JP2013002649A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2013002649A
JP2013002649A JP2011130869A JP2011130869A JP2013002649A JP 2013002649 A JP2013002649 A JP 2013002649A JP 2011130869 A JP2011130869 A JP 2011130869A JP 2011130869 A JP2011130869 A JP 2011130869A JP 2013002649 A JP2013002649 A JP 2013002649A
Authority
JP
Japan
Prior art keywords
water
hot water
flow rate
reforming
pouring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011130869A
Other languages
Japanese (ja)
Other versions
JP5824638B2 (en
Inventor
Masaru Miyoshi
大 三好
Tadashi Yanagisawa
忠 柳澤
Yuji Shibata
裕史 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011130869A priority Critical patent/JP5824638B2/en
Publication of JP2013002649A publication Critical patent/JP2013002649A/en
Application granted granted Critical
Publication of JP5824638B2 publication Critical patent/JP5824638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater which has high usability by making the addition concentration of a water modifying component supplied to hot water constant.SOLUTION: The water heater includes a hot water pouring path 26 for pouring hot water, a water modifying means 33 of adding a functional modification component to the hot water, and a flow rate detection means 50 of detecting the flow rate of the hot water flowing in the hot water pouring path 26, and is configured to change a time when the functional modification component is added to the hot water based upon the flow rate of the hot water that the flow rate detection means 50 detects. There is provided the water heater which has high usability by making the addition concentration of the water modifying component supplied to the hot water constant.

Description

本発明は、水改質を目的とした成分を所定量、給湯水に添加する機能を備えた給湯装置に関するものである。   The present invention relates to a hot water supply apparatus having a function of adding a predetermined amount of a component for water reforming to hot water supply water.

従来この種の装置は、目的の成分を含む材料を湯水に添加する水改質手段を、湯沸かし部に水道水を供給する給水経路中、または湯沸かし部で沸いた湯を浴槽へ導く注湯経路中に配設し、給湯水中に、所定の目的の水改質成分を添加する方法が公開されている(例えば、特許文献1参照)。   Conventionally, this type of device has a water reforming means for adding a material containing a target component to hot water in a water supply path for supplying tap water to a water heater, or a pouring path for guiding hot water boiled in a water heater to a bathtub. A method of disposing the water-reforming component for a predetermined purpose in hot water is disclosed (for example, see Patent Document 1).

図8は、特許文献1に記載された従来の給湯装置を示すものである。図8に示すように、水経路中に、水改質手段を組み込んで構成されている。   FIG. 8 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 8, water reforming means is incorporated in the water path.

本特許文献1において、水改質手段としては、添加成分を電極(亜鉛陽極1)とした電気分解方式を用い、注湯水が水改質手段を通過中に、電極1、2に通電し、電極1の一部を注湯水中に電気分解させることで、所定濃度の水改質成分を添加することができる。   In this patent document 1, as a water reforming means, an electrolysis method using an additive component as an electrode (zinc anode 1) is used, and electricity is supplied to the electrodes 1 and 2 while pouring water passes through the water reforming means. By electrolyzing a part of the electrode 1 in the pouring water, a water-reforming component having a predetermined concentration can be added.

また、特許文献1以外の他の水改質手段としては、水改質成分を含有した無機化合物を、湯水と接触させて濃度拡散を利用して溶解する手段も用いることができる。   Further, as other water reforming means other than Patent Document 1, a means for dissolving an inorganic compound containing a water reforming component by making contact with hot water and using concentration diffusion can also be used.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、湯水に供給する水改質成分の添加濃度を一定にする構成は開示されていない。   However, the conventional configuration does not disclose a configuration in which the concentration of the water reforming component supplied to the hot water is constant.

前記従来の課題を解決するために、本発明は、湯水に供給する水改質成分の添加濃度を一定にすることで使用性の高い給湯装置を提供することを目的とする。   In order to solve the above-mentioned conventional problems, an object of the present invention is to provide a hot water supply device having high usability by making the concentration of the water reforming component supplied to the hot water constant.

