でなければ(S301のNO)、与熱ポンプ64を停止し(S302)、この処理を終了する。
給湯使用であれば(S301のYES)、検出温度T1が設定温度の供給が可能な温度以上であるかを判断する(S303)。検出温度T1が設定温度の供給が可能な温度以上であれば(S303のYES)、図7のAに示す給湯処理を実行する(S304)。この処理では、検出温度To1が設定温度より一定温度ΔTたとえば、5〔℃〕だけ高い温度(=設定温度+ΔT)になるように与熱ポンプ64の回転を制御し(S305)、同時に検出温度Tm1が設定温度になるようにミキシング弁68の開度を制御する(S306)。
<Hot water treatment>
FIG. 11 shows a processing procedure of hot water supply processing of the hot water supply unit 44. In this processing procedure, it is determined whether or not hot water is used (S301), and if it is not hot water use (NO in S301), the heat pump 64 is stopped (S302), and this processing ends.
If hot water is used (YES in S301), it is determined whether the detected temperature T1 is equal to or higher than a temperature at which the set temperature can be supplied (S303). If the detected temperature T1 is equal to or higher than the temperature at which the set temperature can be supplied (YES in S303), the hot water supply process shown in FIG. 7A is executed (S304). In this process, the rotation of the heat pump 64 is controlled so that the detected temperature To1 becomes a temperature (= set temperature + ΔT) higher than the set temperature by a constant temperature ΔT, for example, 5 [° C.] (S305), and at the same time, the detected temperature Tm1. The opening degree of the mixing valve 68 is controlled so that becomes the set temperature (S306).

検出温度T1が設定温度の供給が可能な温度以上でなければ(S303のNO)、検出温度T1が給水温度より一定温度ΔTたとえば、5〔℃〕だけ高い温度(=給水温度+ΔT)以上かを判断する(S307)。検出温度T1が温度(=給水温度+ΔT)以上であれば(S307のYES)、図8に示す給湯処理を実行する(S308)。この処理では、検出温度To1が検出温度T1より一定温度ΔTたとえば、5〔℃〕だけ低い温度(=T1温度−ΔT)になるように与熱ポンプ64の回転を制御し(S309)、同時にミキシング弁68の開度を制御する(S310)。このミキシング弁68の開度制御は図12のA、Bまたは図13の何れかである。
検出温度T1が温度(=給水温度+ΔT)以上でなければ(S307のNO)、図7のCに示す処理を実行する(S311)。この処理では、与熱ポンプ64を停止させ(S312)、ポートbに100〔%〕の流水が得られるようにミキシング弁68を制御する(S313)。
If the detected temperature T1 is not equal to or higher than the temperature at which the set temperature can be supplied (NO in S303), whether the detected temperature T1 is equal to or higher than the feed water temperature by a constant temperature ΔT, for example, 5 [° C.] higher (= feed water temperature + ΔT). Judgment is made (S307). If the detected temperature T1 is equal to or higher than the temperature (= water supply temperature + ΔT) (YES in S307), the hot water supply process shown in FIG. 8 is executed (S308). In this process, the rotation of the heat pump 64 is controlled so that the detected temperature To1 is lower than the detected temperature T1 by a constant temperature ΔT, for example, 5 [° C.] (= T1 temperature−ΔT) (S309), and at the same time, mixing is performed. The opening degree of the valve 68 is controlled (S310). The opening degree control of the mixing valve 68 is either A, B in FIG. 12 or FIG.
If the detected temperature T1 is not equal to or higher than the temperature (= water supply temperature + ΔT) (NO in S307), the process shown in FIG. 7C is executed (S311). In this process, the heat pump 64 is stopped (S312), and the mixing valve 68 is controlled so that 100% of flowing water is obtained at the port b (S313).

<ミキシング弁68の開度制御1>
図12のAは、ミキシング弁68の開度制御1を示している。この制御1では、ミキシング弁68のポートa、bに所定割合たとえば、1:1になるように、ミキシング弁68の開度を固定値に制御する(S401)。
<Opening control 1 of mixing valve 68>
A of FIG. 12 shows opening degree control 1 of the mixing valve 68. In this control 1, the opening degree of the mixing valve 68 is controlled to a fixed value so that the ports a and b of the mixing valve 68 have a predetermined ratio, for example, 1: 1 (S401).

