JP7340283B2 - Methods, systems, programs and devices of hot water supply - Google Patents

Methods, systems, programs and devices of hot water supply Download PDF

Info

Publication number
JP7340283B2
JP7340283B2 JP2021163626A JP2021163626A JP7340283B2 JP 7340283 B2 JP7340283 B2 JP 7340283B2 JP 2021163626 A JP2021163626 A JP 2021163626A JP 2021163626 A JP2021163626 A JP 2021163626A JP 7340283 B2 JP7340283 B2 JP 7340283B2
Authority
JP
Japan
Prior art keywords
hot water
heat
temperature
set temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021163626A
Other languages
Japanese (ja)
Other versions
JP2022000605A (en
Inventor
敏也 辰己
和樹 高木
雅彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purpose Co Ltd
Original Assignee
Purpose Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purpose Co Ltd filed Critical Purpose Co Ltd
Priority to JP2021163626A priority Critical patent/JP7340283B2/en
Publication of JP2022000605A publication Critical patent/JP2022000605A/en
Application granted granted Critical
Publication of JP7340283B2 publication Critical patent/JP7340283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蓄熱タンクの熱媒を給水に熱交換する熱交換器の制御技術に関する。
The present invention relates to a technology for controlling a heat exchanger that exchanges heat between a heat medium in a heat storage tank and water supply.

排熱を熱媒に熱交換し、この熱媒を蓄熱タンクに溜めて蓄熱することが行われている。この蓄熱タンクでは、下層側から低い温度の熱媒を加熱し、高温化して蓄熱タンクの上層側に戻す下層側から上層側に上昇勾配を持たせた所謂階層蓄熱方式が採用されている。このような蓄熱方式を利用した蓄熱タンクからの蓄熱利用は、上層側から熱媒を取出し、温水に熱交換することが行われている。
このような熱交換に関し、蓄熱タンクの熱媒を給水に熱交換した際、蓄熱タンクの蓄熱量によっては設定温度に給水を加熱する際、不足熱量が生じる。この不足熱量を補助加熱源によって補填し、設定温度に温水温度を上昇させることが知られている(特許文献1)。
Exhaust heat is exchanged with a heat medium, and this heat medium is stored in a heat storage tank for heat storage. This heat storage tank employs a so-called hierarchical heat storage method in which a low-temperature heat medium is heated from the lower layer, raised to a high temperature, and returned to the upper layer of the heat storage tank with an upward gradient from the lower layer to the upper layer. To utilize heat storage from a heat storage tank using such a heat storage method, a heat medium is taken out from the upper layer side and heat exchanged with hot water.
Regarding such heat exchange, when heat is exchanged from the heat medium in the heat storage tank to the feed water, depending on the amount of heat stored in the heat storage tank, an insufficient amount of heat may occur when heating the feed water to a set temperature. It is known to compensate for this insufficient amount of heat with an auxiliary heating source and raise the hot water temperature to a set temperature (Patent Document 1).

特開2011-214793号公報Japanese Patent Application Publication No. 2011-214793

ところで、特許文献1記載の技術は、蓄熱タンクの蓄熱を給水加熱に効率的に利用でき、その実用性は高く評価されている。
しかしながら、蓄熱タンクの蓄熱が少ない場合でも、給水加熱に全面的に利用しようとすれば、熱交換器に流れる給水に対して熱媒の循環量を極限まで増加させることになる。このような制御では、熱交換器たとえば、プレート熱交換器では給水通路が細く、圧力損失を無視することができない。
そこで、この発明の目的は上記課題に鑑み、熱交換器における圧力損失の低減を図って効率的な給湯を実現することにある。
By the way, the technology described in Patent Document 1 can efficiently utilize the heat stored in the heat storage tank to heat the water supply, and its practicality is highly evaluated.
However, even if there is little heat stored in the heat storage tank, if it is to be fully utilized for heating the feed water, the amount of heat medium circulated with respect to the feed water flowing into the heat exchanger will be increased to the limit. In such control, pressure loss cannot be ignored in a heat exchanger such as a plate heat exchanger because the water supply passage is narrow.
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to achieve efficient hot water supply by reducing pressure loss in a heat exchanger.

上記目的を達成するため、本発明の給湯方法の一側面によれば、発電で生じた熱を熱媒に熱交換し、該熱媒を蓄熱タンクに溜める工程と、前記蓄熱タンクから熱媒を熱交換器に循環させ、該熱媒の熱と給水とを熱交換する工程と、前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、熱交換前の前記給水を前記熱交換器およびバイパス路に流し、該バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させる工程と、第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す給水量を低減して前記熱交換器の圧力損失を低減させる工程とを含む。
この給湯方法において、さらに、前記第2の設定温度による出湯時、前記バイパス路に分配された給水量を前記熱交換器に流す給水量より増加させる工程とを含んでよい。
上記目的を達成するため、本発明の給湯システムの一側面によれば、発電で生じた熱が熱交換された熱媒を溜める蓄熱タンクと、前記蓄熱タンクから熱媒を循環させ、該熱媒の熱と給水とを熱交換する熱交換器と、前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、熱交換前の前記給水を前記熱交換器およびバイパス路に流し、該バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させる混合手段と、第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す前記給水の分配量を低減して前記熱交換器の圧力損失を低減させる制御部とを含む。
In order to achieve the above object, one aspect of the hot water supply method of the present invention includes a step of exchanging heat generated by power generation with a heat medium and storing the heat medium in a heat storage tank, and removing the heat medium from the heat storage tank. a step of circulating the heat medium through a heat exchanger and exchanging heat between the heat of the heat medium and the feed water; and when the heat medium of the heat storage tank can exchange heat with the feed water, the feed water before heat exchange is passed through the heat exchanger. and a step of mixing the supplied water distributed to the bypass path with hot water obtained by the heat exchanger, a first set temperature, and a first set temperature that is lower than the first set temperature by a predetermined temperature. The second set temperature is set, and it is determined based on the temperature of the heat medium whether hot water can be tapped at the first set temperature, and if hot water can be tapped, the water supply distributed to the bypass path and the heat exchanger are The obtained hot water is mixed with the hot water and discharged at the first set temperature, and if hot water cannot be discharged, the temperature is switched to the second set temperature, and the hot water is mixed with the hot water distributed to the bypass path and the hot water obtained by the heat exchanger. The amount of water supplied is mixed with the hot water, heated to the second set temperature, and flowed to the auxiliary heating section, heated in the auxiliary heating section, and discharged at the first set temperature, and flowed to the heat exchanger. and reducing the pressure loss of the heat exchanger.
This hot water supply method may further include the step of increasing the amount of water supplied distributed to the bypass path from the amount of water supplied to the heat exchanger when hot water is dispensed at the second set temperature.
In order to achieve the above object, one aspect of the hot water supply system of the present invention includes a heat storage tank that stores a heat medium with which heat generated during power generation has been exchanged, and a heat storage tank that circulates the heat medium from the heat storage tank. and a heat exchanger for exchanging heat between the heat of the heat storage tank and the feed water, and when the heat medium of the heat storage tank can exchange heat with the feed water, the feed water before heat exchange is caused to flow through the heat exchanger and the bypass path, and the bypass mixing means for mixing the water supply distributed to the heat exchanger with the hot water obtained by the heat exchanger; a first set temperature; and a second set temperature that is lower than the first set temperature by a predetermined temperature. and determining whether hot water can be tapped at the first set temperature based on the temperature of the heating medium, and if hot water can be tapped, mixing the supplied water distributed to the bypass path and the hot water obtained by the heat exchanger. If hot water cannot be dispensed, the temperature is switched to the second set temperature , and the supplied water distributed to the bypass path and the hot water obtained by the heat exchanger are mixed. heating the water to the second set temperature and flowing it to an auxiliary heating section, heating the water at the auxiliary heating section and discharging the water at the first set temperature, and reducing the amount of water to be distributed to the heat exchanger. and a control unit that reduces pressure loss of the heat exchanger.

上記目的を達成するため、本発明のプログラムの一側面によれば、コンピュータに実行させるためのプログラムであって、蓄熱タンクから熱交換器に循環させる熱媒の温度情報を取得する機能と、給水を熱交換器およびバイパス路に流す混合弁の熱交換器側の開度と前記バイパス路側の開度を制御する機能と、前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す前記給水の分配量を低減して前記熱交換器の圧力損失を低減させる機能とを前記コンピュータに実行させる。
In order to achieve the above object, one aspect of the program of the present invention is a program for a computer to execute, which has a function of acquiring temperature information of a heat medium to be circulated from a heat storage tank to a heat exchanger, and a function of acquiring temperature information of a heat medium to be circulated from a heat storage tank to a heat exchanger. A function of controlling the opening degree on the heat exchanger side and the opening degree on the bypass passage side of the mixing valve that allows the heat medium to flow into the heat exchanger and the bypass passage, and when the heat medium of the heat storage tank can exchange heat with the water supply, A first set temperature and a second set temperature lower than the first set temperature by a predetermined temperature are set, and whether hot water can be tapped at the first set temperature is determined based on the temperature of the heating medium, and whether hot water can be tapped or not is determined. If there is, the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed and hot water is discharged at the first set temperature, and if hot water cannot be discharged, the second set temperature is set. , the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed, heated to the second set temperature, flowed to the auxiliary heating section, and heated in the auxiliary heating section. and causing the computer to perform a function of dispensing hot water at the first set temperature and reducing a distribution amount of the feed water flowing to the heat exchanger to reduce pressure loss in the heat exchanger.

上記目的を達成するため、本発明の給湯装置の一側面によれば、発電で生じた熱が熱交換された熱媒を溜める蓄熱タンクから前記熱媒を循環させ、該熱と給水とを熱交換する熱交換器と、前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、熱交換前の前記給水を前記熱交換器およびバイパス路に流し、該バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させる混合手段と、第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す前記給水の分配量を低減して前記熱交換器の圧力損失を低減させる制御部とを含む。
In order to achieve the above object, according to one aspect of the water heater of the present invention, the heat medium is circulated from a heat storage tank that stores the heat medium with which the heat generated during power generation has been exchanged, and the heat and the supplied water are heated. When the heat exchanger to be exchanged and the heat medium of the heat storage tank can exchange heat with the feed water, the feed water before heat exchange is caused to flow through the heat exchanger and the bypass path, and the feed water is distributed to the bypass path. and hot water obtained in the heat exchanger; a first set temperature; and a second set temperature that is lower than the first set temperature by a predetermined temperature; It is determined whether hot water can be tapped based on the temperature of the heating medium , and if hot water can be tapped, the supplied water distributed to the bypass path and the hot water obtained by the heat exchanger are mixed to meet the first setting. If hot water cannot be dispensed, the temperature is switched to the second set temperature, and the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed to reach the second set temperature. The hot water is heated to a temperature of 100% and flows to an auxiliary heating section, is heated in the auxiliary heating section and discharged at the first set temperature , and the distribution amount of the feed water to be flowed to the heat exchanger is reduced to reduce the pressure loss of the heat exchanger. and a control unit that reduces.

本発明によれば、次のいずれかの効果が得られる。 According to the present invention, any of the following effects can be obtained.

(1) 蓄熱タンクの蓄熱が設定温度の出湯に必要な熱量に到達していない場合でも、蓄熱タンクの熱媒の利用をするので、熱媒熱量の有効利用を図ることができる。
(2) 蓄熱タンクの蓄熱が設定温度の出湯に必要な熱量に到達していない場合、熱交換器に流れる熱交換給水量を低減でき、熱交換器側での圧力損失を低減できる。
(1) Even when the heat storage in the heat storage tank does not reach the amount of heat required to produce hot water at the set temperature, the heat medium in the heat storage tank is used, so the amount of heat from the heat medium can be used effectively.
(2) If the heat stored in the heat storage tank does not reach the amount of heat required to produce hot water at the set temperature, the amount of water supplied for heat exchange flowing to the heat exchanger can be reduced, and the pressure loss on the heat exchanger side can be reduced.

(3) 熱交換器に熱媒を循環させる際に、一般的に循環ポンプが用いられるが、循環量を低減できるので、循環ポンプのポンプ回転数の過剰回転を抑制できるなど、循環ポンプによる消費電力を抑制できる。
(4) 蓄熱タンクに蓄積される熱媒の成層状態を乱すことがなく、熱媒熱量の効率的な利用を図ることができる。
(3) Circulation pumps are generally used to circulate heat medium through heat exchangers, but since the amount of circulation can be reduced, excessive rotation speed of the circulation pump can be suppressed, reducing consumption by the circulation pump. Electric power can be reduced.
(4) The stratified state of the heat medium stored in the heat storage tank is not disturbed, and the heat amount of the heat medium can be used efficiently.