前記従来の課題を解決するために、本発明の給湯装置は、湯水を注湯する注湯経路と、前記湯水に機能改質成分を添加する水改質手段と、前記注湯経路を流れる湯水流量を検出する流量検出手段と、制御装置とを備え、前記流量検出手段が検出する湯水流量に基づいて、前記湯水に機能改質成分を添加する時間を変更する構成としたことを特徴とするものである。   In order to solve the conventional problems, a hot water supply apparatus of the present invention includes a pouring path for pouring hot water, water reforming means for adding a functional reforming component to the hot water, and hot water flowing through the pouring path. A flow rate detecting means for detecting the flow rate and a control device are provided, and the time for adding the functional reforming component to the hot water is changed based on the hot water flow rate detected by the flow rate detecting means. Is.

本発明によれば、湯水に供給する水改質成分の添加濃度を一定にすることで使用性の高い給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the hot water supply apparatus with high usability can be provided by making constant the addition density | concentration of the water reforming component supplied to hot water.

本発明の実施の形態1における給湯装置の構成図Configuration diagram of hot water supply apparatus in Embodiment 1 of the present invention 同実施の形態における水改質回路の詳細図Detailed view of water reforming circuit in the same embodiment 同実施の形態における電気分解方式を用いた水改質回路の詳細図Detailed view of water reforming circuit using electrolysis method in the same embodiment 同実施の形態における開弁時のバイパス電磁弁の詳細図Detailed view of bypass solenoid valve at the time of valve opening in the same embodiment 同実施の形態における閉弁時のバイパス電磁弁の詳細図Detailed view of bypass solenoid valve during valve closing in the same embodiment 同実施の形態における水流量に対する無機化合物の溶解度の特性図Characteristic diagram of solubility of inorganic compound with respect to water flow rate in the same embodiment 同実施の形態における水流量に対する水改質手段への通水割合を示す図The figure which shows the water flow ratio to the water reforming means with respect to the water flow rate in the same embodiment 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、湯水を注湯する注湯経路と、前記湯水に機能改質成分を添加する水改質手段と、前記注湯経路を流れる湯水流量を検出する流量検出手段と、制御装置とを備え、前記流量検出手段が検出する湯水流量に基づいて、前記湯水に機能改質成分を添加する時間を変更する構成としたことを特徴とする給湯装置で、湯水に供給する水改質成分の添加濃度を一定にすることで使用性の高い給湯装置を提供できる。   The first invention includes a pouring path for pouring hot water, a water reforming means for adding a functional reforming component to the hot water, a flow rate detecting means for detecting the flow rate of hot water flowing through the pouring path, and a control device. The hot water supply apparatus is characterized in that the time for adding the functional reforming component to the hot water is changed based on the hot water flow rate detected by the flow rate detecting means, and the water reforming supplied to the hot water A hot water supply device with high usability can be provided by keeping the concentration of the added components constant.

第2の発明は、前記注湯経路に配した第一の電磁弁と、前記注湯経路から湯水を分流させるように形成した並列分岐経路とを備え、前記並列分岐経路に前記水改質手段と第二の電磁弁とを配設し、前記流量検出手段で検出された流量に基づいて、前記第二の電磁弁の開閉動作を制御することを特徴とする給湯装置で、流量によって変化する湯水の機能改質成分の溶解量を一定化させることができ、供給する湯水の機能改質成分の添加濃度を一定とすることが可能となる。   2nd invention is equipped with the 1st solenoid valve distribute | arranged to the said pouring path | route, and the parallel branch path formed so that hot water might be shunted from the said pouring path | route, The said water reforming means is provided in the said parallel branch path | route. And a second electromagnetic valve, and the open / close operation of the second electromagnetic valve is controlled based on the flow rate detected by the flow rate detecting means. The dissolution amount of the hot water functional reforming component can be made constant, and the concentration of the hot water functional reforming component to be supplied can be made constant.

第3の発明は、前記流量検出手段で検出された流量の所定範囲内で、前記第二の電磁弁を開とすることを特徴とする給湯装置で、機能改質成分を添加したい流量範囲を決定することが可能となる。   A third invention is a hot water supply apparatus, wherein the second electromagnetic valve is opened within a predetermined range of the flow rate detected by the flow rate detection means, and a flow rate range in which a functional reforming component is to be added. It becomes possible to decide.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における給湯装置の構成図を示すものである。図2は、同実施の形態における水改質回路の詳細図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a hot water supply apparatus according to Embodiment 1 of the present invention. FIG. 2 shows a detailed view of the water reforming circuit in the same embodiment.