<ミキシング弁68の開度制御2>
図12のBは、ミキシング弁68の開度制御2を示している。この制御2では、検出温度To1が設定温度+Tとして、給水温度と検出温度To1の温水HWにより、検出温度Tm1が設定温度になるポートa、bの開度割合を算出する(S501)。この開度をx、yとする。
この算出処理の後、ポートaに流れる流量を減少するようにミキシング弁68の開度を制御する(S502)。たとえば、開度を半減し、ポートa、bの開度割合について、a:b=x/2:(y+x/2)になるようにミキシング弁68の開度を制御する。
<Opening control 2 of mixing valve 68>
B of FIG. 12 shows the opening degree control 2 of the mixing valve 68. In this control 2, the detected temperature To1 is set to the set temperature + T, and the opening ratio of the ports a and b where the detected temperature Tm1 becomes the set temperature is calculated by the hot water HW of the feed water temperature and the detected temperature To1 (S501). Let this opening degree be x and y.
After this calculation process, the opening degree of the mixing valve 68 is controlled so as to reduce the flow rate flowing through the port a (S502). For example, the opening degree is halved and the opening degree of the mixing valve 68 is controlled so that the opening ratio of the ports a and b is a: b = x / 2: (y + x / 2).

<ミキシング弁68の開度制御3>
図13のAは、ミキシング弁68の開度制御3を示している。この制御3では、検出温度To1が設定温度+Tとして、給水温度と検出温度To1の温水HWにより、検出温度Tm1が設定温度になるポートa、bの開度割合を算出する(S601)。この開度をx、yとする。
この算出処理の後、ポートaに流れる流量を減少するようにミキシング弁68の開度を制御する(S602)。その際、検出温度T1によりも減少量を変える。
たとえば、高温では、a:b=x/2:(y+x/2)、また、
中温では、a:b=x/3:(y+2x/3)、また、
低温では、a:b=x/4:(y+3x/4)
にミキシング弁68の開度を制御する。
<Opening control 3 of mixing valve 68>
FIG. 13A shows the opening degree control 3 of the mixing valve 68. In the control 3, the detected temperature To1 is set to the set temperature + T, and the opening ratio of the ports a and b where the detected temperature Tm1 becomes the set temperature is calculated from the feed water temperature and the hot water HW of the detected temperature To1 (S601). Let this opening degree be x and y.
After this calculation process, the opening degree of the mixing valve 68 is controlled so as to reduce the flow rate flowing through the port a (S602). At that time, the amount of decrease is changed depending on the detected temperature T1.
For example, at a high temperature, a: b = x / 2: (y + x / 2),
At medium temperature, a: b = x / 3: (y + 2x / 3), and
At low temperature, a: b = x / 4: (y + 3x / 4)
The opening degree of the mixing valve 68 is controlled.

<バックアップ給湯処理>
図14は、バックアップ給湯処理の処理手順を示している。この処理手順では、給湯使用か否かを判断する(S801)。この判断は水量センサー85の検出水量により判断すればよい。
給湯使用でなければ(S801のNO)、給湯動作を停止し(S802)、このバックアップ給湯処理を終了する。
給湯使用であれば(S801のYES)、検出温度Ti2が設定温度より低いかを判断する(S803)。検出温度Ti2が設定温度より低ければ(S803のYES)、給水加熱に移行し、必要熱量に応じた回転数で循環ポンプ96を動作させる(S804)。このとき、検出温度Tjが所定温度たとえば、80〔℃〕になるようにバーナー102の燃焼を制御する(S805)。同時に検出温度Tm2が設定温度になるようにミキシング弁88の開度比率を制御する(S806)。
検出温度Ti2が設定温度以上であれば(S803のNO)、加熱動作を停止し、ポートd側に100〔%〕の水量となるように、ミキシング弁88の開度比率を制御する。
<Backup hot water treatment>
FIG. 14 shows a processing procedure for backup hot water supply processing. In this processing procedure, it is determined whether or not hot water is used (S801). This determination may be made based on the amount of water detected by the water amount sensor 85.
If hot water is not used (NO in S801), the hot water supply operation is stopped (S802), and the backup hot water supply process is terminated.
If hot water is being used (YES in S801), it is determined whether the detected temperature Ti2 is lower than the set temperature (S803). If the detected temperature Ti2 is lower than the set temperature (YES in S803), the process proceeds to feed water heating, and the circulation pump 96 is operated at the number of rotations corresponding to the required amount of heat (S804). At this time, the combustion of the burner 102 is controlled so that the detected temperature Tj becomes a predetermined temperature, for example, 80 [° C.] (S805). At the same time, the opening ratio of the mixing valve 88 is controlled so that the detected temperature Tm2 becomes the set temperature (S806).
If the detected temperature Ti2 is equal to or higher than the set temperature (NO in S803), the heating operation is stopped, and the opening ratio of the mixing valve 88 is controlled so that the water amount becomes 100% on the port d side.

<実施例1の効果>
この実施例1によれば、次の効果が得られる。
(1) 蓄熱タンク8の蓄熱に応じてその熱量を給湯に利用することができる。
(2) 蓄熱が低く、給湯に利用できない場合には給湯ユニット44を通過させた給水Wをバックアップ給湯ユニット46で設定温度まで加熱し、設定温度での給湯が可能である。
(3) 設定温度まで給水Wを昇温させることができないが、ある程度の熱交換が可能な蓄熱では、熱交換器60に流す給水量を抑え、圧力損失の低減や与熱ポンプ64の回転数を抑制し、効率的な蓄熱利用を図ることができる。
(4) 蓄熱が低い場合、強制的な熱媒循環を回避でき、蓄熱タンク8の成層状態を乱すことがない。
<Effect of Example 1>
According to the first embodiment, the following effects can be obtained.
(1) The amount of heat can be used for hot water supply according to the heat storage in the heat storage tank 8.
(2) When the heat storage is low and cannot be used for hot water supply, the hot water supply W that has passed through the hot water supply unit 44 is heated to the set temperature by the backup hot water supply unit 46, and hot water supply at the set temperature is possible.
(3) Although the feed water W cannot be raised to the set temperature, in the case of heat storage that allows a certain amount of heat exchange, the amount of feed water flowing to the heat exchanger 60 is suppressed, pressure loss is reduced, and the rotation speed of the heat pump 64 Can be suppressed and efficient heat storage can be used.
(4) When the heat storage is low, forced heat medium circulation can be avoided and the stratified state of the heat storage tank 8 is not disturbed.

図15は、実施例2に係る給湯システムを示している。実施例1では給湯ユニット44と蓄熱タンク8を設置したが、図15に示すように、給湯ユニット44から蓄熱タンク8を除き、蓄熱タンク8を備えたタンクユニット43、蓄熱タンク8が除かれた給湯ユニット45を以て構成しても同様の制御が可能である。
FIG. 15 shows a hot water supply system according to the second embodiment. In Example 1, the hot water supply unit 44 and the heat storage tank 8 were installed. However, as shown in FIG. 15, the heat storage tank 8 was removed from the hot water supply unit 44, and the tank unit 43 provided with the heat storage tank 8 and the heat storage tank 8 were removed. Even if the hot water supply unit 45 is configured, the same control is possible.

図16は、実施例3に係る給湯システムを示している。実施例2では給湯ユニット45とバックアップ給湯ユニット46を別個に構成したが、図16に示すように、給湯ユニット44とバックアップ給湯ユニット46を一体化した給湯ユニット47を構成しても同様の制御が可能である。
FIG. 16 shows a hot water supply system according to the third embodiment. In the second embodiment, the hot water supply unit 45 and the backup hot water supply unit 46 are separately configured. However, as shown in FIG. 16, the same control can be performed even if the hot water supply unit 47 in which the hot water supply unit 44 and the backup hot water supply unit 46 are integrated is configured. Is possible.

上記実施例では給湯ユニット44とバックアップ給湯ユニット46を独立した構成としたが、給湯ユニット44、バックアップ給湯ユニット46および各制御部を一体にした給湯装置として構成してもよい。
In the above-described embodiment, the hot water supply unit 44 and the backup hot water supply unit 46 are configured independently. However, the hot water supply unit 44, the backup hot water supply unit 46, and each control unit may be configured as an integrated hot water supply device.

〔他の実施の形態〕
(1) 上記実施の形態では、水量調整部12にミキシング弁68を備える構成、水量調整部38にミキシング弁88を備える構成を例示しているが、バイパス管16に比例弁、バイパス管36に比例弁を備えて流量を調整してもよい。
(2) 熱媒ME1の熱源として燃料電池48を例示しているが、エンジンなどの排熱源であってもよい。
(3) 熱媒ME2の熱源にバーナー102を用いているが、電熱などの他の熱源を用いてもよい。
[Other Embodiments]
(1) In the above embodiment, a configuration in which the water amount adjusting unit 12 is provided with the mixing valve 68 and a configuration in which the water amount adjusting unit 38 is provided with the mixing valve 88 are exemplified. A proportional valve may be provided to adjust the flow rate.
(2) Although the fuel cell 48 is illustrated as a heat source of the heat medium ME1, an exhaust heat source such as an engine may be used.
(3) Although the burner 102 is used as the heat source of the heat medium ME2, other heat sources such as electric heat may be used.

以上説明したように、本発明の最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment of the present invention has been described. The present invention is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the embodiments for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present invention.

本発明によれば、排熱などを熱媒により蓄熱し、その熱媒の蓄熱に応じて給湯制御を行い、この給湯制御では熱交換器に流れる水量を蓄熱に応じて制御するとともに、蓄熱が低い場合には熱交換器に流れる水量を低減することにより、圧力損失や循環のための電力損失などを低減でき、蓄熱タンクの成層蓄熱を乱すことがないなどの優れた効果が得られ、有益である。   According to the present invention, exhaust heat or the like is stored by a heat medium, hot water control is performed according to the heat storage of the heat medium, and in this hot water control, the amount of water flowing to the heat exchanger is controlled according to the heat storage, If it is low, reducing the amount of water flowing to the heat exchanger can reduce pressure loss, power loss for circulation, etc., and it has beneficial effects such as not disturbing the stratified heat storage of the heat storage tank. It is.

2 給湯システム
4 給湯部
6 補助加熱部
8 蓄熱タンク
10 熱交換器
12 水量調整部
14 給水管
16 バイパス管
18 出湯管
20 制御部
22 温度センサー
24 温度センサー
26、28 熱交換器
30 給水管
32 温度センサー
34 熱源
36 バイパス管
38 水量調整部
40 出湯管
42 燃料電池ユニット
44、45、47 給湯ユニット
46 バックアップ給湯ユニット
48 燃料電池
50 熱交換器
52 循環ポンプ
54 循環路
56、58 温度センサー
60 プレート熱交換器
62 循環路
64 与熱ポンプ
66 温度センサー
68 ミキシング弁
70 水量センサー
72 温度センサー
74 水制御弁
76、78 温度センサー
80 プレート熱交換器
82 熱交換器
84 温度センサー
85 水量センサー
86 水制御弁
88 ミキシング弁
90、92 温度センサー
94 循環路
96 循環ポンプ
98 開放タンク
100 温度センサー
102 バーナー
104 電池制御部
106 給湯ユニット制御部
108 バックアップ制御部
110 リモコン制御部
112、120、128 プロセッサ
114、122、130 メモリ部
116、124、132 入出力部(I/O)
118、126、134 システム通信部
DESCRIPTION OF SYMBOLS 2 Hot-water supply system 4 Hot-water supply part 6 Auxiliary heating part 8 Heat storage tank 10 Heat exchanger 12 Water quantity adjustment part 14 Water supply pipe 16 Bypass pipe 18 Hot water pipe 20 Control part 22 Temperature sensor 24 Temperature sensor 26, 28 Heat exchanger 30 Water supply pipe 32 Temperature Sensor 34 Heat source 36 Bypass pipe 38 Water amount adjusting unit 40 Hot water outlet pipe 42 Fuel cell unit 44, 45, 47 Hot water supply unit 46 Backup hot water supply unit 48 Fuel cell 50 Heat exchanger 52 Circulation pump 54 Circulation path 56, 58 Temperature sensor 60 Plate heat exchange Heater pump 66 Temperature sensor 68 Mixing valve 70 Water volume sensor 72 Temperature sensor 74 Water control valve 76, 78 Temperature sensor 80 Plate heat exchanger 82 Heat exchanger 84 Temperature sensor 85 Water volume sensor 86 Water control valve 88 Mix Valve 90, 92 Temperature sensor 94 Circulation path 96 Circulation pump 98 Open tank 100 Temperature sensor 102 Burner 104 Battery control unit 106 Hot water supply unit control unit 108 Backup control unit 110 Remote control unit 112, 120, 128 Processor 114, 122, 130 Memory Unit 116, 124, 132 Input / output unit (I / O)
118, 126, 134 System communication unit

Claims (8)

熱媒を溜める蓄熱タンクと、前記熱媒の熱を給水に熱交換する熱交換器を備える給湯システムであって、
前記熱交換器に循環する前記熱媒の温度を検出する温度センサーと、
給水を前記熱交換器とバイパス路に分配し、該給水の前記熱交換器および前記バイパス路に流す分配量を調整する水量調整手段と、
前記蓄熱タンクの熱媒を循環路により前記熱交換器に循環させるポンプと、
設定温度による出湯が可能かを前記熱媒の検出温度により判断し、設定温度による給湯ができない場合、前記水量調整手段により前記熱交換器および前記バイパス路に流す前記給水の分配量を固定値に制御し、または前記熱交換器の通水を解除し、前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の目標温度を設定して前記ポンプを制御する制御部と、
を備えることを特徴とする給湯システム。
A hot water supply system comprising a heat storage tank for storing a heat medium, and a heat exchanger for exchanging heat of the heat medium to feed water,
A temperature sensor for detecting the temperature of the heat medium circulating in the heat exchanger;
Water amount adjusting means for distributing supply water to the heat exchanger and the bypass passage, and adjusting a distribution amount to be supplied to the heat exchanger and the bypass passage of the supply water;
A pump for circulating the heat medium of the heat storage tank to the heat exchanger through a circulation path;
It is determined whether the hot water can be discharged at a set temperature based on the detected temperature of the heating medium. If hot water cannot be supplied at the set temperature, the distribution amount of the supplied water flowing to the heat exchanger and the bypass passage is set to a fixed value by the water amount adjusting means. A controller that controls or cancels the water flow of the heat exchanger, sets the target temperature of the heat exchanger to a temperature lower than the detected temperature of the heat medium by a predetermined temperature, and controls the pump;
A hot water supply system comprising:
さらに、前記制御部は、設定温度による出湯が可能な場合、熱交換により給水を設定温度から所定温度だけ高い温度に前記熱交換器の熱交換温度を制御し、設定温度による出湯が不可の場合、熱交換により給水を前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の熱交換温度を制御することを特徴とする請求項1に記載の給湯システム。   Further, when the hot water at the set temperature is possible, the control unit controls the heat exchange temperature of the heat exchanger from the preset temperature to a temperature higher than the set temperature by heat exchange, and the hot water at the set temperature is not possible. The hot water supply system according to claim 1, wherein the heat exchange temperature of the heat exchanger is controlled to a temperature lower by a predetermined temperature than the detected temperature of the heat medium by heat exchange. 前記熱交換器を用いて温水を生成し出湯する給湯部と、
前記給湯部の出湯温度が前記設定温度未満であれば、前記温水を設定温度に加熱して出湯させる補助加熱部と、
を備えることを特徴とする請求項1に記載の給湯システム。
A hot water supply section that generates hot water using the heat exchanger and generates hot water;
If the hot water temperature of the hot water supply unit is lower than the set temperature, an auxiliary heating unit that heats the hot water to a set temperature and discharges the hot water,
The hot water supply system according to claim 1, comprising:
熱媒を溜める蓄熱タンクと、前記熱媒の熱を給水に熱交換する熱交換器を用いる給湯制御方法であって、
前記熱交換器に循環する前記熱媒の温度を検出する工程と、
給水を水量調整手段により前記熱交換器とバイパス路に分配し、該給水の前記熱交換器および前記バイパス路に流す分配量を調整する工程と、
前記蓄熱タンクの熱媒を循環路により前記熱交換器に循環させる工程と、
設定温度による出湯が可能かを前記熱媒の温度により判断する工程と、
設定温度による給湯ができない場合、前記水量調整手段により前記熱交換器および前記バイパス路に流す前記給水の分配量を固定値に制御し、または前記熱交換器の通水を解除し、前記熱媒の温度より所定温度だけ低い温度に設定した目標温度に熱媒循環を制御する工程と、
を含むことを特徴とする給湯制御方法。
A hot water control method using a heat storage tank for storing a heat medium and a heat exchanger for exchanging heat of the heat medium to water,
Detecting the temperature of the heat medium circulating in the heat exchanger;
Distributing the water supply to the heat exchanger and the bypass passage by a water amount adjusting means, and adjusting the distribution amount of the water supply flowing to the heat exchanger and the bypass passage;
Circulating the heat medium in the heat storage tank to the heat exchanger through a circulation path;
A step of judging from the temperature of the heating medium whether the hot water can be discharged at a set temperature;
When hot water cannot be supplied at a set temperature, the distribution amount of the water supplied to the heat exchanger and the bypass passage is controlled to a fixed value by the water amount adjusting means, or the water flow of the heat exchanger is canceled, and the heat medium A step of controlling the heat medium circulation to a target temperature set at a temperature lower than the temperature of
A hot water supply control method comprising:
さらに、設定温度による出湯が可能な場合、熱交換により給水を設定温度から所定温度だけ高い温度に前記熱交換器の熱交換温度を制御する工程と、
設定温度による出湯が不可の場合、熱交換により給水を前記熱媒の温度より所定温度だけ低い温度に前記熱交換器の熱交換温度を制御する工程と、
を含むことを特徴とする請求項4に記載の給湯制御方法。
Furthermore, when hot water can be discharged at a set temperature, the step of controlling the heat exchange temperature of the heat exchanger from the set temperature to a temperature higher than the set temperature by heat exchange,
When the hot water at the set temperature is not possible, the step of controlling the heat exchange temperature of the heat exchanger to a temperature that is lower than the temperature of the heat medium by a predetermined temperature by heat exchange, and
The hot water supply control method according to claim 4, comprising:
さらに、前記熱交換器を用いて温水を生成し出湯する工程と、
出湯温度が前記設定温度未満であれば、前記温水を設定温度に加熱して出湯させる工程と、
を含むことを特徴とする請求項4に記載の給湯制御方法。
And a step of generating hot water using the heat exchanger and discharging the hot water;
If the hot water temperature is lower than the set temperature, the step of heating the hot water to a set temperature and letting out hot water;
The hot water supply control method according to claim 4, comprising:
熱媒を溜める蓄熱タンクと、前記熱媒の熱を給水に熱交換する熱交換器を備える給湯装置であって、
前記熱交換器に循環する前記熱媒の温度を検出する温度センサーと、
給水を前記熱交換器とバイパス路に分配し、該給水の前記熱交換器および前記バイパス路に流す分配量を調整する水量調整手段と、
前記蓄熱タンクの熱媒を循環路により前記熱交換器に循環させるポンプと、
設定温度による出湯が可能かを前記熱媒の検出温度により判断し、設定温度による給湯ができない場合、前記水量調整手段により前記熱交換器および前記バイパス路に流す前記給水の分配量を固定値に制御し、または前記熱交換器の通水を解除し、前記熱媒の検出温度より所定温度だけ低い温度に前記熱交換器の目標温度を設定して前記ポンプを制御する制御部と、
を備えることを特徴とする給湯装置。
A hot water supply apparatus comprising a heat storage tank for storing a heat medium, and a heat exchanger for exchanging heat of the heat medium to water supply,
A temperature sensor for detecting the temperature of the heat medium circulating in the heat exchanger;
Water amount adjusting means for distributing supply water to the heat exchanger and the bypass passage, and adjusting a distribution amount to be supplied to the heat exchanger and the bypass passage of the supply water;
A pump for circulating the heat medium of the heat storage tank to the heat exchanger through a circulation path;
It is determined whether the hot water can be discharged at a set temperature based on the detected temperature of the heating medium. If hot water cannot be supplied at the set temperature, the distribution amount of the supplied water flowing to the heat exchanger and the bypass passage is set to a fixed value by the water amount adjusting means. A controller that controls or cancels the water flow of the heat exchanger, sets the target temperature of the heat exchanger to a temperature lower than the detected temperature of the heat medium by a predetermined temperature, and controls the pump;
A hot water supply apparatus comprising:
請求項7に記載の給湯装置と別個または一体に備え、出湯温度が前記設定温度未満であれば、前記温水を設定温度に加熱して出湯させる補助加熱部と、
を備えたことを特徴とする給湯装置。
An auxiliary heating unit that is provided separately or integrally with the hot water supply device according to claim 7 and that heats the hot water to a set temperature and discharges the hot water if the tapping temperature is lower than the set temperature,
A hot water supply apparatus comprising:
JP2017179044A 2017-09-19 2017-09-19 Hot water supply system, hot water supply control method, hot water supply device and hot water supply control program Active JP6857105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017179044A JP6857105B2 (en) 2017-09-19 2017-09-19 Hot water supply system, hot water supply control method, hot water supply device and hot water supply control program
JP2021045331A JP7178125B2 (en) 2017-09-19 2021-03-19 Hot water supply system, hot water supply control method, hot water supply device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179044A JP6857105B2 (en) 2017-09-19 2017-09-19 Hot water supply system, hot water supply control method, hot water supply device and hot water supply control program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021045331A Division JP7178125B2 (en) 2017-09-19 2021-03-19 Hot water supply system, hot water supply control method, hot water supply device and program

Publications (2)

Publication Number Publication Date
JP2019052827A true JP2019052827A (en) 2019-04-04
JP6857105B2 JP6857105B2 (en) 2021-04-14

Family

ID=66014650

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017179044A Active JP6857105B2 (en) 2017-09-19 2017-09-19 Hot water supply system, hot water supply control method, hot water supply device and hot water supply control program
JP2021045331A Active JP7178125B2 (en) 2017-09-19 2021-03-19 Hot water supply system, hot water supply control method, hot water supply device and program

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021045331A Active JP7178125B2 (en) 2017-09-19 2021-03-19 Hot water supply system, hot water supply control method, hot water supply device and program

Country Status (1)

Country Link
JP (2) JP6857105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112032997A (en) * 2020-07-22 2020-12-04 青岛经济技术开发区海尔热水器有限公司 Gas water heater and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270751A (en) * 2008-05-06 2009-11-19 Denso Corp Hot water supply device
JP2011214793A (en) * 2010-04-01 2011-10-27 Takagi Ind Co Ltd Water heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275394A (en) 2005-03-29 2006-10-12 Osaka Gas Co Ltd Exhaust-heat recovery water heater
JP5200842B2 (en) 2008-10-08 2013-06-05 株式会社デンソー Water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270751A (en) * 2008-05-06 2009-11-19 Denso Corp Hot water supply device
JP2011214793A (en) * 2010-04-01 2011-10-27 Takagi Ind Co Ltd Water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112032997A (en) * 2020-07-22 2020-12-04 青岛经济技术开发区海尔热水器有限公司 Gas water heater and control method thereof

Also Published As

Publication number Publication date
JP2021096065A (en) 2021-06-24
JP7178125B2 (en) 2022-11-25
JP6857105B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP5577135B2 (en) Water heater
CA2765377C (en) Method for controlling hot water temperature through operation of a circulation pump
US11029039B2 (en) Heating and hot water supplying device
US11326785B2 (en) Heating and hot-water-supply apparatus
JP7340283B2 (en) Methods, systems, programs and devices of hot water supply
JP4867514B2 (en) Heat pump water heater / heater
JP6153328B2 (en) Cogeneration system and heating equipment
JP2022116311A (en) Hot water supply system
JP7178125B2 (en) Hot water supply system, hot water supply control method, hot water supply device and program
JP2007333332A (en) Hot water storage type heating apparatus
JP2017053626A (en) Cogeneration system and heating equipment
JP4031484B2 (en) Combined heat source machine
JP5192778B2 (en) Hot water heater
JP2019113277A (en) Storage water heater
JP4126282B2 (en) Water heater
JP3596529B2 (en) Calculation method of fuel consumption and hot water heating heat source unit
JP5982238B2 (en) Hot water storage water heater
JP2019039595A (en) Hot water storage type hot water supply device
JP2006349205A (en) Cogeneration system
JP2008292036A (en) Hot-water storage type hot-water supply machine
JP6467252B2 (en) Water heater
JP2014202413A (en) Storage water heater
JP2014095488A (en) Cogeneration system and hot-water supply facility
JP2020085351A (en) Heating water heater
JP2020159605A (en) Control method of storage-type hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210319

R150 Certificate of patent or registration of utility model

Ref document number: 6857105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250