一実施の形態に係る給湯システムを示す図である。FIG. 1 is a diagram showing a hot water supply system according to an embodiment. 給湯部の温度制御を説明するための図である。It is a figure for explaining temperature control of a hot water supply part. 給湯制御の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of hot water supply control. 実施例1に係る給湯システムを示す図である。1 is a diagram showing a hot water supply system according to Example 1. FIG. 制御系統を示すブロック図である。It is a block diagram showing a control system. Aは給湯設定温度Ts1=35〔℃〕を得る場合の給水温度、熱交換後温度、熱交水量および最低熱媒温度を示すテーブル、Bは給湯設定温度Ts1=40〔℃〕を得る場合の給水温度、熱交換後温度、熱交水量および最低熱媒温度を示すテーブル、Cは給湯設定温度Ts1=45〔℃〕を得る場合の給水温度、熱交換後温度、熱交水量および最低熱媒温度を示すテーブルである。A is a table showing the water supply temperature, temperature after heat exchange, heat exchange water amount, and minimum heat medium temperature when obtaining the hot water supply setting temperature Ts1 = 35 [°C], B is a table showing the water supply temperature when obtaining the hot water supply setting temperature Ts1 = 40 [°C] Table showing the water supply temperature, temperature after heat exchange, amount of heat exchanged water, and minimum heat medium temperature, C is the water supply temperature, temperature after heat exchange, amount of heat exchanged water, and minimum heat medium when obtaining the hot water supply setting temperature Ts1 = 45 [°C] This is a table showing temperatures. 給湯設定温度をパラメータとした場合の給水温度に対する最低熱媒温度を示す図である。It is a figure which shows the minimum heat medium temperature with respect to the water supply temperature when hot water supply setting temperature is used as a parameter. 蓄熱に対応する給湯動作を説明するための図である。FIG. 3 is a diagram for explaining a hot water supply operation corresponding to heat storage. 給湯システムの処理手順を包括的に示すフローチャートである。It is a flowchart comprehensively showing the processing procedure of the hot water supply system. 燃料電池ユニットの処理手順を示すフローチャートである。3 is a flowchart showing the processing procedure of the fuel cell unit. 給湯ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of a hot water supply unit. バックアップ給湯ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of a backup hot water supply unit. 通過流量比率に対する圧力損失を示す図である。It is a figure which shows the pressure loss with respect to a passing flow rate ratio. 実施例2に係る給湯システムを示す図である。FIG. 3 is a diagram showing a hot water supply system according to a second embodiment. 実施例3に係る給湯システムを示す図である。FIG. 3 is a diagram showing a hot water supply system according to a third embodiment.

〔一実施の形態〕
図1は、本発明の一実施の形態に係る給湯システムを示している。図1に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。
この給湯システム2には給湯部4および補助加熱部6が備えられる。給湯部4は熱媒ME1の熱を給水Wに熱交換し、温水HWを補助加熱部6に導く。補助加熱部6では、給湯部4からの温水HWが設定温度であれば、その温水HWをそのまま出湯し、設定温度未満であれば、補助加熱により設定温度まで昇温させ、設定温度の温水HWを出湯する。
[One embodiment]
FIG. 1 shows a hot water supply system according to an embodiment of the present invention. The configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.
The hot water supply system 2 includes a hot water supply section 4 and an auxiliary heating section 6. The hot water supply section 4 exchanges the heat of the heat medium ME1 with the water supply W, and guides the hot water HW to the auxiliary heating section 6. In the auxiliary heating section 6, if the hot water HW from the hot water supply section 4 is at the set temperature, the hot water HW is discharged as is, and if it is below the set temperature, the temperature is raised to the set temperature by auxiliary heating, and the hot water HW at the set temperature is heated. Take out the hot water.

給湯部4には蓄熱タンク8、ポンプ9、熱交換器10および水量調整部12が備えられる。蓄熱タンク8は熱媒ME1により蓄熱される。蓄熱タンク8の下層側から取り出される熱媒ME1が図示しない熱源側に循環して加熱され、高温化した熱媒ME1が蓄熱タンク8の上層側に戻される。これにより、蓄熱タンク8には下層から上層に向かって上昇する成層状態で蓄熱が行われる。
ポンプ9は、熱媒ME1の熱を給水Wに熱交換する際に動作させ、熱交換器10に熱媒ME1を循環させる。
熱交換器10にはたとえば、プレート熱交換器が用いられる。熱交換時、蓄熱タンク8の上層側から循環路13に取り出された熱媒ME1はポンプ9を動作させることにより、循環路13を通して熱交換器10に循環し、熱交換後に蓄熱タンク8の下層側に戻される。
The hot water supply section 4 is equipped with a heat storage tank 8, a pump 9, a heat exchanger 10, and a water amount adjustment section 12. Heat storage tank 8 stores heat using heat medium ME1. The heat medium ME1 taken out from the lower layer side of the heat storage tank 8 is circulated to the heat source side (not shown) and heated, and the heated heat medium ME1 is returned to the upper layer side of the heat storage tank 8. Thereby, heat is stored in the heat storage tank 8 in a stratified state rising from the lower layer to the upper layer.
The pump 9 is operated when exchanging the heat of the heat medium ME1 to the water supply W, and circulates the heat medium ME1 through the heat exchanger 10.
For example, a plate heat exchanger is used as the heat exchanger 10. During heat exchange, the heat medium ME1 taken out from the upper layer side of the heat storage tank 8 to the circulation path 13 is circulated through the circulation path 13 to the heat exchanger 10 by operating the pump 9, and after heat exchange, the heat medium ME1 is taken out from the upper layer side of the heat storage tank 8 to the heat exchanger 10. returned to the side.

水量調整部12は熱交換器10の水量調整手段の一例であり、給水Wを熱交換器10とバイパス路の一例であるバイパス管16に分配し、熱交換器10の通水量を調整する。給水管14からの給水Wは水量調整部12を通して熱交換器10の入側に流れ、またはバイパス管16より出湯管18に流れる。この水量調整部12では、制御部20に開度が制御されるミキシング弁M1が備えられ、熱交換器10とバイパス管16に流す給水Wの分配量が調整される。
蓄熱タンク8から熱交換器10に循環する熱媒ME1の温度は温度センサー22で検出される。出湯管18の温水HWにバイパス管16の給水Wを混合した温水HWの温度は、温度センサー24により検出される。
The water amount adjustment unit 12 is an example of a water amount adjustment means for the heat exchanger 10, and distributes the water supply W to the heat exchanger 10 and the bypass pipe 16, which is an example of a bypass path, and adjusts the amount of water flowing through the heat exchanger 10. The water supply W from the water supply pipe 14 flows to the inlet side of the heat exchanger 10 through the water amount adjustment section 12 or flows to the outlet pipe 18 from the bypass pipe 16. In this water amount adjustment section 12, the control section 20 is equipped with a mixing valve M1 whose opening degree is controlled, and the distribution amount of the feed water W flowing into the heat exchanger 10 and the bypass pipe 16 is adjusted.
The temperature of the heat medium ME1 circulating from the heat storage tank 8 to the heat exchanger 10 is detected by a temperature sensor 22. The temperature of the hot water HW obtained by mixing the hot water HW in the outlet pipe 18 with the water supply W in the bypass pipe 16 is detected by the temperature sensor 24 .

この給湯部4から給水Wまたは温水HWは補助加熱部6に供給される。補助加熱部6は、給水Wまたは温水HWの温度が低い場合、この給水Wまたは温水HWの補助加熱を行う。この補助加熱部6には熱交換器26、熱交換器28が備えられる。熱交換器26は給水管30より供給される給湯部4からの給水Wまたは温水HWと熱媒ME2の熱交換を行う。熱交換器28は熱源34の熱を熱媒ME2に熱交換する。温度センサー32は、給水管30を通過する給水Wまたは温水HWの温度を検出する。給水管30にはバイパス管36が分岐され、このバイパス管36およびミキシング弁M2を含む水量調整部38が備えられ、ミキシング弁M2の開度に応じて給水管30から給水Wまたは温水HWが出湯管40の温水HWに混合されて出湯する。 Water supply W or hot water HW is supplied from this hot water supply section 4 to an auxiliary heating section 6 . The auxiliary heating unit 6 performs auxiliary heating of the water supply W or the hot water HW when the temperature of the water supply W or the hot water HW is low. This auxiliary heating section 6 is equipped with a heat exchanger 26 and a heat exchanger 28. The heat exchanger 26 exchanges heat between the water supply W or hot water HW supplied from the hot water supply section 4 through the water supply pipe 30 and the heat medium ME2. Heat exchanger 28 exchanges heat from heat source 34 with heat medium ME2. The temperature sensor 32 detects the temperature of the water supply W or hot water HW passing through the water supply pipe 30. A bypass pipe 36 is branched off from the water supply pipe 30, and a water volume adjustment unit 38 including the bypass pipe 36 and a mixing valve M2 is provided, and supply water W or hot water HW is discharged from the water supply pipe 30 according to the opening degree of the mixing valve M2. The hot water is mixed with the hot water HW in the pipe 40 and discharged.

制御部20は、第1の設定温度Ts1による出湯が可能かを熱媒ME1の検出温度により判断し、設定温度Ts1による出湯ができない場合、設定温度Ts1より低い第2の設定温度Ts2(<Ts1)に切り替え、水量調整部12により調整される熱交換器10に流れる給水Wの分配量を設定温度Ts1の出湯時より低減させる。設定温度Ts1はたとえば、リモコン装置からユーザにより任意に設定される温度であり、記憶手段に記憶される。これに対し、設定温度Ts2は、制御部20の判断により設定する温度であり、記憶手段に記憶され、必要に応じて読み出される。 The control unit 20 determines whether hot water can be tapped at the first set temperature Ts1 based on the detected temperature of the heating medium ME1, and if hot water cannot be tapped at the set temperature Ts1, the controller 20 sets a second set temperature Ts2 (<Ts1) lower than the set temperature Ts1. ), and the distribution amount of the water supply W flowing into the heat exchanger 10, which is adjusted by the water amount adjustment unit 12, is reduced from that at the time of hot water discharge at the set temperature Ts1. The set temperature Ts1 is, for example, a temperature arbitrarily set by the user using a remote control device, and is stored in the storage means. On the other hand, the set temperature Ts2 is a temperature set based on the judgment of the control unit 20, and is stored in the storage means and read out as necessary.

斯かる給湯システム2によれば、熱媒ME1との熱交換により給水Wを加熱した温水HW、つまり、設定温度Ts1より所定温度α1(例えば6〔℃〕)だけ高い温度(Ts1+α1)の温水HWと、非加熱状態の給水Wを混合し、設定温度Ts1での給湯を行う。
この制御について、給湯部4を要約して示す図2を参照する。
a)熱交換器10通過後の温水HWの温度である検出温度To1(熱交換後温度)が温度(Ts1+α1)になるように、ポンプ9の回転数を制御する。To1>(Ts1+α1)であれば、ポンプ9の回転数を減少させ、To1<(Ts1+α1)であれば、ポンプ9の回転数を増加させる。
b)水量調整部12の流路について、ミキシング弁M1の熱交換器10側ポートをAルート、ミキシング弁M1のバイパス管16側ポートをBルートとすれば、検出温度Tm1が設定温度Ts1になるように、Aルート、Bルートの流量割合(ミキシング割合)を制御する。
検出温度To1と給水Wの検出温度Ti1の関係は通常、To1>Ti1であるから、流量割合の制御では、Tm1>Ts1であれば、Bルートの流量割合を増加させ、Tm1<Ts1であれば、Aルートの流量割合を増加させる制御が行われる。
According to such a hot water supply system 2, hot water HW is obtained by heating the supply water W by heat exchange with the heat medium ME1, that is, hot water HW whose temperature is higher than the set temperature Ts1 by a predetermined temperature α1 (for example, 6 [°C]) (Ts1+α1). and unheated water supply W are mixed to supply hot water at a set temperature Ts1.
Regarding this control, reference is made to FIG. 2 which schematically shows the hot water supply section 4.
a) The rotation speed of the pump 9 is controlled so that the detected temperature To1 (temperature after heat exchange), which is the temperature of the hot water HW after passing through the heat exchanger 10, becomes the temperature (Ts1+α1). If To1>(Ts1+α1), the rotation speed of the pump 9 is decreased, and if To1<(Ts1+α1), the rotation speed of the pump 9 is increased.
b) Regarding the flow path of the water volume adjustment unit 12, if the heat exchanger 10 side port of the mixing valve M1 is set as route A, and the bypass pipe 16 side port of the mixing valve M1 is set as route B, the detected temperature Tm1 becomes the set temperature Ts1. The flow ratio (mixing ratio) of route A and route B is controlled as follows.
The relationship between the detected temperature To1 and the detected temperature Ti1 of the water supply W is usually To1>Ti1. Therefore, in controlling the flow rate, if Tm1>Ts1, the flow rate of route B is increased, and if Tm1<Ts1, the flow rate is increased. , control is performed to increase the flow rate ratio of route A.

ここで、熱媒ME1の検出温度T1が下がると、a)の制御により、循環ポンプ9の回転数が増加し、検出温度To1が温度(Ts1+α1)を維持できなくなる温度に検出温度T1が下がる状態に移行すると、循環ポンプ9の回転数は上限回転数に到達する状態となる。
b)の制御では、検出温度To1が温度(Ts1+α1)に維持されていれば、その制御が継続するが、検出温度To1が低下するにつれ、Aルートの流量割合が増加し、最終的にはAルートの流量割合が100〔%〕に到達することになる。
ポンプ9の回転数が増加することを改善するため、特許第5577135号では、検出温度T1が所定温度を下回ると、検出温度To1が、検出温度T1より所定温度α2(たとえば、5〔℃〕)だけ低い温度、つまり検出温度To1=(T1-α2)になるように制御する。これにより、ポンプ9の回転数の過剰増加を防止できる。しかし、検出温度Tm1が設定温度Ts1になるように、ミキシング制御を行った場合、検出温度To1の低下に伴い、Aルートの流量割合が増加することとなり、給水Wの圧力損失が増加する傾向となる。
Here, when the detected temperature T1 of the heat medium ME1 decreases, the rotation speed of the circulation pump 9 increases due to the control in a), and the detected temperature T1 decreases to a temperature at which the detected temperature To1 cannot maintain the temperature (Ts1+α1). When the rotation speed shifts to , the rotation speed of the circulation pump 9 reaches the upper limit rotation speed.
In the control b), if the detected temperature To1 is maintained at the temperature (Ts1+α1), the control continues, but as the detected temperature To1 decreases, the flow rate ratio of the A route increases, and eventually the A The flow rate ratio of the route will reach 100%.
In order to improve the increase in the rotation speed of the pump 9, in Japanese Patent No. 5577135, when the detected temperature T1 is lower than a predetermined temperature, the detected temperature To1 is lowered to a predetermined temperature α2 (for example, 5 [° C.]) than the detected temperature T1. The temperature is controlled so that the detected temperature To1=(T1-α2). Thereby, excessive increase in the rotational speed of the pump 9 can be prevented. However, when mixing control is performed so that the detected temperature Tm1 becomes the set temperature Ts1, the flow rate ratio of route A increases as the detected temperature To1 decreases, and the pressure loss of the water supply W tends to increase. Become.

そこで、制御切替えタイミングにおいて、設定温度Ts1から低い設定温度Ts2に切り替え、この設定温度Ts2は実現可能な温度として検出温度To1と検出温度Ti1の間の温度に切替える。設定温度Ts2としてたとえば、
Ts2=(To1+Ti1)/2=(T1-α2+Ti1)/2
に切替えれば、AルートおよびBルートの流量割合は50〔%〕になる。
このように設定温度Ts1からTs2に切り替える制御では、検出温度Tm1が所定温度になるようにハンチング等を防止しつつ、ミキシング弁M1を制御する給湯制御を併用できる。
したがって、蓄熱タンク8の熱媒ME1の検出温度T1により設定温度Ts1、Ts2の切替えを行い、給湯部4による給湯、給湯部4および補助加熱部6による給湯、補助加熱部6のみによる給湯を行う。
(1) 熱媒ME1で給水Wを設定温度Ts1まで加熱可能な場合:補助加熱部6による補助加熱を用いることなく、給湯部4のみで設定温度Ts1の給湯が可能である。
(2) 熱媒ME1の検出温度T1は給水Wの温度より高いが、給水Wを設定温度Ts1まで加熱できない場合:補助加熱部6による補助加熱を併用して、設定温度Ts1の給湯が可能である。
Therefore, at the control switching timing, the set temperature Ts1 is switched to a lower set temperature Ts2, and this set temperature Ts2 is switched to a temperature between the detected temperature To1 and the detected temperature Ti1 as a realizable temperature. For example, as the set temperature Ts2,
Ts2=(To1+Ti1)/2=(T1-α2+Ti1)/2
, the flow rate ratio of route A and route B becomes 50%.
In the control for switching from the set temperature Ts1 to Ts2 in this way, hot water supply control that controls the mixing valve M1 can be used in combination while preventing hunting and the like so that the detected temperature Tm1 becomes a predetermined temperature.
Therefore, the set temperatures Ts1 and Ts2 are switched according to the detected temperature T1 of the heat medium ME1 in the heat storage tank 8, and hot water is supplied by the hot water supply section 4, hot water is supplied by the hot water supply section 4 and the auxiliary heating section 6, and hot water is supplied only by the auxiliary heating section 6. .
(1) When the water supply W can be heated to the set temperature Ts1 by the heating medium ME1: Hot water can be supplied to the set temperature Ts1 only by the hot water supply unit 4 without using auxiliary heating by the auxiliary heating unit 6.
(2) When the detected temperature T1 of the heating medium ME1 is higher than the temperature of the water supply W, but the water supply W cannot be heated to the set temperature Ts1: By using auxiliary heating by the auxiliary heating section 6, it is possible to supply hot water at the set temperature Ts1. be.

(3) 熱媒ME1の検出温度T1は給水Wの温度と同等で、熱媒ME1から給水Wに熱交換しても、給水Wを加熱できない場合、つまり、熱媒ME1に蓄熱がない場合:給湯部4による加熱を用いることなく、補助加熱部6のみで設定温度Ts1の給湯が可能である。 この制御において、上記(1) と上記(2) の切替えはたとえば、図7に示す給水温度と最低熱媒温度の関係を用いればよい。上記(3) では、熱媒の検出温度≦(給水温度+α2)の関係を用いればよい。
斯かる制御では、通常、温水の出湯温度が設定温度Ts1になるようにミキシング弁M1が制御されるのに対し、一定の条件つまり熱媒ME1の蓄熱によっては設定温度Ts1での出湯ができない場合、この設定温度Ts1から低い設定温度Ts2に切り替え、この設定温度Ts2によりミキシング弁M1のミキシング割合を強制的に変更させている。
(3) When the detected temperature T1 of the heat medium ME1 is equal to the temperature of the feed water W and the feed water W cannot be heated even if heat is exchanged from the heat medium ME1 to the feed water W, that is, when there is no heat storage in the heat medium ME1: It is possible to supply hot water at the set temperature Ts1 using only the auxiliary heating section 6 without using heating by the hot water supply section 4. In this control, switching between the above (1) and the above (2) may be performed using, for example, the relationship between the feed water temperature and the minimum heat medium temperature shown in FIG. In (3) above, the relationship of detected temperature of heating medium≦(supply water temperature+α2) may be used.
In such control, the mixing valve M1 is normally controlled so that the hot water output temperature becomes the set temperature Ts1, but there is a case where hot water cannot be discharged at the set temperature Ts1 due to certain conditions, that is, heat storage in the heating medium ME1. , the set temperature Ts1 is switched to a lower set temperature Ts2, and the mixing ratio of the mixing valve M1 is forcibly changed by this set temperature Ts2.

<給湯制御>
図3はこの給湯システム2の給湯制御の処理手順を示している。
熱媒ME1の検出温度を取込み(S11)、この検出温度により、設定温度Ts1で出湯が可能かを判定する(S12)。
設定温度Ts1で出湯が可能であれば(S12のYES)、水量調整部12の制御により、設定温度Ts1の温水HWを生成する(S13)。この場合、給湯部4から設定温度Ts1の温水HWが供給されるので、補助加熱部6は補助加熱モードに移行することなく(S17のYES)、出湯管40(図1)から設定温度Ts1の温水HWが得られる(S18)。
<Hot water supply control>
FIG. 3 shows a processing procedure for hot water supply control of this hot water supply system 2.
The detected temperature of the heat medium ME1 is taken in (S11), and based on this detected temperature, it is determined whether hot water can be tapped at the set temperature Ts1 (S12).
If hot water can be dispensed at the set temperature Ts1 (YES in S12), hot water HW at the set temperature Ts1 is generated under the control of the water amount adjustment section 12 (S13). In this case, since the hot water HW at the set temperature Ts1 is supplied from the hot water supply unit 4, the auxiliary heating unit 6 does not shift to the auxiliary heating mode (YES in S17), and the hot water HW at the set temperature Ts1 is supplied from the hot water outlet pipe 40 (FIG. 1). Hot water HW is obtained (S18).

設定温度Ts1で出湯が得られなければ(S12のNO)、熱媒ME1の検出温度T1が給水Wとの熱交換が可能な温度かを判断する(S14)。熱媒ME1の検出温度T1が給水Wとの熱交換可能な温度であれば(S14のYES)、現在の設定温度Ts1を設定温度Ts2に切り替え、水量調整部12により調整される熱交換器10に流れる給水Wの分配量を設定温度Ts1の出湯時より低減させる(S15)。
熱媒ME1の検出温度T1が給水Wとの熱交換が不可の温度であれば(S14のNO)、熱交換器10に給水Wを通すことなく、給湯部4から補助加熱部6に流す(S16)。
補助加熱部6では、給水管30に流れる給水Wまたは温水HWが設定温度Ts1以上かを判断する(S17)。設定温度Ts1以上であれば(S17のYES)、補助加熱を行うことなく給湯する(S18)。設定温度Ts1未満であれば(S17のNO)、補助加熱モードに移行し、給水Wまたは温水HWを熱媒ME2の熱と熱交換して昇温させ、設定温度Ts1での給湯を行う(S19)。
If hot water cannot be obtained at the set temperature Ts1 (NO in S12), it is determined whether the detected temperature T1 of the heat medium ME1 is a temperature at which heat exchange with the water supply W is possible (S14). If the detected temperature T1 of the heat medium ME1 is a temperature at which heat exchange with the water supply W is possible (YES in S14), the current set temperature Ts1 is switched to the set temperature Ts2, and the heat exchanger 10 is adjusted by the water amount adjustment unit 12. The distribution amount of the water supply W flowing into the water is reduced from that at the time of tap water at the set temperature Ts1 (S15).
If the detected temperature T1 of the heat medium ME1 is a temperature at which heat exchange with the feed water W is not possible (NO in S14), the water is flowed from the hot water supply section 4 to the auxiliary heating section 6 without passing the water supply W through the heat exchanger 10 ( S16).
The auxiliary heating unit 6 determines whether the supply water W or hot water HW flowing into the water supply pipe 30 is equal to or higher than the set temperature Ts1 (S17). If the temperature is equal to or higher than the set temperature Ts1 (YES in S17), hot water is supplied without performing auxiliary heating (S18). If it is less than the set temperature Ts1 (NO in S17), the system shifts to the auxiliary heating mode, heats the supplied water W or hot water HW by exchanging heat with the heat medium ME2, and heats it up to supply hot water at the set temperature Ts1 (S19). ).

<一実施の形態の効果>
この一実施の形態によれば次の効果が得られる。
(1) 給湯部4で設定温度Ts1の温水HWが得られない場合、設定温度Ts1から低い設定温度Ts2に切り替え、給湯部4側の熱交換器10に流れる水量を抑制するので、熱交換器10による圧力損失を低減することができる。
(2) 給湯部4で設定温度Ts1の温水HWが得られない場合、補助加熱部6の補助加熱により設定温度Ts1に昇温させた温水HWの給湯が行える。
(3) 熱交換器10に流す給水量を蓄熱に応じて加減するので、蓄熱タンク8の熱媒ME1の利用効率を高め、蓄熱タンク8側の成層状態を乱すことがない。
<Effects of one embodiment>
According to this embodiment, the following effects can be obtained.
(1) When the hot water HW at the set temperature Ts1 cannot be obtained in the hot water supply section 4, the set temperature Ts1 is switched to a lower set temperature Ts2, and the amount of water flowing to the heat exchanger 10 on the side of the hot water supply section 4 is suppressed. 10 can be reduced.
(2) When hot water HW at the set temperature Ts1 cannot be obtained in the hot water supply section 4, hot water HW heated to the set temperature Ts1 can be supplied by auxiliary heating in the auxiliary heating section 6.
(3) Since the amount of water supplied to the heat exchanger 10 is adjusted according to the heat storage, the utilization efficiency of the heat medium ME1 in the heat storage tank 8 is increased, and the stratification state on the heat storage tank 8 side is not disturbed.

図4は、実施例1に係る給湯システムを示している。図4において、図1と同一部分には同一符号を付している。
この実施例1の給湯システム2では燃料電池ユニット42、給湯ユニット44およびバックアップ給湯ユニット46が備えられる。
燃料電池ユニット42には燃料電池48、熱交換器50および循環ポンプ52が備えられる。燃料電池48は熱源の一例であり、発電時の発熱を熱源に利用する。熱交換器50は、燃料電池48の排気ME3の熱を蓄熱タンク8側の熱媒ME1に熱交換する。循環ポンプ52は熱媒ME1の循環路54に設置され、駆動時、蓄熱タンク8の下層側から熱媒ME1を熱交換器50に循環させるとともに、熱交換後の熱媒ME1を蓄熱タンク8の上層側に戻す。
燃料電池48の発電時、循環ポンプ52を駆動し、蓄熱タンク8の下層側から熱媒ME1を熱交換器50に循環させ、熱媒ME1に排気ME3の熱を熱交換し、加熱された熱媒ME1が蓄熱タンク8の上層側に戻される。これにより、蓄熱タンク8で成層蓄熱が行われる。熱交換器50の入側には温度センサー56が設置され、蓄熱タンク8の下層側の熱媒ME1の温度が検出される。熱交換器50の出側には温度センサー58が設置され、蓄熱タンク8の上層側に戻される熱媒ME1の温度が検出される。
FIG. 4 shows a hot water supply system according to the first embodiment. In FIG. 4, the same parts as in FIG. 1 are given the same reference numerals.
The hot water supply system 2 of Example 1 includes a fuel cell unit 42, a hot water supply unit 44, and a backup hot water supply unit 46.
The fuel cell unit 42 is equipped with a fuel cell 48, a heat exchanger 50, and a circulation pump 52. The fuel cell 48 is an example of a heat source, and uses heat generated during power generation as a heat source. The heat exchanger 50 exchanges heat from the exhaust gas ME3 of the fuel cell 48 with the heat medium ME1 on the heat storage tank 8 side. The circulation pump 52 is installed in the circulation path 54 of the heat medium ME1, and when driven, circulates the heat medium ME1 from the lower side of the heat storage tank 8 to the heat exchanger 50, and also transfers the heat medium ME1 after heat exchange to the heat storage tank 8. Return to the upper layer.
When the fuel cell 48 generates electricity, the circulation pump 52 is driven, the heat medium ME1 is circulated from the lower side of the heat storage tank 8 to the heat exchanger 50, and the heat of the exhaust gas ME3 is exchanged with the heat medium ME1. The medium ME1 is returned to the upper layer side of the heat storage tank 8. Thereby, stratified heat storage is performed in the heat storage tank 8. A temperature sensor 56 is installed on the inlet side of the heat exchanger 50, and detects the temperature of the heat medium ME1 on the lower layer side of the heat storage tank 8. A temperature sensor 58 is installed on the exit side of the heat exchanger 50, and detects the temperature of the heat medium ME1 returned to the upper layer side of the heat storage tank 8.

給湯ユニット44には蓄熱タンク8とともに、プレート熱交換器60が備えられる。プレート熱交換器60に蓄熱タンク8の熱媒ME1を流す循環路62には与熱ポンプ64および温度センサー22が備えられる。与熱ポンプ64の駆動時、蓄熱タンク8の上層部から熱媒ME1がプレート熱交換器60に循環し、蓄熱タンク8の下層側に戻される。温度センサー22は蓄熱タンク8の上層側の熱媒温度を検出する。蓄熱タンク8に設置された温度センサー66はタンク内の熱媒ME1の温度を検出する。
給水管14には水道管などが接続され、給水Wが供給される。給水管14にはミキシング弁68、水量センサー70、温度センサー72が備えられるとともに、ミキシング弁68およびバイパス管16を介して出湯管18が接続されている。出湯管18には水制御弁74、温度センサー76、78が備えられる。バイパス管16は、ミキシング弁68により分流させた給水Wを出湯管18側に流し込む。水制御弁74は、出湯管18から出湯する温水HWまたは給水Wの水量を制御する。温度センサー76はプレート熱交換器60の出側の温水温度を検出する。温度センサー78は、温水HWと給水Wとをミキシングした温水HWの温度を検出する。
The hot water supply unit 44 is equipped with a heat storage tank 8 and a plate heat exchanger 60. A circulation path 62 through which the heat medium ME1 of the heat storage tank 8 flows through the plate heat exchanger 60 is equipped with a heating pump 64 and a temperature sensor 22. When the heating pump 64 is driven, the heat medium ME1 circulates from the upper layer of the heat storage tank 8 to the plate heat exchanger 60 and is returned to the lower layer of the heat storage tank 8. The temperature sensor 22 detects the temperature of the heat medium in the upper layer of the heat storage tank 8 . A temperature sensor 66 installed in the heat storage tank 8 detects the temperature of the heat medium ME1 inside the tank.
A water pipe or the like is connected to the water supply pipe 14, and water supply W is supplied thereto. The water supply pipe 14 is equipped with a mixing valve 68 , a water flow sensor 70 , and a temperature sensor 72 , and is connected to the hot water outlet pipe 18 via the mixing valve 68 and the bypass pipe 16 . The hot water outlet pipe 18 is equipped with a water control valve 74 and temperature sensors 76 and 78. The bypass pipe 16 allows the water supply W separated by the mixing valve 68 to flow into the hot water outlet pipe 18 side. The water control valve 74 controls the amount of hot water HW or water supply W discharged from the hot water supply pipe 18 . Temperature sensor 76 detects the hot water temperature on the outlet side of plate heat exchanger 60. The temperature sensor 78 detects the temperature of the hot water HW obtained by mixing the hot water HW and the supply water W.

バックアップ給湯ユニット46には、プレート熱交換器80および熱交換器82が備えられる。プレート熱交換器80には入側に給水管30、その出側に出湯管40が備えられる。給水管30には給湯ユニット44から給水Wまたは温水HWを流し込み、温度センサー84、水量センサー85、水制御弁86が備えられるとともに、バイパス管36を分岐させるミキシング弁88が接続されている。温度センサー84は、給湯ユニット44から流入する温水HWまたは給水Wの温度を検出する。水量センサー85は、給湯ユニット44から流入する温水HWまたは給水Wの水量を検出し、水制御弁86は、その水量を制御する。
出湯管40には温度センサー90、92が備えられる。温度センサー90はプレート熱交換器80の出側の温水温度を検出する。温度センサー92はバイパス管36からの給水Wまたは温水HWと出湯管40側の温水HWとを混合した温水HWの温度を検出する。
プレート熱交換器80には循環路94が備えられ、熱媒ME2を循環させる。循環路94には熱交換器82、循環ポンプ96、開放タンク98、温度センサー100が備えられる。循環ポンプ96は、駆動時、熱媒ME2を循環路94に循環させる。プレート熱交換器80は、熱媒ME2の熱を給水Wまたは温水HWに熱交換する。熱交換器82は、バーナー102の燃焼熱を熱媒ME2に熱交換する。開放タンク98は、循環路94に循環する熱媒ME2の体積変動を吸収する。
The backup hot water supply unit 46 is equipped with a plate heat exchanger 80 and a heat exchanger 82. The plate heat exchanger 80 is provided with a water supply pipe 30 on its inlet side and a hot water outlet pipe 40 on its outlet side. The water supply pipe 30 is supplied with water supply W or hot water HW from the hot water supply unit 44, and is equipped with a temperature sensor 84, a water amount sensor 85, a water control valve 86, and is connected to a mixing valve 88 that branches the bypass pipe 36. Temperature sensor 84 detects the temperature of hot water HW or water supply W flowing from hot water supply unit 44 . The water amount sensor 85 detects the amount of hot water HW or water supply W flowing from the hot water supply unit 44, and the water control valve 86 controls the amount of water.
The hot water outlet pipe 40 is equipped with temperature sensors 90 and 92. Temperature sensor 90 detects the hot water temperature on the outlet side of plate heat exchanger 80. The temperature sensor 92 detects the temperature of the hot water HW that is a mixture of the supplied water W or hot water HW from the bypass pipe 36 and the hot water HW on the outlet pipe 40 side.
The plate heat exchanger 80 is equipped with a circulation path 94 to circulate the heat medium ME2. The circulation path 94 is equipped with a heat exchanger 82, a circulation pump 96, an open tank 98, and a temperature sensor 100. The circulation pump 96 circulates the heat medium ME2 through the circulation path 94 when driven. Plate heat exchanger 80 exchanges heat of heat medium ME2 with supply water W or hot water HW. Heat exchanger 82 exchanges combustion heat of burner 102 with heat medium ME2. The open tank 98 absorbs volume fluctuations of the heat medium ME2 circulating in the circulation path 94.

<給湯システム2の制御部20>
図5は、給湯システム2の制御部20(図1)を示している。この制御部20には電池制御部104、給湯ユニット制御部106、バックアップ制御部108、リモコン制御部110が備えられる。電池制御部104は燃料電池ユニット42を制御する。給湯ユニット制御部106は給湯ユニット44を制御する。バックアップ制御部108はバックアップ給湯ユニット46を制御する。リモコン制御部110はリモコン装置に備えられ、電池制御部104、給湯ユニット制御部106およびバックアップ制御部108と有線または無線により連係する。
電池制御部104はコンピュータで構成され、プロセッサ112、メモリ部114、入出力部(I/O)116、システム通信部118が備えられる。プロセッサ112はメモリ部114にあるOS(Operating System)や電池制御プログラムを実行する。メモリ部114にはROM(Read-Only Memory)やRAM(Random-Access Memory)を備え、OSや電池制御プログラムを格納する。システム通信部118はリモコン制御部110、給湯ユニット制御部106のシステム通信部126、バックアップ制御部108のシステム通信部134と制御データの送受を行う。I/O116には温度センサー56、58の検出温度が制御情報として入力されるとともに、循環ポンプ52の制御出力が得られる。
<Control unit 20 of hot water supply system 2>
FIG. 5 shows the control unit 20 (FIG. 1) of the hot water supply system 2. As shown in FIG. The control section 20 includes a battery control section 104, a hot water supply unit control section 106, a backup control section 108, and a remote control control section 110. The battery control section 104 controls the fuel cell unit 42. Hot water supply unit control section 106 controls hot water supply unit 44 . Backup control section 108 controls backup hot water supply unit 46. The remote control control section 110 is included in the remote control device and communicates with the battery control section 104, the hot water supply unit control section 106, and the backup control section 108 by wire or wirelessly.
The battery control unit 104 is composed of a computer, and includes a processor 112, a memory unit 114, an input/output unit (I/O) 116, and a system communication unit 118. The processor 112 executes an OS (Operating System) and a battery control program stored in the memory unit 114. The memory unit 114 includes a ROM (Read-Only Memory) and a RAM (Random-Access Memory), and stores an OS and a battery control program. The system communication section 118 sends and receives control data to and from the remote controller control section 110, the system communication section 126 of the hot water supply unit control section 106, and the system communication section 134 of the backup control section 108. The temperatures detected by the temperature sensors 56 and 58 are input to the I/O 116 as control information, and the control output of the circulation pump 52 is obtained.

給湯ユニット制御部106はコンピュータで構成され、プロセッサ120、メモリ部122、入出力部(I/O)124、システム通信部126が備えられる。プロセッサ120はメモリ部122にあるOSや給湯制御プログラムを実行する。メモリ部122にはROM、EEPROM(Electrically Erasable Programmable Read-Only Memory )やRAMを備え、OSや給湯制御プログラムを格納する。システム通信部126はリモコン制御部110、電池制御部104のシステム通信部118、バックアップ制御部108のシステム通信部134と制御データの送受を行う。I/O124には温度センサー22、66、72、76、78の検出温度、水量センサー70の検出水量が制御情報として入力されるとともに、与熱ポンプ64およびミキシング弁68の制御出力が得られる。
バックアップ制御部108はコンピュータで構成され、プロセッサ128、メモリ部130、入出力部(I/O)132、システム通信部134が備えられる。プロセッサ128はメモリ部130にあるOSやバックアップ制御プログラムを実行する。メモリ部130にはROM、EEPROMやRAMを備え、OSやバックアップ制御プログラムを格納する。システム通信部134はリモコン制御部110、電池制御部104のシステム通信部118、給湯ユニット制御部106のシステム通信部126と制御データの送受を行う。I/O132には温度センサー84、90、92、100の検出温度、水量センサー85の検出水量が制御情報として入力されるとともに、循環ポンプ96、水制御弁86およびミキシング弁88の制御出力が得られる。
The hot water supply unit control section 106 is composed of a computer, and includes a processor 120, a memory section 122, an input/output section (I/O) 124, and a system communication section 126. The processor 120 executes the OS and hot water supply control program stored in the memory unit 122. The memory unit 122 includes a ROM, an electrically erasable programmable read-only memory (EEPROM), and a RAM, and stores an OS and a hot water supply control program. The system communication unit 126 sends and receives control data to and from the remote control control unit 110, the system communication unit 118 of the battery control unit 104, and the system communication unit 134 of the backup control unit 108. The temperatures detected by the temperature sensors 22, 66, 72, 76, and 78 and the amount of water detected by the water amount sensor 70 are input to the I/O 124 as control information, and control outputs from the heating pump 64 and the mixing valve 68 are obtained.
The backup control unit 108 is composed of a computer and includes a processor 128, a memory unit 130, an input/output unit (I/O) 132, and a system communication unit 134. The processor 128 executes the OS and backup control program stored in the memory unit 130. The memory unit 130 includes ROM, EEPROM, and RAM, and stores an OS and a backup control program. The system communication section 134 sends and receives control data to and from the remote control control section 110, the system communication section 118 of the battery control section 104, and the system communication section 126 of the hot water supply unit control section 106. The temperatures detected by the temperature sensors 84, 90, 92, and 100 and the amount of water detected by the water amount sensor 85 are input to the I/O 132 as control information, and the control outputs of the circulation pump 96, water control valve 86, and mixing valve 88 are obtained. It will be done.

<熱媒ME1による給湯制御>
図6のAは、給湯設定温度(以下「設定温度Ts1」と称する)が35〔℃〕の場合の給水温度と最低熱媒温度の関係、図6のBは、設定温度Ts1が40〔℃〕の場合の給水温度と最低熱媒温度の関係、図6のCは、設定温度Ts1が45〔℃〕の場合の給水温度と最低熱媒温度の関係を示している。
これらの関係から、図7は、設定温度Ts1をパラメータとする給水温度と最低熱媒温度の関係グラフを示している。図7において、Aは設定温度Ts1=35〔℃〕、Bは設定温度Ts1=40〔℃〕、Cは設定温度Ts1=45〔℃〕の場合である。
この関係からたとえば、給水温度が15〔℃〕で設定温度Ts1が40〔℃〕であれば、最低熱媒温度は60.6〔℃〕であることが必要である。
<Hot water supply control using heat medium ME1>
6A shows the relationship between the water supply temperature and the minimum heating medium temperature when the hot water supply temperature setting (hereinafter referred to as "set temperature Ts1") is 35 [°C], and FIG. C in FIG. 6 shows the relationship between the feed water temperature and the minimum heat medium temperature when the set temperature Ts1 is 45 [° C.].
From these relationships, FIG. 7 shows a graph of the relationship between the supply water temperature and the lowest heat medium temperature using the set temperature Ts1 as a parameter. In FIG. 7, A is the case where the set temperature Ts1 = 35 [°C], B is the case where the set temperature Ts1 = 40 [°C], and C is the case where the set temperature Ts1 = 45 [°C].
From this relationship, for example, if the supply water temperature is 15 [°C] and the set temperature Ts1 is 40 [°C], the minimum heat medium temperature needs to be 60.6 [°C].

<熱媒ME1で設定温度Ts1の給湯が可能な場合>
図8のAは、給湯ユニット44が熱媒ME1で設定温度Ts1の給湯が可能な場合の動作を示している。図8のAにおいて、太線は給水W、温水HW、熱媒ME1の流動を示している。
熱媒ME1で設定温度Ts1の給湯が可能な場合、給湯ユニット44では、温度センサー76の検出温度To1(熱交換後温度)が設定温度Ts1よりたとえば、6〔℃〕だけ高い値(Ts1+6〔℃〕)(熱交換の第1の目標温度)になるように、与熱ポンプ64の回転数を制御する。温度センサー78の検出温度Tm1が設定温度Ts1になるように、ミキシング弁68のポートa、bの開度を制御する。
<When hot water can be supplied at the set temperature Ts1 using the heating medium ME1>
A in FIG. 8 shows the operation when the hot water supply unit 44 is capable of supplying hot water at the set temperature Ts1 using the heating medium ME1. In A of FIG. 8, thick lines indicate the flow of the supply water W, hot water HW, and heat medium ME1.
When it is possible to supply hot water at the set temperature Ts1 with the heating medium ME1, in the hot water supply unit 44, the detected temperature To1 (temperature after heat exchange) of the temperature sensor 76 is higher than the set temperature Ts1 by, for example, 6 [°C] (Ts1 + 6 [°C)]. ) (first target temperature for heat exchange). The opening degrees of ports a and b of the mixing valve 68 are controlled so that the temperature Tm1 detected by the temperature sensor 78 becomes the set temperature Ts1.

このとき、バックアップ給湯ユニット46では、温度センサー84の検出温度Ti2が設定温度Ts1以上となるので、ミキシング弁88はポートd側を100〔%〕の開度に制御する。バーナー102は燃焼させないので、ミキシング弁88はポートc側の通水がない。たとえば、設定温度Ts1=40〔℃〕、温度センサー72の検出温度Ti1=20〔℃〕の場合、ミキシング弁68のポートa側の流量およびポートb側の流量の比率は、a:b=77:23とすればよい。バックアップ給湯ユニット46のミキシング弁88ではポートd側が100〔%〕の水量となる。つまり、熱媒ME1で設定温度Ts1の給湯が可能な場合には、給湯システム2に流れる全水量の77〔%〕が熱交換器60に流れ、全水量の23〔%〕がバイパス管16に流れる。これにより、全水量の77〔%〕が熱交換器60の影響を受けることになる。 At this time, in the backup hot water supply unit 46, the temperature Ti2 detected by the temperature sensor 84 is equal to or higher than the set temperature Ts1, so the mixing valve 88 controls the opening degree of the port d side to 100%. Since the burner 102 does not cause combustion, water does not flow through the mixing valve 88 on the port c side. For example, when the set temperature Ts1 = 40 [°C] and the detected temperature Ti1 of the temperature sensor 72 = 20 [°C], the ratio of the flow rate on the port a side and the flow rate on the port b side of the mixing valve 68 is a:b=77 :23 is sufficient. In the mixing valve 88 of the backup hot water supply unit 46, the water amount on the port d side is 100%. In other words, when hot water can be supplied at the set temperature Ts1 using the heat medium ME1, 77% of the total amount of water flowing into the hot water supply system 2 flows to the heat exchanger 60, and 23% of the total amount of water flows to the bypass pipe 16. flows. As a result, 77% of the total amount of water is affected by the heat exchanger 60.

<熱媒ME1で設定温度Ts1の給湯ができない場合>
図8のBは、給湯ユニット44が熱媒ME1で設定温度Ts1の給湯ができない場合の給湯動作を示している。図8のBにおいて、太線は給水W、温水HW、熱媒ME1、ME2の流動を示している。
この場合、検出温度To1=(T1-5〔℃〕)になるように、与熱ポンプ64の回転数制御を行う。検出温度Tm1の目標温度が通常の設定温度Ts1であると、検出温度To1の低下に伴いaルートの流量比率が高まり、最終的には全水量が熱交換器60の影響を受けてしまう。そこで、検出温度Tm1の目標温度をミキシング弁68のaルートとbルートのミキシングが行われる温度にする。つまり、検出温度Tm1に対し、設定温度Ts1から設定温度Ts2(<Ts1)に変更する。この設定温度Ts2は設定温度Ts1より低い温度であればよく、たとえば、To1=(T1-5〔℃〕)に制御されていると、第1に、設定温度Ts2=(Ti1+(T1-5))/2を目標温度とすれば、ミキシング弁68の開度が調整され、各ポートa、bのそれぞれに50〔%〕の流量となる。この結果、aルート側に給水Wが流れることによる圧力損失を低減することができる。
<When hot water cannot be supplied at the set temperature Ts1 using heating medium ME1>
B in FIG. 8 shows a hot water supply operation when the hot water supply unit 44 cannot supply hot water at the set temperature Ts1 using the heating medium ME1. In B of FIG. 8, thick lines indicate the flow of the supply water W, the hot water HW, and the heat medium ME1, ME2.
In this case, the rotation speed of the heating pump 64 is controlled so that the detected temperature To1=(T1-5 [° C.]). If the target temperature of the detected temperature Tm1 is the normal set temperature Ts1, the flow rate ratio of route a increases as the detected temperature To1 decreases, and the total water amount is ultimately affected by the heat exchanger 60. Therefore, the target temperature of the detected temperature Tm1 is set to the temperature at which mixing of route a and route b of the mixing valve 68 is performed. That is, the detected temperature Tm1 is changed from the set temperature Ts1 to the set temperature Ts2 (<Ts1). This set temperature Ts2 only needs to be lower than the set temperature Ts1. For example, if To1 is controlled to (T1-5 [°C]), firstly, the set temperature Ts2 = (Ti1 + (T1-5)). )/2 as the target temperature, the opening degree of the mixing valve 68 is adjusted to provide a flow rate of 50% to each port a and b. As a result, it is possible to reduce pressure loss due to the supply water W flowing to the a route side.

第2に、目標温度を設定温度Ts2=(Ti1+Ti1+(T1-5))/3のように検出温度Ti1の値寄りに設定すれば、ミキシング弁68のbルート側に流れる流量を増加させることになり、aルート側に流れる給水Wの圧力損失をさらに低減できる。
このように、設定温度Ts1を設定温度Ts2に変更するだけで、ミキシング弁68の制御形態を変更する必要がない。このため、ソフトウェアの再設計は不要である。
この場合、バックアップ給湯ユニット46側では、循環ポンプ96を駆動し、バーナー102を燃焼させ、検出温度Tj=80〔℃〕に制御する。検出温度Ti2は、設定温度Ts1より低いので、検出温度To2≒80〔℃〕とミキシングし、検出温度Tm2が設定温度Ts1になるように、ミキシング弁88の開度制御を行う。
このとき、検出温度Ti2は検出温度To2より設定温度Ts1に近いため、ミキシング弁88のポートc側流量、ポートd側流量は、ポートc側流量<ポートd側流量となる。
Second, if the target temperature is set closer to the detected temperature Ti1, such as set temperature Ts2=(Ti1+Ti1+(T1-5))/3, the flow rate flowing to route b of the mixing valve 68 can be increased. Therefore, the pressure loss of the water supply W flowing to the route a side can be further reduced.
In this way, there is no need to change the control form of the mixing valve 68 by simply changing the set temperature Ts1 to the set temperature Ts2. Therefore, there is no need to redesign the software.
In this case, on the backup hot water supply unit 46 side, the circulation pump 96 is driven, the burner 102 is fired, and the detected temperature Tj is controlled to be 80 [° C.]. Since the detected temperature Ti2 is lower than the set temperature Ts1, it is mixed with the detected temperature To2≈80 [° C.], and the opening degree of the mixing valve 88 is controlled so that the detected temperature Tm2 becomes the set temperature Ts1.
At this time, since the detected temperature Ti2 is closer to the set temperature Ts1 than the detected temperature To2, the flow rate on the port c side and the flow rate on the port d side of the mixing valve 88 are such that the flow rate on the port c side<the flow rate on the port d side.

たとえば、設定温度Ts1=40〔℃〕、検出温度Ti1=20〔℃〕の場合、検出温度T1=40〔℃〕とすると、検出温度To1=35〔℃〕となる。
ここで、設定温度Ts2は、
(Ti1+T1-5)/2=(20+35)/2=27.5〔℃〕
となり、検出温度Tm1の目標温度を設定温度Ts1より設定温度Ts2に変更すれば、ミキシング弁68のa側流量、b側流量は、a側流量:b側流量=50:50となり、検出温度Tm1=27.5〔℃〕となる。
検出温度Ti2は27.5〔℃〕であるから、検出温度To2≒80〔℃〕の温水HWとミキシングし、検出温度Tm2を40〔℃〕に制御すると、ミキシング弁88のポートc側流量、ポートd側流量は、ポートc側流量:ポートd側流量≒24:76となる。したがって、全水量の50〔%〕が熱交換器60の影響を受け、全水量の24〔%〕程度が熱交換器80の影響を受けることになる。これにより、熱交換器60、80による圧力損失が低減される。
For example, if the set temperature Ts1 = 40 [°C] and the detected temperature Ti1 = 20 [°C], then if the detected temperature T1 = 40 [°C], the detected temperature To1 = 35 [°C].
Here, the set temperature Ts2 is
(Ti1+T1-5)/2=(20+35)/2=27.5 [℃]
Therefore, if the target temperature of the detected temperature Tm1 is changed from the set temperature Ts1 to the set temperature Ts2, the a side flow rate and the b side flow rate of the mixing valve 68 become a side flow rate: b side flow rate = 50:50, and the detected temperature Tm1 =27.5 [°C].
Since the detected temperature Ti2 is 27.5 [°C], if the detected temperature To2 is mixed with hot water HW of 80 [°C] and the detected temperature Tm2 is controlled to 40 [°C], the flow rate on the port c side of the mixing valve 88, The flow rate on the port d side is the flow rate on the port c side: the flow rate on the port d side≈24:76. Therefore, 50% of the total amount of water is affected by the heat exchanger 60, and about 24% of the total amount of water is affected by the heat exchanger 80. This reduces pressure loss due to the heat exchangers 60, 80.

<熱媒ME1による熱交換不可の場合>
図8のCは、熱媒ME1による熱交換不可の場合の動作を示している。図8のCにおいて、太線は給水W、熱媒ME2の流動を示している。
熱媒ME1による熱交換不可の場合、給湯ユニット44では蓄熱が低く、給湯のための熱交換に利用できないため、ミキシング弁68はポートb側に100〔%〕の給水Wを流すように制御し、与熱ポンプ64は停止状態とする。この場合、検出温度Tm1は検出温度Ti1になる。
<When heat exchange by heat medium ME1 is not possible>
C in FIG. 8 shows the operation when heat exchange by the heat medium ME1 is not possible. In C of FIG. 8, thick lines indicate the flow of the water supply W and the heat medium ME2.
When heat exchange by the heat medium ME1 is not possible, the hot water supply unit 44 has low heat storage and cannot be used for heat exchange for hot water supply, so the mixing valve 68 is controlled to flow 100% of the water supply W to the port b side. , the heating pump 64 is in a stopped state. In this case, the detected temperature Tm1 becomes the detected temperature Ti1.

バックアップ給湯ユニット46では、循環ポンプ96を駆動し、バーナー102を燃焼させ、検出温度Tj=80〔℃〕に制御する。
検出温度Ti2は設定温度Ts1未満であるから、検出温度To2≒80〔℃〕の温水HWとミキシングし、検出温度Tm2が設定温度Ts1になるように、ミキシング弁88の開度の制御を行う。
検出温度Ti2は検出温度To2より設定温度Ts1に近いため、ミキシング弁88のポートc側流量、ポートd側流量の比率は、ポートc側流量<ポートd側流量となる。
In the backup hot water supply unit 46, the circulation pump 96 is driven, the burner 102 is combusted, and the detected temperature Tj is controlled to be 80 [° C.].
Since the detected temperature Ti2 is less than the set temperature Ts1, the opening degree of the mixing valve 88 is controlled so that it is mixed with the hot water HW of the detected temperature To2≈80 [° C.] and the detected temperature Tm2 becomes the set temperature Ts1.
Since the detected temperature Ti2 is closer to the set temperature Ts1 than the detected temperature To2, the ratio of the flow rate on the port c side and the flow rate on the port d side of the mixing valve 88 is such that the flow rate on the port c side<the flow rate on the port d side.

たとえば、設定温度Ts1=40〔℃〕、検出温度Ti1=20〔℃〕では、検出温度T1=20〔℃〕とすれば、与熱ポンプ64は停止状態となる。
このとき、ミキシング弁68のポートa側流量、ポートb側流量の比率は、ポートa側流量:ポートb側流量=0:1となる。このとき、ポートb側に全流量の100〔%〕が流れる。
検出温度Ti2=Tm1=Ti1=20〔℃〕なので、検出温度To2≒80〔℃〕とミキシングし、検出温度Tm2を設定温度Ts1=40〔℃〕に制御すると、ミキシング弁88のポートc側流量、ポートd側流量の比率は、ポートc側流量:ポートd側流量≒1:2となる。
したがって、全水量の1/3が熱交換器80の影響を受け、熱交換器60による圧力損失は発生しない。
For example, if the set temperature Ts1 = 40 [°C] and the detected temperature Ti1 = 20 [°C], then if the detected temperature T1 = 20 [°C], the heating pump 64 will be in a stopped state.
At this time, the ratio of the flow rate on the port a side and the flow rate on the port b side of the mixing valve 68 is the flow rate on the port a side: the flow rate on the port b side = 0:1. At this time, 100% of the total flow flows to the port b side.
Since the detected temperature Ti2 = Tm1 = Ti1 = 20 [°C], when mixing with the detected temperature To2≒80 [°C] and controlling the detected temperature Tm2 to the set temperature Ts1 = 40 [°C], the flow rate on the port c side of the mixing valve 88 , the ratio of the port d side flow rate is port c side flow rate:port d side flow rate≒1:2.
Therefore, 1/3 of the total amount of water is affected by the heat exchanger 80, and no pressure loss occurs due to the heat exchanger 60.

<給湯システム2の制御>
図9は、給湯システム2の制御の処理手順を示している。この制御にはリモコン制御部110、電池制御部104、給湯ユニット制御部106およびバックアップ制御部108の各制御が含まれ、各制御が連係して実行される。
リモコン制御部110ではイニシャライズ(S101)の後、入力受付処理(S102)、表示出力処理(S103)が繰り返し実行される。表示出力処理では電池制御部104、給湯ユニット制御部106またはバックアップ制御部108で得られる状態情報をLCD(Liquid Crystal Display)に表示する。
<Control of hot water supply system 2>
FIG. 9 shows a processing procedure for controlling the hot water supply system 2. As shown in FIG. This control includes each control of the remote control control section 110, battery control section 104, hot water supply unit control section 106, and backup control section 108, and each control is executed in conjunction with each other.
After initialization (S101), the remote control control unit 110 repeatedly executes input reception processing (S102) and display output processing (S103). In the display output process, status information obtained by the battery control section 104, hot water supply unit control section 106, or backup control section 108 is displayed on an LCD (Liquid Crystal Display).

電池制御部104ではイニシャライズ(S104)の後、入力受付処理(S102)により運転スイッチのON/OFFを受け、図10に示す熱回収処理(S105)に移行し、この熱回収処理で得られる状態情報をリモコン制御部110に提供する。
給湯ユニット制御部106ではイニシャライズ(S106)の後、入力受付処理(S102)により設定温度Ts1の指示を受け、図11に示す給湯処理(S107)に移行し、この給湯処理で得られる状態情報をリモコン制御部110に提供する。
バックアップ制御部108ではイニシャライズ(S108)の後、入力受付処理(S102)により設定温度Ts1の指示を受け、図12に示すバックアップ給湯処理(S109)に移行し、このバックアップ給湯処理で得られる状態情報をリモコン制御部110に提供する。
After initialization (S104), the battery control unit 104 receives ON/OFF of the operation switch through the input reception process (S102), moves to the heat recovery process (S105) shown in FIG. 10, and changes the state obtained by this heat recovery process. The information is provided to the remote controller control unit 110.
After initialization (S106), the hot water supply unit control unit 106 receives an instruction for the set temperature Ts1 through the input reception process (S102), moves to the hot water supply process (S107) shown in FIG. 11, and uses the status information obtained in this hot water supply process. The information is provided to the remote control control unit 110.
After initialization (S108), the backup control unit 108 receives an instruction for the set temperature Ts1 through an input reception process (S102), moves to a backup hot water supply process (S109) shown in FIG. is provided to the remote controller control unit 110.

<熱回収処理>
図10は、電池制御部104による熱回収処理の処理手順を示している。この処理手順ではリモコン制御部110の入力受付処理(S102)の運転スイッチの操作を監視し(S201)、運転スイッチ=ONであれば(S201のYES)、燃料電池48を駆動し(S202)、温度センサー58の出力温度がたとえば、75〔℃〕になるように循環ポンプ52の回転を制御する(S203)。
運転スイッチ=OFFであれば(S201のNO)、燃料電池48を停止し(S204)、循環ポンプ52を停止させる(S205)。
<Heat recovery treatment>
FIG. 10 shows a procedure for heat recovery processing by the battery control unit 104. In this processing procedure, the operation of the operation switch in the input reception process (S102) of the remote control control unit 110 is monitored (S201), and if the operation switch is ON (YES in S201), the fuel cell 48 is driven (S202), The rotation of the circulation pump 52 is controlled so that the output temperature of the temperature sensor 58 is, for example, 75 [° C.] (S203).
If the operation switch is OFF (NO in S201), the fuel cell 48 is stopped (S204), and the circulation pump 52 is stopped (S205).

<給湯処理>
図11は、給湯ユニット44の給湯処理の処理手順を示している。この処理手順では、給湯使用か否かを判断し(S301)、給湯使用でなければ(S301のNO)、与熱ポンプ64を停止し(S302)、この処理を終了する。
給湯使用であれば(S301のYES)、検出温度T1が設定温度Ts1の供給が可能な温度以上であるかを判断する(S303)。検出温度T1が設定温度Ts1の供給が可能な温度以上であれば(S303のYES)、図8のAに示す給湯処理を実行する(S304)。この処理では、検出温度To1が設定温度Ts1より一定温度ΔT1たとえば、6〔℃〕だけ高い温度(=設定温度Ts1+ΔT1)になるように与熱ポンプ64の回転を制御し(S305)、同時に検出温度Tm1が設定温度Ts1になるようにミキシング弁68の開度を制御する(S306)。
<Hot water supply process>
FIG. 11 shows a procedure for hot water supply processing by the hot water supply unit 44. In this processing procedure, it is determined whether hot water supply is being used (S301), and if hot water supply is not being used (NO in S301), the heating pump 64 is stopped (S302), and this processing is ended.
If hot water is being used (YES in S301), it is determined whether the detected temperature T1 is equal to or higher than the temperature at which the set temperature Ts1 can be supplied (S303). If the detected temperature T1 is equal to or higher than the temperature at which the set temperature Ts1 can be supplied (S303: YES), the hot water supply process shown in A of FIG. 8 is executed (S304). In this process, the rotation of the heating pump 64 is controlled so that the detected temperature To1 becomes a constant temperature ΔT1 higher than the set temperature Ts1 by, for example, 6 [°C] (= set temperature Ts1 + ΔT1) (S305), and at the same time the detected temperature The opening degree of the mixing valve 68 is controlled so that Tm1 becomes the set temperature Ts1 (S306).

検出温度T1が設定温度Ts1の供給が可能な温度以上でなければ(S303のNO)、検出温度T1が給水温度より一定温度ΔT2たとえば、5〔℃〕だけ高い温度(=給水温度+ΔT2)を超えているかを判断する(S307)。検出温度T1が温度(=給水温度+ΔT2)を超えていれば(S307のYES)、図8のBに示す給湯処理を実行する(S308)。
この処理では、検出温度To1が検出温度T1より一定温度ΔT2たとえば、5〔℃〕だけ低い温度(=T1温度-ΔT2)になるように与熱ポンプ64の回転を制御し(S309)、同時に検出温度Tm1の目標温度を算出する(S310)。
この処理では、検出温度To1(=T1-ΔT2)と給水Wの検出温度Ti1より目標温度を算出する。たとえば、第1の目標温度として(To1+Ti1)/2、または第2の目標温度として(To1+Ti1+Ti1)/3とすればよい。
そして、これらいずれかの目標温度が得られるように、ミキシング弁68の制御を行う(S311)。
If the detected temperature T1 is not higher than the temperature at which the set temperature Ts1 can be supplied (NO in S303), the detected temperature T1 exceeds the temperature (=supply water temperature + ΔT2) higher by a constant temperature ΔT2 than the supply water temperature, for example, by 5 [°C]. (S307). If the detected temperature T1 exceeds the temperature (=water supply temperature +ΔT2) (YES in S307), the hot water supply process shown in B in FIG. 8 is executed (S308).
In this process, the rotation of the heating pump 64 is controlled so that the detected temperature To1 is a constant temperature ΔT2 lower than the detected temperature T1 by, for example, 5 degrees Celsius (=T1 temperature - ΔT2) (S309), and at the same time A target temperature of temperature Tm1 is calculated (S310).
In this process, the target temperature is calculated from the detected temperature To1 (=T1-ΔT2) and the detected temperature Ti1 of the water supply W. For example, the first target temperature may be (To1+Ti1)/2, or the second target temperature may be (To1+Ti1+Ti1)/3.
Then, the mixing valve 68 is controlled so that one of these target temperatures is obtained (S311).

S307において、検出温度T1が温度(=給水温度+ΔT)以下であれば(S307のNO)、図8のCに示す処理を実行する(S312)。この処理では、与熱ポンプ64を停止させ(S313)、ポートbに100〔%〕の流水が得られるようにミキシング弁68を制御する(S314)。 In S307, if the detected temperature T1 is lower than the temperature (=supply water temperature +ΔT) (NO in S307), the process shown in C in FIG. 8 is executed (S312). In this process, the heating pump 64 is stopped (S313), and the mixing valve 68 is controlled so that 100% of water is supplied to port b (S314).

<バックアップ給湯処理>
図12は、バックアップ給湯処理の処理手順を示している。この処理手順では、給湯使用か否かを判断する(S801)。この判断は水量センサー85の検出水量により判断すればよい。
給湯使用でなければ(S801のNO)、給湯動作を停止し(S802)、このバックアップ給湯処理を終了する。
給湯使用であれば(S801のYES)、検出温度Ti2が設定温度Ts1より低いかを判断する(S803)。検出温度Ti2が設定温度Ts1より低ければ(S803のYES)、給水加熱に移行し、必要熱量に応じた回転数で循環ポンプ96を動作させる(S804)。このとき、検出温度Tjが所定温度たとえば、80〔℃〕になるようにバーナー102の燃焼を制御する(S805)。同時に検出温度Tm2が設定温度Ts1になるようにミキシング弁88の開度比率を制御する(S806)。
検出温度Ti2が設定温度Ts1以上であれば(S803のNO)、加熱動作を停止し、ポートd側に100〔%〕の水量となるように、ミキシング弁88の開度比率を制御する。
<Backup hot water processing>
FIG. 12 shows the processing procedure of the backup hot water supply process. In this processing procedure, it is determined whether or not hot water supply is used (S801). This determination may be made based on the amount of water detected by the water amount sensor 85.
If hot water supply is not being used (NO in S801), the hot water supply operation is stopped (S802), and this backup hot water supply process is ended.
If hot water is being used (YES in S801), it is determined whether the detected temperature Ti2 is lower than the set temperature Ts1 (S803). If the detected temperature Ti2 is lower than the set temperature Ts1 (YES in S803), the process shifts to feed water heating, and the circulation pump 96 is operated at a rotation speed corresponding to the required amount of heat (S804). At this time, the combustion of the burner 102 is controlled so that the detected temperature Tj becomes a predetermined temperature, for example, 80 [° C.] (S805). At the same time, the opening ratio of the mixing valve 88 is controlled so that the detected temperature Tm2 becomes the set temperature Ts1 (S806).
If the detected temperature Ti2 is equal to or higher than the set temperature Ts1 (NO in S803), the heating operation is stopped and the opening ratio of the mixing valve 88 is controlled so that the amount of water reaches 100% on the port d side.

<熱交換器側流量比率と圧力損失の関係>
図13は、熱交換器60側の流量比率に対する圧力損失の関係を示している。この圧力損失の関係は、全流量として16〔リットル/min〕を流した場合である。この関係からすれば、流量が増加すれば、二次関数的に圧力損失も増加している。尚、0〔%〕の流量であっても、圧力損失があるのは、給湯ユニット44の給水口と給湯口間にて測定を行っているため、共通経路及びバイパス管16側の圧力損失のためである。
斯かる関係は熱交換器60の特性であるが、バックアップ給湯ユニット46側の熱交換器80においても、熱交換器60と同一仕様であれば、同様の傾向となる。
<Relationship between heat exchanger side flow rate ratio and pressure loss>
FIG. 13 shows the relationship between the pressure loss and the flow rate ratio on the heat exchanger 60 side. This pressure loss relationship is based on a case where the total flow rate is 16 [liters/min]. According to this relationship, as the flow rate increases, the pressure loss also increases in a quadratic manner. Note that even at a flow rate of 0%, there is a pressure loss because the measurement is performed between the water supply inlet and the hot water supply inlet of the hot water supply unit 44, so the pressure loss on the common path and bypass pipe 16 side is It's for a reason.
Although such a relationship is a characteristic of the heat exchanger 60, the same tendency will occur in the heat exchanger 80 on the backup hot water supply unit 46 side if it has the same specifications as the heat exchanger 60.

<実施例1の効果>
この実施例1によれば、次の効果が得られる。
(1) 蓄熱タンク8の蓄熱に応じてその熱量を給湯に利用することができる。
(2) 蓄熱が低く、給湯に利用できない場合には給湯ユニット44を通過させた給水Wをバックアップ給湯ユニット46で設定温度Ts1まで加熱し、設定温度Ts1での給湯が可能である。
(3) 設定温度Ts1まで給水Wを昇温させることができないが、ある程度の熱交換が可能な蓄熱では、熱交換器60に流す給水量を抑え、圧力損失の低減や与熱ポンプ64の回転数を抑制し、効率的な蓄熱利用を図ることができる。
<Effects of Example 1>
According to this first embodiment, the following effects can be obtained.
(1) Depending on the heat stored in the heat storage tank 8, the amount of heat can be used for hot water supply.
(2) When heat storage is low and cannot be used for hot water supply, the water supply W passed through the hot water supply unit 44 is heated to the set temperature Ts1 by the backup hot water supply unit 46, and hot water can be supplied at the set temperature Ts1.
(3) In heat storage, where the temperature of the water supply W cannot be raised to the set temperature Ts1, but a certain amount of heat exchange is possible, the amount of water supplied to the heat exchanger 60 is suppressed, reducing pressure loss and rotating the heating pump 64. It is possible to suppress the number of heat storages and achieve efficient use of heat storage.

(4) 蓄熱が低い場合、強制的な熱媒循環を回避でき、蓄熱タンク8の成層状態を乱すことがない。
(5) ミキシング弁68の開度比率と流量比率は一般的に比例関係にない。これは、圧力損失が高いポート側が流れにくくなることによる。これは、開度制御では流量が少ない場合、熱交換器60側の流量比率が低下することが想定される。換言すれば、このような現象を想定すると、蓄熱タンク8の蓄熱の利用率が低下するが、斯かる制御では、熱交換器60側に流れる流量が補償され、蓄熱の有効利用が図られる。
(4) When the heat storage is low, forced circulation of the heat medium can be avoided and the stratification state of the heat storage tank 8 will not be disturbed.
(5) The opening ratio and flow rate ratio of the mixing valve 68 are generally not in a proportional relationship. This is because it becomes difficult to flow on the port side where pressure loss is high. This is because when the flow rate is small in the opening degree control, it is assumed that the flow rate ratio on the heat exchanger 60 side decreases. In other words, assuming such a phenomenon, the utilization rate of heat storage in the heat storage tank 8 will decrease, but with such control, the flow rate flowing to the heat exchanger 60 side is compensated, and the heat storage can be used effectively.

図14は、実施例2に係る給湯システムを示している。実施例1では給湯ユニット44に蓄熱タンク8を設置したが、図14に示すように、給湯ユニット44から蓄熱タンク8を除き、蓄熱タンク8を備えたタンクユニット43、蓄熱タンク8が除かれた給湯ユニット45を以て構成しても同様の制御が可能である。 FIG. 14 shows a hot water supply system according to the second embodiment. In Example 1, the heat storage tank 8 was installed in the hot water supply unit 44, but as shown in FIG. 14 , the heat storage tank 8 was removed from the hot water supply unit 44, and the tank unit 43 provided with the heat storage tank 8 and the heat storage tank 8 were removed Similar control is possible even if the hot water supply unit 45 is used.

図15は、実施例3に係る給湯システムを示している。実施例2では給湯ユニット45とバックアップ給湯ユニット46を別個に構成したが、図15に示すように、給湯ユニット45とバックアップ給湯ユニット46を一体化した給湯ユニット47を構成しても同様の制御が可能である。
FIG. 15 shows a hot water supply system according to the third embodiment. In the second embodiment, the hot water supply unit 45 and the backup hot water supply unit 46 are configured separately, but as shown in FIG. It is possible.

上記実施例では給湯ユニット44とバックアップ給湯ユニット46を独立した構成としたが、給湯ユニット44、バックアップ給湯ユニット46および各制御部を一体にした給湯装置として構成してもよい。 In the above embodiment, the hot water supply unit 44 and the backup hot water supply unit 46 are configured independently, but the hot water supply unit 44, the backup hot water supply unit 46, and each control section may be configured as an integrated water heater.

〔他の実施の形態〕
(1) 上記実施の形態では、水量調整部12にミキシング弁M1を備える構成、水量調整部38にミキシング弁M2を備える構成を例示しているが、バイパス管16に比例弁を備えて流量を調整してもよい。
(2) 熱媒ME1の熱源として燃料電池48を例示しているが、エンジンなどの排熱源であってもよい。
(3) 熱媒ME2の熱源にバーナー102を用いているが、電熱などの他の熱源を用いてもよい。
(4) メモリ部122、130には設定温度Ts1、Ts2を個別に格納する格納部を備えてよい。
(5) 上記実施例では、設定温度Ts1から設定温度Ts2に切り替えられた際、補助加熱部6から設定温度Ts1の温水HWを出湯しているがこれに限定されない。設定温度Ts1より高いまたは低い温度の温水HWを補助加熱部6から出湯させてもよい。
(6) 出湯温度の制御について、温度センサー24の検出温度を用いて設定温度Ts1に出湯温度を制御してもよいし、温度センサー92の検出温度を用いて設定温度Ts1に出湯温度を制御してもよい。後者の場合、給湯ユニット44、45からバックアップ給湯ユニット46に至る配管が長い場合など、バックアップ給湯ユニット46の補助加熱によって、給湯ユニット44、45からの温水HWの温度低下をバックアップすることができる。
[Other embodiments]
(1) In the above embodiment, the configuration in which the water amount adjustment section 12 is provided with the mixing valve M1 and the configuration in which the water amount adjustment section 38 is provided with the mixing valve M2 is exemplified, but the bypass pipe 16 is provided with a proportional valve to control the flow rate. May be adjusted.
(2) Although the fuel cell 48 is illustrated as the heat source of the heat medium ME1, it may be an exhaust heat source such as an engine.
(3) Although the burner 102 is used as the heat source for the heat medium ME2, other heat sources such as electric heat may be used.
(4) The memory units 122 and 130 may include storage units that individually store the set temperatures Ts1 and Ts2.
(5) In the above embodiment, when the set temperature Ts1 is switched to the set temperature Ts2, hot water HW at the set temperature Ts1 is discharged from the auxiliary heating section 6, but the present invention is not limited to this. Hot water HW having a temperature higher or lower than the set temperature Ts1 may be discharged from the auxiliary heating section 6.
(6) Regarding the control of the hot water temperature, the hot water temperature may be controlled to the set temperature Ts1 using the temperature detected by the temperature sensor 24, or the hot water temperature may be controlled to the set temperature Ts1 using the temperature detected by the temperature sensor 92. It's okay. In the latter case, when the piping from the hot water supply units 44, 45 to the backup hot water supply unit 46 is long, the temperature drop of the hot water HW from the hot water supply units 44, 45 can be backed up by auxiliary heating of the backup hot water supply unit 46.

以上説明したように、本発明の最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferred embodiment of the present invention has been described. The present invention is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the detailed description. It goes without saying that such modifications and changes are included within the scope of the present invention.

本発明によれば、排熱などを熱媒により蓄熱し、その熱媒の蓄熱に応じて給湯制御を行い、この給湯制御では熱交換器に流れる水量を蓄熱に応じて制御するとともに、蓄熱が低い場合には熱交換器に流れる水量を低減することにより、圧力損失や循環のための電力損失などを低減でき、蓄熱タンクの成層蓄熱を乱すことがないなどの優れた効果が得られ、有益である。 According to the present invention, waste heat and the like are stored in a heat medium, and hot water supply control is performed according to the heat storage of the heat medium, and in this hot water supply control, the amount of water flowing to the heat exchanger is controlled according to the heat storage, and the heat storage is By reducing the amount of water flowing into the heat exchanger when the water is low, pressure loss and power loss due to circulation can be reduced, and excellent effects such as not disturbing the stratified heat storage in the heat storage tank can be obtained, which is beneficial. It is.

2 給湯システム
4 給湯部
6 補助加熱部
8 蓄熱タンク
ポンプ
10 熱交換器
12 水量調整部
13 循環路
14 給水管
16 バイパス管
18 出湯管
20 制御部
22 温度センサー
24 温度センサー
26、28 熱交換器
30 給水管
32 温度センサー
34 熱源
36 バイパス管
38 水量調整部
40 出湯管
42 燃料電池ユニット
43 タンクユニット
44、45、47 給湯ユニット
46 バックアップ給湯ユニット
48 燃料電池
50 熱交換器
52 循環ポンプ
54 循環路
56、58 温度センサー
60 プレート熱交換器
62 循環路
64 与熱ポンプ
66 温度センサー
68 ミキシング弁
70 水量センサー
72 温度センサー
74 水制御弁
76、78 温度センサー
80 プレート熱交換器
82 熱交換器
84 温度センサー
85 水量センサー
86 水制御弁
88 ミキシング弁
90、92 温度センサー
94 循環路
96 循環ポンプ
98 開放タンク
100 温度センサー
102 バーナー
104 電池制御部
106 給湯ユニット制御部
108 バックアップ制御部
110 リモコン制御部
112、120、128 プロセッサ
114、122、130 メモリ部
116、124、132 入出力部(I/O)
118、126、134 システム通信部

2 Hot water supply system 4 Hot water supply section 6 Auxiliary heating section 8 Heat storage tank
9 pump
10 Heat exchanger 12 Water amount adjustment section
13 circulation route
14 Water supply pipe 16 Bypass pipe 18 Hot water outlet pipe 20 Control unit 22 Temperature sensor 24 Temperature sensor 26, 28 Heat exchanger 30 Water supply pipe 32 Temperature sensor 34 Heat source 36 Bypass pipe 38 Water amount adjustment unit 40 Hot water outlet pipe 42 Fuel cell unit
43 tank unit
44, 45, 47 Hot water supply unit 46 Backup hot water supply unit 48 Fuel cell 50 Heat exchanger 52 Circulation pump 54 Circulation path 56, 58 Temperature sensor 60 Plate heat exchanger 62 Circulation path 64 Heat pump 66 Temperature sensor 68 Mixing valve 70 Water amount sensor 72 Temperature sensor 74 Water control valve 76, 78 Temperature sensor 80 Plate heat exchanger 82 Heat exchanger 84 Temperature sensor 85 Water amount sensor 86 Water control valve 88 Mixing valve 90, 92 Temperature sensor 94 Circulation path 96 Circulation pump 98 Open tank 100 Temperature Sensor 102 Burner 104 Battery control section 106 Hot water supply unit control section 108 Backup control section 110 Remote control control section 112, 120, 128 Processor 114, 122, 130 Memory section 116, 124, 132 Input/output section (I/O)
118, 126, 134 System communication department

Claims (5)

発電で生じた熱を熱媒に熱交換し、該熱媒を蓄熱タンクに溜める工程と、
前記蓄熱タンクから熱媒を熱交換器に循環させ、該熱媒の熱と給水とを熱交換する工程と、
前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、熱交換前の前記給水を前記熱交換器およびバイパス路に流し、該バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させる工程と、
第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す給水量を低減して前記熱交換器の圧力損失を低減させる工程と、
を含む、給湯方法。
a process of exchanging heat generated by power generation with a heat medium and storing the heat medium in a heat storage tank;
a step of circulating a heat medium from the heat storage tank to a heat exchanger and exchanging heat of the heat medium and water supply;
When the heat medium of the heat storage tank can exchange heat with the feed water, the feed water before heat exchange is passed through the heat exchanger and the bypass path, and the heat exchanger is exchanged with the feed water distributed to the bypass path. a step of mixing the heated water with
A first set temperature and a second set temperature that is lower than the first set temperature by a predetermined temperature are set, and whether hot water can be tapped at the first set temperature is determined based on the temperature of the heating medium, and hot water can be tapped. If so, the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed and hot water is discharged at the first set temperature, and if hot water cannot be discharged, the second set temperature is set. , the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed, heated to the second set temperature, flowed to the auxiliary heating section, and heated in the auxiliary heating section. a step of supplying hot water at the first set temperature and reducing the amount of water supplied to the heat exchanger to reduce pressure loss in the heat exchanger;
hot water supply methods, including
さらに、前記第2の設定温度による出湯時、前記バイパス路に分配された給水量を前記熱交換器に流す給水量より増加させる工程と、
を含む、請求項1に記載の給湯方法。
Further, when hot water is tapped at the second set temperature, the amount of water supplied to the bypass path is increased from the amount of water supplied to the heat exchanger;
The hot water supply method according to claim 1, comprising:
発電で生じた熱が熱交換された熱媒を溜める蓄熱タンクと、
前記蓄熱タンクから熱媒を循環させ、該熱媒の熱と給水とを熱交換する熱交換器と、
前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、熱交換前の前記給水を前記熱交換器およびバイパス路に流し、該バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させる混合手段と、
第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す前記給水の分配量を低減して前記熱交換器の圧力損失を低減させる制御部と、
を含む、給湯システム。
A heat storage tank that stores a heat medium with which heat generated during power generation is exchanged;
a heat exchanger that circulates a heat medium from the heat storage tank and exchanges heat between the heat of the heat medium and the water supply;
When the heat medium of the heat storage tank can exchange heat with the feed water, the feed water before heat exchange is passed through the heat exchanger and the bypass path, and the heat exchanger is exchanged with the feed water distributed to the bypass path. mixing means for mixing the hot water;
A first set temperature and a second set temperature that is lower than the first set temperature by a predetermined temperature are set, and whether hot water can be tapped at the first set temperature is determined based on the temperature of the heating medium, and hot water can be tapped. If so, the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed and hot water is discharged at the first set temperature, and if hot water cannot be discharged, the second set temperature is set. , the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed, heated to the second set temperature, flowed to the auxiliary heating section, and heated in the auxiliary heating section. a control unit that discharges hot water at the first set temperature and reduces the distribution amount of the feed water flowing to the heat exchanger to reduce pressure loss of the heat exchanger;
Including hot water system.
コンピュータに実行させるためのプログラムであって、
蓄熱タンクから熱交換器に循環させる熱媒の温度情報を取得する機能と、
給水を熱交換器およびバイパス路に流す混合弁の熱交換器側の開度と前記バイパス路側の開度を制御する機能と、
前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す前記給水の分配量を低減して前記熱交換器の圧力損失を低減させる機能と、
を前記コンピュータに実行させるためのプログラム。
A program to be executed by a computer,
A function to obtain temperature information of the heat medium circulated from the heat storage tank to the heat exchanger,
A function of controlling the opening degree on the heat exchanger side and the opening degree on the bypass path side of a mixing valve that causes the feed water to flow through the heat exchanger and the bypass path;
When the heat medium of the heat storage tank can exchange heat with the water supply, a first set temperature and a second set temperature lower than the first set temperature by a predetermined temperature are set, and the first set temperature is lower than the first set temperature. It is determined whether hot water can be tapped based on the temperature of the heating medium, and if hot water can be tapped, the supplied water distributed to the bypass path and the hot water obtained by the heat exchanger are mixed and the first The hot water is discharged at the set temperature, and if hot water cannot be discharged, the temperature is switched to the second set temperature, and the supplied water distributed to the bypass path and the hot water obtained by the heat exchanger are mixed to achieve the second setting. heating the water to a temperature and flowing it to an auxiliary heating section, heating it at the auxiliary heating section and discharging it at the first set temperature, reducing the distribution amount of the feed water flowing to the heat exchanger, and reducing the pressure of the heat exchanger. A function to reduce loss,
A program for causing the computer to execute.
発電で生じた熱が熱交換された熱媒を溜める蓄熱タンクから前記熱媒を循環させ、該熱と給水とを熱交換する熱交換器と、
前記蓄熱タンクの熱媒が前記給水と熱交換可能な場合に、熱交換前の前記給水を前記熱交換器およびバイパス路に流し、該バイパス路に分配された前記給水と前記熱交換器で得られる温水とを混合させる混合手段と、
第1の設定温度と、該第1の設定温度より所定温度だけ低い第2の設定温度とが設定され、前記第1の設定温度で出湯可能かを前記熱媒の温度により判断し、出湯可能であれば、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第1の設定温度で出湯させ、出湯不可であれば、前記第2の設定温度に切り替え、前記バイパス路に分配された前記給水と前記熱交換器で得られる前記温水とを混合させて前記第2の設定温度に加熱して補助加熱部に流し、前記補助加熱部で加熱して前記第1の設定温度で出湯させ、前記熱交換器に流す前記給水の分配量を低減して前記熱交換器の圧力損失を低減させる制御部と、
を含む、給湯装置。
a heat exchanger that circulates the heat medium from a heat storage tank that stores the heat medium with which the heat generated during power generation has been exchanged, and exchanges the heat with the water supply;
When the heat medium of the heat storage tank can exchange heat with the feed water, the feed water before heat exchange is passed through the heat exchanger and the bypass path, and the heat exchanger is exchanged with the feed water distributed to the bypass path. mixing means for mixing the hot water;
A first set temperature and a second set temperature that is lower than the first set temperature by a predetermined temperature are set, and whether hot water can be tapped at the first set temperature is determined based on the temperature of the heating medium, and hot water can be tapped. If so, the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed and hot water is discharged at the first set temperature, and if hot water cannot be discharged, the second set temperature is set. , the water supply distributed to the bypass path and the hot water obtained by the heat exchanger are mixed, heated to the second set temperature, flowed to the auxiliary heating section, and heated in the auxiliary heating section. a control unit that discharges hot water at the first set temperature and reduces the distribution amount of the feed water flowing to the heat exchanger to reduce pressure loss of the heat exchanger;
including water heaters.
JP2021163626A 2017-10-27 2021-10-04 Methods, systems, programs and devices of hot water supply Active JP7340283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021163626A JP7340283B2 (en) 2017-10-27 2021-10-04 Methods, systems, programs and devices of hot water supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017208060A JP6960668B2 (en) 2017-10-27 2017-10-27 Hot water supply system, hot water supply control program, hot water supply control method and hot water supply device
JP2021163626A JP7340283B2 (en) 2017-10-27 2021-10-04 Methods, systems, programs and devices of hot water supply

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017208060A Division JP6960668B2 (en) 2017-10-27 2017-10-27 Hot water supply system, hot water supply control program, hot water supply control method and hot water supply device

Publications (2)

Publication Number Publication Date
JP2022000605A JP2022000605A (en) 2022-01-04
JP7340283B2 true JP7340283B2 (en) 2023-09-07

Family

ID=66627748

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017208060A Active JP6960668B2 (en) 2017-10-27 2017-10-27 Hot water supply system, hot water supply control program, hot water supply control method and hot water supply device
JP2021163626A Active JP7340283B2 (en) 2017-10-27 2021-10-04 Methods, systems, programs and devices of hot water supply

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017208060A Active JP6960668B2 (en) 2017-10-27 2017-10-27 Hot water supply system, hot water supply control program, hot water supply control method and hot water supply device

Country Status (1)

Country Link
JP (2) JP6960668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303428B2 (en) * 2019-06-24 2023-07-05 株式会社ノーリツ Water heater and hot water system
CN113048646A (en) * 2021-03-31 2021-06-29 畅和智能家居(嘉兴)有限公司 Instant water heating device and temperature adjusting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224158A (en) 2007-03-14 2008-09-25 Osaka Gas Co Ltd Heat storing and radiating system
JP2011214793A (en) 2010-04-01 2011-10-27 Takagi Ind Co Ltd Water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175138B2 (en) * 2008-05-30 2013-04-03 リンナイ株式会社 Water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224158A (en) 2007-03-14 2008-09-25 Osaka Gas Co Ltd Heat storing and radiating system
JP2011214793A (en) 2010-04-01 2011-10-27 Takagi Ind Co Ltd Water heater

Also Published As

Publication number Publication date
JP2022000605A (en) 2022-01-04
JP2019078513A (en) 2019-05-23
JP6960668B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP7340283B2 (en) Methods, systems, programs and devices of hot water supply
JP5577135B2 (en) Water heater
EP3121522B1 (en) Method for controlling a heat storage device and method for controlling a hot water generation device
US20160047558A1 (en) Hot water supply and heating system
JP2016044888A (en) Hot water supply system and cogeneration system
JP4867514B2 (en) Heat pump water heater / heater
JP7371967B2 (en) hot water system
EP3249314B1 (en) Heat supply system
JP7440141B2 (en) Hot water heating methods, hot water heating systems and programs
JP7178125B2 (en) Hot water supply system, hot water supply control method, hot water supply device and program
JP2018096682A (en) Fuel cell system
JP6866137B2 (en) Hot water supply system and cogeneration system
JP6800085B2 (en) Energy supply system
JP2016099073A (en) Storage hot water supply system
JP2019113277A (en) Storage water heater
JP6462555B2 (en) Hot water supply system, hot water supply program, and hot water supply method
JP6404720B2 (en) Hot water supply system, hot water supply program, and hot water supply method
JP6902272B2 (en) Hot water supply system
JP6800084B2 (en) Energy supply system
JP7094186B2 (en) Heat exchange controller
US20240110709A1 (en) System for producing heat for domestic hot water or central heating
JP6526536B2 (en) Cogeneration system and control program therefor
JP6531035B2 (en) Thermal equipment
JP6566762B2 (en) Hot water supply system, hot water supply program, and hot water supply method
JP2021169925A (en) System, method and unit for hot water supply

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7340283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150