図1において、圧縮機10、給湯熱交換器11、減圧手段12、蒸発器13、冷媒回路14の順で環状に接続してヒートポンプユニット15を構成している。貯湯ユニット16の貯湯タンク17には水が貯留されており、出湯回路18は貯湯タンク17、給湯水ポンプ19、給湯熱交換器11、貯湯タンク17を順に接続する回路である。   In FIG. 1, a compressor 10, a hot water supply heat exchanger 11, a decompression unit 12, an evaporator 13, and a refrigerant circuit 14 are connected in an annular shape to constitute a heat pump unit 15. Water is stored in the hot water storage tank 17 of the hot water storage unit 16, and the hot water discharge circuit 18 is a circuit for connecting the hot water storage tank 17, the hot water supply pump 19, the hot water supply heat exchanger 11, and the hot water storage tank 17 in this order.

浴槽水加熱回路20は、貯湯タンク17、風呂熱交換器21、浴槽水加熱ポンプ22、貯湯タンク17を順に接続する回路であり、風呂熱交換器21の他方の回路には浴槽23が接続されている。浴槽水循環回路24は、浴槽23、浴槽水を搬送する浴槽水ポンプ25、風呂熱交換器21を順に接続する回路である。   The bathtub water heating circuit 20 is a circuit that connects the hot water storage tank 17, the bath heat exchanger 21, the bathtub water heating pump 22, and the hot water storage tank 17 in order, and the bathtub 23 is connected to the other circuit of the bath heat exchanger 21. ing. The bathtub water circulation circuit 24 is a circuit which connects the bathtub 23, the bathtub water pump 25 which conveys bathtub water, and the bath heat exchanger 21 in order.

浴槽水注湯経路26は、貯湯タンク17の水を、浴槽水循環回路24を経由して浴槽23へ注湯する回路である。この回路には貯湯タンク17の高温の水と水道水を混合する浴槽水混合弁27、注湯する水温を検知する温度検出手段28、注湯する水量を検出する流量検出手段50、浴槽水注湯経路26の回路の開閉を行う浴槽水注湯弁29を順に備える。   The bathtub water pouring path 26 is a circuit that pours water from the hot water storage tank 17 into the bathtub 23 via the bathtub water circulation circuit 24. This circuit includes a bathtub water mixing valve 27 that mixes hot water in the hot water storage tank 17 and tap water, a temperature detection means 28 that detects the temperature of the water to be poured, a flow rate detection means 50 that detects the amount of water to be poured, and a bathtub water injection A bathtub water pouring valve 29 for opening and closing the circuit of the hot water passage 26 is provided in order.

水改質回路30は、浴槽水注湯弁の下流側の浴槽水注湯経路26内の途中に配設されている回路である。図2に示すように、水改質回路30は、浴槽水注湯経路26内の注湯経路の途中に2ヶ所の分岐部31を設け、両分岐部31を並列分岐経路32で接続し、並列
分岐経路32の経路に水改質手段33を配置し、水改質手段33と上流の分岐部31の間には、バイパス電磁弁34が配置され、バイパス電磁弁34の開閉により水改質手段33への湯水の供給を開閉できるように構成されており、前述のように構成された水改質回路30は貯湯ユニット16の筐体内に納められている。
The water reforming circuit 30 is a circuit disposed in the middle of the bathtub water pouring path 26 on the downstream side of the bathtub water pouring valve. As shown in FIG. 2, the water reforming circuit 30 is provided with two branch parts 31 in the middle of the pouring path in the bathtub water pouring path 26, and both branch parts 31 are connected by a parallel branch path 32. The water reforming means 33 is disposed in the parallel branch path 32, and a bypass electromagnetic valve 34 is disposed between the water reforming means 33 and the upstream branching section 31, and the water reforming is performed by opening and closing the bypass electromagnetic valve 34. The supply of hot water to the means 33 can be opened and closed, and the water reforming circuit 30 configured as described above is housed in the housing of the hot water storage unit 16.

また、水改質手段33にて水改質成分を添加された水は再び分岐部31を経て、浴槽水注湯経路26の湯水と合流し、水改質成分が添加された湯水が浴槽23に注湯される。なお、水改質手段33は、目的の水改質成分を水に溶解添加できる手段であればよく、図2に示すような、水改質成分を含有した無機化合物35の粒子を収納容器36内に充填し、無機化合物35の下流側にフィルター37を配設し、無機化合物35と湯水を直接接触させる溶解方式や、図3に示すような目的成分を電極1、2とし、電極1、2に電源部9から通電して、水に水改質成分を分解溶出させる電気分解方式を用いてもよいが、直接溶解方式の方が、コスト面、コンパクト性、可燃性ガス発生など安全性、消費電力量等の面でメリットが多く、本実施の形態では溶解方式を前提に説明する。   Further, the water to which the water reforming component has been added by the water reforming means 33 passes through the branch portion 31 again and merges with the hot water in the bathtub water pouring channel 26, and the hot water to which the water reforming component has been added becomes the bathtub 23. Be poured into hot water. The water reforming means 33 may be any means capable of dissolving and adding the target water reforming component in water. As shown in FIG. 2, the particles of the inorganic compound 35 containing the water reforming component as shown in FIG. The filter 37 is disposed downstream of the inorganic compound 35, and a dissolution method in which the inorganic compound 35 and hot water are in direct contact with each other, and the target components as shown in FIG. An electrolysis method may be used in which power is supplied from the power source 9 to 2 to decompose and elute water reforming components in water. However, the direct dissolution method is safer in terms of cost, compactness, combustible gas generation, etc. There are many advantages in terms of power consumption and the like, and this embodiment will be described on the premise of the melting method.

ヒートポンプユニット15で貯湯タンク17に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク17の水は、給湯水ポンプ19によって給湯熱交換器11へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ19は給湯熱交換器11で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路18の流量を制御する。   The operation of heating the water stored in the hot water storage tank 17 by the heat pump unit 15 is as follows. The water in the hot water storage tank 17 is conveyed to the hot water supply heat exchanger 11 by the hot water supply water pump 19 and heated by the heat pump cycle operation. The hot water supply pump 19 controls the flow rate of the hot water supply circuit 18 so that the temperature of the hot water heated by the hot water supply heat exchanger 11 becomes a predetermined temperature.

浴槽23への湯張り、並びに浴槽23に貯留されている水(浴槽水)の加熱は以下のような動作となる。浴槽水注湯経路26の浴槽水混合弁27は、温度検出手段28で検知する注湯温度が、制御装置(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。   Hot water filling to the bathtub 23 and heating of the water (tub water) stored in the bathtub 23 are as follows. The bath water mixing valve 27 of the bath water pouring path 26 is hot water and tap water so that the pouring temperature detected by the temperature detecting means 28 becomes a temperature preset by a control device (not shown). Adjust the mixing ratio.

所定温度となった湯水は、浴槽水注湯経路26、浴槽水循環回路24を順に経由して浴槽23へ流出する。一方、浴槽23の浴槽水を加熱する場合は、貯湯タンク17に貯留された高温の水を、浴槽水加熱ポンプ22によって風呂熱交換器21へ搬送し、浴槽水ポンプ25より搬送された浴槽水を加熱する。風呂熱交換器21で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク17の下部より内部へ流入する。   The hot water having a predetermined temperature flows out into the bathtub 23 through the bathtub water pouring path 26 and the bathtub water circulation circuit 24 in this order. On the other hand, when heating the bathtub water of the bathtub 23, the hot water stored in the hot water storage tank 17 is conveyed to the bath heat exchanger 21 by the bathtub water heating pump 22, and the bathtub water conveyed from the bathtub water pump 25. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 21 flows into the interior from the lower part of the hot water storage tank 17.

図4にバイパス電磁弁34が閉弁した際の詳細図を示す。弁体38はプランジャー39に接続され、バネ40によって並列分岐経路32の流路を塞いでいる。分岐部31より分岐された湯水は弁体38まで供給されるが、弁体38によって並列分岐経路32が閉塞されているため、水改質手段33へは湯水は流れず、浴槽23には水改質成分は添加されない。   FIG. 4 shows a detailed view when the bypass solenoid valve 34 is closed. The valve body 38 is connected to the plunger 39 and closes the flow path of the parallel branch path 32 by a spring 40. Although the hot water branched from the branch part 31 is supplied to the valve body 38, since the parallel branch path 32 is closed by the valve body 38, hot water does not flow to the water reforming means 33, and water is not supplied to the bathtub 23. No modifying component is added.

図5にバイパス電磁弁が開弁した際の詳細図を示す。端子41より電圧が電磁コイル42に供給され電磁コイル42は励磁され、プランジャー39および弁体38をバネ40の圧縮力に抗して並列分岐経路32を開弁し、分岐部31より分岐された湯水を水改質手段33に供給する。   FIG. 5 shows a detailed view when the bypass solenoid valve is opened. A voltage is supplied from the terminal 41 to the electromagnetic coil 42, and the electromagnetic coil 42 is excited, opens the parallel branch path 32 against the compression force of the plunger 39 and the valve body 38 against the compression force of the spring 40, and is branched from the branch portion 31. Hot water is supplied to the water reforming means 33.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

利用者が浴槽23へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁27で調整された水が、浴槽水注湯弁29を閉から開に制御することにより、浴槽水注湯弁29から、浴槽水注湯経路26内に湯水が流入し、浴槽水注湯経路26に流れる湯水の一部が並列分岐経路32側に分流し、水改質手段33にて水改質成分を添加された水が再び分岐部31を経て、浴槽水注湯経
路26の湯水と合流し、水改質成分が添加された湯水が浴槽23に注湯される。
When the user hot waters the bathtub 23, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, the water adjusted by the bathtub water mixing valve 27 to a preset temperature controls the bathtub water injection valve 29 from closed to open, so that the bath water injection from the bathtub water injection valve 29 is performed. Hot water flows into the path 26, a part of the hot water flowing into the bathtub water pouring path 26 is diverted to the parallel branch path 32, and the water to which the water reforming component is added by the water reforming means 33 is branched again. The hot water with the water reforming component added thereto is poured into the bathtub 23 through the section 31 and merged with the hot water in the bathtub water pouring path 26.

前記水改質手段33内においては、流入した湯水が収納容器36に充填された無機化合物35の粒子で形成された多孔質の空間を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物35の表面から表面近傍の領域には速度境界層が生成される。無機化合物35は水に対して溶解性を持つため、無機化合物35の表面近傍の無機化合物35の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   In the water reforming means 33, the flowing hot water passes through a porous space formed by particles of the inorganic compound 35 filled in the storage container 36. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 35 to a region near the surface when passing through the porous space. Since the inorganic compound 35 is soluble in water, the surface molecules of the inorganic compound 35 in the vicinity of the surface of the inorganic compound 35 are dissolved in water in the vicinity of the surface, and the dissolution concentration of water is increased. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物35を多孔質空間内の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 35 can be dissolved in water in the porous space.

図6に流量に対する無機化合物の溶解度の特性を示す。所定の流量範囲での溶解度は流量に対してほぼ直線近似できる特性となり、流量が低ければ溶解度は小さく、流量が高くなると溶解度は大きくなる。   FIG. 6 shows the characteristics of the solubility of the inorganic compound with respect to the flow rate. The solubility in a predetermined flow rate range has a characteristic that can be approximated almost linearly with respect to the flow rate.

浴槽23へ湯はりを行う場合に、バイパス電磁弁34の開閉弁動作を、浴槽水注湯弁29の開閉弁動作と連動させた場合、水の流量によって、図6に示す特性により、無機化合物35の溶解量が変化してしまう。   When hot water is applied to the bathtub 23, when the on / off valve operation of the bypass solenoid valve 34 is interlocked with the on / off valve operation of the bathtub water pouring valve 29, the inorganic compound exhibits the characteristics shown in FIG. The amount of 35 dissolved will change.

なお、無機化合物として亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、次の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when it is set as the zinc compound (zinc oxide, zinc carbonate, etc.) containing zinc as an inorganic compound, the following effect can be acquired. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

また、亜鉛化合物の酸化亜鉛は、薬局方、化粧品原料基準で認可を受けている材料であり、主にヒトの肌の角層に対して収斂作用、消炎作用などの作用を与え、肌の角層の改善を行うこともできる。   In addition, zinc oxide, a zinc compound, is a material that has been approved under the pharmacopoeia and cosmetic raw material standards. It mainly has effects on the stratum corneum of human skin, such as astringent action and anti-inflammatory action, and the skin corners. Layer improvements can also be made.

また、無機化合物35として用いることが出来る材料は酸化亜鉛以外に、亜鉛化合物として、酸化亜鉛(ZnO)、塩基性炭酸亜鉛(mZnCO・nZn(OH))、水酸化亜鉛(Zn(OH))、亜鉛置換型ゼオライト、亜鉛置換型キレート、亜鉛シリカゲル担持物、であり、これらを単一または組み合わせて用いることができる。 In addition to zinc oxide, materials that can be used as the inorganic compound 35 include zinc oxide (ZnO), basic zinc carbonate (mZnCO 3 .nZn (OH) 2 ), and zinc hydroxide (Zn (OH)). 2 ), zinc-substituted zeolite, zinc-substituted chelate, and zinc silica gel-supported material, which can be used singly or in combination.

また、硫酸カルシウム、水酸化マグネシウム、鉄化合物(酸化鉄、水酸化鉄)、酸化銅、酸化ケイ素、二酸化マンガン、水酸化コバルト、酸化チタン、塩化銀、硫酸バリウムを用いることができる。   Further, calcium sulfate, magnesium hydroxide, iron compound (iron oxide, iron hydroxide), copper oxide, silicon oxide, manganese dioxide, cobalt hydroxide, titanium oxide, silver chloride, and barium sulfate can be used.

以上のような効果を期待することを考えると、浴槽に供給する無機化合物の添加濃度は、適切な値で一定とすることが望ましい。これを実現するためには、水の流量による無機化合物の溶解量の違いを補正し、バイパス電磁弁34の開時間を調整すれば良い。   Considering the expectation of the effects as described above, it is desirable that the addition concentration of the inorganic compound supplied to the bathtub is constant at an appropriate value. In order to realize this, it is only necessary to correct the difference in the dissolved amount of the inorganic compound depending on the flow rate of water and adjust the opening time of the bypass solenoid valve 34.

浴槽水の流量は、流量検出手段50によって検出可能である。流量検出手段50として羽根車式流量計を用いた場合、流量検出を通常0.1L/min程度の分解能で行うことが可能であり、精度良く流量検出できる。   The flow rate of the bathtub water can be detected by the flow rate detection means 50. When an impeller-type flow meter is used as the flow rate detection means 50, the flow rate can be normally detected with a resolution of about 0.1 L / min, and the flow rate can be detected with high accuracy.

ここで、一定としたい無機化合物の所望の添加濃度Cに対して、無機化合物の溶解量演算を例えば以下のように一次式を用いて行う。   Here, with respect to the desired addition concentration C of the inorganic compound desired to be constant, calculation of the dissolved amount of the inorganic compound is performed using a linear expression as follows, for example.

図6において、浴槽23へ湯はりを行う場合に、バイパス電磁弁34の開閉弁動作を、浴槽水注湯弁29の開閉弁動作と連動させた場合、所望の添加濃度Cを実現できる溶解度をA、その時の水の流量をqとする。 In FIG. 6, when hot water is applied to the bathtub 23, when the on / off valve operation of the bypass solenoid valve 34 is linked with the on / off valve operation of the bathtub water pouring valve 29, the solubility that can achieve the desired addition concentration C is obtained. a 1, to the flow rate of the water at that time and q 1.

水の流量が、qよりも高い場合の溶解度はAよりも大きくなるため、所望の添加濃度Cを実現するために、バイパス電磁弁34の閉弁動作を、浴槽水注湯弁29の閉弁動作よりも早く行えば良い。 When the flow rate of water is higher than q 1 , the solubility is higher than A 1 , and therefore, in order to achieve the desired addition concentration C, the valve closing operation of the bypass solenoid valve 34 is performed by the bathtub water pouring valve 29. It may be performed earlier than the valve closing operation.

ところで、水改質手段33に湯水の通水を行う場合、流量検出手段50で検出された流量の所定範囲内で行うことにする。例えば、下限をq上限をqとすると、水改質手段33に湯水の通水を行う流量の判定範囲は、 q≦q≦q となる。 By the way, when the hot water is passed through the water reforming means 33, it is carried out within a predetermined range of the flow rate detected by the flow rate detecting means 50. For example, if the lower limit for the q L upper limit q H, determination range of the flow rate of performing hot water passing water Mizuaratameshitsu means 33, the q Lqq H.

このように水改質手段33に湯水の通水を行う場合の流量判定範囲を設定しておくと、異常検出として利用でき、判定範囲を外れた場合、水改質回路30を保護することができる。   In this way, if a flow rate determination range for passing hot water through the water reforming means 33 is set, it can be used as an abnormality detection, and if the determination range is exceeded, the water reforming circuit 30 can be protected. it can.

すなわち、浴槽水注湯弁29が開弁して流量検出手段50で検出された流量qがqよりも低い場合や、qよりも高い場合、配管の詰まりや各種弁の動作不良等の不具合が考えられ、このような場合にはバイパス電磁弁34を閉弁のままとしておき、水改質手段33に湯水の通水を行わないことで水改質手段33を保護する。 That is, the bath water NOTE hot water valve 29 is opened the flow rate detecting unit 50 flow rate q detected by the or lower than q L, is higher than q H, malfunctions such as clogging and various valves of the piping In such a case, the bypass electromagnetic valve 34 is left closed, and the water reforming means 33 is protected by not passing hot water through the water reforming means 33 in such a case.

図7は、無機化合物の所望の添加濃度Cを実現するための、水の流量qに対する水改質手段33に湯水を供給する通水時間割合を示したものである。   FIG. 7 shows a water flow time ratio for supplying hot water to the water reforming means 33 with respect to the flow rate q of water in order to realize a desired addition concentration C of the inorganic compound.

前述のように設定流量q=qの時の通水時間割合Bは、バイパス電磁弁34の開閉弁動作を、浴槽水注湯弁29の開閉弁動作と連動させた場合に対応するため、B=100%となる。 As described above, the water flow time ratio B 1 when the set flow rate q 1 = q 2 corresponds to the case where the on / off valve operation of the bypass solenoid valve 34 is linked to the on / off valve operation of the bathtub water pouring valve 29. Therefore, B 1 = 100%.

図7により、水の流量qにおける通水割合Bは、B=B−{(q−q)(B−B)/(q−q)}のようになる。ここでBは、水の通路抵抗が最低時に得られる最大流量qにおける通水時間割合とする。 According to FIG. 7, the water flow rate B at the flow rate q of water is as follows: B = B 1 − {(q−q 1 ) (B 1 −B 2 ) / (q 2 −q 1 )}. Here, B 2 is a water passage time ratio at the maximum flow rate q 2 obtained when the water passage resistance is the lowest.

利用者が設定した浴槽への注湯流量をQとすると、バイパス電磁弁34の閉弁動作は注湯流量Qが Q=BQの時に実施すれば良く、浴槽へ供給する無機化合物の添加濃度をCの値に一定とすることができる。 When the pouring flow to bath set by the user and Q 1, the addition of the bypass valve closing operation of the electromagnetic valve 34 may be performed when pouring flow rate Q is Q = BQ 1, supplied to the tub inorganic compound The density can be constant at the value of C.

ここで浴槽23への注湯量Qは、図1に示すように、浴槽水混合弁27より下流の注湯経路に設けられた流量検出手段50によって検出される注湯流量qを積算することにより、演算可能である。kをサンプル時間の段階、サンプル時間間隔をtとして、Q=Σ(q・t・k) k=1,2,3・・・となる。 Here, the pouring amount Q to the bathtub 23 is integrated by adding the pouring flow rate q detected by the flow rate detecting means 50 provided in the pouring path downstream from the bathtub water mixing valve 27 as shown in FIG. Can be operated. Q = Σ (q k · t · k) k = 1, 2, 3..., where k is the sample time stage and the sample time interval is t.

以上のように、本発明にかかる給湯装置は、無機化合物の水への添加をする際に、浴槽に供給する無機化合物の添加濃度を一定とすることができ、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention can make the addition concentration of the inorganic compound to be supplied to the bathtub constant when adding the inorganic compound to water. It can also be used for hot water heaters.

23 浴槽
24 浴槽水循環回路
25 浴槽水ポンプ
26 浴槽水注湯経路
27 浴槽水混合弁
28 温度検出手段
29 浴槽水注湯弁
30 水改質回路
31 分岐部
32 並列分岐経路
33 水改質手段
34 バイパス電磁弁
35 無機化合物
36 収納容器
37 フィルター
50 流量検出手段
23 Bath 24 Bath water circulation circuit 25 Bath water pump 26 Bath water pouring route 27 Bath water mixing valve 28 Temperature detecting means 29 Bath water pouring valve 30 Water reforming circuit 31 Branching portion 32 Parallel branching route 33 Water reforming means 34 Bypass Solenoid valve 35 Inorganic compound 36 Storage container 37 Filter 50 Flow rate detection means

Claims (3)

湯水を注湯する注湯経路と、前記湯水に機能改質成分を添加する水改質手段と、前記注湯経路を流れる湯水流量を検出する流量検出手段と、制御装置とを備え、前記流量検出手段が検出する湯水流量に基づいて、前記湯水に機能改質成分を添加する時間を変更する構成としたことを特徴とする給湯装置。 A pouring path for pouring hot water, water reforming means for adding a functional reforming component to the hot water, flow rate detecting means for detecting the flow rate of hot water flowing through the pouring path, and a control device, and the flow rate A hot water supply apparatus characterized in that the time for adding the functional reforming component to the hot water is changed based on the hot water flow rate detected by the detecting means. 前記注湯経路に配した第一の電磁弁と、前記注湯経路から湯水を分流させるように形成した並列分岐経路とを備え、前記並列分岐経路に前記水改質手段と第二の電磁弁とを配設し、前記流量検出手段で検出された流量に基づいて、前記第二の電磁弁の開閉動作を制御することを特徴とする請求項1に記載の給湯装置。 A first electromagnetic valve disposed in the pouring path; and a parallel branch path formed to divert hot water from the pouring path, wherein the water reforming means and the second solenoid valve are provided in the parallel branch path. The hot water supply apparatus according to claim 1, wherein an opening / closing operation of the second electromagnetic valve is controlled based on a flow rate detected by the flow rate detection means. 前記流量検出手段で検出された流量の所定範囲内で、前記第二の電磁弁を開とすることを特徴とする請求項2に記載の給湯装置。 The hot water supply apparatus according to claim 2, wherein the second electromagnetic valve is opened within a predetermined range of the flow rate detected by the flow rate detection means.
JP2011130869A 2011-06-13 2011-06-13 Water heater Expired - Fee Related JP5824638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011130869A JP5824638B2 (en) 2011-06-13 2011-06-13 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130869A JP5824638B2 (en) 2011-06-13 2011-06-13 Water heater

Publications (2)

Publication Number Publication Date
JP2013002649A true JP2013002649A (en) 2013-01-07
JP5824638B2 JP5824638B2 (en) 2015-11-25

Family

ID=47671418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130869A Expired - Fee Related JP5824638B2 (en) 2011-06-13 2011-06-13 Water heater

Country Status (1)

Country Link
JP (1) JP5824638B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128895U (en) * 1988-02-26 1989-09-01
JPH06126285A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Bathwater purifier
JP2006138588A (en) * 2004-11-15 2006-06-01 Noritz Corp Water heater with sterilizing function
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function
JP2007185419A (en) * 2006-01-16 2007-07-26 Noritz Corp Bath water heater
JP2010025423A (en) * 2008-07-18 2010-02-04 Rinnai Corp Bath hot water supply system
JP2011069572A (en) * 2009-09-28 2011-04-07 Sanden Corp Hot water supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128895U (en) * 1988-02-26 1989-09-01
JPH06126285A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Bathwater purifier
JP2006138588A (en) * 2004-11-15 2006-06-01 Noritz Corp Water heater with sterilizing function
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function
JP2007185419A (en) * 2006-01-16 2007-07-26 Noritz Corp Bath water heater
JP2010025423A (en) * 2008-07-18 2010-02-04 Rinnai Corp Bath hot water supply system
JP2011069572A (en) * 2009-09-28 2011-04-07 Sanden Corp Hot water supply system

Also Published As

Publication number Publication date
JP5824638B2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5793650B2 (en) Water heater
US10132556B2 (en) Dispensing assembly for a refrigerator appliance
JP2014178048A (en) Combination faucet
JP2013002669A (en) Water heater
JP5824638B2 (en) Water heater
JP5177241B2 (en) Water heater
JP4883230B1 (en) Water heater
JP4883213B1 (en) Water heater
JP5671703B2 (en) Water heater
JP5824606B2 (en) Water heater
JP5870241B2 (en) Water heater
JP2012220059A (en) Water heater
JP5467364B2 (en) Water heater
JP4858632B1 (en) Water heater
KR100552582B1 (en) A water softening apparatus of one body type using of pump
JP5375769B2 (en) Water heater
JP5640808B2 (en) Water heater
KR101859970B1 (en) Hydrogen Water Supplier
JP2012081438A (en) Dissolving device and device for supplying hot water including the same
JP2014076435A (en) Dissolution device and hot-water supply device equipped with dissolution device
JP2012172914A (en) Dissolving apparatus and water heater equipped with the same
JP2007205593A (en) Hot water supply system
JP2012021715A (en) Dissolving device, and water heater with the same
JP5857209B2 (en) Melting apparatus and hot water supply apparatus including the same
JP2005315505A (en) Electric water heater with reheating function, and method of controlling temperature of water in bathtub

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R151 Written notification of patent or utility model registration

Ref document number: 5824638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees