JP2012237529A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2012237529A
JP2012237529A JP2011108010A JP2011108010A JP2012237529A JP 2012237529 A JP2012237529 A JP 2012237529A JP 2011108010 A JP2011108010 A JP 2011108010A JP 2011108010 A JP2011108010 A JP 2011108010A JP 2012237529 A JP2012237529 A JP 2012237529A
Authority
JP
Japan
Prior art keywords
hot water
water
inorganic compound
pouring
bathtub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011108010A
Other languages
Japanese (ja)
Other versions
JP5861028B2 (en
Inventor
Katsuhiro Wada
克広 和田
Yoshio Nishiyama
吉継 西山
Tomoaki Ando
智朗 安藤
Masanori Hirota
正宣 広田
Yasusuke Horiki
泰佑 堀木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011108010A priority Critical patent/JP5861028B2/en
Publication of JP2012237529A publication Critical patent/JP2012237529A/en
Application granted granted Critical
Publication of JP5861028B2 publication Critical patent/JP5861028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Fluid Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater that can supply an inorganic compound or the like and is compact in size and low in running cost without an electric circuit.SOLUTION: The water heater includes: a hot water supply channel 39 from which hot water is supplied; a melting device 16 which melts the inorganic compound 11 in the hot water; a branch circuit 15 which is formed so that the hot water from the hot water supply channel 39 is diverted; a flow passage resistor 50 which is formed in the hot water supply channel 39 where the melting device 16 is disposed at the branch circuit 15 and the hot water from the branch circuit 15 is returned to a position in a range within a length shorter than a flow path diameter of the hot water supply channel 39 from a downward side end of the flow passage resistor 50.

Description

本発明は、無機化合物等を湯水に供給する機能を備えた給湯装置に関するものである。   The present invention relates to a hot water supply apparatus having a function of supplying an inorganic compound or the like to hot water.

従来この種の装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図10は、特許文献1に記載された従来の給湯装置を示すものである。図10に示すように、亜鉛陽極1と、陰極2と、ケーシング5と、直流電源9から構成されている。   FIG. 10 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 10, it is composed of a zinc anode 1, a cathode 2, a casing 5, and a DC power source 9.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源9と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源9においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power source 9 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in the size and cost of the apparatus, the DC power supply 9 requires power, so that the amount of power consumption increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、コンパクトかつ低ランニングコストで無機化合物等を供給できる給湯装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a hot water supply apparatus that does not require an electric circuit and that can supply an inorganic compound or the like in a compact and low running cost.

前記従来の課題を解決するために、本発明の給湯装置は、湯水を注湯する注湯経路と、前記湯水に無機化合物を溶解させる溶解装置と、前記注湯経路からの湯水を分流させるように形成した分岐回路と、前記注湯経路に形成した流路抵抗とを備え、前記分岐回路に前記溶解装置を配設するとともに、前記流路抵抗の下流側端部から前記注湯経路の流路径以内の長さの位置に、前記分岐回路からの湯水を返流させる構成としたことを特徴とするものである。   In order to solve the above-described conventional problems, a hot water supply apparatus of the present invention includes a pouring path for pouring hot water, a melting apparatus for dissolving an inorganic compound in the hot water, and diverting hot water from the pouring path. And the flow path resistance formed in the pouring path, the melting device is disposed in the branch circuit, and the flow of the pouring path from the downstream end of the flow path resistance. The hot water from the branch circuit is returned to a position having a length within the path diameter.

これによって、流路抵抗の出口部近傍での噴流現象による静圧力低下を最大限に利用することで、より小さい流路抵抗により分岐回路へ必要流量を分配することができ。   As a result, the required flow rate can be distributed to the branch circuit with a smaller flow path resistance by making maximum use of the static pressure drop due to the jet phenomenon near the outlet of the flow path resistance.

また、かつ流動化効果を伴い、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を効率よく溶解させることが可能となり、これまで必要としていた電源回路と絶縁回路が削減できることで、コンパクト化・低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることができる。   In addition, with the fluidization effect, it is possible to efficiently dissolve inorganic compounds in water by the principle of substance diffusion (Fick's law), in which substances move due to the difference in dissolution concentration between water and inorganic compounds. By reducing the power supply circuit and the insulation circuit that have been required so far, it is possible to reduce the size and cost, and to reduce power consumption because it is a principle that does not require power.

本発明によれば、電気回路を必要とせず、コンパクトかつ低ランニングコストで無機化合物等を供給できる給湯装置を提供できる。   According to the present invention, it is possible to provide a hot water supply apparatus that does not require an electric circuit and can supply an inorganic compound or the like at a compact and low running cost.

本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention (a)オリフィス絞り機構の構成図(b)ベンチュリー絞り機構の構成図(A) Configuration diagram of orifice throttle mechanism (b) Configuration diagram of venturi throttle mechanism (a)本発明の実施の形態1における流路抵抗の構成図(b)同他の流路抵抗の構成図(c)同流路抵抗と流量の関係を示す図(A) Configuration diagram of channel resistance in Embodiment 1 of the present invention (b) Configuration diagram of other channel resistance (c) Diagram showing relationship between channel resistance and flow rate 本発明の実施の形態1における流路抵抗の詳細図Detailed view of channel resistance in Embodiment 1 of the present invention 本発明の実施の形態1における溶解装置の詳細図Detailed view of dissolution apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における溶解装置の無機化合物と濾過手段の関係を示す図The figure which shows the relationship between the inorganic compound of the dissolution apparatus in Embodiment 1 of this invention, and a filtration means (a)本発明の実施の形態1における濾過手段の構成図(b)同他の濾過手段の構成図(c)同他の濾過手段の構成図(A) Configuration diagram of filtering means in Embodiment 1 of the present invention (b) Configuration diagram of other filtering means (c) Configuration diagram of other filtering means 本発明の実施の形態2における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 2 of this invention 本発明の実施の形態3における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 3 of the present invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、湯水を注湯する注湯経路と、前記湯水に無機化合物を溶解させる溶解装置と、前記注湯経路からの湯水を分流させるように形成した分岐回路と、前記注湯経路に形成した流路抵抗とを備え、前記分岐回路に前記溶解装置を配設するとともに、前記流路抵抗の下流側端部から前記注湯経路の流路径以内の長さの位置に、前記分岐回路からの湯水を返流させる構成としたことを特徴とする給湯装置である。   The first invention includes a pouring path for pouring hot water, a melting device for dissolving an inorganic compound in the hot water, a branch circuit formed to divert hot water from the pouring path, and the pouring path The melting device is disposed in the branch circuit, and the branch is provided at a position within a flow path diameter of the pouring path from the downstream end of the flow path resistance. The hot water supply apparatus is characterized in that hot water from a circuit is returned.

これによって、流路抵抗の出口部近傍での噴流現象による静圧力低下を最大限に利用することで、より小さい流路抵抗により分岐回路へ必要流量を分配することができ。   As a result, the required flow rate can be distributed to the branch circuit with a smaller flow path resistance by making maximum use of the static pressure drop due to the jet phenomenon near the outlet of the flow path resistance.

また、かつ流動化効果を伴い、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を効率よく溶解させることが可能となり、これまで必要としていた電源回路と絶縁回路が削減できることで、コンパクト化・低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることができる。   In addition, with the fluidization effect, it is possible to efficiently dissolve inorganic compounds in water by the principle of substance diffusion (Fick's law), in which substances move due to the difference in dissolution concentration between water and inorganic compounds. By reducing the power supply circuit and the insulation circuit that have been required so far, it is possible to reduce the size and cost, and to reduce power consumption because it is a principle that does not require power.

第2の発明は、前記注湯経路を開閉する注湯弁を備え、前記溶解装置を、前記注湯弁の下流側に配設したことを特徴とする給湯装置で、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯経路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   2nd invention is a hot water supply apparatus provided with the pouring valve which opens and closes the said pouring path | route, and has arrange | positioned the said melt | dissolution apparatus in the downstream of the said pouring valve. Since it is not affected by the water hammer phenomenon (water pressure rise in the bathtub water pouring route or the like) that occurs when hot water is stopped, the pressure-resistant structure of the melting device can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

第3の発明は、前記溶解装置は前記無機化合物を収納する収納手段を備え、前記収納手段の相当直径を、前記注湯経路の相当直径よりも大きくしたことを特徴とする給湯装置で、水が無機化合物収納容器を通過する際に生じる圧力損失の増加を低減させ、浴槽への湯はりを早く完了することができる。   According to a third aspect of the present invention, there is provided a hot water supply apparatus characterized in that the dissolution apparatus includes a storage means for storing the inorganic compound, and an equivalent diameter of the storage means is larger than an equivalent diameter of the pouring path. Can reduce the increase in pressure loss that occurs when passing through the inorganic compound container, and the hot water filling to the bathtub can be completed quickly.

第4の発明は、前記溶解装置を、本体筐体内に配設したことを特徴とする給湯装置で、低外気温時であっても貯湯タンク、電源回路などからの僅かな放熱により筐体内の雰囲気は常時加温されているため、溶解装置の凍結防止などの断熱が簡素化、または不要となる。   According to a fourth aspect of the present invention, there is provided a hot water supply apparatus in which the melting device is disposed in a main body housing, and even in a low outside air temperature, a slight heat radiation from a hot water storage tank, a power circuit, etc. Since the atmosphere is always heated, heat insulation such as prevention of freezing of the melting apparatus is simplified or unnecessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、分岐回路15は浴槽水注湯経路39の分岐部51と合流部52の間で浴槽水注湯経路39と並列になるように無機化合物収納容器12を回路の一部として構成されている。流路抵抗50は浴槽水注湯経路39の相当径より小さい相当径の絞り機構として、浴槽水注湯経路39上の分岐部51と合流部52の間で構成されている。   In FIG. 1, the branch circuit 15 includes the inorganic compound container 12 as a part of the circuit so as to be in parallel with the bathtub water pouring path 39 between the branching portion 51 and the junction 52 of the bath water pouring path 39. ing. The flow path resistance 50 is configured between the branch portion 51 and the junction portion 52 on the bathtub water pouring passage 39 as a throttle mechanism having an equivalent diameter smaller than that of the bathtub water pouring passage 39.

無機化合物11は粉末状、または、顆粒状、または、粉末状と顆粒状の混合物であり、無機化合物収納容器12に収納される。前記無機化合物収納容器12は水流方向にそって概略すり鉢状にひろがった形状としている。   The inorganic compound 11 is in the form of powder, granules, or a mixture of powder and granules, and is stored in the inorganic compound storage container 12. The said inorganic compound storage container 12 is made into the shape expanded in general mortar shape along the water flow direction.

無機化合物11は水に対して溶解性を持つ。図1の無機化合物11は径が異なる顆粒状のものであり、これを多層状となるように構成すると、無機化合物収納容器12内には多孔質の空間が形成される。濾過手段13は複数の小穴を有し、無機化合物収納容器12の端部に収納される。無機化合物収納容器12と濾過手段13は、順に分岐回路15によって連通され、無機化合物収納容器12は濾過手段13の上流側となるように溶解装置16を構成する。   The inorganic compound 11 is soluble in water. The inorganic compound 11 in FIG. 1 is in the form of granules having different diameters, and when this is configured to be multilayered, a porous space is formed in the inorganic compound storage container 12. The filtering means 13 has a plurality of small holes and is stored in the end portion of the inorganic compound storage container 12. The inorganic compound storage container 12 and the filtering means 13 are sequentially communicated by a branch circuit 15, and the dissolution apparatus 16 is configured so that the inorganic compound storage container 12 is on the upstream side of the filtering means 13.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

浴槽水注湯経路39を流れる水は分岐部51から流路抵抗50により分岐回路15へ分配される。その分配される水流量は、分岐部51の上流の浴槽水注湯経路39を流れる水流量と分岐部51と合流部52の間の浴槽水注湯経路39の流路抵抗と分岐回路15の流路抵抗の比率に関係する。流路抵抗50は浴槽水注湯経路39の相当径より小さい相当径の絞り機構として浴槽水注湯経路39と分岐回路15の流路抵抗比率を調整するものである。   The water flowing through the bathtub water pouring channel 39 is distributed from the branch part 51 to the branch circuit 15 by the flow path resistance 50. The distributed water flow rate includes the flow rate of water flowing through the bathtub water pouring channel 39 upstream of the branching unit 51, the flow resistance of the bathtub water pouring channel 39 between the branching unit 51 and the junction 52, and the branch circuit 15. It is related to the ratio of flow resistance. The channel resistance 50 adjusts the channel resistance ratio between the bathtub water pouring channel 39 and the branch circuit 15 as a throttle mechanism having an equivalent diameter smaller than the equivalent diameter of the bath water pouring channel 39.

図2は一般的な絞り機構の構成を表す図である。(a)は一般的なオリフィス絞り機構の詳細を示している。(b)は一般的なベンチュリー絞り機構の詳細を示している。   FIG. 2 is a diagram illustrating a configuration of a general diaphragm mechanism. (A) shows the details of a general orifice throttle mechanism. (B) shows the details of a general venturi throttle mechanism.

(a)はまた管内の圧力変化も示しており、流れの上流(左)から下流に向かって変化する圧力の様子を表している。管内圧力はオリフィスに近づくと直前で一旦上昇する。   (A) also shows the pressure change in the pipe, and shows the state of pressure changing from the upstream (left) to the downstream of the flow. The pressure in the pipe once rises immediately before approaching the orifice.

一般に液体の場合の流体の流れは、オリフィス板の上流側Dくらいの距離で管壁から剥がれ、オリフィス板を通過した後も収縮を続け、オリフィス板の下流D/2あたりで流れの断面積は最小になる縮流現象を伴った噴流状態となる。   In general, the flow of fluid in the case of a liquid is peeled off from the pipe wall at a distance of about D upstream of the orifice plate and continues to contract after passing through the orifice plate, and the flow cross-sectional area around the downstream D / 2 of the orifice plate is It becomes a jet state with the contraction phenomenon that becomes the minimum.

噴流領域において、流路の断面積が縮小して流速が増大し、下流での静圧が低下することになる。また噴流と管壁の間に多数の渦ができる。この渦は噴流がオリフィス下流まで延び管内径と同じになるまで広がっていくが、ほぼ5D下流で元の管内流れになる。この渦に消費されるエネルギーが流体の永久圧力損失となり、元の圧力までは回復しない。このように最終的に回復しない圧力がオリフィスによる永久圧力損失となる。   In the jet region, the cross-sectional area of the flow path is reduced, the flow velocity is increased, and the downstream static pressure is reduced. There are also many vortices between the jet and the tube wall. This vortex extends to the downstream of the orifice until it becomes the same as the inner diameter of the pipe, but becomes the original pipe flow approximately 5D downstream. The energy consumed in this vortex becomes a permanent pressure loss of the fluid and does not recover to the original pressure. Thus, the pressure which does not recover | recover finally becomes a permanent pressure loss by an orifice.

図3は、本実施の形態における流路抵抗50の構成図と、それとは別の流路抵抗の構成図と、それらの圧力と流量の関係を示す図である。(a)は本実施の形態における流路抵抗50の構成図、(b)は別の流路抵抗の構成図、(c)はそれらの圧力と流量の関係を示す図である。   FIG. 3 is a configuration diagram of the channel resistance 50 in the present embodiment, a configuration diagram of another channel resistance, and a relationship between the pressure and the flow rate. (A) is the block diagram of the flow-path resistance 50 in this Embodiment, (b) is a block diagram of another flow-path resistance, (c) is a figure which shows the relationship between those pressures and flow volume.

図3(a)において本実施の形態における流路抵抗50は絞り機構の入り口部は永久圧力損失が比較的少ないベンチュリー機構と概略同等とし、出口部は概略オリフィス絞り形
状と概略同等としている。このことによりオリフィス機構のような縮流現象は伴わないが、出口部近傍での噴流状態はある程度において発生する。つまり下流での合流部52近傍において相当の静圧低下現象を得ることが可能となる。
In FIG. 3A, the flow path resistance 50 in the present embodiment is substantially the same as the venturi mechanism with a relatively small permanent pressure loss at the inlet portion of the throttle mechanism, and the outlet portion is substantially equivalent to the orifice orifice shape. As a result, there is no contraction phenomenon as in the orifice mechanism, but a jet state near the outlet portion occurs to some extent. That is, it is possible to obtain a considerable static pressure lowering phenomenon in the vicinity of the merging portion 52 downstream.

図4は、本実施形態における流路抵抗50の出口端部と合流部52の位置関係を示す図である。図4において流路抵抗50の出口端部から合流部52の位置を示す寸法Aは、浴槽水注湯経路39の流路径を示すφdに対してA≦φdの関係をもって構成されている。   FIG. 4 is a diagram illustrating a positional relationship between the outlet end portion of the flow path resistance 50 and the merging portion 52 in the present embodiment. In FIG. 4, the dimension A indicating the position of the merging portion 52 from the outlet end of the channel resistance 50 is configured to have a relationship of A ≦ φd with respect to φd indicating the channel diameter of the bathtub water pouring path 39.

つまり合流部52は流路抵抗50の出口端部から浴槽水注湯経路39の流路径以内に設けられている。このことにより流路抵抗50の出口近傍での噴流現象による静圧低下を最大限に利用できることとなり、分岐回路15における分岐部51と合流部52間の圧力差をより拡大することが可能となる。   That is, the junction 52 is provided within the flow path diameter of the bathtub water pouring channel 39 from the outlet end of the flow resistance 50. As a result, the static pressure drop due to the jet phenomenon in the vicinity of the outlet of the flow path resistance 50 can be utilized to the maximum, and the pressure difference between the branch part 51 and the junction part 52 in the branch circuit 15 can be further expanded. .

図3(b)において本実施の形態とは別の流路抵抗の形状は、本実施の形態における流路抵抗50と同様の形状であるが、流れ方向にたいして本実施の形態における流路抵抗50の形状を逆にした形状にて構成されている。   In FIG. 3B, the shape of the flow path resistance different from that of the present embodiment is the same shape as the flow path resistance 50 in the present embodiment, but the flow path resistance 50 in the present embodiment with respect to the flow direction. It is comprised in the shape which reversed the shape of.

入り口部は概略オリフィス形状とし、その少し上流側に分岐部51が構成され、出口部はベンチュリー形状とし、合流部52はベンチュリー形状部の下流に構成されている。よって合流部52近傍での噴流現象は発生せず、そのことによる静圧低下はほとんど発生しなくなる。   The entrance portion has a generally orifice shape, a branch portion 51 is formed slightly upstream, the exit portion has a venturi shape, and the merge portion 52 is formed downstream of the venturi shape portion. Therefore, the jet phenomenon in the vicinity of the merging portion 52 does not occur, and the static pressure drop due to this hardly occurs.

図3(c)において図中に示された分岐回路流量(a)の流量特性曲線は図3(a)に示す本実施の形態における流路抵抗50によるものであり、分岐回路流量(b)は図3(b)に示される別の流路抵抗によるものである。図3(c)に示す様に、同じ圧力条件下において、図3(a)に示す本実施の形態における流路抵抗50による分配流量のほうが大きいことがわかる。   The flow characteristic curve of the branch circuit flow rate (a) shown in FIG. 3C is based on the flow path resistance 50 in the present embodiment shown in FIG. 3A, and the branch circuit flow rate (b). Is due to another flow path resistance shown in FIG. As shown in FIG. 3 (c), it can be seen that the distribution flow rate due to the channel resistance 50 in the present embodiment shown in FIG. 3 (a) is larger under the same pressure condition.

本実施の形態における流路抵抗50により分岐部51と合流部52間の圧力差が拡大し、分岐回路15へ分配される分配流量が増加している。このことは分岐回路15へ分配すべき必要流量を本実施の形態による流路抵抗50は別の流路抵抗にくらべて絞り径を相当分大きくしても同じ必要流量を分配できることを意味している。   Due to the flow path resistance 50 in the present embodiment, the pressure difference between the branch portion 51 and the junction portion 52 is enlarged, and the distribution flow rate distributed to the branch circuit 15 is increased. This means that the required flow rate to be distributed to the branch circuit 15 can distribute the same required flow rate even if the flow path resistance 50 according to this embodiment is considerably larger than the other flow path resistance. Yes.

つまり、浴槽水注湯経路39上における流路抵抗50による圧力損失を小さくしても同等の必要分配流量を確保できることになり、浴槽水注湯経路39における流路抵抗50による注湯流量への悪影響をより抑制できることが可能となる。   That is, even if the pressure loss due to the channel resistance 50 on the bathtub water pouring path 39 is reduced, an equivalent required flow rate can be secured, and the pouring flow rate due to the channel resistance 50 in the bath water pouring path 39 is reduced. An adverse effect can be further suppressed.

本実施の形態による流路抵抗50によって分岐部51より分流された水は、内部通水管14を経由して無機化合物収納容器12に流入し、重力方向と対向した上昇水流として無機化合物収納容器12に形成される多孔質の空間を通過する。   The water diverted from the branch part 51 by the flow path resistance 50 according to the present embodiment flows into the inorganic compound storage container 12 through the internal water pipe 14 and as an ascending water flow facing the direction of gravity, the inorganic compound storage container 12. It passes through the porous space formed in the.

前記、上昇水流の流速が一定の場合は、無機化合物11は径が異なる顆粒状のものであることから、下方から順に径の大きなものから小さなものへと分布した状態で前記上昇水流によってその流速に応じた水圧により流水と流動化する。   When the flow rate of the ascending water flow is constant, the inorganic compound 11 is in a granular form having different diameters, so that the flow rate is increased by the ascending water flow in a state of being distributed from the largest to the smallest in diameter from the bottom. Fluidized with running water by water pressure according to

前記、無機化合物収納容器12は、水流方向にそって概略すり鉢状にひろがった形状としていることから、無機化合物収納容器12内では上流ほど流速が大きくなり、水流方向にそって小さくなる水流速の分布が構成可能となる。   Since the inorganic compound storage container 12 has a generally mortar-shaped shape along the water flow direction, the flow rate increases in the upstream in the inorganic compound storage container 12, and the water flow rate decreases along the water flow direction. Distribution becomes configurable.

一方、顆粒径の分布はその質量に応じた重力が作用して、上流ほど顆粒径のおおきなも
のが分布する。このことから顆粒径の大きさに比例して水流速を作用させることが可能となり、無機化合物11の顆粒径の大小にかかわらず均一で効率のよい流動化現象が可能となる。
On the other hand, the distribution of the granule diameter is affected by gravity according to the mass, and the larger the granule diameter, the more upstream. From this, it becomes possible to make the water flow rate act in proportion to the size of the granule diameter, and a uniform and efficient fluidization phenomenon becomes possible regardless of the size of the granule diameter of the inorganic compound 11.

水には粘性があるため、流水と流動化した顆粒の多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図5はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。   Since water has viscosity, a velocity boundary layer is generated in the region from the surface of the inorganic compound 11 to the vicinity of the surface when passing through the porous space of flowing water and fluidized granules. FIG. 5 is a diagram showing the state of the velocity boundary layer. The flow velocity in the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the center of the porous space has a large distribution.

無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water.

流動化現象による攪拌効果により無機化合物11の表面近傍と流速の大きい多孔質空間の中心部の流れる水との濃度差をより大きくしながら物質拡散の原理を、利用することで、無機化合物11をより効率よく多孔質空間内の水に溶解させることができる。   By utilizing the principle of substance diffusion while increasing the concentration difference between the vicinity of the surface of the inorganic compound 11 and the flowing water in the center of the porous space having a large flow velocity due to the stirring effect due to the fluidization phenomenon, the inorganic compound 11 is It can be dissolved in water in the porous space more efficiently.

濾過手段13は、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものである。   The filtering means 13 prevents the granules of the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12.

以上のように、本実施の形態においては、流路抵抗50の出口部近傍での噴流現象による静圧力低下を最大限に利用することが可能となり、より小さい流路抵抗により分岐回路へ必要流量を分配することができることから、簡易で低コストで流路抵抗により溶解装置を構成できることになり、利用者の利便性を向上でき、かつ、均一で効率のよい流動化現象による攪拌効果を伴い、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物をより効率よく溶解させることが可能となる。   As described above, in the present embodiment, it is possible to make maximum use of the static pressure drop due to the jet phenomenon near the outlet portion of the flow path resistance 50, and the required flow rate to the branch circuit due to the smaller flow path resistance. Therefore, it is possible to configure a dissolution apparatus with flow path resistance at a simple and low cost, improving the convenience of the user, and accompanied by a stirring effect due to a uniform and efficient fluidization phenomenon, Based on the principle of substance diffusion (Fick's law) in which a substance moves due to a difference in dissolution concentration between water and an inorganic compound, the inorganic compound can be more efficiently dissolved in water.

従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   Therefore, since the power supply circuit and the insulation circuit which have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact and low in cost, and further reduces power consumption.

尚、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

図6は、溶解装置の無機化合物11と濾過手段13の寸法の関係を示す例である。図3において、濾過手段13は径の異なる複数の小穴13a、13b、13cから構成される。   FIG. 6 is an example showing the relationship between the dimensions of the inorganic compound 11 and the filtering means 13 in the dissolving apparatus. In FIG. 3, the filtering means 13 is composed of a plurality of small holes 13a, 13b, 13c having different diameters.

図7は、濾過手段13の構成図である。(a)は、線形状の繊維で角状の小穴を形成したものである。(b)は、所定の厚さの板に、複数種の径の小穴を施したものである。(c)は、粒状の非溶解材料を多層状として多孔質空間を形成したものである。   FIG. 7 is a configuration diagram of the filtering means 13. (A) forms a square-shaped small hole with a linear fiber. (B) is a plate having a predetermined thickness and small holes having a plurality of types of diameters. (C) forms a porous space by using a granular non-dissolving material as a multilayer.

何れも、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものであるが、この構成と形状の限りではない。   In any case, when the granules of the inorganic compound 11 are about to flow out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12, this is prevented, but the configuration and shape are not limited thereto.

溶解装置16を流出する溶解濃度は、無機化合物収納容器12を通過する水流速と、無機化合物11の水と接触する表面積等で決定される。溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、図3の無機化合物収納容器12に収納する無機化合物11の粒径をある一定の範囲内のサイズに選別したものを利用する必要がある。   The dissolution concentration flowing out of the dissolution apparatus 16 is determined by the flow rate of water passing through the inorganic compound storage container 12, the surface area of the inorganic compound 11 in contact with water, and the like. When the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range, so the particle size of the inorganic compound 11 stored in the inorganic compound storage container 12 of FIG. It is necessary to use the one selected for the size within the range.

選別を行うと、コストアップの要因となるため、複数の径を有する無機化合物11の中において、無機化合物11の最大粒径D1に対して、濾過手段13の小穴13aの径D2は、D2<D1とした場合、以下の効果を得ることができる。   Since the selection causes a cost increase, among the inorganic compounds 11 having a plurality of diameters, the diameter D2 of the small hole 13a of the filtering means 13 is D2 <with respect to the maximum particle diameter D1 of the inorganic compound 11. In the case of D1, the following effects can be obtained.

D2未満の粒径の無機化合物11は、小穴13a、13b、13cから流出する。利用初期は粒径の小さいものは、溶解装置16外へ流出するが、所定時間経過後は、D2以上の粒径の無機化合物11は無機化合物収納容器12内に貯留され続ける。   The inorganic compound 11 having a particle size less than D2 flows out from the small holes 13a, 13b, and 13c. In the initial stage of use, those having a small particle size flow out of the melting device 16, but after a predetermined time has passed, the inorganic compound 11 having a particle size of D2 or more continues to be stored in the inorganic compound storage container 12.

この状態が形成された場合、無機化合物11の粒径をある一定の範囲内のサイズに選別したことと同等となる。従って、サイズが混在する無機化合物11を用いても、目的とする濃度を水に溶解させる構造となる。   When this state is formed, it is equivalent to selecting the particle size of the inorganic compound 11 to a size within a certain range. Therefore, even if the inorganic compound 11 in which the sizes are mixed is used, the target concentration is dissolved in water.

(実施の形態2)
図8は、本発明の第2の実施の形態における給湯装置の構成図を示すものである。
(Embodiment 2)
FIG. 8 shows a block diagram of a hot water supply apparatus according to the second embodiment of the present invention.

図8において、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   In FIG. 8, a heat pump unit 21 is configured by connecting a compressor 22, a hot water supply heat exchanger 23, a decompression unit 24, and an evaporator 25 in an annular manner in order by a refrigerant circuit 26. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order. The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。浴槽水注湯経路39は、貯湯タンク28の水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の高温の水と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯経路39の回路の開閉を行う浴槽水注湯弁38を順に備える。溶解装置16は浴槽水注湯弁38の下流側の浴槽水注湯経路39に本体の筐体に収納するように設けた。   The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order. The bathtub water pouring path 39 is a circuit for pouring the water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. This circuit includes a bathtub water mixing valve 36 that mixes hot water in the hot water storage tank 28 and tap water, temperature detection means 37 that detects the temperature of the water to be poured, and bathtub water injection that opens and closes the circuit of the bathtub water pouring path 39. The hot water valve 38 is provided in order. The melting device 16 was provided in the bathtub water pouring path 39 on the downstream side of the bathtub water pouring valve 38 so as to be housed in the casing of the main body.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流量を制御する。   The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯経路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。所
定温度となった浴槽水は、浴槽水注湯経路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。
The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bathtub water mixing valve 36 of the bathtub water pouring path 39 has a hot water and tap water so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). Adjust the mixing ratio. The bathtub water having a predetermined temperature flows out into the bathtub 42 through the bathtub water pouring path 39 and the bathtub water circulation circuit 41 in this order.

一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28に貯留された高温の水を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ18より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   On the other hand, when the bathtub water in the bathtub 42 is heated, the hot water stored in the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 18. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

利用者が浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された水が、浴槽水注湯弁38を閉から開に制御した場合に、溶解装置16、浴槽水循環回路41を経由して浴槽42に流出する。水が溶解装置16を通過する際に、無機化合物が水に溶解するので、浴槽42に湯はり動作と同時に、無機化合物11を溶解させた水が浴槽42に流入する。   When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the water adjusted by the bathtub water mixing valve 36 at a preset temperature controls the bathtub water pouring valve 38 from closed to open, it passes through the melting device 16 and the bathtub water circulation circuit 41. It flows out into the bathtub 42. When the water passes through the dissolving device 16, the inorganic compound dissolves in the water, so that the water in which the inorganic compound 11 is dissolved flows into the bathtub 42 simultaneously with the hot water operation in the bathtub 42.

溶解装置16は、浴槽水注湯弁38の下流側としたが、浴槽水注湯弁38が開から閉へ制御された場合は、ウォーターハンマー現象が発生し、上流側の回路に設けている、浴槽水混合弁36、貯湯タンク28等は水道圧以上の水圧負荷を与える。下流側に設けることによって、溶解装置16への水圧負荷が掛からない。   Although the melting device 16 is on the downstream side of the bathtub water pouring valve 38, when the bathtub water pouring valve 38 is controlled from opening to closing, a water hammer phenomenon occurs and is provided in the upstream circuit. The bathtub water mixing valve 36, the hot water storage tank 28, etc. give a water pressure load higher than the water pressure. By providing on the downstream side, the hydraulic load on the melting device 16 is not applied.

以上のように、本実施の形態においては、浴槽水注湯経路と、浴槽水注湯弁を備え、浴槽水注湯弁、溶解装置の順に浴槽水注湯経路に備えた給湯装置とした。これにより、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯経路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the bathtub water-pouring path | route, the bathtub water-pouring valve, and the bathtub water-pouring path | route in order of the bathtub water-pouring valve and the melting apparatus. Thereby, since the melting apparatus is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring route or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting apparatus can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

本発明において、溶解装置16は給湯機の本体筐体に収納し、浴槽水注湯経路39としているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11を溶解させた水を供給することが出来る。   In the present invention, the melting device 16 is housed in the main body housing of the water heater and serves as the bathtub water pouring path 39, but even if it is provided in the bathtub water circulation circuit 41, water in which the inorganic compound 11 is dissolved is supplied to the bathtub 42. I can do it.

また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は常時加温されるため、溶解装置16の凍結防止などの断熱が不要、または簡素化できる。   Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is always heated, so that heat insulation such as prevention of freezing of the melting device 16 is unnecessary or simplified.

また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を化合物溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。   Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the compound dissolving apparatus. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態3)
図9は、本発明の第3の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 3)
FIG. 9 shows a structural diagram of a melting apparatus according to the third embodiment of the present invention.

図9において、溶解装置16の入口と出口は浴槽水注湯経路39に接続されている。無機化合物11を収納する無機化合物収納容器12の相当直径d1、浴槽水注湯経路39の相当直径d2とした場合、図9においてそれぞれをd1>d2となる大きさなるように決定した。   In FIG. 9, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring channel 39. When the equivalent diameter d1 of the inorganic compound storage container 12 storing the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring channel 39 are set, in FIG. 9, each is determined to have a size satisfying d1> d2.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

分岐回路15に対して、無機化合物11を収納した無機化合物収納容器12、濾過手段13を設けたので、溶解装置16を水が通過する際に、圧力損失が生じる。圧力損失が生じると、浴槽42へ供給する水の流量が低下する。   Since the inorganic compound storage container 12 storing the inorganic compound 11 and the filtering means 13 are provided for the branch circuit 15, pressure loss occurs when water passes through the dissolving device 16. When pressure loss occurs, the flow rate of water supplied to the bathtub 42 decreases.

ここで、無機化合物収納容器12の相当直径d1を、浴槽水注湯経路39の相当直径d2に対して、d1>d2となる大きさとすると、無機化合物収納容器12の平均流速u1は、浴槽水注湯経路39の平均流速u2より小さくなる。水回路の流体の圧力損失は、流体の平均流速の2乗に比例するため、溶解装置16を通過する際の圧力損失の増加を低減させることができる。   Here, if the equivalent diameter d1 of the inorganic compound storage container 12 is such that d1> d2 with respect to the equivalent diameter d2 of the bathtub water pouring path 39, the average flow velocity u1 of the inorganic compound storage container 12 is the bath water. It becomes smaller than the average flow velocity u2 of the pouring passage 39. Since the pressure loss of the fluid in the water circuit is proportional to the square of the average flow velocity of the fluid, an increase in the pressure loss when passing through the dissolving device 16 can be reduced.

以上のように、本実施の形態においては、無機化合物収納容器の相当直径を、溶解装置を接続する浴槽水注湯経路の相当直径よりも大とすることにより、無機化合物を通過する水流による圧力損失を低減し、浴槽への湯はり時間を早く完了することができる。   As mentioned above, in this Embodiment, the pressure by the water flow which passes an inorganic compound is made larger by making the equivalent diameter of an inorganic compound storage container larger than the equivalent diameter of the bathtub water pouring path which connects a dissolution device. Loss can be reduced and the hot water filling time for the bathtub can be completed quickly.

以上のように、本発明にかかる給湯装置は、コンパクト化、低コスト化、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention leads to downsizing, cost reduction, and improvement in operating efficiency, and can be used for a hot water storage hot water heater and a gas heat source hot water heater.

11 無機化合物
12 無機化合物収納容器
13 濾過手段
13a 小穴
13b 小穴
13c 小穴
14 内部通水管
15 分岐回路
16 溶解装置
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯経路
42 浴槽
50 流路抵抗
51 分岐部
52 合流部
DESCRIPTION OF SYMBOLS 11 Inorganic compound 12 Inorganic compound storage container 13 Filtration means 13a Small hole 13b Small hole 13c Small hole 14 Internal water pipe 15 Branch circuit 16 Dissolving device 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bath water mixing valve 37 Temperature detection means 38 Bath water pouring Valve 39 Bath water pouring path 42 Bath 50 Flow path resistance 51 Branching part 52 Junction part

Claims (4)

湯水を注湯する注湯経路と、前記湯水に無機化合物を溶解させる溶解装置と、前記注湯経路からの湯水を分流させるように形成した分岐回路と、前記注湯経路に形成した流路抵抗とを備え、前記分岐回路に前記溶解装置を配設するとともに、前記流路抵抗の下流側端部から前記注湯経路の流路径以内の長さの位置に、前記分岐回路からの湯水を返流させる構成としたことを特徴とする給湯装置。 A pouring path for pouring hot water, a melting device for dissolving an inorganic compound in the hot water, a branch circuit formed to divert hot water from the pouring path, and a flow path resistance formed in the pouring path The melting device is disposed in the branch circuit, and the hot water from the branch circuit is returned to a position within the flow path diameter of the pouring path from the downstream end of the flow path resistance. A hot water supply device characterized in that it is configured to flow. 前記注湯経路を開閉する注湯弁を備え、前記溶解装置を、前記注湯弁の下流側に配設したことを特徴とする請求項1に記載の給湯装置。 The hot water supply apparatus according to claim 1, further comprising a pouring valve that opens and closes the pouring path, and the melting device is disposed downstream of the pouring valve. 前記溶解装置は前記無機化合物を収納する収納手段を備え、前記収納手段の相当直径を、前記注湯経路の相当直径よりも大きくしたことを特徴とする請求項1または2に記載の給湯装置。 The hot water supply apparatus according to claim 1 or 2, wherein the melting apparatus includes a storage means for storing the inorganic compound, and an equivalent diameter of the storage means is larger than an equivalent diameter of the pouring path. 前記溶解装置を、本体筐体内に配設したことを特徴とする請求項1〜3のいずれか1項に記載の給湯装置。 The hot water supply device according to any one of claims 1 to 3, wherein the melting device is disposed in a main body casing.
JP2011108010A 2011-05-13 2011-05-13 Water heater Expired - Fee Related JP5861028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108010A JP5861028B2 (en) 2011-05-13 2011-05-13 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108010A JP5861028B2 (en) 2011-05-13 2011-05-13 Water heater

Publications (2)

Publication Number Publication Date
JP2012237529A true JP2012237529A (en) 2012-12-06
JP5861028B2 JP5861028B2 (en) 2016-02-16

Family

ID=47460576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108010A Expired - Fee Related JP5861028B2 (en) 2011-05-13 2011-05-13 Water heater

Country Status (1)

Country Link
JP (1) JP5861028B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126285A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Bathwater purifier
JPH0681389U (en) * 1993-04-30 1994-11-22 巍 藤 Cosmetic elution device
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH11151485A (en) * 1997-11-20 1999-06-08 Nippon Gijutsu Kaihatsu Center:Kk Gradually soluble ceramic water treating agent
JP2001173973A (en) * 1999-12-16 2001-06-29 Toto Ltd System for reforming hot water being supplied to bathtub
JP2004190882A (en) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd Hot water supply device
JP2004305813A (en) * 2003-04-02 2004-11-04 Meiwa Kosan Kk Disinfectant injection device
JP2004313821A (en) * 2003-04-10 2004-11-11 Planet Company:Kk Water circulation system and hair collector in facilities using circulating water
JP2005152816A (en) * 2003-11-26 2005-06-16 Kao Corp Attachment for mixing
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126285A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Bathwater purifier
JPH0681389U (en) * 1993-04-30 1994-11-22 巍 藤 Cosmetic elution device
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH11151485A (en) * 1997-11-20 1999-06-08 Nippon Gijutsu Kaihatsu Center:Kk Gradually soluble ceramic water treating agent
JP2001173973A (en) * 1999-12-16 2001-06-29 Toto Ltd System for reforming hot water being supplied to bathtub
JP2004190882A (en) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd Hot water supply device
JP2004305813A (en) * 2003-04-02 2004-11-04 Meiwa Kosan Kk Disinfectant injection device
JP2004313821A (en) * 2003-04-10 2004-11-11 Planet Company:Kk Water circulation system and hair collector in facilities using circulating water
JP2005152816A (en) * 2003-11-26 2005-06-16 Kao Corp Attachment for mixing
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function

Also Published As

Publication number Publication date
JP5861028B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US8768154B2 (en) Fixed and selectively fixed bypass pumpless instantaneous / storage water heater system
BR112018009527B1 (en) THERMOCHROMIC DEVICE USED IN WATER CONSERVATION SHOWER SYSTEM
JP2009264732A (en) Hot water system
JP6032456B2 (en) Carbonate spring generator
JP5861028B2 (en) Water heater
US20140003801A1 (en) Water heating system
JP5527257B2 (en) Melting apparatus and hot water supply apparatus including the same
JP5640808B2 (en) Water heater
JP2009041855A (en) Counterflow prevention device, and hot water supply device having the same and hot water supply system
JP5857209B2 (en) Melting apparatus and hot water supply apparatus including the same
JP4858633B1 (en) Water heater
JP2014076435A (en) Dissolution device and hot-water supply device equipped with dissolution device
JP2013002669A (en) Water heater
JP4858632B1 (en) Water heater
CN104697199A (en) Solar water heater partner having hot water while being opened
JP2012081438A (en) Dissolving device and device for supplying hot water including the same
JP5361981B2 (en) Hot water storage water heater
JP2012021715A (en) Dissolving device, and water heater with the same
CN221307970U (en) Tea making machine
JP2012184888A (en) Dissolving apparatus
JP2005214601A (en) Method for saving water/quick warming in hot water supply
JP2012037077A (en) Dissolving device, and hot water supply device with the same
JP4883213B1 (en) Water heater
JP6032506B2 (en) Carbonate spring generator
JP2012172914A (en) Dissolving apparatus and water heater equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5861028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees