JP2012021715A - Dissolving device, and water heater with the same - Google Patents

Dissolving device, and water heater with the same Download PDF

Info

Publication number
JP2012021715A
JP2012021715A JP2010160385A JP2010160385A JP2012021715A JP 2012021715 A JP2012021715 A JP 2012021715A JP 2010160385 A JP2010160385 A JP 2010160385A JP 2010160385 A JP2010160385 A JP 2010160385A JP 2012021715 A JP2012021715 A JP 2012021715A
Authority
JP
Japan
Prior art keywords
water
inorganic compound
bathtub
circuit
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010160385A
Other languages
Japanese (ja)
Inventor
Katsuhiro Wada
克広 和田
Yoshio Nishiyama
吉継 西山
Tomoaki Ando
智朗 安藤
Masanori Hirota
正宣 広田
Yasusuke Horiki
泰佑 堀木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010160385A priority Critical patent/JP2012021715A/en
Publication of JP2012021715A publication Critical patent/JP2012021715A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact dissolving device with low operating cost for supplying inorganic compound or the like without requiring any electric circuit, and to provide a water heater with the same.SOLUTION: The dissolving device includes a water circuit 15, and an accommodation unit 12 for accommodating an inorganic compound 11 that is a powdery compound, a granular compound, or the mixture of a powdery compound and a granular compound. The dissolving device is provided for dissolving the inorganic compound 11 accommodated in the accommodation unit 12 in the water flowing in the water circuit 15. The dissolving device is configured to dissolve the inorganic compound in the water by taking advantage of the principle of substance diffusion (the law of Fick) where the difference in dissolution concentration between water and an inorganic compound moves a substance.

Description

本発明は、無機化合物等を溶解する溶解装置、及び溶解した無機化合物等を浴槽に供給する機能を備えた給湯装置に関するものである。   The present invention relates to a melting apparatus that dissolves inorganic compounds and the like, and a hot water supply apparatus that has a function of supplying dissolved inorganic compounds and the like to a bathtub.

従来この種の装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図8は、特許文献1に記載された従来の給湯装置を示すものである。図8に示すように、亜鉛陽極1と、陰極2と、ケーシング5と、直流電源9から構成されている。   FIG. 8 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 8, it is composed of a zinc anode 1, a cathode 2, a casing 5, and a DC power source 9.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源9と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源9においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power source 9 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in the size and cost of the apparatus, the DC power supply 9 requires power, so that the amount of power consumption increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、コンパクトで運転コストが安価な無機化合物等を供給する溶解装置及びそれを備えた給湯装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a melting apparatus that supplies an inorganic compound or the like that does not require an electric circuit and is compact and low in operating cost, and a hot water supply apparatus including the melting apparatus. To do.

前記従来の課題を解決するために、本発明の溶解装置は、水回路と、粉末状または顆粒状、あるいは、粉末状と顆粒状との混合物である無機化合物を収納する収納手段とを備え、前記水回路を流れる水に、前記収納手段に収納された無機化合物を溶解させることを特徴とするものである。   In order to solve the conventional problems, the dissolution apparatus of the present invention comprises a water circuit and storage means for storing an inorganic compound that is a powder or granules, or a mixture of powder and granules, The inorganic compound stored in the storage means is dissolved in water flowing through the water circuit.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できる。これにより、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far. Thereby, while realizing compactness and cost reduction, since it is a principle which does not require electric power, power consumption can be suppressed.

本発明によれば、コンパクト化、低コスト化、さらには、消費電力量の抑制を実現した無機化合物等を供給する溶解装置及びそれを備えた給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the melt | dissolution apparatus which supplies the inorganic compound etc. which implement | achieved compactization, cost reduction, and also suppression of the power consumption amount, and a hot water supply apparatus provided with the same can be provided.

本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における溶解装置の詳細図Detailed view of dissolution apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における溶解装置の無機化合物と濾過手段の関係を示す図The figure which shows the relationship between the inorganic compound of the dissolution apparatus in Embodiment 1 of this invention, and a filtration means (a)本発明の実施の形態1における濾過手段の構成図(b)同他の濾過手段の構成図(c)同他の濾過手段の構成図(A) Configuration diagram of filtering means in Embodiment 1 of the present invention (b) Configuration diagram of other filtering means (c) Configuration diagram of other filtering means 本発明の実施の形態2における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 2 of this invention 本発明の実施の形態3における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 3 of the present invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、水回路と、粉末状または顆粒状、あるいは、粉末状と顆粒状との混合物である無機化合物を収納する収納手段とを備え、前記水回路を流れる水に、前記収納手段に収納された無機化合物を溶解させる構成としたことを特徴とする溶解装置である。   The first invention includes a water circuit and storage means for storing an inorganic compound that is a powder or granule, or a mixture of powder and granule, and the storage means contains water in the water circuit. It is the melt | dissolution apparatus characterized by the structure which melt | dissolves the inorganic compound accommodated in this.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できる。また、電力不要の原理であるため、消費電力量を抑えることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far. In addition, since it is a principle that does not require power, the power consumption can be suppressed.

第2の発明は、湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記第1の発明の溶解装置を、前記浴槽水注湯回路に、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置である。   2nd invention is provided with the bathtub water pouring circuit which supplies hot water to a bathtub, and the bathtub water pouring valve which opens and closes the said bath water pouring circuit, The melting apparatus of said 1st invention is the said bath water. In the hot water supply circuit, the hot water supply device is provided on the downstream side of the bathtub water pouring valve.

これによって、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   Thereby, since the melting apparatus is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting apparatus can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

第3の発明は、湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記第1の発明の収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置で、水が無機化合物収納容器を通過する際に生じる圧力損失の増加を低減させ、浴槽への湯はりを早く完了することができる。   3rd invention is equipped with the bathtub water pouring circuit which supplies hot water to a bathtub, and the bathtub water pouring valve which opens and closes the said bath water pouring circuit, The equivalent diameter of the storage means of the said 1st invention, A hot water supply device that is larger than the equivalent diameter of the bath water pouring circuit, reducing the increase in pressure loss that occurs when water passes through the inorganic compound storage container, and completes the hot water filling to the bathtub quickly. can do.

第4の発明は、前記第1の発明の溶解装置を、本体筐体内に配設したことを特徴とする給湯装置で、低外気温時であっても貯湯タンク、電源回路などからの僅かな放熱により筐体内の雰囲気は常時加温されているため、溶解装置の凍結防止などの断熱が簡素化、または不要となる。   A fourth invention is a hot water supply apparatus characterized in that the melting apparatus of the first invention is disposed in a main body housing, and even from a hot water storage tank, a power circuit, etc. Since the atmosphere in the housing is always heated by heat radiation, heat insulation such as prevention of freezing of the melting apparatus is simplified or unnecessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、無機化合物11は粉末状、または、顆粒状、または、粉末状と顆粒状の混合物であり、無機化合物収納容器12に収納される。無機化合物11は水に対して溶解性を持つ。図1の無機化合物11は径が異なる顆粒状のものであり、これを多層状となるように構成すると、無機化合物収納容器12内には多孔質の空間が形成される。無機化合物収納容器12は、水回路15によって連通され、溶解装置16を構成する。   In FIG. 1, the inorganic compound 11 is in the form of powder, granules, or a mixture of powder and granules, and is stored in the inorganic compound storage container 12. The inorganic compound 11 is soluble in water. The inorganic compound 11 in FIG. 1 is in the form of granules having different diameters, and when this is configured to be multilayered, a porous space is formed in the inorganic compound storage container 12. The inorganic compound container 12 is communicated by a water circuit 15 and constitutes a dissolving device 16.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に形成される多孔質の空間
を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図3はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。
About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing into the dissolving device 16 from the water circuit 15 passes through the porous space formed in the inorganic compound storage container 12. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 11 to the region near the surface when passing through the porous space. FIG. 3 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the central portion of the porous space has a large distribution. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を多孔質空間内の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in the porous space.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器と有し、無機化合物収納容器を水回路で接続した溶解装置を備えた給湯装置とした。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the melt | dissolution apparatus which has an inorganic compound and an inorganic compound storage container, and connected the inorganic compound storage container with the water circuit.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, since the power supply circuit and the insulation circuit which have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact and low in cost, and further reduces power consumption.

尚、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

図2は、本発明の第1の実施の形態における図1とは別の溶解装置の構造図を示すものである。   FIG. 2 shows a structural diagram of a melting apparatus different from FIG. 1 in the first embodiment of the present invention.

図2において、無機化合物11は粉末状、または、顆粒状、または、粉末状と顆粒状の混合物であり、無機化合物収納容器12に収納される。無機化合物11は水に対して溶解性を持つ。図1の無機化合物11は径が異なる顆粒状のものであり、これを多層状となるように構成すると、無機化合物収納容器12内には多孔質の空間が形成される。濾過手段13は複数の小穴を有し、濾過手段収納容器14に収納される。無機化合物収納容器12と濾過手段収納容器14は、順に水回路15によって連通され、無機化合物収納容器12は濾過手段収納容器14の上流側となるように溶解装置16を構成する。   In FIG. 2, the inorganic compound 11 is in the form of powder, granules, or a mixture of powder and granules, and is stored in the inorganic compound storage container 12. The inorganic compound 11 is soluble in water. The inorganic compound 11 in FIG. 1 is in the form of granules having different diameters, and when this is configured to be multilayered, a porous space is formed in the inorganic compound storage container 12. The filtering means 13 has a plurality of small holes and is stored in the filtering means storage container 14. The inorganic compound storage container 12 and the filtration means storage container 14 are sequentially communicated by a water circuit 15, and the dissolution apparatus 16 is configured so that the inorganic compound storage container 12 is on the upstream side of the filtration means storage container 14.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に形成される多孔質の空間を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図3はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing into the dissolving device 16 from the water circuit 15 passes through the porous space formed in the inorganic compound storage container 12. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 11 to the region near the surface when passing through the porous space. FIG. 3 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the central portion of the porous space has a large distribution. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い
中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を多孔質空間内の水に溶解させることができる。濾過手段13は、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものである。
On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in the porous space. The filtering means 13 prevents the granules of the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器と、濾過手段と、濾過手段収納容器を有し、無機化合物収納容器、濾過手段収納容器の順に水回路で接続した溶解装置を備えた給湯装置とした。   As described above, in the present embodiment, the inorganic compound, the inorganic compound storage container, the filtration means, and the filtration means storage container are provided, and the inorganic compound storage container and the filtration means storage container are connected in this order by the water circuit. A hot water supply device equipped with a melting device was used.

これによって、図1に示す溶解装置と同様に、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   As a result, the inorganic compound can be dissolved in water based on the principle of substance diffusion (Fick's law), in which the substance moves according to the difference in dissolved concentration between water and the inorganic compound, similar to the dissolution apparatus shown in FIG. It becomes. Therefore, since the power supply circuit and the insulation circuit which have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact and low in cost, and further reduces power consumption.

図4は、溶解装置の無機化合物11と濾過手段13の寸法の関係を示す例である。図4において、濾過手段13は径の異なる複数の小穴13a、13b、13cから構成される。   FIG. 4 is an example showing the relationship between the dimensions of the inorganic compound 11 and the filtering means 13 of the dissolving apparatus. In FIG. 4, the filtering means 13 is composed of a plurality of small holes 13a, 13b, 13c having different diameters.

図5は、濾過手段13の構成例である。(a)は、線形状の繊維で角状の小穴を形成したものである。(b)は、所定の厚さの板に、複数種の径の小穴を施したものである。(c)は、粒状の非溶解材料を多層状として多孔質空間を形成したものである。何れも、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものであるが、この構成と形状の限りではない。   FIG. 5 is a configuration example of the filtering means 13. (A) forms a square-shaped small hole with a linear fiber. (B) is a plate having a predetermined thickness and small holes having a plurality of types of diameters. (C) forms a porous space by using a granular non-dissolving material as a multilayer. In any case, when the granules of the inorganic compound 11 are about to flow out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12, this is prevented, but the configuration and shape are not limited thereto.

溶解装置16を流出する溶解濃度は、無機化合物収納容器12を通過する水流速と、無機化合物11の水と接触する表面積等で決定される。溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、図4の無機化合物収納容器12に収納する無機化合物11の粒径をある一定の範囲内のサイズに選別したものを利用する必要がある。   The dissolution concentration flowing out of the dissolution apparatus 16 is determined by the flow rate of water passing through the inorganic compound storage container 12, the surface area of the inorganic compound 11 in contact with water, and the like. When the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range, so the particle size of the inorganic compound 11 stored in the inorganic compound storage container 12 of FIG. It is necessary to use the one selected for the size within the range.

選別を行うと、コストアップの要因となるため、複数の径を有する無機化合物11の中において、無機化合物11の最大粒径D1に対して、濾過手段13の小穴13aの径D2は、D2<D1とした場合、以下の効果を得ることができる。D2未満の粒径の無機化合物11は、小穴13a、13b、13cから流出する。利用初期は粒径の小さいものは、溶解装置16外へ流出するが、所定時間経過後は、D2以上の粒径の無機化合物11は無機化合物収納容器12内に貯留され続ける。この状態が形成された場合、無機化合物11の粒径をある一定の範囲内のサイズに選別したことと同等となる。従って、サイズが混在する無機化合物11を用いても、目的とする濃度を水に溶解させる構造となる。   Since the selection causes a cost increase, among the inorganic compounds 11 having a plurality of diameters, the diameter D2 of the small hole 13a of the filtering means 13 is D2 <with respect to the maximum particle diameter D1 of the inorganic compound 11. In the case of D1, the following effects can be obtained. The inorganic compound 11 having a particle size less than D2 flows out from the small holes 13a, 13b, and 13c. In the initial stage of use, those having a small particle size flow out of the melting device 16, but after a predetermined time has passed, the inorganic compound 11 having a particle size of D2 or more continues to be stored in the inorganic compound storage container 12. When this state is formed, it is equivalent to selecting the particle size of the inorganic compound 11 to a size within a certain range. Therefore, even if the inorganic compound 11 in which the sizes are mixed is used, the target concentration is dissolved in water.

(実施の形態2)
図6は、本発明の第2の実施の形態における給湯装置の構成図を示すものである。
(Embodiment 2)
FIG. 6 shows a configuration diagram of a hot water supply apparatus according to the second embodiment of the present invention.

図6において、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   In FIG. 6, a heat pump unit 21 is configured by connecting a compressor 22, a hot water supply heat exchanger 23, a decompression means 24, and an evaporator 25 in an annular manner in order by a refrigerant circuit 26. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order. The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。浴槽水注湯回路39は、貯湯タンク28の水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の高温の水と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯回路39の回路の開閉を行う浴槽水注湯弁38を順に備える。溶解装置16は浴槽水注湯弁38の下流側の浴槽水注湯回路39に本体の筐体に収納するように設けた。   The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order. The bathtub water pouring circuit 39 is a circuit for pouring the water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. In this circuit, a bath water mixing valve 36 for mixing hot water in the hot water storage tank 28 and tap water, temperature detecting means 37 for detecting the temperature of the pouring water, and bath water pouring for opening and closing the bath water pouring circuit 39. The hot water valve 38 is provided in order. The melting device 16 was provided in the bathtub water pouring circuit 39 on the downstream side of the bathtub water pouring valve 38 so as to be housed in the housing of the main body.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流量を制御する。   The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯回路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。所定温度となった浴槽水は、浴槽水注湯回路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28に貯留された高温の水を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ18より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bath water mixing valve 36 of the bath water pouring circuit 39 has a hot water and tap water so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). Adjust the mixing ratio. The bathtub water having a predetermined temperature flows out into the bathtub 42 through the bathtub water pouring circuit 39 and the bathtub water circulation circuit 41 in this order. On the other hand, when the bathtub water in the bathtub 42 is heated, the hot water stored in the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 18. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。利用者が浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された水が、浴槽水注湯弁38を閉から開に制御した場合に、溶解装置16、浴槽水循環回路41を経由して浴槽42に流出する。水が溶解装置16を通過する際に、無機化合物が水に溶解するので、浴槽42に湯はり動作と同時に、無機化合物11を溶解させた水が浴槽42に流入する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the water adjusted by the bathtub water mixing valve 36 at a preset temperature controls the bathtub water pouring valve 38 from closed to open, it passes through the melting device 16 and the bathtub water circulation circuit 41. It flows out into the bathtub 42. When the water passes through the dissolving device 16, the inorganic compound dissolves in the water, so that the water in which the inorganic compound 11 is dissolved flows into the bathtub 42 simultaneously with the hot water operation in the bathtub 42.

溶解装置16は、浴槽水注湯弁38の下流側としたが、浴槽水注湯弁38が開から閉へ制御された場合は、ウォーターハンマー現象が発生し、上流側の回路に設けている、浴槽水混合弁36、貯湯タンク28等は水道圧以上の水圧負荷を与える。下流側に設けることによって、溶解装置16への水圧負荷が掛からない。   Although the melting device 16 is on the downstream side of the bathtub water pouring valve 38, when the bathtub water pouring valve 38 is controlled from opening to closing, a water hammer phenomenon occurs and is provided in the upstream circuit. The bathtub water mixing valve 36, the hot water storage tank 28, etc. give a water pressure load higher than the water pressure. By providing on the downstream side, the hydraulic load on the melting device 16 is not applied.

以上のように、本実施の形態においては、浴槽水注湯回路と、浴槽水注湯弁を備え、浴槽水注湯弁、溶解装置の順に浴槽水注湯回路に備えた給湯装置とした。これにより、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the bathtub water-pouring circuit and the bathtub water-pouring valve, and equipped with the bathtub water-pouring circuit in order of the bathtub water-pouring valve and the melting apparatus. Thereby, since the melting device is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting device can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

本発明において、溶解装置16は給湯機の本体筐体に収納し、浴槽水注湯回路39としているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11を溶解させた水を供給することが出来る。また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は常時加温されるため、溶解装置16の凍結防止などの断熱が不要、または簡素化できる。   In the present invention, the melting device 16 is housed in the main body housing of the water heater and serves as a bathtub water pouring circuit 39. However, even if provided in the bathtub water circulation circuit 41, water in which the inorganic compound 11 is dissolved is supplied to the bathtub 42. I can do it. Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is always heated, so that heat insulation such as prevention of freezing of the melting device 16 is unnecessary or simplified.

また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を化合物溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。   Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the compound dissolving apparatus. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態3)
図7は、本発明の第3の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 3)
FIG. 7 shows a structural diagram of a melting apparatus according to the third embodiment of the present invention.

図7において、溶解装置16の入口と出口は浴槽水注湯回路39に接続されている。無機化合物11を収納する無機化合物収納容器12の相当直径d1、浴槽水注湯回路39の相当直径d2とした場合、図7においてそれぞれをd1>d2となる大きさなるように決定した。   In FIG. 7, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring circuit 39. When the equivalent diameter d1 of the inorganic compound storage container 12 that stores the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring circuit 39 are set, the sizes are determined so as to satisfy d1> d2 in FIG.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15に対して、無機化合物11を収納した無機化合物収納容器12、濾過手段収納容器14を設けたので、溶解装置16を水が通過する際に、圧力損失が生じる。圧力損失が生じると、浴槽42へ供給する水の流量が低下する。ここで、無機化合物収納容器12の相当直径d1を、浴槽水注湯回路39の相当直径d2に対して、d1>d2となる大きさとすると、無機化合物収納容器12の平均流速u1は、浴槽水注湯回路39の平均流速u2より小さくなる。水回路の流体の圧力損失は、流体の平均流速の2乗に比例するため、溶解装置16を通過する際の圧力損失の増加を低減させることができる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Since the inorganic compound storage container 12 storing the inorganic compound 11 and the filtering means storage container 14 are provided for the water circuit 15, a pressure loss occurs when water passes through the dissolving device 16. When pressure loss occurs, the flow rate of water supplied to the bathtub 42 decreases. Here, assuming that the equivalent diameter d1 of the inorganic compound storage container 12 is such that d1> d2 with respect to the equivalent diameter d2 of the bathtub water pouring circuit 39, the average flow velocity u1 of the inorganic compound storage container 12 is the bath water. It becomes smaller than the average flow velocity u2 of the pouring circuit 39. Since the pressure loss of the fluid in the water circuit is proportional to the square of the average flow velocity of the fluid, an increase in the pressure loss when passing through the dissolving device 16 can be reduced.

以上のように、本実施の形態においては、無機化合物収納容器の相当直径を、溶解装置を接続する浴槽水注湯回路の相当直径よりも大とすることにより、無機化合物を通過する水流による圧力損失を低減し、浴槽への湯はり時間を早く完了することができる。   As mentioned above, in this Embodiment, the pressure by the water flow which passes an inorganic compound is made larger by making the equivalent diameter of an inorganic compound storage container larger than the equivalent diameter of the bathtub water pouring circuit which connects a dissolving device. Loss can be reduced and the hot water filling time for the bathtub can be completed quickly.

以上のように、本発明にかかる給湯装置は、コンパクト化、低コスト化、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention leads to downsizing, cost reduction, and improvement in operating efficiency, and can be used for a hot water storage hot water heater and a gas heat source hot water heater.

11 無機化合物
12 無機化合物収納容器
13 濾過手段
13a 小穴
13b 小穴
13c 小穴
14 濾過手段収納容器
15 水回路
16 溶解装置
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯回路
42 浴槽
DESCRIPTION OF SYMBOLS 11 Inorganic compound 12 Inorganic compound storage container 13 Filtration means 13a Small hole 13b Small hole 13c Small hole 14 Filtration means storage container 15 Water circuit 16 Dissolving device 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bath water mixing valve 37 Temperature detection means 38 Bath water injection Hot water valve 39 Bath water pouring circuit 42 Bath tub

Claims (4)

水回路と、粉末状または顆粒状、あるいは、粉末状と顆粒状との混合物である無機化合物を収納する収納手段とを備え、前記水回路を流れる水に、前記収納手段に収納された無機化合物を溶解させる構成としたことを特徴とする溶解装置。 A water circuit and a storage means for storing an inorganic compound that is a powder or granule, or a mixture of a powder and a granule, and the inorganic compound stored in the storage means in the water flowing through the water circuit A melting apparatus characterized in that the composition is dissolved. 湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記請求項1に記載の溶解装置を、前記浴槽水注湯回路に、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置。 A bathtub water pouring circuit for supplying hot water to the bathtub, and a bathtub water pouring valve for opening and closing the bathtub water pouring circuit, and the melting device according to claim 1 in the bathtub water pouring circuit, A hot water supply apparatus, which is disposed downstream of the bathtub water pouring valve. 湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記請求項1に記載の収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置。 A bathtub water pouring circuit for supplying hot water to the bathtub and a bathtub water pouring valve for opening and closing the bathtub water pouring circuit are provided, and the bathtub water pouring bath has an equivalent diameter of the storage means according to claim 1. A hot water supply apparatus characterized by being larger than the equivalent diameter of the circuit. 前記請求項1に記載の溶解装置を、本体筐体内に配設したことを特徴とする給湯装置。 A hot water supply apparatus, wherein the melting apparatus according to claim 1 is disposed in a main body casing.
JP2010160385A 2010-07-15 2010-07-15 Dissolving device, and water heater with the same Pending JP2012021715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160385A JP2012021715A (en) 2010-07-15 2010-07-15 Dissolving device, and water heater with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160385A JP2012021715A (en) 2010-07-15 2010-07-15 Dissolving device, and water heater with the same

Publications (1)

Publication Number Publication Date
JP2012021715A true JP2012021715A (en) 2012-02-02

Family

ID=45776131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160385A Pending JP2012021715A (en) 2010-07-15 2010-07-15 Dissolving device, and water heater with the same

Country Status (1)

Country Link
JP (1) JP2012021715A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH09215618A (en) * 1996-02-14 1997-08-19 Energy Support Corp Circulator for warm water in bathtub
JPH10298057A (en) * 1997-05-01 1998-11-10 Tsumura & Co Bathing agent composition
JPH11246391A (en) * 1998-03-04 1999-09-14 Earth Chem Corp Ltd Bath preparation
JP2004301379A (en) * 2003-03-28 2004-10-28 Toho Gas Co Ltd Bathroom state control system
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH09215618A (en) * 1996-02-14 1997-08-19 Energy Support Corp Circulator for warm water in bathtub
JPH10298057A (en) * 1997-05-01 1998-11-10 Tsumura & Co Bathing agent composition
JPH11246391A (en) * 1998-03-04 1999-09-14 Earth Chem Corp Ltd Bath preparation
JP2004301379A (en) * 2003-03-28 2004-10-28 Toho Gas Co Ltd Bathroom state control system
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function

Similar Documents

Publication Publication Date Title
JP2008006365A (en) Continuous producing method of hydrogen water, its producing apparatus, bathing apparatus using hydrogen water, and bathroom device
JP2008005973A (en) Bathroom apparatus using hydrogen water
JP5527257B2 (en) Melting apparatus and hot water supply apparatus including the same
JP5640808B2 (en) Water heater
JP2012081438A (en) Dissolving device and device for supplying hot water including the same
JP4858632B1 (en) Water heater
JP2014076435A (en) Dissolution device and hot-water supply device equipped with dissolution device
JP2007003057A (en) Storage water heater
JP4858633B1 (en) Water heater
JP2012021715A (en) Dissolving device, and water heater with the same
JP5857209B2 (en) Melting apparatus and hot water supply apparatus including the same
JP4403983B2 (en) Water heater
JP2012037077A (en) Dissolving device, and hot water supply device with the same
JP5375769B2 (en) Water heater
JP2012042147A (en) Dissolving apparatus, and water heater with the same
JP5177241B2 (en) Water heater
JP5861028B2 (en) Water heater
JP2012184888A (en) Dissolving apparatus
JP5467364B2 (en) Water heater
JP4883213B1 (en) Water heater
JP2005214601A (en) Method for saving water/quick warming in hot water supply
JP4883230B1 (en) Water heater
JP2009103334A (en) Storage water heater
JP2007205593A (en) Hot water supply system
JP2012172914A (en) Dissolving apparatus and water heater equipped with the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115