JP2012026643A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2012026643A
JP2012026643A JP2010165658A JP2010165658A JP2012026643A JP 2012026643 A JP2012026643 A JP 2012026643A JP 2010165658 A JP2010165658 A JP 2010165658A JP 2010165658 A JP2010165658 A JP 2010165658A JP 2012026643 A JP2012026643 A JP 2012026643A
Authority
JP
Japan
Prior art keywords
water
inorganic compound
bathtub
circuit
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010165658A
Other languages
Japanese (ja)
Other versions
JP4858633B1 (en
Inventor
Masanori Hirota
正宣 広田
Yoshio Nishiyama
吉継 西山
Tomoaki Ando
智朗 安藤
Katsuhiro Wada
克広 和田
Yasusuke Horiki
泰佑 堀木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010165658A priority Critical patent/JP4858633B1/en
Application granted granted Critical
Publication of JP4858633B1 publication Critical patent/JP4858633B1/en
Publication of JP2012026643A publication Critical patent/JP2012026643A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dissolving device that requires no electric circuit, is compact and has low operating cost, and can efficiently dissolve inorganic compound and the like in water and supply the water, and to provide a water heater with the same.SOLUTION: The dissolving device includes a water circuit 15, and a storage unit 12 for storing inorganic compound 11. The dissolving device is characterized in that the water in which the inorganic compound 11 is dissolved is flowed out from the water circuit 15 and the surface of the inorganic compound 11 is provided with a plurality of concave and convex portions. The plurality of concave and convex portions on the surface of the inorganic compound 11 increases the relative contact surface area of the inorganic compound 11 with water, which further enhances the efficiency of dissolving the inorganic compound in water, thus achieving both the reduction of an electric circuit and an insulation circuit that have been required and the dissolution performance.

Description

本発明は、無機化合物等を溶解する溶解装置、及び溶解した無機化合物等を浴槽に供給する機能を備えた給湯装置に関するものである。   The present invention relates to a melting apparatus that dissolves inorganic compounds and the like, and a hot water supply apparatus that has a function of supplying dissolved inorganic compounds and the like to a bathtub.

従来この種の装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図12は、特許文献1に記載された従来の給湯装置を示すものである。図12に示すように、亜鉛陽極1と、陰極2と、ケーシング5と、直流電源9から構成されている。   FIG. 12 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 12, it is composed of a zinc anode 1, a cathode 2, a casing 5, and a DC power source 9.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源9と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源9においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power source 9 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in the size and cost of the apparatus, the DC power supply 9 requires power, so that the amount of power consumption increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、コンパクトで運転コストが安価で、かつ水に効率良く無機化合物等を溶解し供給できる溶解装置及びそれを備えた給湯装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, does not require an electric circuit, is compact, has a low operating cost, and can dissolve and supply an inorganic compound or the like efficiently in water, and a hot water supply provided with the same An object is to provide an apparatus.

前記従来の課題を解決するために、本発明の溶解装置は、水回路と、無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させるとともに、前記無機化合物の表面に複数の凹凸を設けたことを特徴とするもので、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに無機化合物の表面に複数の凹凸を設けたことで、水に対する無機化合物の相対的な接触表面積が増加し、水への無機化合物の溶解効率がさらに高めることが可能となり、これまで必要としていた電源回路と絶縁回路の削減と、溶解性能を両立することができる。   In order to solve the conventional problem, the dissolution apparatus of the present invention comprises a water circuit and a storage means for storing an inorganic compound, and causes water in which the inorganic compound is dissolved to flow out of the water circuit, The surface of the inorganic compound is provided with a plurality of projections and depressions, and the substance moves according to the difference in solubility between water and the inorganic compound. The principle of substance diffusion (Fick's law) The inorganic compound can be dissolved in the surface, and the surface of the inorganic compound is provided with a plurality of irregularities, so that the relative contact surface area of the inorganic compound with respect to water increases and the efficiency of dissolving the inorganic compound in water further increases. This makes it possible to achieve both the reduction of the power supply circuit and the insulation circuit, which have been required, and the melting performance.

これにより、無機化合物の水への溶解量を増加させながら、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることもできる。   Thereby, while increasing the amount of the inorganic compound dissolved in water, it is possible to reduce the size and cost, and to reduce power consumption because it is a principle that does not require power.

本発明によれば、コンパクト化、低コスト化、さらには、消費電力量の抑制し、水に効率良く無機化合物等を溶解し供給できる溶解装置及びそれを備えた給湯装置を提供できる。   According to the present invention, it is possible to provide a melting apparatus and a hot water supply apparatus including the melting apparatus that can reduce the size and cost, further reduce power consumption, and dissolve and supply an inorganic compound or the like efficiently in water.

本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention 同実施の形態における溶解装置の別の水流方向の構成図Configuration diagram of another water flow direction of the dissolution apparatus in the same embodiment 同実施の形態における溶解装置の詳細図Detailed view of dissolution apparatus in the same embodiment 同実施の形態における溶解装置の無機化合物と濾過手段の関係を示す図The figure which shows the relationship between the inorganic compound of the dissolution apparatus in the same embodiment, and the filtration means (a)同実施の形態における濾過手段の構成図(b)同他の濾過手段の構成図(c)同他の濾過手段の構成図(A) Configuration diagram of filtration means in the embodiment (b) Configuration diagram of other filtration means (c) Configuration diagram of other filtration means 本発明の実施の形態2における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 2 of the present invention 同実施の形態の無機化合物の顆粒状体の詳細図Detailed view of granules of inorganic compound of the embodiment 本発明の実施の形態3における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 3 of the present invention (a)同実施の形態の無機化合物成形体の凹凸をさらに追加した構成図(b)同実施の形態の無機化合物成形体をハニカム形状とし、成形体を積層配置した構成図(A) Configuration diagram in which irregularities of the inorganic compound molded body of the embodiment are further added (b) Configuration diagram in which the inorganic compound molded body of the embodiment is formed into a honeycomb shape and the molded bodies are arranged in a stacked manner 本発明の実施の形態4における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 4 of this invention 本発明の実施の形態5における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 5 of the present invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、水回路と、無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させるとともに、前記無機化合物の表面に複数の凹凸を設けたことを特徴とする溶解装置で、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物の表面に複数の凹凸を設けたことで、水に対する無機化合物の相対的な接触表面積が増加し、水への無機化合物の溶解効率がさらに高めることが可能となり、これまで必要としていた電源回路と絶縁回路の削減と、溶解性能を両立することができる。   1st invention is equipped with the storage means which accommodates a water circuit and an inorganic compound, and while making the water which melt | dissolved the said inorganic compound flow out from the said water circuit, several unevenness | corrugation is provided in the surface of the said inorganic compound With the dissolution device characterized by the fact that the substance moves by the difference in dissolution concentration between water and the inorganic compound, the principle of substance diffusion (Fick's law) can dissolve the inorganic compound in water, Furthermore, by providing a plurality of irregularities on the surface of the inorganic compound, the relative contact surface area of the inorganic compound with respect to water can be increased, and the dissolution efficiency of the inorganic compound in water can be further increased. It is possible to achieve both the reduction of the power supply circuit and the insulation circuit and the melting performance.

これにより、無機化合物の水への溶解量を増加させながら、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることもできる。   Thereby, while increasing the amount of the inorganic compound dissolved in water, it is possible to reduce the size and cost, and to reduce power consumption because it is a principle that does not require power.

第2の発明は、第1の発明の無機化合物を、複数個の無機化合物の粉末粒を結合させた顆粒状体、あるいは、前記粉末粒と顆粒状体との混合物であることを特徴とするもので、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物の粉末粒を結合させた顆粒状体は、内部に空隙を有することで、比重が軽くなり、収納容器内の水流により、容易に揺動し、かつ顆粒状体表面は、粉末粒からなる複数凹凸が存在するため、前記揺動と凹凸の効果で、水に対する接触効率が高まり、水への無機化合物の溶解効率がさらに高めることが可能となる。   A second invention is characterized in that the inorganic compound of the first invention is a granular body obtained by combining powder grains of a plurality of inorganic compounds, or a mixture of the powder grains and the granular body. It is possible to dissolve inorganic compounds in water based on the principle of substance diffusion (Fick's law), in which substances move due to the difference in dissolution concentration between water and inorganic compounds. The granulated body with a reduced internal gravity due to the voids inside, easily swings due to the water flow in the storage container, and the surface of the granular body has multiple irregularities made of powder particles For this reason, the effect of the rocking and the unevenness increases the contact efficiency with water, and the dissolution efficiency of the inorganic compound in water can be further increased.

第3の発明は、第1の発明の無機化合物を、粉末粒を所定の形状に成形固化した無機化合物成形体であることを特徴とするもので、無機化合物成形体の表面には複数個の凹凸を設けたので、水に対する無機化合物成形体の相対的な接触表面積が増加し、水への無機化合物の溶解量を高いレベルで安定させながら、さらに低コスト化を図ることができる。   A third invention is an inorganic compound molded body in which the inorganic compound of the first invention is formed and solidified into a predetermined shape, and a plurality of inorganic compounds are formed on the surface of the inorganic compound molded body. Since the unevenness is provided, the relative contact surface area of the inorganic compound molded body with respect to water increases, and the cost can be further reduced while stabilizing the amount of the inorganic compound dissolved in water at a high level.

第4の発明は、第3の発明の無機化合物成形体の外郭寸法は、前記水回路の配管内径より大きいことを特徴とするもので、無機化合物成形体の外形寸法が、収納手段に接続される水回路の配管内径より大きいため、水回路の水の流れに乗って、成形体がまるごと水回路に流出し得ないため、収納手段に無機化合物を保持する濾過手段等の保持手段を設置する必要が無くなり、収納手段の構成コストを下げることができる。   A fourth invention is characterized in that the outer dimension of the inorganic compound molded body of the third invention is larger than the inner diameter of the pipe of the water circuit, and the outer dimension of the inorganic compound molded body is connected to the storage means. Since the entire inner diameter of the water circuit is larger than the pipe inner diameter of the water circuit, the entire molded product cannot flow out to the water circuit. Therefore, a holding means such as a filtering means for holding the inorganic compound is installed in the storage means. The necessity is eliminated, and the construction cost of the storage means can be reduced.

第5の発明は、湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記第1〜4のいずれか1つの発明の溶解装置を、前記浴槽水注湯回路上で、かつ、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置である。   5th invention is equipped with the bathtub water pouring circuit which supplies hot water to a bathtub, and the bathtub water pouring valve which opens and closes the said bath water pouring circuit, The melt | dissolution of any one of said 1st-4th invention An apparatus is provided on the bathtub water pouring circuit and on the downstream side of the bathtub water pouring valve.

これによって、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   Thereby, since the melting apparatus is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting apparatus can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

第6の発明は、湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記第1〜4のいずれか1つの発明の収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置で、水が無機化合物収納容器を通過する際に生じる圧力損失の増加を低減させ、浴槽への湯はりを早く完了することができる。   6th invention is equipped with the bathtub water pouring circuit which supplies hot water to a bathtub, and the bathtub water pouring valve which opens and closes the said bath water pouring circuit, The accommodation of any one of said 1st-4th invention A hot water supply apparatus characterized in that the equivalent diameter of the means is larger than the equivalent diameter of the bathtub water pouring circuit, and reduces the increase in pressure loss that occurs when water passes through the inorganic compound storage container. The hot water can be completed quickly.

第7の発明は、前記第1〜4のいずれか1つの発明の溶解装置を、給湯装置の本体筐体内に配設したことを特徴とする給湯装置で、低外気温時であっても貯湯タンク、電源回路などからの僅かな放熱により筐体内の雰囲気は常時加温されているため、溶解装置の凍結防止などの断熱が簡素化、または不要となる。   A seventh aspect of the invention is a hot water supply apparatus in which the melting device according to any one of the first to fourth aspects of the invention is arranged in a main body casing of the hot water supply apparatus. Since the atmosphere in the housing is always heated by slight heat radiation from the tank, power supply circuit, etc., heat insulation such as prevention of freezing of the melting apparatus is simplified or unnecessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、無機化合物11は、水に対して溶解性を持ち、かつ表面に複数の凹凸を設けたものを、無機化合物収納容器12に収納しており、表面に設けた凹凸により、無機化合物収納容器12内に流れる水流に対する無機化合物の比表面積を増大させることができる。   In FIG. 1, an inorganic compound 11 is soluble in water and has a surface provided with a plurality of irregularities, which is accommodated in an inorganic compound storage container 12. By the irregularities provided on the surface, the inorganic compound 11 The specific surface area of the inorganic compound with respect to the water flow flowing in the storage container 12 can be increased.

表面に複数の凹凸を有する無機化合物11を得る具体的手段としては、表面に凹凸の無い無機化合物と、無機化合物より硬度が高く、かつ比重が異なる粒子とともに、ボールミルに入れて、所定時間回転攪拌後、無機化合物に対して非溶解性の溶媒中に分散させて無機化合物と粒子を比重分離させることで、凹凸を設けた無機化合物を得ることができる。   As a specific means for obtaining the inorganic compound 11 having a plurality of irregularities on the surface, it is placed in a ball mill together with an inorganic compound having no irregularities on the surface and particles having a hardness higher than that of the inorganic compound and different specific gravity. Then, the inorganic compound which provided the unevenness | corrugation can be obtained by disperse | distributing in a solvent insoluble with respect to an inorganic compound, and carrying out specific gravity separation of an inorganic compound and particle | grains.

また、表面に凹凸の無い無機化合物を、物理的衝撃を与えて粉砕することで、凹凸の破断面を持った無機化合物を得ることができる。前記具体例は、あくまで一例であり、凹凸を有する無機化合物を得る手段として限定するものではない。   In addition, an inorganic compound having an uneven fracture surface can be obtained by pulverizing an inorganic compound having no irregularities on the surface by applying a physical impact. The specific examples are merely examples, and are not limited as means for obtaining an inorganic compound having irregularities.

表面に複数の凹凸を有する無機化合物11を多層状に充填すると、無機化合物収納容器12内には多孔質の空間が形成される。濾過手段13は複数の小穴を有し、濾過手段収納容器14に収納される。無機化合物収納容器12と濾過手段収納容器14は、順に水回路15によって連通され、無機化合物収納容器12は濾過手段収納容器14の上流側となるように溶解装置16を構成する。   When the inorganic compound 11 having a plurality of irregularities on the surface is filled in a multilayer shape, a porous space is formed in the inorganic compound storage container 12. The filtering means 13 has a plurality of small holes and is stored in the filtering means storage container 14. The inorganic compound storage container 12 and the filtration means storage container 14 are sequentially communicated by a water circuit 15, and the dissolution apparatus 16 is configured so that the inorganic compound storage container 12 is on the upstream side of the filtration means storage container 14.

なお、無機化合物収納容器12内には、表面に凹凸を有する無機化合物11だけでなく、無機化合物11の粉末粒を混合させてもよい。   In addition, in the inorganic compound storage container 12, not only the inorganic compound 11 having irregularities on the surface but also powder particles of the inorganic compound 11 may be mixed.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に充填された表面に複数の凹凸を有する無機化合物11と接触しながら多孔質の空間を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境
界層が生成される。図3はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。
About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes through the porous space while contacting the inorganic compound 11 having a plurality of irregularities on the surface filled in the inorganic compound storage container 12. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 11 to the region near the surface when passing through the porous space. FIG. 3 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the central portion of the porous space has a large distribution. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を多孔質空間内の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in the porous space.

さらに無機化合物の表面に形成した複数の凹凸により、無機化合物11の水に対する接触表面積が、凹凸無しの場合に比べ数倍以上となり、無機化合物11の表面付近の溶解濃度がさらに高まり、多孔質空間の中心部との濃度差が拡大し、無機化合物11の水への溶解量を増大させることができる。   Furthermore, due to the plurality of irregularities formed on the surface of the inorganic compound, the contact surface area of the inorganic compound 11 with respect to water is several times or more than that without the irregularities, the dissolution concentration near the surface of the inorganic compound 11 is further increased, and the porous space The concentration difference from the central part of the water increases, and the amount of the inorganic compound 11 dissolved in water can be increased.

無機化合物11の水への溶解効率を高める作用により、水への溶解度が低い無機化合物11を使用することが可能となるだけでなく、無機化合物の11の溶解装置16への充填量を削減することでのコスト低減も測ることができる。
濾過手段13は、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものである。
The action of increasing the dissolution efficiency of the inorganic compound 11 in water makes it possible not only to use the inorganic compound 11 having a low solubility in water, but also to reduce the filling amount of the inorganic compound 11 into the dissolution apparatus 16. The cost reduction by this can also be measured.
The filtering means 13 prevents the granules of the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12.

以上のように、本実施の形態においては、水回路と、表面に複数の凹凸を設けた無機化合物を収納する収納手段と、濾過手段とを備え、前記水回路を流れる水に、収納手段に収納された無機化合物を溶解させ、溶解された無機化合物が、濾過手段を通過する構成とした溶解装置を備えた給湯装置とした。   As described above, in the present embodiment, the water circuit, the storage means for storing the inorganic compound having a plurality of projections and depressions on the surface, and the filtering means, the water flowing through the water circuit is stored in the storage means. The stored inorganic compound was dissolved, and a hot water supply apparatus provided with a dissolving device configured such that the dissolved inorganic compound passed through the filtering means was obtained.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理を利用した水への無機化合物の溶解効率を高めることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減しながら、無機化合物の溶解特性向上と、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   This makes it possible to increase the dissolution efficiency of the inorganic compound in water using the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to provide a hot water supply apparatus that improves the melting characteristics of inorganic compounds, is compact, lowers cost, and further reduces power consumption while reducing power supply circuits and insulation circuits that have been required.

なお、本実施の形態では、図中の無機化合物収納容器12に対する水流の向きを、上方向の流れとしたが、流れ方向を限定するものではなく、下方向(図2)、および横方向に配置することも可能である。例えば、流れ方向を上方向に設定することでは、水流停止後に濾過手段13に目詰まった無機化合物11の粒子が、濾過手段13から重力落下で剥離しやすくなり、濾過手段13の経年的な目詰まりを抑制することが可能となる。   In the present embodiment, the direction of the water flow with respect to the inorganic compound storage container 12 in the figure is an upward flow, but the flow direction is not limited, and the downward direction (FIG. 2) and the lateral direction are not limited. It is also possible to arrange. For example, when the flow direction is set to the upward direction, the particles of the inorganic compound 11 clogged in the filtering means 13 after the water flow is stopped are easily separated from the filtering means 13 by gravity drop, and the aging of the filtering means 13 is improved. It becomes possible to suppress clogging.

なお、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

また、亜鉛化合物の酸化亜鉛は、薬局方、化粧品原料基準で認可を受けている材料であり、主にヒトの肌の角層に対して収斂作用、消炎作用などの作用を与え、肌の角層の改善を行うこともできる。   In addition, zinc oxide, a zinc compound, is a material that has been approved under the pharmacopoeia and cosmetic raw material standards. It mainly has effects on the stratum corneum of human skin, such as astringent action and anti-inflammatory action, and the skin corners. Layer improvements can also be made.

図4は、溶解装置の無機化合物11と濾過手段13の寸法の関係を示す例である。図4において、濾過手段13は径の異なる複数の小穴13a、13b、13cから構成される。   FIG. 4 is an example showing the relationship between the dimensions of the inorganic compound 11 and the filtering means 13 of the dissolving apparatus. In FIG. 4, the filtering means 13 is composed of a plurality of small holes 13a, 13b, 13c having different diameters.

図5は、濾過手段13の構成例である。(a)は、線形状の繊維で角状の小穴を形成したものである。(b)は、所定の厚さの板に、複数種の径の小穴を施したものである。(c)は、粒状の非溶解材料を多層状として多孔質空間を形成したものである。何れも、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものであるが、この構成と形状の限りではない。   FIG. 5 is a configuration example of the filtering means 13. (A) forms a square-shaped small hole with a linear fiber. (B) is a plate having a predetermined thickness and small holes having a plurality of types of diameters. (C) forms a porous space by using a granular non-dissolving material as a multilayer. In any case, when the granules of the inorganic compound 11 are about to flow out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12, this is prevented, but the configuration and shape are not limited thereto.

溶解装置16を流出する溶解濃度は、無機化合物収納容器12を通過する水流速と、無機化合物11の水と接触する表面積等で決定される。溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、図4の無機化合物収納容器12に収納する無機化合物11の粒径をある一定の範囲内のサイズに選別したものを利用する必要がある。   The dissolution concentration flowing out of the dissolution apparatus 16 is determined by the flow rate of water passing through the inorganic compound storage container 12, the surface area of the inorganic compound 11 in contact with water, and the like. When the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range, so the particle size of the inorganic compound 11 stored in the inorganic compound storage container 12 of FIG. It is necessary to use the one selected for the size within the range.

選別を行うと、コストアップの要因となるため、複数の径を有する無機化合物11の中において、無機化合物11の最大粒径D1に対して、濾過手段13の小穴13aの径D2は、D2<D1とした場合、以下の効果を得ることができる。D2未満の粒径の無機化合物11は、小穴13a、13b、13cから流出する。利用初期は粒径の小さいものは、溶解装置16外へ流出するが、所定時間経過後は、D2以上の粒径の無機化合物11は無機化合物収納容器12内に貯留され続ける。この状態が形成された場合、無機化合物11の粒径をある一定の範囲内のサイズに選別したことと同等となる。従って、サイズが混在する無機化合物11を用いても、目的とする濃度を水に溶解させる構造となる。   Since the selection causes a cost increase, among the inorganic compounds 11 having a plurality of diameters, the diameter D2 of the small hole 13a of the filtering means 13 is D2 <with respect to the maximum particle diameter D1 of the inorganic compound 11. In the case of D1, the following effects can be obtained. The inorganic compound 11 having a particle size less than D2 flows out from the small holes 13a, 13b, and 13c. In the initial stage of use, those having a small particle size flow out of the melting device 16, but after a predetermined time has passed, the inorganic compound 11 having a particle size of D2 or more continues to be stored in the inorganic compound storage container 12. When this state is formed, it is equivalent to selecting the particle size of the inorganic compound 11 to a size within a certain range. Therefore, even if the inorganic compound 11 in which the sizes are mixed is used, the target concentration is dissolved in water.

(実施の形態2)
図6は、本発明の第2の実施の形態における溶解装置の構造図を示すものである。なお、第1の実施の形態と同じ構成については、同一符号を付して、説明を省略する。
(Embodiment 2)
FIG. 6 shows a structural diagram of a melting apparatus according to the second embodiment of the present invention. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図6において、無機化合物11は、複数個の粉末粒を結合させた顆粒状体11a、あるいは、粉末粒11bと前記顆粒状体11aとの混合物であり、無機化合物収納容器12に収納される。   In FIG. 6, the inorganic compound 11 is a granular body 11 a obtained by combining a plurality of powder particles, or a mixture of the powder particles 11 b and the granular body 11 a, and is stored in the inorganic compound storage container 12.

図7に顆粒状体の無機化合物の拡大図を示す。無機化合物11の顆粒状体11aは、無機化合物の粉末粒11b同士を、バインダなどの結合手段を介して接着し、所定の大きさ及び形状の結合体をなすものである。   FIG. 7 shows an enlarged view of the granular inorganic compound. The granular material 11a of the inorganic compound 11 is formed by adhering the powder particles 11b of the inorganic compound through bonding means such as a binder to form a bonded body having a predetermined size and shape.

顆粒状体11aの具体的製造手段としては、造粒機など汎用の製造手段を用いることで、目的の大きさ及び形状の顆粒状体11aを形成したのち、焼成など加熱処理を後工程で施すことで、顆粒状体11a間のバインダの結合力を高め、一定以上の強度を持った顆粒状体11aを得ることができる。   As specific manufacturing means of the granular body 11a, a general-purpose manufacturing means such as a granulator is used to form the granular body 11a having a desired size and shape, and then heat treatment such as baking is performed in a subsequent process. Thus, the binding force of the binder between the granular bodies 11a can be increased, and the granular body 11a having a certain strength or more can be obtained.

顆粒状体11aの形状は、略球状、略立方体、略直方体等、特に形状を限定するものではなく、例えば、略球状にした場合に、略球状の顆粒状体を無機化合物収納容器12内に多層状に充填することで、顆粒状体11aは、隣接する顆粒状体11aと点接触で載置されることとなり、顆粒状体11a間で水の通過流路となる空隙を形成し、無機化合物収納容器12内の水流の圧力損失を低減することができる。   The shape of the granular body 11a is not particularly limited to a shape such as a substantially spherical shape, a substantially cubic shape, or a substantially rectangular parallelepiped shape. For example, in the case of a substantially spherical shape, the substantially spherical granular shape is placed in the inorganic compound storage container 12. By filling in multiple layers, the granular body 11a is placed in point contact with the adjacent granular body 11a, forming a gap that becomes a water passage between the granular bodies 11a, and inorganic. The pressure loss of the water flow in the compound storage container 12 can be reduced.

また、顆粒状体11aは、上述のように、無機化合物11の粉末粒11bを複数個、略
球形状に結合させた物であることから、顆粒状体11aの表面には、図6に示すように、少なくとも、粉末粒11bの直径と同等の開口径と、同半径と同等の深さを持った、凹凸部11cが形成され、顆粒状体11aに接触する水に対する比表面積が凹凸部無しの状態に比べ増加することとなる。
Further, as described above, since the granular body 11a is a product in which a plurality of powder particles 11b of the inorganic compound 11 are combined in a substantially spherical shape, the surface of the granular body 11a is shown in FIG. As described above, at least an uneven portion 11c having an opening diameter equivalent to the diameter of the powder particle 11b and a depth equivalent to the same radius is formed, and the specific surface area with respect to water contacting the granular body 11a has no uneven portion. It will increase compared to the state of.

また、顆粒状体11aは、粉末粒11bを結合する際に、顆粒状体11a内部に複数の空隙を形成することから、同一容積の非顆粒状体に比べ、比重が小さくなる。このため、図5に示すように、無機化合物収納容器12内に水が流れ込んだ場合、顆粒状体11aは、比重が小さいため、無機化合物収納容器12内で、ランダムに揺動し、隣接する顆粒状体11a間との距離が、水流停止時に比べ、拡大する。   Moreover, since the granular body 11a forms several space | gap inside the granular body 11a when couple | bonding the powder grain 11b, compared with the non-granular body of the same volume, specific gravity becomes small. For this reason, as shown in FIG. 5, when water flows into the inorganic compound storage container 12, the granular body 11 a has a small specific gravity, so that it swings randomly in the inorganic compound storage container 12 and is adjacent. The distance between the granular bodies 11a is larger than when the water flow is stopped.

なお、無機化合物収納容器12に充填する無機化合物11の顆粒状体11aの顆粒径は、同一径のものを充填しても、複数の球径のものを混在させて充填してもよく、後者の方が、顆粒径のふるい分け必要なくなるため、コストを低く抑えることができる。また、無機化合物11の粉末粒11bの粒子径を増減させることで、顆粒状体11aの表面に形成される凹凸サイズを任意に調整することもできる。   The granular body 11a of the inorganic compound 11 filled in the inorganic compound storage container 12 may be filled with the same diameter or a mixture of a plurality of spherical diameters. This eliminates the need for sieving the granule diameter, so that the cost can be kept low. Moreover, the uneven | corrugated size formed in the surface of the granular body 11a can also be adjusted arbitrarily by increasing / decreasing the particle diameter of the powder grain 11b of the inorganic compound 11. FIG.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に充填された無機化合物11の顆粒状体11a及び粉末粒11bと接触しながら多孔質の空間を通過する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Water flowing from the water circuit 15 into the dissolving device 16 passes through the porous space while being in contact with the granular material 11a and the powder particles 11b of the inorganic compound 11 filled in the inorganic compound storage container 12.

無機化合物収納容器12内の無機化合物11の顆粒状体11aは、水流の運動エネルギーを受けて、容器内で揺動し、隣接する顆粒状体11a間の距離が拡がった状態を維持しながら、顆粒状体11a間を水が流れていく。実施の形態1で説明したように、無機化合物11は、化合物表面と流水との間に生じる濃度差に応じて高い方から低い物質が移動する(フィックの法則)、無機化合物11を水に溶解させることができるが、
本実施の形態においては、顆粒状体11aが揺動することで、水の中心との距離が拡大し、無機化合物表面と、水との濃度差がより大きくなるため、同一の水流速では、水への溶解量を増加することができる。
The granular body 11a of the inorganic compound 11 in the inorganic compound storage container 12 receives the kinetic energy of the water flow, swings in the container, and maintains a state where the distance between the adjacent granular bodies 11a is expanded. Water flows between the granular bodies 11a. As described in the first embodiment, the inorganic compound 11 dissolves the inorganic compound 11 in water in which the lower substance moves from the higher one according to the concentration difference between the compound surface and flowing water (Fick's law). Can be
In the present embodiment, the granular body 11a swings to increase the distance from the center of the water, and the concentration difference between the inorganic compound surface and water becomes larger. The amount dissolved in water can be increased.

以上のように、本実施の形態においては、複数個の無機化合物11の粉末粒11bを結合させた顆粒状体11a、あるいは、前記粉末粒11bと顆粒状体11aとの混合物を無機化合物収納容器12に収納し、前記顆粒状体11aの無機化合物11は、顆粒の表面に複数の凹凸11cを設けた溶解装置である。   As described above, in the present embodiment, the granular material 11a in which the plurality of powder particles 11b of the inorganic compound 11 are combined, or the mixture of the powder particles 11b and the granular material 11a is used as an inorganic compound storage container. 12, the inorganic compound 11 of the granular body 11a is a dissolving device provided with a plurality of irregularities 11c on the surface of the granules.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物11の粉末粒11bを結合させた顆粒状体11aは、内部に空隙を有することで、比重が軽くなり、無機化合物収納容器12内の水流により、容易に揺動し、かつ顆粒状体11a表面は、粉末粒11bからなる複数凹凸11cが存在するため、前記揺動と凹凸の効果で、水に対する接触効率が高まり、水への無機化合物の溶解効率がさらに高めることが可能となる。   As a result, the inorganic compound can be dissolved in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in dissolution concentration between water and the inorganic compound. The granular body 11a to which the particles 11b are bonded has a void in the interior, so that the specific gravity is lightened, easily swings due to the water flow in the inorganic compound storage container 12, and the surface of the granular body 11a is a powder. Since there are a plurality of irregularities 11c composed of the grains 11b, the effect of the rocking and irregularities increases the contact efficiency with water, and the dissolution efficiency of the inorganic compound in water can be further increased.

(実施の形態3)
図8は、本発明の第3の実施の形態における溶解装置の構造図を示すものである。図9は、無機化合物成形体の複数の形状例を示すものである。なお、実施の形態1と同一構成については、同一符号を付して説明を省略する。
(Embodiment 3)
FIG. 8 shows a structural diagram of a melting apparatus according to the third embodiment of the present invention. FIG. 9 shows a plurality of shape examples of the inorganic compound molded body. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

17は、無機化合物11の粉末粒11bを所定の形状に成形固化した無機化合物成形体である。   Reference numeral 17 denotes an inorganic compound molded body obtained by molding and solidifying the powder particles 11b of the inorganic compound 11 into a predetermined shape.

無機化合物成形体17の具体的な製造方法としては、無機化合物11の粉末粒11bとバインダ成分と、純水などの溶媒を混練し、成形型を用いて所定の形状に成形した後、焼成など加熱処理を後工程で施すことで、バインダの結合力を高め、成形体としての強度を確保する。   As a specific manufacturing method of the inorganic compound molded body 17, powder particles 11 b of the inorganic compound 11, a binder component, and a solvent such as pure water are kneaded and formed into a predetermined shape using a mold, and then fired, etc. By performing the heat treatment in a subsequent process, the binding strength of the binder is increased and the strength as a molded body is ensured.

なお、本実施の形態の無機化合物成形体17の外形寸法は、無機化合物収納容器12に接続される水回路15の無機化合物成形体17に対する投影直径より大きく形成することで、無機化合物収納容器12に水が流れた際に、無機化合物成形体17が、下流側の水回路15への流出を防ぐことができるため、溶解装置16への濾過手段13および濾過手段収納容器14の搭載が不要となり、溶解装置16の構成コストをさらに低減することが可能となるだけでなく、濾過手段13の目詰まりによる水回路の流量低下などの品質低下のリスクを抜本的に取り除くことが可能となる。   In addition, the external dimension of the inorganic compound molded body 17 of this Embodiment is formed larger than the projection diameter with respect to the inorganic compound molded body 17 of the water circuit 15 connected to the inorganic compound storage container 12, and the inorganic compound storage container 12 is formed. When the water flows, the inorganic compound molded body 17 can prevent the downstream water circuit 15 from flowing out, so that it is not necessary to mount the filtering means 13 and the filtering means storage container 14 in the dissolving device 16. Not only can the construction cost of the melting device 16 be further reduced, but it is also possible to drastically remove the risk of quality degradation such as a reduction in the flow rate of the water circuit due to clogging of the filtering means 13.

なお、無機化合物成形体17は、粉末粒11b成形した物であることから、顆粒状体11aの表面には、実施の形態1の顆粒状体11aと同様に、少なくとも、粉末粒11bの直径と同等の開口径と、同半径と同等の深さを持った、凹凸部11cが形成され、顆粒状体11aに接触する水に対する比表面積が凹凸部無しの状態に比べ増加することとなる。   In addition, since the inorganic compound molded body 17 is a product obtained by molding the powder particles 11b, the surface of the granular body 11a has at least the diameter of the powder particles 11b as in the granular body 11a of the first embodiment. The uneven part 11c having the same opening diameter and the same depth as the radius is formed, and the specific surface area with respect to the water contacting the granular body 11a is increased as compared with the state without the uneven part.

また、無機化合物成形体17は、成型型を用いることで任意の形状を構成することが可能となり、図8(a)に示すように、成形体表面に凹凸部を追加して、さらに水に対する接触面積を拡大し、無機化合物11の水への溶解効率を高めたり、また図7(b)に示すように、ハニカム形状に形成することで、水に対する接触面積を高めるだけでなく、水の流れに対する抵抗を下げることができるため、図8(b)に示すように、ハニカム形状の無機化合物成形体17を複数個積層して、無機化合物収納容器12に搭載することも可能となる。   In addition, the inorganic compound molded body 17 can be formed in an arbitrary shape by using a molding die, and as shown in FIG. The contact area is increased to increase the dissolution efficiency of the inorganic compound 11 in water, and as shown in FIG. 7 (b), not only the contact area against water is increased, but also water is formed. Since resistance to the flow can be lowered, as shown in FIG. 8B, a plurality of honeycomb-shaped inorganic compound molded bodies 17 can be stacked and mounted on the inorganic compound storage container 12.

以上のように、本実施の形態においては、無機化合物成形体17の外形寸法が、無機化合物収納容器12に接続される水回路15の配管の内径より大きいため、水回路15の水の流れに乗って、無機化合物成形体17がまるごと水回路15に流出し得ないため、無機化合物収納容器12に無機化合物成形体17を保持する濾過手段等の保持手段を設置する必要が無くなり、無機化合物収納容器12の構成コストを下げることができ、さらに無機化合物成形体17の表面には複数個の凹凸11cを設けたので、水に対する無機化合物成形体17の相対的な接触表面積が増加し、水への無機化合物の溶解量を高いレベルで安定させながら、さらに低コスト化を図ることができる。   As described above, in the present embodiment, since the outer dimension of the inorganic compound molded body 17 is larger than the inner diameter of the pipe of the water circuit 15 connected to the inorganic compound storage container 12, the water flow in the water circuit 15 Since the entire inorganic compound molded body 17 cannot flow out to the water circuit 15 by riding, it is not necessary to install a holding means such as a filtering means for holding the inorganic compound molded body 17 in the inorganic compound storage container 12, and the inorganic compound stored The construction cost of the container 12 can be reduced, and the surface of the inorganic compound molded body 17 is provided with a plurality of irregularities 11c. Therefore, the relative contact surface area of the inorganic compound molded body 17 with respect to water increases, and the water The cost can be further reduced while stabilizing the amount of the inorganic compound dissolved at a high level.

(実施の形態4)
図10は、本発明の第4の実施の形態における給湯装置の構成図を示すものである。
(Embodiment 4)
FIG. 10 shows a configuration diagram of a hot water supply apparatus according to the fourth embodiment of the present invention.

図10において、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   In FIG. 10, a compressor 22, a hot water supply heat exchanger 23, a decompression unit 24, and an evaporator 25 are annularly connected in order by a refrigerant circuit 26 to constitute a heat pump unit 21. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order. The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。浴槽水注湯回路39は、貯湯タンク28の水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の
高温の水と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯回路39の回路の開閉を行う浴槽水注湯弁38を順に備える。溶解装置16は浴槽水注湯弁38の下流側の浴槽水注湯回路39に本体の筐体に収納するように設けた。
The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order. The bathtub water pouring circuit 39 is a circuit for pouring the water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. In this circuit, a bath water mixing valve 36 for mixing hot water in the hot water storage tank 28 and tap water, temperature detecting means 37 for detecting the temperature of the pouring water, and bath water pouring for opening and closing the bath water pouring circuit 39. The hot water valve 38 is provided in order. The melting device 16 was provided in the bathtub water pouring circuit 39 on the downstream side of the bathtub water pouring valve 38 so as to be housed in the housing of the main body.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流量を制御する。   The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯回路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。所定温度となった浴槽水は、浴槽水注湯回路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28に貯留された高温の水を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ40より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bath water mixing valve 36 of the bath water pouring circuit 39 has a hot water and tap water so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). Adjust the mixing ratio. The bathtub water having a predetermined temperature flows out into the bathtub 42 through the bathtub water pouring circuit 39 and the bathtub water circulation circuit 41 in this order. On the other hand, when the bathtub water in the bathtub 42 is heated, the hot water stored in the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 40. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。利用者が浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された水が、浴槽水注湯弁38を閉から開に制御した場合に、溶解装置16、浴槽水循環回路41を経由して浴槽42に流出する。水が溶解装置16を通過する際に、無機化合物が水に溶解するので、浴槽42に湯はり動作と同時に、無機化合物11を溶解させた水が浴槽42に流入する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the water adjusted by the bathtub water mixing valve 36 at a preset temperature controls the bathtub water pouring valve 38 from closed to open, it passes through the melting device 16 and the bathtub water circulation circuit 41. It flows out into the bathtub 42. When the water passes through the dissolving device 16, the inorganic compound dissolves in the water, so that the water in which the inorganic compound 11 is dissolved flows into the bathtub 42 simultaneously with the hot water operation in the bathtub 42.

溶解装置16は、浴槽水注湯弁38の下流側としたが、浴槽水注湯弁38が開から閉へ制御された場合は、ウォーターハンマー現象が発生し、上流側の回路に設けている、浴槽水混合弁36、貯湯タンク28等は水道圧以上の水圧負荷を与える。下流側に設けることによって、溶解装置16への水圧負荷が掛からない。   Although the melting device 16 is on the downstream side of the bathtub water pouring valve 38, when the bathtub water pouring valve 38 is controlled from opening to closing, a water hammer phenomenon occurs and is provided in the upstream circuit. The bathtub water mixing valve 36, the hot water storage tank 28, etc. give a water pressure load higher than the water pressure. By providing on the downstream side, the hydraulic load on the melting device 16 is not applied.

以上のように、本実施の形態においては、浴槽水注湯回路と、浴槽水注湯弁を備え、浴槽水注湯弁、溶解装置の順に浴槽水注湯回路に備えた給湯装置とした。これにより、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the bathtub water-pouring circuit and the bathtub water-pouring valve, and equipped with the bathtub water-pouring circuit in order of the bathtub water-pouring valve and the melting apparatus. Thereby, since the melting device is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting device can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

本発明において、溶解装置16は給湯機の本体筐体に収納し、浴槽水注湯回路39としているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11を溶解させた水を供給することが出来る。また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は常時加温されるため、溶解装置16の凍結防止などの断熱が不要、または簡素化できる。   In the present invention, the melting device 16 is housed in the main body housing of the water heater and serves as a bathtub water pouring circuit 39. However, even if provided in the bathtub water circulation circuit 41, water in which the inorganic compound 11 is dissolved is supplied to the bathtub 42. I can do it. Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is always heated, so that heat insulation such as prevention of freezing of the melting device 16 is unnecessary or simplified.

また、溶解装置16は、浴槽水注湯弁38の下流側でさらに、開閉電磁弁を設け(図示しない)、その下流側に溶解装置16を通過する水回路と、溶解装置16を通過しない水回路の2系統用意し、浴室リモコンなどにより、無機化合物の溶解有無を開閉電磁弁による流路切替で選択することで、使用者の好みに応じて、浴槽水の水質を選択することが可
能となる。なお、開閉電磁弁を手動式切替弁とし、本体外から使用者が手動で切り換え操作する構成としても良い。 また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を化合物溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。
Further, the melting device 16 is further provided with an open / close electromagnetic valve (not shown) on the downstream side of the bathtub water pouring valve 38, a water circuit that passes through the melting device 16 on the downstream side, and water that does not pass through the melting device 16. It is possible to select the quality of bathtub water according to the user's preference by preparing two systems of circuits and selecting whether or not inorganic compounds are dissolved by switching the flow path with an open / close solenoid valve by using a bathroom remote control etc. Become. The open / close solenoid valve may be a manual switching valve, and the user may manually switch from outside the main body. Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the compound dissolving apparatus. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態5)
図11は、本発明の第5の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 5)
FIG. 11 is a structural diagram of a melting apparatus according to the fifth embodiment of the present invention.

図11において、溶解装置16の入口と出口は浴槽水注湯回路39に接続されている。無機化合物11を収納する無機化合物収納容器12の相当直径d1、浴槽水注湯回路39の相当直径d2とした場合、図11においてそれぞれをd1>d2となる大きさなるように決定した。   In FIG. 11, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring circuit 39. When the equivalent diameter d1 of the inorganic compound storage container 12 storing the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring circuit 39 are set, in FIG. 11, each is determined to have a size that satisfies d1> d2.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15に対して、無機化合物11を収納した無機化合物収納容器12、濾過手段収納容器14を設けたので、溶解装置16を水が通過する際に、圧力損失が生じる。圧力損失が生じると、浴槽42へ供給する水の流量が低下する。ここで、無機化合物収納容器12の相当直径d1を、浴槽水注湯回路39の相当直径d2に対して、d1>d2となる大きさとすると、無機化合物収納容器12の平均流速u1は、浴槽水注湯回路39の平均流速u2より小さくなる。水回路の流体の圧力損失は、流体の平均流速の2乗に比例するため、溶解装置16を通過する際の圧力損失の増加を低減させることができる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Since the inorganic compound storage container 12 storing the inorganic compound 11 and the filtering means storage container 14 are provided for the water circuit 15, a pressure loss occurs when water passes through the dissolving device 16. When pressure loss occurs, the flow rate of water supplied to the bathtub 42 decreases. Here, assuming that the equivalent diameter d1 of the inorganic compound storage container 12 is such that d1> d2 with respect to the equivalent diameter d2 of the bathtub water pouring circuit 39, the average flow velocity u1 of the inorganic compound storage container 12 is the bath water. It becomes smaller than the average flow velocity u2 of the pouring circuit 39. Since the pressure loss of the fluid in the water circuit is proportional to the square of the average flow velocity of the fluid, an increase in the pressure loss when passing through the dissolving device 16 can be reduced.

以上のように、本実施の形態においては、無機化合物収納容器の相当直径を、溶解装置を接続する浴槽水注湯回路の相当直径よりも大とすることにより、無機化合物を通過する水流による圧力損失を低減し、浴槽への湯はり時間を早く完了することができる。   As mentioned above, in this Embodiment, the pressure by the water flow which passes an inorganic compound is made larger by making the equivalent diameter of an inorganic compound storage container larger than the equivalent diameter of the bathtub water pouring circuit which connects a dissolving device. Loss can be reduced and the hot water filling time for the bathtub can be completed quickly.

以上のように、本発明にかかる給湯装置は、無機化合物の水への溶解効率を高め、コンパクト化、低コスト化、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention improves the efficiency of dissolving inorganic compounds in water, leading to compactness, cost reduction, and improvement in operating efficiency. In addition to hot water storage hot water heaters, Can also be used.

11 無機化合物
11a 顆粒状体
11b 粉末粒
12 無機化合物収納容器
13 濾過手段
13a 小穴
13b 小穴
13c 小穴
14 濾過手段収納容器
15 水回路
16 溶解装置
17 無機化合物成形体
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯回路
42 浴槽
DESCRIPTION OF SYMBOLS 11 Inorganic compound 11a Granular body 11b Powder particle | grains 12 Inorganic compound storage container 13 Filtration means 13a Small hole 13b Small hole 13c Small hole 14 Filtration means storage container 15 Water circuit 16 Melting apparatus 17 Inorganic compound molded object 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bathtub water mixing valve 37 Temperature detection means 38 Bathtub water pouring valve 39 Bathtub water pouring circuit 42 Bathtub

本発明は、無機化合物等を溶解する溶解装置、及び溶解した無機化合物等を浴槽に供給する機能を備えた給湯装置に関するものである。   The present invention relates to a melting apparatus that dissolves inorganic compounds and the like, and a hot water supply apparatus that has a function of supplying dissolved inorganic compounds and the like to a bathtub.

従来この種の装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図12は、特許文献1に記載された従来の給湯装置を示すものである。図12に示すように、亜鉛陽極1と、陰極2と、ケーシング5と、直流電源9から構成されている。   FIG. 12 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 12, it is composed of a zinc anode 1, a cathode 2, a casing 5, and a DC power source 9.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源9と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源9においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power source 9 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in the size and cost of the apparatus, the DC power supply 9 requires power, so that the amount of power consumption increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、コンパクトで運転コストが安価で、かつ水に効率良く無機化合物等を溶解し供給できる溶解装置及びそれを備えた給湯装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, does not require an electric circuit, is compact, has a low operating cost, and can dissolve and supply an inorganic compound or the like efficiently in water, and a hot water supply provided with the same An object is to provide an apparatus.

前記従来の課題を解決するために、本発明の給湯装置は、高温湯を貯湯する貯湯タンク
と、前記貯湯タンクからの高温湯と水とをリモコン等で設定された所定温度に混合する混合弁と、前記混合弁の下流側に配設した温度検知手段と、前記混合弁にて所定温度に調整された湯水を浴槽へ供給する浴槽水注湯回路と、表面に複数の凹凸を有する無機化合物を収納する収納手段を具備した溶解装置とを備え、前記混合弁にて所定温度に調整された湯水に、前記収納手段に収納された前記無機化合物を溶解させた無機化合物溶解水を、前記浴槽に供給する構成としたことを特徴とするもので、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに無機化合物の表面に複数の凹凸を設けたことで、水に対する無機化合物の相対的な接触表面積が増加し、水への無機化合物の溶解効率がさらに高めることが可能となり、これまで必要としていた電源回路と絶縁回路の削減と、溶解性能を両立することができる。
In order to solve the above-described conventional problems, the hot water supply apparatus of the present invention is a hot water storage tank for storing hot water.
A mixing valve that mixes high-temperature hot water and water from the hot water storage tank to a predetermined temperature set by a remote controller, etc., temperature detection means disposed downstream of the mixing valve, and a predetermined temperature at the mixing valve A bath water pouring circuit for supplying hot water adjusted to the bathtub and a melting device having a storage means for storing an inorganic compound having a plurality of irregularities on the surface, and adjusted to a predetermined temperature by the mixing valve The inorganic compound-dissolved water, in which the inorganic compound stored in the storage means is dissolved in hot water, is supplied to the bath, and the difference in dissolved concentration between water and the inorganic compound The inorganic substance can be dissolved in water by the principle of substance diffusion (Fick's law), and the surface of the inorganic compound is provided with a plurality of irregularities. Relative contact surface area Increased, dissolution efficiency of inorganic compounds in water it is possible to further increase, thus far required to have a power supply circuit and the reduction of the isolation circuit, it is possible to achieve both dissolution performance.

これにより、無機化合物の水への溶解量を増加させながら、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることもできる。   Thereby, while increasing the amount of the inorganic compound dissolved in water, it is possible to reduce the size and cost, and to reduce power consumption because it is a principle that does not require power.

本発明によれば、コンパクト化、低コスト化、さらには、消費電力量の抑制し、水に効率良く無機化合物等を溶解し供給できる給湯装置を提供できる。 According to the present invention, downsizing, cost reduction, further, it consumed power amount of suppression, it is possible to provide a hot water supply device that can be dissolved efficiently inorganic compounds such as water supply.

本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention 同実施の形態における溶解装置の別の水流方向の構成図Configuration diagram of another water flow direction of the dissolution apparatus in the same embodiment 同実施の形態における溶解装置の詳細図Detailed view of dissolution apparatus in the same embodiment 同実施の形態における溶解装置の無機化合物と濾過手段の関係を示す図The figure which shows the relationship between the inorganic compound of the dissolution apparatus in the same embodiment, and the filtration means (a)同実施の形態における濾過手段の構成図(b)同他の濾過手段の構成図(c)同他の濾過手段の構成図(A) Configuration diagram of filtration means in the embodiment (b) Configuration diagram of other filtration means (c) Configuration diagram of other filtration means 本発明の実施の形態2における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 2 of the present invention 同実施の形態の無機化合物の顆粒状体の詳細図Detailed view of granules of inorganic compound of the embodiment 本発明の実施の形態3における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 3 of the present invention (a)同実施の形態の無機化合物成形体の凹凸をさらに追加した構成図(b)同実施の形態の無機化合物成形体をハニカム形状とし、成形体を積層配置した構成図(A) Configuration diagram in which irregularities of the inorganic compound molded body of the embodiment are further added (b) Configuration diagram in which the inorganic compound molded body of the embodiment is formed into a honeycomb shape and the molded bodies are arranged in a stacked manner 本発明の実施の形態4における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 4 of this invention 本発明の実施の形態5における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 5 of the present invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、高温湯を貯湯する貯湯タンクと、前記貯湯タンクからの高温湯と水とをリモコン等で設定された所定温度に混合する混合弁と、前記混合弁の下流側に配設した温度検知手段と、前記混合弁にて所定温度に調整された湯水を浴槽へ供給する浴槽水注湯回路と、表面に複数の凹凸を有する無機化合物を収納する収納手段を具備した溶解装置とを備え、前記混合弁にて所定温度に調整された湯水に、前記収納手段に収納された前記無機化合物を溶解させた無機化合物溶解水を、前記浴槽に供給する構成としたことを特徴とする給湯装置で、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物の表面に複数の凹凸を設けたことで、水に対する無機化合物の相対的な接触表面積が増加し、水への無機化合物の溶解効率がさらに高めることが可能となり、これまで必要としていた電源回路と絶縁回路の削減と、溶解性能を両立することができる。 1st invention arrange | positions the hot water storage tank which stores hot water, the mixing valve which mixes the hot water and water from the said hot water tank with the predetermined temperature set with the remote control etc., and the downstream of the said mixing valve A temperature detecting means, a bathtub water pouring circuit for supplying hot water adjusted to a predetermined temperature by the mixing valve to the bathtub, and a melting apparatus comprising a storage means for storing an inorganic compound having a plurality of irregularities on the surface, The inorganic compound-dissolved water in which the inorganic compound stored in the storage means is dissolved in hot water adjusted to a predetermined temperature by the mixing valve is supplied to the bathtub. With a hot water supply device , an inorganic compound can be dissolved in water based on the principle of substance diffusion (Fick's law), in which the substance moves due to the difference in dissolved concentration between water and the inorganic compound. Multiple irregularities on the Therefore, the relative contact surface area of the inorganic compound with water can be increased, and the dissolution efficiency of the inorganic compound in water can be further increased. can do.

これにより、無機化合物の水への溶解量を増加させながら、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることもできる。   Thereby, while increasing the amount of the inorganic compound dissolved in water, it is possible to reduce the size and cost, and to reduce power consumption because it is a principle that does not require power.

第2の発明は、第1の発明の無機化合物を、複数個の無機化合物の粉末粒を結合させた顆粒状体、あるいは、前記粉末粒と顆粒状体との混合物であることを特徴とするもので、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物の粉末粒を結合させた顆粒状体は、内部に空隙を有することで、比重が軽くなり、収納容器内の水流により、容易に揺動し、かつ顆粒状体表面は、粉末粒からなる複数凹凸が存在するため、前記揺動と凹凸の効果で、水に対する接触効率が高まり、水への無機化合物の溶解効率がさらに高めることが可能となる。   A second invention is characterized in that the inorganic compound of the first invention is a granular body obtained by combining powder grains of a plurality of inorganic compounds, or a mixture of the powder grains and the granular body. It is possible to dissolve inorganic compounds in water based on the principle of substance diffusion (Fick's law), in which substances move due to the difference in dissolution concentration between water and inorganic compounds. The granular body with a gap has a void inside, so that the specific gravity is reduced, and it easily swings due to the water flow in the storage container. For this reason, the effect of the rocking and the unevenness increases the contact efficiency with water, and the dissolution efficiency of the inorganic compound in water can be further increased.

第3の発明は、第1の発明の無機化合物を、粉末粒を所定の形状に成形固化した無機化合物成形体であることを特徴とするもので、無機化合物成形体の表面には複数個の凹凸を設けたので、水に対する無機化合物成形体の相対的な接触表面積が増加し、水への無機化合物の溶解量を高いレベルで安定させながら、さらに低コスト化を図ることができる。   A third invention is an inorganic compound molded body in which the inorganic compound of the first invention is formed and solidified into a predetermined shape, and a plurality of inorganic compounds are formed on the surface of the inorganic compound molded body. Since the unevenness is provided, the relative contact surface area of the inorganic compound molded body with respect to water increases, and the cost can be further reduced while stabilizing the amount of the inorganic compound dissolved in water at a high level.

第4の発明は、第3の発明の無機化合物成形体の外郭寸法は、前記浴槽水注湯回路の配管内径より大きいことを特徴とするもので、無機化合物成形体の外形寸法が、収納手段に接続される浴槽水注湯回路の配管内径より大きいため、浴槽水注湯回路の水の流れに乗って、成形体がまるごと水回路に流出し得ないため、収納手段に無機化合物を保持する濾過手段等の保持手段を設置する必要が無くなり、収納手段の構成コストを下げることができる。 A fourth invention is characterized in that the outer dimension of the inorganic compound molded body of the third invention is larger than the inner diameter of the pipe of the bathtub water pouring circuit , and the outer dimension of the inorganic compound molded body is the storing means. Since it is larger than the inner diameter of the pipe of the bathtub water pouring circuit connected to the tub, the entire body cannot flow out to the water circuit due to the flow of water in the bathtub water pouring circuit , so the inorganic means is held in the storage means. There is no need to install holding means such as filtering means, and the construction cost of the storage means can be reduced.

第5の発明は、前記浴槽水注湯回路を開閉する浴槽水注湯弁を備え、前記溶解装置を、前記浴槽水注湯回路上で、かつ、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置である。 A fifth invention is e Bei the bathtub water pouring valve for opening and closing the bath tub water pouring circuit, wherein the dissolve unit, on the bath water pouring circuit, and, downstream of the bath water Note hot water valve The hot water supply apparatus is characterized by being disposed on the side.

これによって、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   Thereby, since the melting apparatus is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting apparatus can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

第6の発明は、前記収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置で、水が無機化合物収納容器を通過する際に生じる圧力損失の増加を低減させ、浴槽への湯はりを早く完了することができる。 A sixth invention is the equivalent diameter of the retract and means, in the water heater, characterized in that is larger than the equivalent diameter of the bathtub water pouring circuit, the pressure generated when the water passes through the inorganic compound container The increase in loss can be reduced, and hot water filling to the bathtub can be completed quickly.

第7の発明は、前記溶解装置を、給湯装置の本体筐体内に配設したことを特徴とする給湯装置で、低外気温時であっても貯湯タンク、電源回路などからの僅かな放熱により筐体内の雰囲気は常時加温されているため、溶解装置の凍結防止などの断熱が簡素化、または不要となる。 A seventh aspect of the invention, the dissolve unit, in the water heater being characterized in that disposed in the main body housing of the water heater, hot water storage tank even during low outdoor air temperature, slight heat dissipation from such power supply circuit Therefore, since the atmosphere in the housing is always heated, heat insulation such as prevention of freezing of the melting apparatus is simplified or unnecessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、無機化合物11は、水に対して溶解性を持ち、かつ表面に複数の凹凸を設けたものを、無機化合物収納容器12に収納しており、表面に設けた凹凸により、無機化合物収納容器12内に流れる水流に対する無機化合物の比表面積を増大させることができる。   In FIG. 1, an inorganic compound 11 is soluble in water and has a surface provided with a plurality of irregularities, which is accommodated in an inorganic compound storage container 12. By the irregularities provided on the surface, the inorganic compound 11 The specific surface area of the inorganic compound with respect to the water flow flowing in the storage container 12 can be increased.

表面に複数の凹凸を有する無機化合物11を得る具体的手段としては、表面に凹凸の無い無機化合物と、無機化合物より硬度が高く、かつ比重が異なる粒子とともに、ボールミルに入れて、所定時間回転攪拌後、無機化合物に対して非溶解性の溶媒中に分散させて無機化合物と粒子を比重分離させることで、凹凸を設けた無機化合物を得ることができる。   As a specific means for obtaining the inorganic compound 11 having a plurality of irregularities on the surface, it is placed in a ball mill together with an inorganic compound having no irregularities on the surface and particles having a hardness higher than that of the inorganic compound and different specific gravity. Then, the inorganic compound which provided the unevenness | corrugation can be obtained by disperse | distributing in a solvent insoluble with respect to an inorganic compound, and carrying out specific gravity separation of an inorganic compound and particle | grains.

また、表面に凹凸の無い無機化合物を、物理的衝撃を与えて粉砕することで、凹凸の破断面を持った無機化合物を得ることができる。前記具体例は、あくまで一例であり、凹凸を有する無機化合物を得る手段として限定するものではない。   In addition, an inorganic compound having an uneven fracture surface can be obtained by pulverizing an inorganic compound having no irregularities on the surface by applying a physical impact. The specific examples are merely examples, and are not limited as means for obtaining an inorganic compound having irregularities.

表面に複数の凹凸を有する無機化合物11を多層状に充填すると、無機化合物収納容器12内には多孔質の空間が形成される。濾過手段13は複数の小穴を有し、濾過手段収納容器14に収納される。無機化合物収納容器12と濾過手段収納容器14は、順に水回路15によって連通され、無機化合物収納容器12は濾過手段収納容器14の上流側となるように溶解装置16を構成する。   When the inorganic compound 11 having a plurality of irregularities on the surface is filled in a multilayer shape, a porous space is formed in the inorganic compound storage container 12. The filtering means 13 has a plurality of small holes and is stored in the filtering means storage container 14. The inorganic compound storage container 12 and the filtration means storage container 14 are sequentially communicated by a water circuit 15, and the dissolution apparatus 16 is configured so that the inorganic compound storage container 12 is on the upstream side of the filtration means storage container 14.

なお、無機化合物収納容器12内には、表面に凹凸を有する無機化合物11だけでなく、無機化合物11の粉末粒を混合させてもよい。   In addition, in the inorganic compound storage container 12, not only the inorganic compound 11 having irregularities on the surface but also powder particles of the inorganic compound 11 may be mixed.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に充填された表面に複数の凹凸を有する無機化合物11と接触しながら多孔質の空間を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図3はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes through the porous space while contacting the inorganic compound 11 having a plurality of irregularities on the surface filled in the inorganic compound storage container 12. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 11 to the region near the surface when passing through the porous space. FIG. 3 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the central portion of the porous space has a large distribution. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を多孔質空間内の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in the porous space.

さらに無機化合物の表面に形成した複数の凹凸により、無機化合物11の水に対する接触表面積が、凹凸無しの場合に比べ数倍以上となり、無機化合物11の表面付近の溶解濃度がさらに高まり、多孔質空間の中心部との濃度差が拡大し、無機化合物11の水への溶解量を増大させることができる。   Furthermore, due to the plurality of irregularities formed on the surface of the inorganic compound, the contact surface area of the inorganic compound 11 with respect to water is several times or more than that without the irregularities, the dissolution concentration near the surface of the inorganic compound 11 is further increased, and the porous space The concentration difference from the central part of the water increases, and the amount of the inorganic compound 11 dissolved in water can be increased.

無機化合物11の水への溶解効率を高める作用により、水への溶解度が低い無機化合物11を使用することが可能となるだけでなく、無機化合物の11の溶解装置16への充填量を削減することでのコスト低減も測ることができる。
濾過手段13は、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものである。
The action of increasing the dissolution efficiency of the inorganic compound 11 in water makes it possible not only to use the inorganic compound 11 having a low solubility in water, but also to reduce the filling amount of the inorganic compound 11 into the dissolution apparatus 16. The cost reduction by this can also be measured.
The filtering means 13 prevents the granules of the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12.

以上のように、本実施の形態においては、水回路と、表面に複数の凹凸を設けた無機化合物を収納する収納手段と、濾過手段とを備え、前記水回路を流れる水に、収納手段に収納された無機化合物を溶解させ、溶解された無機化合物が、濾過手段を通過する構成とした溶解装置を備えた給湯装置とした。   As described above, in the present embodiment, the water circuit, the storage means for storing the inorganic compound having a plurality of projections and depressions on the surface, and the filtering means, the water flowing through the water circuit is stored in the storage means. The stored inorganic compound was dissolved, and a hot water supply apparatus provided with a dissolving device configured such that the dissolved inorganic compound passed through the filtering means was obtained.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理を利用した水への無機化合物の溶解効率を高めることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減しながら、無機化合物の溶解特性向上と、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   This makes it possible to increase the dissolution efficiency of the inorganic compound in water using the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to provide a hot water supply apparatus that improves the melting characteristics of inorganic compounds, is compact, lowers cost, and further reduces power consumption while reducing power supply circuits and insulation circuits that have been required.

なお、本実施の形態では、図中の無機化合物収納容器12に対する水流の向きを、上方向の流れとしたが、流れ方向を限定するものではなく、下方向(図2)、および横方向に配置することも可能である。例えば、流れ方向を上方向に設定することでは、水流停止後に濾過手段13に目詰まった無機化合物11の粒子が、濾過手段13から重力落下で剥離しやすくなり、濾過手段13の経年的な目詰まりを抑制することが可能となる。   In the present embodiment, the direction of the water flow with respect to the inorganic compound storage container 12 in the figure is an upward flow, but the flow direction is not limited, and the downward direction (FIG. 2) and the lateral direction are not limited. It is also possible to arrange. For example, when the flow direction is set to the upward direction, the particles of the inorganic compound 11 clogged in the filtering means 13 after the water flow is stopped are easily separated from the filtering means 13 by gravity drop, and the aging of the filtering means 13 is improved. It becomes possible to suppress clogging.

なお、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

また、亜鉛化合物の酸化亜鉛は、薬局方、化粧品原料基準で認可を受けている材料であり、主にヒトの肌の角層に対して収斂作用、消炎作用などの作用を与え、肌の角層の改善を行うこともできる。   In addition, zinc oxide, a zinc compound, is a material that has been approved under the pharmacopoeia and cosmetic raw material standards. It mainly has effects on the stratum corneum of human skin, such as astringent action and anti-inflammatory action, and the skin corners. Layer improvements can also be made.

図4は、溶解装置の無機化合物11と濾過手段13の寸法の関係を示す例である。図4において、濾過手段13は径の異なる複数の小穴13a、13b、13cから構成される。   FIG. 4 is an example showing the relationship between the dimensions of the inorganic compound 11 and the filtering means 13 of the dissolving apparatus. In FIG. 4, the filtering means 13 is composed of a plurality of small holes 13a, 13b, 13c having different diameters.

図5は、濾過手段13の構成例である。(a)は、線形状の繊維で角状の小穴を形成したものである。(b)は、所定の厚さの板に、複数種の径の小穴を施したものである。(c)は、粒状の非溶解材料を多層状として多孔質空間を形成したものである。何れも、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものであるが、この構成と形状の限りではない。   FIG. 5 is a configuration example of the filtering means 13. (A) forms a square-shaped small hole with a linear fiber. (B) is a plate having a predetermined thickness and small holes having a plurality of types of diameters. (C) forms a porous space by using a granular non-dissolving material as a multilayer. In any case, when the granules of the inorganic compound 11 are about to flow out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12, this is prevented, but the configuration and shape are not limited thereto.

溶解装置16を流出する溶解濃度は、無機化合物収納容器12を通過する水流速と、無機化合物11の水と接触する表面積等で決定される。溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、図4の無機化合物収納容器12に収納する無機化合物11の粒径をある一定の範囲内のサイズに選別したものを利用する必要がある。   The dissolution concentration flowing out of the dissolution apparatus 16 is determined by the flow rate of water passing through the inorganic compound storage container 12, the surface area of the inorganic compound 11 in contact with water, and the like. When the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range, so the particle size of the inorganic compound 11 stored in the inorganic compound storage container 12 of FIG. It is necessary to use the one selected for the size within the range.

選別を行うと、コストアップの要因となるため、複数の径を有する無機化合物11の中において、無機化合物11の最大粒径D1に対して、濾過手段13の小穴13aの径D2は、D2<D1とした場合、以下の効果を得ることができる。D2未満の粒径の無機化合物11は、小穴13a、13b、13cから流出する。利用初期は粒径の小さいものは、溶解装置16外へ流出するが、所定時間経過後は、D2以上の粒径の無機化合物11は無機化合物収納容器12内に貯留され続ける。この状態が形成された場合、無機化合物11の粒径をある一定の範囲内のサイズに選別したことと同等となる。従って、サイズが混在する無機化合物11を用いても、目的とする濃度を水に溶解させる構造となる。   Since the selection causes a cost increase, among the inorganic compounds 11 having a plurality of diameters, the diameter D2 of the small hole 13a of the filtering means 13 is D2 <with respect to the maximum particle diameter D1 of the inorganic compound 11. In the case of D1, the following effects can be obtained. The inorganic compound 11 having a particle size less than D2 flows out from the small holes 13a, 13b, and 13c. In the initial stage of use, those having a small particle size flow out of the melting device 16, but after a predetermined time has passed, the inorganic compound 11 having a particle size of D2 or more continues to be stored in the inorganic compound storage container 12. When this state is formed, it is equivalent to selecting the particle size of the inorganic compound 11 to a size within a certain range. Therefore, even if the inorganic compound 11 in which the sizes are mixed is used, the target concentration is dissolved in water.

(実施の形態2)
図6は、本発明の第2の実施の形態における溶解装置の構造図を示すものである。なお、第1の実施の形態と同じ構成については、同一符号を付して、説明を省略する。
(Embodiment 2)
FIG. 6 shows a structural diagram of a melting apparatus according to the second embodiment of the present invention. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図6において、無機化合物11は、複数個の粉末粒を結合させた顆粒状体11a、あるいは、粉末粒11bと前記顆粒状体11aとの混合物であり、無機化合物収納容器12に収納される。   In FIG. 6, the inorganic compound 11 is a granular body 11 a obtained by combining a plurality of powder particles, or a mixture of the powder particles 11 b and the granular body 11 a, and is stored in the inorganic compound storage container 12.

図7に顆粒状体の無機化合物の拡大図を示す。無機化合物11の顆粒状体11aは、無機化合物の粉末粒11b同士を、バインダなどの結合手段を介して接着し、所定の大きさ及び形状の結合体をなすものである。   FIG. 7 shows an enlarged view of the granular inorganic compound. The granular material 11a of the inorganic compound 11 is formed by adhering the powder particles 11b of the inorganic compound through bonding means such as a binder to form a bonded body having a predetermined size and shape.

顆粒状体11aの具体的製造手段としては、造粒機など汎用の製造手段を用いることで、目的の大きさ及び形状の顆粒状体11aを形成したのち、焼成など加熱処理を後工程で施すことで、顆粒状体11a間のバインダの結合力を高め、一定以上の強度を持った顆粒状体11aを得ることができる。   As specific manufacturing means of the granular body 11a, a general-purpose manufacturing means such as a granulator is used to form the granular body 11a having a desired size and shape, and then heat treatment such as baking is performed in a subsequent process. Thus, the binding force of the binder between the granular bodies 11a can be increased, and the granular body 11a having a certain strength or more can be obtained.

顆粒状体11aの形状は、略球状、略立方体、略直方体等、特に形状を限定するものではなく、例えば、略球状にした場合に、略球状の顆粒状体を無機化合物収納容器12内に多層状に充填することで、顆粒状体11aは、隣接する顆粒状体11aと点接触で載置されることとなり、顆粒状体11a間で水の通過流路となる空隙を形成し、無機化合物収納容器12内の水流の圧力損失を低減することができる。   The shape of the granular body 11a is not particularly limited to a shape such as a substantially spherical shape, a substantially cubic shape, or a substantially rectangular parallelepiped shape. For example, in the case of a substantially spherical shape, the substantially spherical granular shape is placed in the inorganic compound storage container 12. By filling in multiple layers, the granular body 11a is placed in point contact with the adjacent granular body 11a, forming a gap that becomes a water passage between the granular bodies 11a, and inorganic. The pressure loss of the water flow in the compound storage container 12 can be reduced.

また、顆粒状体11aは、上述のように、無機化合物11の粉末粒11bを複数個、略球形状に結合させた物であることから、顆粒状体11aの表面には、図6に示すように、少なくとも、粉末粒11bの直径と同等の開口径と、同半径と同等の深さを持った、凹凸部11cが形成され、顆粒状体11aに接触する水に対する比表面積が凹凸部無しの状態に比べ増加することとなる。   Further, as described above, since the granular body 11a is a product in which a plurality of powder particles 11b of the inorganic compound 11 are combined in a substantially spherical shape, the surface of the granular body 11a is shown in FIG. As described above, at least an uneven portion 11c having an opening diameter equivalent to the diameter of the powder particle 11b and a depth equivalent to the same radius is formed, and the specific surface area with respect to water contacting the granular body 11a has no uneven portion. It will increase compared to the state of.

また、顆粒状体11aは、粉末粒11bを結合する際に、顆粒状体11a内部に複数の空隙を形成することから、同一容積の非顆粒状体に比べ、比重が小さくなる。このため、図5に示すように、無機化合物収納容器12内に水が流れ込んだ場合、顆粒状体11aは、比重が小さいため、無機化合物収納容器12内で、ランダムに揺動し、隣接する顆粒状体11a間との距離が、水流停止時に比べ、拡大する。   Moreover, since the granular body 11a forms several space | gap inside the granular body 11a when couple | bonding the powder grain 11b, compared with the non-granular body of the same volume, specific gravity becomes small. For this reason, as shown in FIG. 5, when water flows into the inorganic compound storage container 12, the granular body 11 a has a small specific gravity, so that it swings randomly in the inorganic compound storage container 12 and is adjacent. The distance between the granular bodies 11a is larger than when the water flow is stopped.

なお、無機化合物収納容器12に充填する無機化合物11の顆粒状体11aの顆粒径は、同一径のものを充填しても、複数の球径のものを混在させて充填してもよく、後者の方が、顆粒径のふるい分け必要なくなるため、コストを低く抑えることができる。また、無機化合物11の粉末粒11bの粒子径を増減させることで、顆粒状体11aの表面に形成される凹凸サイズを任意に調整することもできる。   The granular body 11a of the inorganic compound 11 filled in the inorganic compound storage container 12 may be filled with the same diameter or a mixture of a plurality of spherical diameters. This eliminates the need for sieving the granule diameter, so that the cost can be kept low. Moreover, the uneven | corrugated size formed in the surface of the granular body 11a can also be adjusted arbitrarily by increasing / decreasing the particle diameter of the powder grain 11b of the inorganic compound 11. FIG.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に充填された無機化合物11の顆粒状体11a及び粉末粒11bと接触しながら多孔質の空間を通過する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Water flowing from the water circuit 15 into the dissolving device 16 passes through the porous space while being in contact with the granular material 11a and the powder particles 11b of the inorganic compound 11 filled in the inorganic compound storage container 12.

無機化合物収納容器12内の無機化合物11の顆粒状体11aは、水流の運動エネルギーを受けて、容器内で揺動し、隣接する顆粒状体11a間の距離が拡がった状態を維持しながら、顆粒状体11a間を水が流れていく。実施の形態1で説明したように、無機化合物11は、化合物表面と流水との間に生じる濃度差に応じて高い方から低い物質が移動する(フィックの法則)、無機化合物11を水に溶解させることができるが、
本実施の形態においては、顆粒状体11aが揺動することで、水の中心との距離が拡大し
、無機化合物表面と、水との濃度差がより大きくなるため、同一の水流速では、水への溶解量を増加することができる。
The granular body 11a of the inorganic compound 11 in the inorganic compound storage container 12 receives the kinetic energy of the water flow, swings in the container, and maintains a state where the distance between the adjacent granular bodies 11a is expanded. Water flows between the granular bodies 11a. As described in the first embodiment, the inorganic compound 11 dissolves the inorganic compound 11 in water in which the lower substance moves from the higher one according to the concentration difference between the compound surface and flowing water (Fick's law). Can be
In the present embodiment, the granular body 11a swings to increase the distance from the center of the water, and the concentration difference between the inorganic compound surface and water becomes larger. The amount dissolved in water can be increased.

以上のように、本実施の形態においては、複数個の無機化合物11の粉末粒11bを結合させた顆粒状体11a、あるいは、前記粉末粒11bと顆粒状体11aとの混合物を無機化合物収納容器12に収納し、前記顆粒状体11aの無機化合物11は、顆粒の表面に複数の凹凸11cを設けた溶解装置である。   As described above, in the present embodiment, the granular material 11a in which the plurality of powder particles 11b of the inorganic compound 11 are combined, or the mixture of the powder particles 11b and the granular material 11a is used as an inorganic compound storage container. 12, the inorganic compound 11 of the granular body 11a is a dissolving device provided with a plurality of irregularities 11c on the surface of the granules.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物11の粉末粒11bを結合させた顆粒状体11aは、内部に空隙を有することで、比重が軽くなり、無機化合物収納容器12内の水流により、容易に揺動し、かつ顆粒状体11a表面は、粉末粒11bからなる複数凹凸11cが存在するため、前記揺動と凹凸の効果で、水に対する接触効率が高まり、水への無機化合物の溶解効率がさらに高めることが可能となる。   As a result, the inorganic compound can be dissolved in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in dissolution concentration between water and the inorganic compound. The granular body 11a to which the particles 11b are bonded has a void in the interior, so that the specific gravity is lightened, easily swings due to the water flow in the inorganic compound storage container 12, and the surface of the granular body 11a is a powder. Since there are a plurality of irregularities 11c composed of the grains 11b, the effect of the rocking and irregularities increases the contact efficiency with water, and the dissolution efficiency of the inorganic compound in water can be further increased.

(実施の形態3)
図8は、本発明の第3の実施の形態における溶解装置の構造図を示すものである。図9は、無機化合物成形体の複数の形状例を示すものである。なお、実施の形態1と同一構成については、同一符号を付して説明を省略する。
(Embodiment 3)
FIG. 8 shows a structural diagram of a melting apparatus according to the third embodiment of the present invention. FIG. 9 shows a plurality of shape examples of the inorganic compound molded body. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

17は、無機化合物11の粉末粒11bを所定の形状に成形固化した無機化合物成形体である。   Reference numeral 17 denotes an inorganic compound molded body obtained by molding and solidifying the powder particles 11b of the inorganic compound 11 into a predetermined shape.

無機化合物成形体17の具体的な製造方法としては、無機化合物11の粉末粒11bとバインダ成分と、純水などの溶媒を混練し、成形型を用いて所定の形状に成形した後、焼成など加熱処理を後工程で施すことで、バインダの結合力を高め、成形体としての強度を確保する。   As a specific manufacturing method of the inorganic compound molded body 17, powder particles 11 b of the inorganic compound 11, a binder component, and a solvent such as pure water are kneaded and formed into a predetermined shape using a mold, and then fired, etc. By performing the heat treatment in a subsequent process, the binding strength of the binder is increased and the strength as a molded body is ensured.

なお、本実施の形態の無機化合物成形体17の外形寸法は、無機化合物収納容器12に接続される水回路15の無機化合物成形体17に対する投影直径より大きく形成することで、無機化合物収納容器12に水が流れた際に、無機化合物成形体17が、下流側の水回路15への流出を防ぐことができるため、溶解装置16への濾過手段13および濾過手段収納容器14の搭載が不要となり、溶解装置16の構成コストをさらに低減することが可能となるだけでなく、濾過手段13の目詰まりによる水回路の流量低下などの品質低下のリスクを抜本的に取り除くことが可能となる。   In addition, the external dimension of the inorganic compound molded body 17 of this Embodiment is formed larger than the projection diameter with respect to the inorganic compound molded body 17 of the water circuit 15 connected to the inorganic compound storage container 12, and the inorganic compound storage container 12 is formed. When the water flows, the inorganic compound molded body 17 can prevent the downstream water circuit 15 from flowing out, so that it is not necessary to mount the filtering means 13 and the filtering means storage container 14 in the dissolving device 16. Not only can the construction cost of the melting device 16 be further reduced, but it is also possible to drastically remove the risk of quality degradation such as a reduction in the flow rate of the water circuit due to clogging of the filtering means 13.

なお、無機化合物成形体17は、粉末粒11b成形した物であることから、顆粒状体11aの表面には、実施の形態1の顆粒状体11aと同様に、少なくとも、粉末粒11bの直径と同等の開口径と、同半径と同等の深さを持った、凹凸部11cが形成され、顆粒状体11aに接触する水に対する比表面積が凹凸部無しの状態に比べ増加することとなる。   In addition, since the inorganic compound molded body 17 is a product obtained by molding the powder particles 11b, the surface of the granular body 11a has at least the diameter of the powder particles 11b as in the granular body 11a of the first embodiment. The uneven part 11c having the same opening diameter and the same depth as the radius is formed, and the specific surface area with respect to the water contacting the granular body 11a is increased as compared with the state without the uneven part.

また、無機化合物成形体17は、成型型を用いることで任意の形状を構成することが可能となり、図8(a)に示すように、成形体表面に凹凸部を追加して、さらに水に対する接触面積を拡大し、無機化合物11の水への溶解効率を高めたり、また図7(b)に示すように、ハニカム形状に形成することで、水に対する接触面積を高めるだけでなく、水の流れに対する抵抗を下げることができるため、図8(b)に示すように、ハニカム形状の無機化合物成形体17を複数個積層して、無機化合物収納容器12に搭載することも可能となる。   In addition, the inorganic compound molded body 17 can be formed in an arbitrary shape by using a molding die, and as shown in FIG. The contact area is increased to increase the dissolution efficiency of the inorganic compound 11 in water, and as shown in FIG. 7 (b), not only the contact area against water is increased, but also water is formed. Since resistance to the flow can be lowered, as shown in FIG. 8B, a plurality of honeycomb-shaped inorganic compound molded bodies 17 can be stacked and mounted on the inorganic compound storage container 12.

以上のように、本実施の形態においては、無機化合物成形体17の外形寸法が、無機化合物収納容器12に接続される水回路15の配管の内径より大きいため、水回路15の水の流れに乗って、無機化合物成形体17がまるごと水回路15に流出し得ないため、無機化合物収納容器12に無機化合物成形体17を保持する濾過手段等の保持手段を設置する必要が無くなり、無機化合物収納容器12の構成コストを下げることができ、さらに無機化合物成形体17の表面には複数個の凹凸11cを設けたので、水に対する無機化合物成形体17の相対的な接触表面積が増加し、水への無機化合物の溶解量を高いレベルで安定させながら、さらに低コスト化を図ることができる。   As described above, in the present embodiment, since the outer dimension of the inorganic compound molded body 17 is larger than the inner diameter of the pipe of the water circuit 15 connected to the inorganic compound storage container 12, the water flow in the water circuit 15 Since the entire inorganic compound molded body 17 cannot flow out to the water circuit 15 by riding, it is not necessary to install a holding means such as a filtering means for holding the inorganic compound molded body 17 in the inorganic compound storage container 12, and the inorganic compound stored The construction cost of the container 12 can be reduced, and the surface of the inorganic compound molded body 17 is provided with a plurality of irregularities 11c. Therefore, the relative contact surface area of the inorganic compound molded body 17 with respect to water increases, and the water The cost can be further reduced while stabilizing the amount of the inorganic compound dissolved at a high level.

(実施の形態4)
図10は、本発明の第4の実施の形態における給湯装置の構成図を示すものである。
(Embodiment 4)
FIG. 10 shows a configuration diagram of a hot water supply apparatus according to the fourth embodiment of the present invention.

図10において、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   In FIG. 10, a compressor 22, a hot water supply heat exchanger 23, a decompression unit 24, and an evaporator 25 are annularly connected in order by a refrigerant circuit 26 to constitute a heat pump unit 21. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order. The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。浴槽水注湯回路39は、貯湯タンク28の水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の高温の水と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯回路39の回路の開閉を行う浴槽水注湯弁38を順に備える。溶解装置16は浴槽水注湯弁38の下流側の浴槽水注湯回路39に本体の筐体に収納するように設けた。   The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order. The bathtub water pouring circuit 39 is a circuit for pouring the water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. In this circuit, a bath water mixing valve 36 for mixing hot water in the hot water storage tank 28 and tap water, temperature detecting means 37 for detecting the temperature of the pouring water, and bath water pouring for opening and closing the bath water pouring circuit 39. The hot water valve 38 is provided in order. The melting device 16 was provided in the bathtub water pouring circuit 39 on the downstream side of the bathtub water pouring valve 38 so as to be housed in the housing of the main body.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流量を制御する。   The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯回路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。所定温度となった浴槽水は、浴槽水注湯回路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28に貯留された高温の水を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ40より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bath water mixing valve 36 of the bath water pouring circuit 39 has a hot water and tap water so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). Adjust the mixing ratio. The bathtub water having a predetermined temperature flows out into the bathtub 42 through the bathtub water pouring circuit 39 and the bathtub water circulation circuit 41 in this order. On the other hand, when the bathtub water in the bathtub 42 is heated, the hot water stored in the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 40. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。利用者が浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された水が、浴槽水注湯弁38を閉から開に制御した場合に、溶解装置16、浴槽水循環回路41を経由して浴槽42に流出する。水が溶解装置16を通過する際に、無機化合物が水に溶解するので、浴槽42に湯はり動作と同時に、無機化合物11を溶解させた水が浴槽42に流入する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the water adjusted by the bathtub water mixing valve 36 at a preset temperature controls the bathtub water pouring valve 38 from closed to open, it passes through the melting device 16 and the bathtub water circulation circuit 41. It flows out into the bathtub 42. When the water passes through the dissolving device 16, the inorganic compound dissolves in the water, so that the water in which the inorganic compound 11 is dissolved flows into the bathtub 42 simultaneously with the hot water operation in the bathtub 42.

溶解装置16は、浴槽水注湯弁38の下流側としたが、浴槽水注湯弁38が開から閉へ制御された場合は、ウォーターハンマー現象が発生し、上流側の回路に設けている、浴槽水混合弁36、貯湯タンク28等は水道圧以上の水圧負荷を与える。下流側に設けることによって、溶解装置16への水圧負荷が掛からない。   Although the melting device 16 is on the downstream side of the bathtub water pouring valve 38, when the bathtub water pouring valve 38 is controlled from opening to closing, a water hammer phenomenon occurs and is provided in the upstream circuit. The bathtub water mixing valve 36, the hot water storage tank 28, etc. give a water pressure load higher than the water pressure. By providing on the downstream side, the hydraulic load on the melting device 16 is not applied.

以上のように、本実施の形態においては、浴槽水注湯回路と、浴槽水注湯弁を備え、浴槽水注湯弁、溶解装置の順に浴槽水注湯回路に備えた給湯装置とした。これにより、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the bathtub water-pouring circuit and the bathtub water-pouring valve, and equipped with the bathtub water-pouring circuit in order of the bathtub water-pouring valve and the melting apparatus. Thereby, since the melting device is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting device can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

本発明において、溶解装置16は給湯機の本体筐体に収納し、浴槽水注湯回路39としているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11を溶解させた水を供給することが出来る。また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は常時加温されるため、溶解装置16の凍結防止などの断熱が不要、または簡素化できる。   In the present invention, the melting device 16 is housed in the main body housing of the water heater and serves as a bathtub water pouring circuit 39. However, even if provided in the bathtub water circulation circuit 41, water in which the inorganic compound 11 is dissolved is supplied to the bathtub 42. I can do it. Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is always heated, so that heat insulation such as prevention of freezing of the melting device 16 is unnecessary or simplified.

また、溶解装置16は、浴槽水注湯弁38の下流側でさらに、開閉電磁弁を設け(図示しない)、その下流側に溶解装置16を通過する水回路と、溶解装置16を通過しない水回路の2系統用意し、浴室リモコンなどにより、無機化合物の溶解有無を開閉電磁弁による流路切替で選択することで、使用者の好みに応じて、浴槽水の水質を選択することが可能となる。なお、開閉電磁弁を手動式切替弁とし、本体外から使用者が手動で切り換え操作する構成としても良い。また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を化合物溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。   Further, the melting device 16 is further provided with an open / close electromagnetic valve (not shown) on the downstream side of the bathtub water pouring valve 38, a water circuit that passes through the melting device 16 on the downstream side, and water that does not pass through the melting device 16. It is possible to select the quality of bathtub water according to the user's preference by preparing two systems of circuits and selecting whether or not inorganic compounds are dissolved by switching the flow path with an open / close solenoid valve by using a bathroom remote control etc. Become. The open / close solenoid valve may be a manual switching valve, and the user may manually switch from outside the main body. Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the compound dissolving apparatus. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態5)
図11は、本発明の第5の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 5)
FIG. 11 is a structural diagram of a melting apparatus according to the fifth embodiment of the present invention.

図11において、溶解装置16の入口と出口は浴槽水注湯回路39に接続されている。無機化合物11を収納する無機化合物収納容器12の相当直径d1、浴槽水注湯回路39の相当直径d2とした場合、図11においてそれぞれをd1>d2となる大きさなるように決定した。   In FIG. 11, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring circuit 39. When the equivalent diameter d1 of the inorganic compound storage container 12 storing the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring circuit 39 are set, in FIG. 11, each is determined to have a size that satisfies d1> d2.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15に対して、無機化合物11を収納した無機化合物収納容器12、濾過手段収納容器14を設けたので、溶解装置16を水が通過する際に、圧力損失が生じる。圧力損失が生じると、浴槽42へ供給する水の流量が低下する。ここで、無機化合物収納容器12の相当直径d1を、浴槽水注湯回路39の相当直径d2に対して、d1>d2となる大きさとすると、無機化合物収納容器12の平均流速u1は、浴槽水注湯回路39の平均流速u2より小さくなる。水回路の流体の圧力損失は、流体の平均流速の2乗に比例するため、溶解装置16を通過する際の圧力損失の増加を低減させることができる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Since the inorganic compound storage container 12 storing the inorganic compound 11 and the filtering means storage container 14 are provided for the water circuit 15, a pressure loss occurs when water passes through the dissolving device 16. When pressure loss occurs, the flow rate of water supplied to the bathtub 42 decreases. Here, assuming that the equivalent diameter d1 of the inorganic compound storage container 12 is such that d1> d2 with respect to the equivalent diameter d2 of the bathtub water pouring circuit 39, the average flow velocity u1 of the inorganic compound storage container 12 is the bath water. It becomes smaller than the average flow velocity u2 of the pouring circuit 39. Since the pressure loss of the fluid in the water circuit is proportional to the square of the average flow velocity of the fluid, an increase in the pressure loss when passing through the dissolving device 16 can be reduced.

以上のように、本実施の形態においては、無機化合物収納容器の相当直径を、溶解装置を接続する浴槽水注湯回路の相当直径よりも大とすることにより、無機化合物を通過する水流による圧力損失を低減し、浴槽への湯はり時間を早く完了することができる。   As mentioned above, in this Embodiment, the pressure by the water flow which passes an inorganic compound is made larger by making the equivalent diameter of an inorganic compound storage container larger than the equivalent diameter of the bathtub water pouring circuit which connects a dissolving device. Loss can be reduced and the hot water filling time for the bathtub can be completed quickly.

以上のように、本発明にかかる給湯装置は、無機化合物の水への溶解効率を高め、コンパクト化、低コスト化、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention improves the efficiency of dissolving inorganic compounds in water, leading to compactness, cost reduction, and improvement in operating efficiency. In addition to hot water storage hot water heaters, Can also be used.

11 無機化合物
11a 顆粒状体
11b 粉末粒
12 無機化合物収納容器
13 濾過手段
13a 小穴
13b 小穴
13c 小穴
14 濾過手段収納容器
15 水回路
16 溶解装置
17 無機化合物成形体
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯回路
42 浴槽
DESCRIPTION OF SYMBOLS 11 Inorganic compound 11a Granular body 11b Powder particle | grains 12 Inorganic compound storage container 13 Filtration means 13a Small hole 13b Small hole 13c Small hole 14 Filtration means storage container 15 Water circuit 16 Melting apparatus 17 Inorganic compound molded object 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bathtub water mixing valve 37 Temperature detection means 38 Bathtub water pouring valve 39 Bathtub water pouring circuit 42 Bathtub

本発明は、無機化合物等を溶解する溶解装置、及び溶解した無機化合物等を浴槽に供給する機能を備えた給湯装置に関するものである。   The present invention relates to a melting apparatus that dissolves inorganic compounds and the like, and a hot water supply apparatus that has a function of supplying dissolved inorganic compounds and the like to a bathtub.

従来この種の装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図12は、特許文献1に記載された従来の給湯装置を示すものである。図12に示すように、亜鉛陽極1と、陰極2と、ケーシング5と、直流電源9から構成されている。   FIG. 12 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 12, it is composed of a zinc anode 1, a cathode 2, a casing 5, and a DC power source 9.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源9と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源9においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power source 9 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in the size and cost of the apparatus, the DC power supply 9 requires power, so that the amount of power consumption increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、コンパクトで運転コストが安価で、かつ水に効率良く無機化合物等を溶解し供給できる溶解装置及びそれを備えた給湯装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, does not require an electric circuit, is compact, has a low operating cost, and can dissolve and supply an inorganic compound or the like efficiently in water, and a hot water supply provided with the same An object is to provide an apparatus.

前記従来の課題を解決するために、本発明の給湯装置は、高温湯を貯湯する貯湯タンク
と、前記貯湯タンクからの高温湯と水とをリモコン等で設定された所定温度に混合する混合弁と、前記混合弁の下流側に配設した温度検知手段と、前記混合弁にて所定温度に調整された湯水を浴槽へ供給する浴槽水注湯回路と、表面に複数の凹凸を有する酸化亜鉛を収納する収納手段を具備した溶解装置とを備え、前記混合弁にて所定温度に調整された湯水に、前記収納手段に収納された前記酸化亜鉛を溶解させ、前記酸化亜鉛物溶解水を、前記浴槽に供給する構成としたことを特徴とするもので、水と酸化亜鉛の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に酸化亜鉛を溶解させることができ、さらに酸化亜鉛の表面に複数の凹凸を設けたことで、水に対する酸化亜鉛の相対的な接触表面積が増加し、水への酸化亜鉛の溶解効率がさらに高めることが可能となり、これまで必要としていた電源回路と絶縁回路の削減と、溶解性能を両立することができる。
In order to solve the conventional problems, a hot water supply apparatus of the present invention includes a hot water storage tank for storing hot water, and a mixing valve for mixing the hot water and water from the hot water tank to a predetermined temperature set by a remote controller or the like. Temperature detecting means disposed downstream of the mixing valve, a bath water pouring circuit for supplying hot water adjusted to a predetermined temperature by the mixing valve to the bathtub, and zinc oxide having a plurality of irregularities on the surface and a melting apparatus equipped with a storing means for storing the in hot water which is adjusted to a predetermined temperature by the mixing valve, to dissolve the zinc oxide which is received in the receiving means, the zinc oxide was dissolved water , characterized in that it has a configuration supplied to the tub, substances in dissolved concentration difference between the water and the zinc oxide is moving, the principle of the principle of mass diffusion (Fick's law), zinc oxide in water can be dissolved, further zinc oxide By providing a plurality of irregularities on the surface, the relative contact surface area of the zinc oxide to water is increased, dissolution efficiency of zinc oxide in water it is possible to further increase, a power supply circuit which has been required heretofore insulation It is possible to achieve both circuit reduction and dissolution performance.

これにより、酸化亜鉛の水への溶解量を増加させながら、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることもできる。 As a result, while reducing the amount of zinc oxide dissolved in water, it is possible to achieve compactness and cost reduction, and since it is a principle that does not require power, the power consumption can also be suppressed.

本発明によれば、コンパクト化、低コスト化、さらには、消費電力量の抑制し、水に効率良く酸化亜鉛を溶解し供給できる給湯装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the hot water supply apparatus which melt | dissolves and supplies zinc oxide efficiently to water can be provided, compactness and cost reduction, and also suppression of power consumption can be provided.

本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention 同実施の形態における溶解装置の別の水流方向の構成図Configuration diagram of another water flow direction of the dissolution apparatus in the same embodiment 同実施の形態における溶解装置の詳細図Detailed view of dissolution apparatus in the same embodiment 同実施の形態における溶解装置の無機化合物と濾過手段の関係を示す図The figure which shows the relationship between the inorganic compound of the dissolution apparatus in the same embodiment, and the filtration means (a)同実施の形態における濾過手段の構成図(b)同他の濾過手段の構成図(c)同他の濾過手段の構成図(A) Configuration diagram of filtration means in the embodiment (b) Configuration diagram of other filtration means (c) Configuration diagram of other filtration means 本発明の実施の形態2における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 2 of the present invention 同実施の形態の無機化合物の顆粒状体の詳細図Detailed view of granules of inorganic compound of the embodiment 本発明の実施の形態3における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 3 of the present invention (a)同実施の形態の無機化合物成形体の凹凸をさらに追加した構成図(b)同実施の形態の無機化合物成形体をハニカム形状とし、成形体を積層配置した構成図(A) Configuration diagram in which irregularities of the inorganic compound molded body of the embodiment are further added (b) Configuration diagram in which the inorganic compound molded body of the embodiment is formed into a honeycomb shape and the molded bodies are arranged in a stacked manner 本発明の実施の形態4における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 4 of this invention 本発明の実施の形態5における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 5 of the present invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、高温湯を貯湯する貯湯タンクと、前記貯湯タンクからの高温湯と水とをリモコン等で設定された所定温度に混合する混合弁と、前記混合弁の下流側に配設した温度検知手段と、前記混合弁にて所定温度に調整された湯水を浴槽へ供給する浴槽水注湯回路と、表面に複数の凹凸を有する酸化亜鉛を収納する収納手段を具備した溶解装置とを備え、前記混合弁にて所定温度に調整された湯水に、前記収納手段に収納された前記酸化亜鉛を溶解させ、前記酸化亜鉛物溶解水を、前記浴槽に供給する構成としたことを特徴とする給湯装置で、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に酸化亜鉛を溶解させることができ、さらに、酸化亜鉛の表面に複数の凹凸を設けたことで、水に対する酸化亜鉛の相対的な接触表面積が増加し、水への酸化亜鉛の溶解効率がさらに高めることが可能となり、これまで必要としていた電源回路と絶縁回路の削減と、溶解性能を両立することができる。 1st invention arrange | positions the hot water storage tank which stores hot water, the mixing valve which mixes the hot water and water from the said hot water tank with the predetermined temperature set with the remote control etc., and the downstream of the said mixing valve A temperature detecting means, a bath water pouring circuit for supplying hot water adjusted to a predetermined temperature by the mixing valve to the bathtub, and a melting apparatus comprising a storing means for storing zinc oxide having a plurality of irregularities on the surface, The zinc oxide stored in the storage means is dissolved in hot water adjusted to a predetermined temperature by the mixing valve, and the zinc oxide-dissolved water is supplied to the bathtub. in the hot water supply device according to, material is moved in a dissolved concentration difference between the water and the inorganic compound, on the principle of the principles of mass diffusion (Fick's law), can be dissolved zinc oxide in water, further, zinc oxide By providing multiple irregularities on the surface of Increased relative surface contact area of the zinc oxide to water, dissolving efficiency of zinc oxide in water it is possible to further increase, compatible heretofore required to have a power supply circuit and the reduction of the isolation circuit, the dissolution performance that Can do.

これにより、酸化亜鉛の水への溶解量を増加させながら、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることもできる。 As a result, while reducing the amount of zinc oxide dissolved in water, it is possible to achieve compactness and cost reduction, and since it is a principle that does not require power, the power consumption can also be suppressed.

第2の発明は、第1の発明の酸化亜鉛を、複数個の酸化亜鉛の粉末粒を結合させた顆粒状体、あるいは、前記粉末粒と顆粒状体との混合物であることを特徴とするもので、水と酸化亜鉛の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に酸化亜鉛を溶解させることができ、さらに、酸化亜鉛の粉末粒を結合させた顆粒状体は、内部に空隙を有することで、比重が軽くなり、収納容器内の水流により、容易に揺動し、かつ顆粒状体表面は、粉末粒からなる複数凹凸が存在するため、前記揺動と凹凸の効果で、水に対する接触効率が高まり、水への酸化亜鉛の溶解効率がさらに高めることが可能となる。 A second invention is characterized in that the zinc oxide according to the first invention is a granular body in which a plurality of powder particles of zinc oxide are combined, or a mixture of the powder particles and the granular body. It is possible to dissolve zinc oxide in water by the principle of substance diffusion (Fick's law), in which the substance moves due to the difference in dissolved concentration between water and zinc oxide. The granulated body with a reduced internal gravity due to the voids inside, easily swings due to the water flow in the storage container, and the surface of the granular body has multiple irregularities made of powder particles For this reason, the contact efficiency with water is increased by the effects of the swing and the unevenness, and the dissolution efficiency of zinc oxide in water can be further increased.

第3の発明は、第1の発明の酸化亜鉛を、粉末粒を所定の形状に成形固化した成形体であることを特徴とするもので、成形体の表面には複数個の凹凸を設けたので、水に対する成形体の相対的な接触表面積が増加し、水への酸化亜鉛の溶解量を高いレベルで安定させながら、さらに低コスト化を図ることができる。 A third invention is characterized in that the zinc oxide of the first invention is a molded body obtained by molding and solidifying powder particles into a predetermined shape, and a plurality of irregularities are provided on the surface of the molded body . Therefore, the relative contact surface area of the molded body with respect to water increases, and the cost can be further reduced while stabilizing the amount of zinc oxide dissolved in water at a high level.

第4の発明は、第3の発明の成形体の外郭寸法は、前記浴槽水注湯回路の配管内径より大きいことを特徴とするもので、成形体の外形寸法が、収納手段に接続される浴槽水注湯回路の配管内径より大きいため、浴槽水注湯回路の水の流れに乗って、成形体がまるごと水回路に流出し得ないため、収納手段に成形体を保持する濾過手段等の保持手段を設置する必要が無くなり、収納手段の構成コストを下げることができる。 A fourth invention is characterized in that the outer dimension of the molded body of the third invention is larger than the inner diameter of the pipe of the bathtub water pouring circuit, and the outer dimension of the molded body is connected to the storage means. larger than the pipe inner diameter of the bathtub water pouring circuit, on stream of water bath water pouring circuit, since the molded body can not flow out to the whole water circuit, such as filtration means for holding the shaped body in the housing means There is no need to install the holding means, and the construction cost of the storage means can be reduced.

第5の発明は、前記浴槽水注湯回路を開閉する浴槽水注湯弁を備え、前記溶解装置を、前記浴槽水注湯回路上で、かつ、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置である。   5th invention is equipped with the bathtub water pouring valve which opens and closes the said bath water pouring circuit, and arrange | positions the said melt | dissolution apparatus on the downstream of the said bath water pouring valve on the said bath water pouring circuit. It is the hot water supply device characterized by having installed.

これによって、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に酸化亜鉛を溶解させた水を浴槽へ供給できるので、利便性が向上する。 Thereby, since the melting apparatus is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting apparatus can be simplified. Furthermore, since the water flow of the hot water beam to the bathtub is used, water in which zinc oxide is dissolved simultaneously with the hot water beam can be supplied to the bathtub, so that convenience is improved.

第6の発明は、前記収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置で、水が酸化亜鉛収納容器を通過する際に生じる圧力損失の増加を低減させ、浴槽への湯はりを早く完了することができる。 6th invention is the hot water supply apparatus characterized by making the equivalent diameter of the said storage means larger than the equivalent diameter of the said bathtub water pouring circuit, The pressure loss produced when water passes a zinc oxide storage container The increase in water can be reduced, and hot water filling to the bathtub can be completed quickly.

第7の発明は、前記溶解装置を、給湯装置の本体筐体内に配設したことを特徴とする給湯装置で、低外気温時であっても貯湯タンク、電源回路などからの僅かな放熱により筐体内の雰囲気は常時加温されているため、溶解装置の凍結防止などの断熱が簡素化、または不要となる。   A seventh aspect of the invention is a hot water supply apparatus characterized in that the melting apparatus is disposed in a main body housing of the hot water supply apparatus, and even at a low outside temperature, a slight heat dissipation from a hot water storage tank, a power supply circuit, etc. Since the atmosphere in the housing is always heated, heat insulation such as freezing prevention of the melting apparatus is simplified or unnecessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、無機化合物11は、水に対して溶解性を持ち、かつ表面に複数の凹凸を設けたものを、無機化合物収納容器12に収納しており、表面に設けた凹凸により、無機化合物収納容器12内に流れる水流に対する無機化合物の比表面積を増大させることができる。   In FIG. 1, an inorganic compound 11 is soluble in water and has a surface provided with a plurality of irregularities, which is accommodated in an inorganic compound storage container 12. By the irregularities provided on the surface, the inorganic compound 11 The specific surface area of the inorganic compound with respect to the water flow flowing in the storage container 12 can be increased.

表面に複数の凹凸を有する無機化合物11を得る具体的手段としては、表面に凹凸の無い無機化合物と、無機化合物より硬度が高く、かつ比重が異なる粒子とともに、ボールミルに入れて、所定時間回転攪拌後、無機化合物に対して非溶解性の溶媒中に分散させて無機化合物と粒子を比重分離させることで、凹凸を設けた無機化合物を得ることができる。   As a specific means for obtaining the inorganic compound 11 having a plurality of irregularities on the surface, it is placed in a ball mill together with an inorganic compound having no irregularities on the surface and particles having a hardness higher than that of the inorganic compound and different specific gravity. Then, the inorganic compound which provided the unevenness | corrugation can be obtained by disperse | distributing in a solvent insoluble with respect to an inorganic compound, and carrying out specific gravity separation of an inorganic compound and particle | grains.

また、表面に凹凸の無い無機化合物を、物理的衝撃を与えて粉砕することで、凹凸の破断面を持った無機化合物を得ることができる。前記具体例は、あくまで一例であり、凹凸を有する無機化合物を得る手段として限定するものではない。   In addition, an inorganic compound having an uneven fracture surface can be obtained by pulverizing an inorganic compound having no irregularities on the surface by applying a physical impact. The specific examples are merely examples, and are not limited as means for obtaining an inorganic compound having irregularities.

表面に複数の凹凸を有する無機化合物11を多層状に充填すると、無機化合物収納容器12内には多孔質の空間が形成される。濾過手段13は複数の小穴を有し、濾過手段収納容器14に収納される。無機化合物収納容器12と濾過手段収納容器14は、順に水回路15によって連通され、無機化合物収納容器12は濾過手段収納容器14の上流側となるように溶解装置16を構成する。   When the inorganic compound 11 having a plurality of irregularities on the surface is filled in a multilayer shape, a porous space is formed in the inorganic compound storage container 12. The filtering means 13 has a plurality of small holes and is stored in the filtering means storage container 14. The inorganic compound storage container 12 and the filtration means storage container 14 are sequentially communicated by a water circuit 15, and the dissolution apparatus 16 is configured so that the inorganic compound storage container 12 is on the upstream side of the filtration means storage container 14.

なお、無機化合物収納容器12内には、表面に凹凸を有する無機化合物11だけでなく、無機化合物11の粉末粒を混合させてもよい。   In addition, in the inorganic compound storage container 12, not only the inorganic compound 11 having irregularities on the surface but also powder particles of the inorganic compound 11 may be mixed.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に充填された表面に複数の凹凸を有する無機化合物11と接触しながら多孔質の空間を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図3はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes through the porous space while contacting the inorganic compound 11 having a plurality of irregularities on the surface filled in the inorganic compound storage container 12. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 11 to the region near the surface when passing through the porous space. FIG. 3 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the central portion of the porous space has a large distribution. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を多孔質空間内の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in the porous space.

さらに無機化合物の表面に形成した複数の凹凸により、無機化合物11の水に対する接触表面積が、凹凸無しの場合に比べ数倍以上となり、無機化合物11の表面付近の溶解濃度がさらに高まり、多孔質空間の中心部との濃度差が拡大し、無機化合物11の水への溶解量を増大させることができる。   Furthermore, due to the plurality of irregularities formed on the surface of the inorganic compound, the contact surface area of the inorganic compound 11 with respect to water is several times or more than that without the irregularities, the dissolution concentration near the surface of the inorganic compound 11 is further increased, and the porous space The concentration difference from the central part of the water increases, and the amount of the inorganic compound 11 dissolved in water can be increased.

無機化合物11の水への溶解効率を高める作用により、水への溶解度が低い無機化合物11を使用することが可能となるだけでなく、無機化合物の11の溶解装置16への充填量を削減することでのコスト低減も測ることができる。
濾過手段13は、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものである。
The action of increasing the dissolution efficiency of the inorganic compound 11 in water makes it possible not only to use the inorganic compound 11 having a low solubility in water, but also to reduce the filling amount of the inorganic compound 11 into the dissolution apparatus 16. The cost reduction by this can also be measured.
The filtering means 13 prevents the granules of the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12.

以上のように、本実施の形態においては、水回路と、表面に複数の凹凸を設けた無機化合物を収納する収納手段と、濾過手段とを備え、前記水回路を流れる水に、収納手段に収納された無機化合物を溶解させ、溶解された無機化合物が、濾過手段を通過する構成とした溶解装置を備えた給湯装置とした。   As described above, in the present embodiment, the water circuit, the storage means for storing the inorganic compound having a plurality of projections and depressions on the surface, and the filtering means, the water flowing through the water circuit is stored in the storage means. The stored inorganic compound was dissolved, and a hot water supply apparatus provided with a dissolving device configured such that the dissolved inorganic compound passed through the filtering means was obtained.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理を利用した水への無機化合物の溶解効率を高めることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減しながら、無機化合物の溶解特性向上と、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   This makes it possible to increase the dissolution efficiency of the inorganic compound in water using the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to provide a hot water supply apparatus that improves the melting characteristics of inorganic compounds, is compact, lowers cost, and further reduces power consumption while reducing power supply circuits and insulation circuits that have been required.

なお、本実施の形態では、図中の無機化合物収納容器12に対する水流の向きを、上方向の流れとしたが、流れ方向を限定するものではなく、下方向(図2)、および横方向に配置することも可能である。例えば、流れ方向を上方向に設定することでは、水流停止後に濾過手段13に目詰まった無機化合物11の粒子が、濾過手段13から重力落下で剥離しやすくなり、濾過手段13の経年的な目詰まりを抑制することが可能となる。   In the present embodiment, the direction of the water flow with respect to the inorganic compound storage container 12 in the figure is an upward flow, but the flow direction is not limited, and the downward direction (FIG. 2) and the lateral direction are not limited. It is also possible to arrange. For example, when the flow direction is set to the upward direction, the particles of the inorganic compound 11 clogged in the filtering means 13 after the water flow is stopped are easily separated from the filtering means 13 by gravity drop, and the aging of the filtering means 13 is improved. It becomes possible to suppress clogging.

なお、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

また、亜鉛化合物の酸化亜鉛は、薬局方、化粧品原料基準で認可を受けている材料であり、主にヒトの肌の角層に対して収斂作用、消炎作用などの作用を与え、肌の角層の改善を行うこともできる。   In addition, zinc oxide, a zinc compound, is a material that has been approved under the pharmacopoeia and cosmetic raw material standards. It mainly has effects on the stratum corneum of human skin, such as astringent action and anti-inflammatory action, and the skin corners. Layer improvements can also be made.

図4は、溶解装置の無機化合物11と濾過手段13の寸法の関係を示す例である。図4において、濾過手段13は径の異なる複数の小穴13a、13b、13cから構成される。   FIG. 4 is an example showing the relationship between the dimensions of the inorganic compound 11 and the filtering means 13 of the dissolving apparatus. In FIG. 4, the filtering means 13 is composed of a plurality of small holes 13a, 13b, 13c having different diameters.

図5は、濾過手段13の構成例である。(a)は、線形状の繊維で角状の小穴を形成したものである。(b)は、所定の厚さの板に、複数種の径の小穴を施したものである。(c)は、粒状の非溶解材料を多層状として多孔質空間を形成したものである。何れも、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものであるが、この構成と形状の限りではない。   FIG. 5 is a configuration example of the filtering means 13. (A) forms a square-shaped small hole with a linear fiber. (B) is a plate having a predetermined thickness and small holes having a plurality of types of diameters. (C) forms a porous space by using a granular non-dissolving material as a multilayer. In any case, when the granules of the inorganic compound 11 are about to flow out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12, this is prevented, but the configuration and shape are not limited thereto.

溶解装置16を流出する溶解濃度は、無機化合物収納容器12を通過する水流速と、無機化合物11の水と接触する表面積等で決定される。溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、図4の無機化合物収納容器12に収納する無機化合物11の粒径をある一定の範囲内のサイズに選別したものを利用する必要がある。   The dissolution concentration flowing out of the dissolution apparatus 16 is determined by the flow rate of water passing through the inorganic compound storage container 12, the surface area of the inorganic compound 11 in contact with water, and the like. When the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range, so the particle size of the inorganic compound 11 stored in the inorganic compound storage container 12 of FIG. It is necessary to use the one selected for the size within the range.

選別を行うと、コストアップの要因となるため、複数の径を有する無機化合物11の中において、無機化合物11の最大粒径D1に対して、濾過手段13の小穴13aの径D2は、D2<D1とした場合、以下の効果を得ることができる。D2未満の粒径の無機化合物11は、小穴13a、13b、13cから流出する。利用初期は粒径の小さいものは、溶解装置16外へ流出するが、所定時間経過後は、D2以上の粒径の無機化合物11は無機化合物収納容器12内に貯留され続ける。この状態が形成された場合、無機化合物11の粒径をある一定の範囲内のサイズに選別したことと同等となる。従って、サイズが混在する無機化合物11を用いても、目的とする濃度を水に溶解させる構造となる。   Since the selection causes a cost increase, among the inorganic compounds 11 having a plurality of diameters, the diameter D2 of the small hole 13a of the filtering means 13 is D2 <with respect to the maximum particle diameter D1 of the inorganic compound 11. In the case of D1, the following effects can be obtained. The inorganic compound 11 having a particle size less than D2 flows out from the small holes 13a, 13b, and 13c. In the initial stage of use, those having a small particle size flow out of the melting device 16, but after a predetermined time has passed, the inorganic compound 11 having a particle size of D2 or more continues to be stored in the inorganic compound storage container 12. When this state is formed, it is equivalent to selecting the particle size of the inorganic compound 11 to a size within a certain range. Therefore, even if the inorganic compound 11 in which the sizes are mixed is used, the target concentration is dissolved in water.

(実施の形態2)
図6は、本発明の第2の実施の形態における溶解装置の構造図を示すものである。なお
、第1の実施の形態と同じ構成については、同一符号を付して、説明を省略する。
(Embodiment 2)
FIG. 6 shows a structural diagram of a melting apparatus according to the second embodiment of the present invention. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図6において、無機化合物11は、複数個の粉末粒を結合させた顆粒状体11a、あるいは、粉末粒11bと前記顆粒状体11aとの混合物であり、無機化合物収納容器12に収納される。   In FIG. 6, the inorganic compound 11 is a granular body 11 a obtained by combining a plurality of powder particles, or a mixture of the powder particles 11 b and the granular body 11 a, and is stored in the inorganic compound storage container 12.

図7に顆粒状体の無機化合物の拡大図を示す。無機化合物11の顆粒状体11aは、無機化合物の粉末粒11b同士を、バインダなどの結合手段を介して接着し、所定の大きさ及び形状の結合体をなすものである。   FIG. 7 shows an enlarged view of the granular inorganic compound. The granular material 11a of the inorganic compound 11 is formed by adhering the powder particles 11b of the inorganic compound through bonding means such as a binder to form a bonded body having a predetermined size and shape.

顆粒状体11aの具体的製造手段としては、造粒機など汎用の製造手段を用いることで、目的の大きさ及び形状の顆粒状体11aを形成したのち、焼成など加熱処理を後工程で施すことで、顆粒状体11a間のバインダの結合力を高め、一定以上の強度を持った顆粒状体11aを得ることができる。   As specific manufacturing means of the granular body 11a, a general-purpose manufacturing means such as a granulator is used to form the granular body 11a having a desired size and shape, and then heat treatment such as baking is performed in a subsequent process. Thus, the binding force of the binder between the granular bodies 11a can be increased, and the granular body 11a having a certain strength or more can be obtained.

顆粒状体11aの形状は、略球状、略立方体、略直方体等、特に形状を限定するものではなく、例えば、略球状にした場合に、略球状の顆粒状体を無機化合物収納容器12内に多層状に充填することで、顆粒状体11aは、隣接する顆粒状体11aと点接触で載置されることとなり、顆粒状体11a間で水の通過流路となる空隙を形成し、無機化合物収納容器12内の水流の圧力損失を低減することができる。   The shape of the granular body 11a is not particularly limited to a shape such as a substantially spherical shape, a substantially cubic shape, or a substantially rectangular parallelepiped shape. For example, in the case of a substantially spherical shape, the substantially spherical granular shape is placed in the inorganic compound storage container 12. By filling in multiple layers, the granular body 11a is placed in point contact with the adjacent granular body 11a, forming a gap that becomes a water passage between the granular bodies 11a, and inorganic. The pressure loss of the water flow in the compound storage container 12 can be reduced.

また、顆粒状体11aは、上述のように、無機化合物11の粉末粒11bを複数個、略球形状に結合させた物であることから、顆粒状体11aの表面には、図6に示すように、少なくとも、粉末粒11bの直径と同等の開口径と、同半径と同等の深さを持った、凹凸部11cが形成され、顆粒状体11aに接触する水に対する比表面積が凹凸部無しの状態に比べ増加することとなる。   Further, as described above, since the granular body 11a is a product in which a plurality of powder particles 11b of the inorganic compound 11 are combined in a substantially spherical shape, the surface of the granular body 11a is shown in FIG. As described above, at least an uneven portion 11c having an opening diameter equivalent to the diameter of the powder particle 11b and a depth equivalent to the same radius is formed, and the specific surface area with respect to water contacting the granular body 11a has no uneven portion. It will increase compared to the state of.

また、顆粒状体11aは、粉末粒11bを結合する際に、顆粒状体11a内部に複数の空隙を形成することから、同一容積の非顆粒状体に比べ、比重が小さくなる。このため、図5に示すように、無機化合物収納容器12内に水が流れ込んだ場合、顆粒状体11aは、比重が小さいため、無機化合物収納容器12内で、ランダムに揺動し、隣接する顆粒状体11a間との距離が、水流停止時に比べ、拡大する。   Moreover, since the granular body 11a forms several space | gap inside the granular body 11a when couple | bonding the powder grain 11b, compared with the non-granular body of the same volume, specific gravity becomes small. For this reason, as shown in FIG. 5, when water flows into the inorganic compound storage container 12, the granular body 11 a has a small specific gravity, so that it swings randomly in the inorganic compound storage container 12 and is adjacent. The distance between the granular bodies 11a is larger than when the water flow is stopped.

なお、無機化合物収納容器12に充填する無機化合物11の顆粒状体11aの顆粒径は、同一径のものを充填しても、複数の球径のものを混在させて充填してもよく、後者の方が、顆粒径のふるい分け必要なくなるため、コストを低く抑えることができる。また、無機化合物11の粉末粒11bの粒子径を増減させることで、顆粒状体11aの表面に形成される凹凸サイズを任意に調整することもできる。   The granular body 11a of the inorganic compound 11 filled in the inorganic compound storage container 12 may be filled with the same diameter or a mixture of a plurality of spherical diameters. This eliminates the need for sieving the granule diameter, so that the cost can be kept low. Moreover, the uneven | corrugated size formed in the surface of the granular body 11a can also be adjusted arbitrarily by increasing / decreasing the particle diameter of the powder grain 11b of the inorganic compound 11. FIG.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12に充填された無機化合物11の顆粒状体11a及び粉末粒11bと接触しながら多孔質の空間を通過する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Water flowing from the water circuit 15 into the dissolving device 16 passes through the porous space while being in contact with the granular material 11a and the powder particles 11b of the inorganic compound 11 filled in the inorganic compound storage container 12.

無機化合物収納容器12内の無機化合物11の顆粒状体11aは、水流の運動エネルギーを受けて、容器内で揺動し、隣接する顆粒状体11a間の距離が拡がった状態を維持しながら、顆粒状体11a間を水が流れていく。実施の形態1で説明したように、無機化合物11は、化合物表面と流水との間に生じる濃度差に応じて高い方から低い物質が移動する(フィックの法則)、無機化合物11を水に溶解させることができるが、
本実施の形態においては、顆粒状体11aが揺動することで、水の中心との距離が拡大し、無機化合物表面と、水との濃度差がより大きくなるため、同一の水流速では、水への溶
解量を増加することができる。
The granular body 11a of the inorganic compound 11 in the inorganic compound storage container 12 receives the kinetic energy of the water flow, swings in the container, and maintains a state where the distance between the adjacent granular bodies 11a is expanded. Water flows between the granular bodies 11a. As described in the first embodiment, the inorganic compound 11 dissolves the inorganic compound 11 in water in which the lower substance moves from the higher one according to the concentration difference between the compound surface and flowing water (Fick's law). Can be
In the present embodiment, the granular body 11a swings to increase the distance from the center of the water, and the concentration difference between the inorganic compound surface and water becomes larger. The amount dissolved in water can be increased.

以上のように、本実施の形態においては、複数個の無機化合物11の粉末粒11bを結合させた顆粒状体11a、あるいは、前記粉末粒11bと顆粒状体11aとの混合物を無機化合物収納容器12に収納し、前記顆粒状体11aの無機化合物11は、顆粒の表面に複数の凹凸11cを設けた溶解装置である。   As described above, in the present embodiment, the granular material 11a in which the plurality of powder particles 11b of the inorganic compound 11 are combined, or the mixture of the powder particles 11b and the granular material 11a is used as an inorganic compound storage container. 12, the inorganic compound 11 of the granular body 11a is a dissolving device provided with a plurality of irregularities 11c on the surface of the granules.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散の原理(フィックの法則)の原理で、水に無機化合物を溶解させることができ、さらに、無機化合物11の粉末粒11bを結合させた顆粒状体11aは、内部に空隙を有することで、比重が軽くなり、無機化合物収納容器12内の水流により、容易に揺動し、かつ顆粒状体11a表面は、粉末粒11bからなる複数凹凸11cが存在するため、前記揺動と凹凸の効果で、水に対する接触効率が高まり、水への無機化合物の溶解効率がさらに高めることが可能となる。   As a result, the inorganic compound can be dissolved in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in dissolution concentration between water and the inorganic compound. The granular body 11a to which the particles 11b are bonded has a void in the interior, so that the specific gravity is lightened, easily swings due to the water flow in the inorganic compound storage container 12, and the surface of the granular body 11a is a powder. Since there are a plurality of irregularities 11c composed of the grains 11b, the effect of the rocking and irregularities increases the contact efficiency with water, and the dissolution efficiency of the inorganic compound in water can be further increased.

(実施の形態3)
図8は、本発明の第3の実施の形態における溶解装置の構造図を示すものである。図9は、無機化合物成形体の複数の形状例を示すものである。なお、実施の形態1と同一構成については、同一符号を付して説明を省略する。
(Embodiment 3)
FIG. 8 shows a structural diagram of a melting apparatus according to the third embodiment of the present invention. FIG. 9 shows a plurality of shape examples of the inorganic compound molded body. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

17は、無機化合物11の粉末粒11bを所定の形状に成形固化した無機化合物成形体である。   Reference numeral 17 denotes an inorganic compound molded body obtained by molding and solidifying the powder particles 11b of the inorganic compound 11 into a predetermined shape.

無機化合物成形体17の具体的な製造方法としては、無機化合物11の粉末粒11bとバインダ成分と、純水などの溶媒を混練し、成形型を用いて所定の形状に成形した後、焼成など加熱処理を後工程で施すことで、バインダの結合力を高め、成形体としての強度を確保する。   As a specific manufacturing method of the inorganic compound molded body 17, powder particles 11 b of the inorganic compound 11, a binder component, and a solvent such as pure water are kneaded and formed into a predetermined shape using a mold, and then fired, etc. By performing the heat treatment in a subsequent process, the binding strength of the binder is increased and the strength as a molded body is ensured.

なお、本実施の形態の無機化合物成形体17の外形寸法は、無機化合物収納容器12に接続される水回路15の無機化合物成形体17に対する投影直径より大きく形成することで、無機化合物収納容器12に水が流れた際に、無機化合物成形体17が、下流側の水回路15への流出を防ぐことができるため、溶解装置16への濾過手段13および濾過手段収納容器14の搭載が不要となり、溶解装置16の構成コストをさらに低減することが可能となるだけでなく、濾過手段13の目詰まりによる水回路の流量低下などの品質低下のリスクを抜本的に取り除くことが可能となる。   In addition, the external dimension of the inorganic compound molded body 17 of this Embodiment is formed larger than the projection diameter with respect to the inorganic compound molded body 17 of the water circuit 15 connected to the inorganic compound storage container 12, and the inorganic compound storage container 12 is formed. When the water flows, the inorganic compound molded body 17 can prevent the downstream water circuit 15 from flowing out, so that it is not necessary to mount the filtering means 13 and the filtering means storage container 14 in the dissolving device 16. Not only can the construction cost of the melting device 16 be further reduced, but it is also possible to drastically remove the risk of quality degradation such as a reduction in the flow rate of the water circuit due to clogging of the filtering means 13.

なお、無機化合物成形体17は、粉末粒11b成形した物であることから、顆粒状体11aの表面には、実施の形態1の顆粒状体11aと同様に、少なくとも、粉末粒11bの直径と同等の開口径と、同半径と同等の深さを持った、凹凸部11cが形成され、顆粒状体11aに接触する水に対する比表面積が凹凸部無しの状態に比べ増加することとなる。   In addition, since the inorganic compound molded body 17 is a product obtained by molding the powder particles 11b, the surface of the granular body 11a has at least the diameter of the powder particles 11b as in the granular body 11a of the first embodiment. The uneven part 11c having the same opening diameter and the same depth as the radius is formed, and the specific surface area with respect to the water contacting the granular body 11a is increased as compared with the state without the uneven part.

また、無機化合物成形体17は、成型型を用いることで任意の形状を構成することが可能となり、図8(a)に示すように、成形体表面に凹凸部を追加して、さらに水に対する接触面積を拡大し、無機化合物11の水への溶解効率を高めたり、また図7(b)に示すように、ハニカム形状に形成することで、水に対する接触面積を高めるだけでなく、水の流れに対する抵抗を下げることができるため、図8(b)に示すように、ハニカム形状の無機化合物成形体17を複数個積層して、無機化合物収納容器12に搭載することも可能となる。   In addition, the inorganic compound molded body 17 can be formed in an arbitrary shape by using a molding die, and as shown in FIG. The contact area is increased to increase the dissolution efficiency of the inorganic compound 11 in water, and as shown in FIG. 7 (b), not only the contact area against water is increased, but also water is formed. Since resistance to the flow can be lowered, as shown in FIG. 8B, a plurality of honeycomb-shaped inorganic compound molded bodies 17 can be stacked and mounted on the inorganic compound storage container 12.

以上のように、本実施の形態においては、無機化合物成形体17の外形寸法が、無機化
合物収納容器12に接続される水回路15の配管の内径より大きいため、水回路15の水の流れに乗って、無機化合物成形体17がまるごと水回路15に流出し得ないため、無機化合物収納容器12に無機化合物成形体17を保持する濾過手段等の保持手段を設置する必要が無くなり、無機化合物収納容器12の構成コストを下げることができ、さらに無機化合物成形体17の表面には複数個の凹凸11cを設けたので、水に対する無機化合物成形体17の相対的な接触表面積が増加し、水への無機化合物の溶解量を高いレベルで安定させながら、さらに低コスト化を図ることができる。
As described above, in the present embodiment, since the outer dimension of the inorganic compound molded body 17 is larger than the inner diameter of the pipe of the water circuit 15 connected to the inorganic compound storage container 12, the water flow in the water circuit 15 Since the entire inorganic compound molded body 17 cannot flow out to the water circuit 15 by riding, it is not necessary to install a holding means such as a filtering means for holding the inorganic compound molded body 17 in the inorganic compound storage container 12, and the inorganic compound stored The construction cost of the container 12 can be reduced, and the surface of the inorganic compound molded body 17 is provided with a plurality of irregularities 11c. Therefore, the relative contact surface area of the inorganic compound molded body 17 with respect to water increases, and the water The cost can be further reduced while stabilizing the amount of the inorganic compound dissolved at a high level.

(実施の形態4)
図10は、本発明の第4の実施の形態における給湯装置の構成図を示すものである。
(Embodiment 4)
FIG. 10 shows a configuration diagram of a hot water supply apparatus according to the fourth embodiment of the present invention.

図10において、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   In FIG. 10, a compressor 22, a hot water supply heat exchanger 23, a decompression unit 24, and an evaporator 25 are annularly connected in order by a refrigerant circuit 26 to constitute a heat pump unit 21. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order. The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。浴槽水注湯回路39は、貯湯タンク28の水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の高温の水と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯回路39の回路の開閉を行う浴槽水注湯弁38を順に備える。溶解装置16は浴槽水注湯弁38の下流側の浴槽水注湯回路39に本体の筐体に収納するように設けた。   The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order. The bathtub water pouring circuit 39 is a circuit for pouring the water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. In this circuit, a bath water mixing valve 36 for mixing hot water in the hot water storage tank 28 and tap water, temperature detecting means 37 for detecting the temperature of the pouring water, and bath water pouring for opening and closing the bath water pouring circuit 39. The hot water valve 38 is provided in order. The melting device 16 was provided in the bathtub water pouring circuit 39 on the downstream side of the bathtub water pouring valve 38 so as to be housed in the housing of the main body.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流量を制御する。   The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯回路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。所定温度となった浴槽水は、浴槽水注湯回路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28に貯留された高温の水を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ40より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bath water mixing valve 36 of the bath water pouring circuit 39 has a hot water and tap water so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). Adjust the mixing ratio. The bathtub water having a predetermined temperature flows out into the bathtub 42 through the bathtub water pouring circuit 39 and the bathtub water circulation circuit 41 in this order. On the other hand, when the bathtub water in the bathtub 42 is heated, the hot water stored in the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 40. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。利用者が浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された水が、浴槽水注湯弁38を閉から開に制御した場合に、溶解装置16、浴槽水循環回路41を経由して浴槽42に流出する。水が溶解装置16を通過する際に、無機化合物が水に溶解するので、浴槽42に湯はり動作と同時に、無機化合物11を溶解させた水が浴槽42に流入する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the water adjusted by the bathtub water mixing valve 36 at a preset temperature controls the bathtub water pouring valve 38 from closed to open, it passes through the melting device 16 and the bathtub water circulation circuit 41. It flows out into the bathtub 42. When the water passes through the dissolving device 16, the inorganic compound dissolves in the water, so that the water in which the inorganic compound 11 is dissolved flows into the bathtub 42 simultaneously with the hot water operation in the bathtub 42.

溶解装置16は、浴槽水注湯弁38の下流側としたが、浴槽水注湯弁38が開から閉へ
制御された場合は、ウォーターハンマー現象が発生し、上流側の回路に設けている、浴槽水混合弁36、貯湯タンク28等は水道圧以上の水圧負荷を与える。下流側に設けることによって、溶解装置16への水圧負荷が掛からない。
Although the melting device 16 is on the downstream side of the bathtub water pouring valve 38, when the bathtub water pouring valve 38 is controlled from opening to closing, a water hammer phenomenon occurs and is provided in the upstream circuit. The bathtub water mixing valve 36, the hot water storage tank 28, etc. give a water pressure load higher than the water pressure. By providing on the downstream side, the hydraulic load on the melting device 16 is not applied.

以上のように、本実施の形態においては、浴槽水注湯回路と、浴槽水注湯弁を備え、浴槽水注湯弁、溶解装置の順に浴槽水注湯回路に備えた給湯装置とした。これにより、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the bathtub water-pouring circuit and the bathtub water-pouring valve, and equipped with the bathtub water-pouring circuit in order of the bathtub water-pouring valve and the melting apparatus. Thereby, since the melting device is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting device can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

本発明において、溶解装置16は給湯機の本体筐体に収納し、浴槽水注湯回路39としているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11を溶解させた水を供給することが出来る。また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は常時加温されるため、溶解装置16の凍結防止などの断熱が不要、または簡素化できる。   In the present invention, the melting device 16 is housed in the main body housing of the water heater and serves as a bathtub water pouring circuit 39. However, even if provided in the bathtub water circulation circuit 41, water in which the inorganic compound 11 is dissolved is supplied to the bathtub 42. I can do it. Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is always heated, so that heat insulation such as prevention of freezing of the melting device 16 is unnecessary or simplified.

また、溶解装置16は、浴槽水注湯弁38の下流側でさらに、開閉電磁弁を設け(図示しない)、その下流側に溶解装置16を通過する水回路と、溶解装置16を通過しない水回路の2系統用意し、浴室リモコンなどにより、無機化合物の溶解有無を開閉電磁弁による流路切替で選択することで、使用者の好みに応じて、浴槽水の水質を選択することが可能となる。なお、開閉電磁弁を手動式切替弁とし、本体外から使用者が手動で切り換え操作する構成としても良い。また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を化合物溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。   Further, the melting device 16 is further provided with an open / close electromagnetic valve (not shown) on the downstream side of the bathtub water pouring valve 38, a water circuit that passes through the melting device 16 on the downstream side, and water that does not pass through the melting device 16. It is possible to select the quality of bathtub water according to the user's preference by preparing two systems of circuits and selecting whether or not inorganic compounds are dissolved by switching the flow path with an open / close solenoid valve by using a bathroom remote control etc. Become. The open / close solenoid valve may be a manual switching valve, and the user may manually switch from outside the main body. Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the compound dissolving apparatus. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態5)
図11は、本発明の第5の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 5)
FIG. 11 is a structural diagram of a melting apparatus according to the fifth embodiment of the present invention.

図11において、溶解装置16の入口と出口は浴槽水注湯回路39に接続されている。無機化合物11を収納する無機化合物収納容器12の相当直径d1、浴槽水注湯回路39の相当直径d2とした場合、図11においてそれぞれをd1>d2となる大きさなるように決定した。   In FIG. 11, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring circuit 39. When the equivalent diameter d1 of the inorganic compound storage container 12 storing the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring circuit 39 are set, in FIG. 11, each is determined to have a size that satisfies d1> d2.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15に対して、無機化合物11を収納した無機化合物収納容器12、濾過手段収納容器14を設けたので、溶解装置16を水が通過する際に、圧力損失が生じる。圧力損失が生じると、浴槽42へ供給する水の流量が低下する。ここで、無機化合物収納容器12の相当直径d1を、浴槽水注湯回路39の相当直径d2に対して、d1>d2となる大きさとすると、無機化合物収納容器12の平均流速u1は、浴槽水注湯回路39の平均流速u2より小さくなる。水回路の流体の圧力損失は、流体の平均流速の2乗に比例するため、溶解装置16を通過する際の圧力損失の増加を低減させることができる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Since the inorganic compound storage container 12 storing the inorganic compound 11 and the filtering means storage container 14 are provided for the water circuit 15, a pressure loss occurs when water passes through the dissolving device 16. When pressure loss occurs, the flow rate of water supplied to the bathtub 42 decreases. Here, assuming that the equivalent diameter d1 of the inorganic compound storage container 12 is such that d1> d2 with respect to the equivalent diameter d2 of the bathtub water pouring circuit 39, the average flow velocity u1 of the inorganic compound storage container 12 is the bath water. It becomes smaller than the average flow velocity u2 of the pouring circuit 39. Since the pressure loss of the fluid in the water circuit is proportional to the square of the average flow velocity of the fluid, an increase in the pressure loss when passing through the dissolving device 16 can be reduced.

以上のように、本実施の形態においては、無機化合物収納容器の相当直径を、溶解装置を接続する浴槽水注湯回路の相当直径よりも大とすることにより、無機化合物を通過する水流による圧力損失を低減し、浴槽への湯はり時間を早く完了することができる。   As mentioned above, in this Embodiment, the pressure by the water flow which passes an inorganic compound is made larger by making the equivalent diameter of an inorganic compound storage container larger than the equivalent diameter of the bathtub water pouring circuit which connects a dissolving device. Loss can be reduced and the hot water filling time for the bathtub can be completed quickly.

以上のように、本発明にかかる給湯装置は、無機化合物の水への溶解効率を高め、コンパクト化、低コスト化、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention improves the efficiency of dissolving inorganic compounds in water, leading to compactness, cost reduction, and improvement in operating efficiency. In addition to hot water storage hot water heaters, Can also be used.

11 無機化合物
11a 顆粒状体
11b 粉末粒
12 無機化合物収納容器
13 濾過手段
13a 小穴
13b 小穴
13c 小穴
14 濾過手段収納容器
15 水回路
16 溶解装置
17 無機化合物成形体
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯回路
42 浴槽
DESCRIPTION OF SYMBOLS 11 Inorganic compound 11a Granular body 11b Powder particle | grains 12 Inorganic compound storage container 13 Filtration means 13a Small hole 13b Small hole 13c Small hole 14 Filtration means storage container 15 Water circuit 16 Melting apparatus 17 Inorganic compound molded object 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bathtub water mixing valve 37 Temperature detection means 38 Bathtub water pouring valve 39 Bathtub water pouring circuit 42 Bathtub

Claims (7)

水回路と、無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させるとともに、前記無機化合物の表面に複数の凹凸を設けたことを特徴とする溶解装置。 A water circuit and a storage means for storing an inorganic compound are provided, and water in which the inorganic compound is dissolved is allowed to flow out of the water circuit, and a plurality of irregularities are provided on the surface of the inorganic compound. Melting device. 前記無機化合物は、複数個の無機化合物の粉末粒を結合させた顆粒状体、あるいは、前記粉末粒と顆粒状体との混合物であることを特徴とする請求項1に記載の溶解装置。 The dissolution apparatus according to claim 1, wherein the inorganic compound is a granular body in which a plurality of inorganic compound powder particles are combined, or a mixture of the powder particles and the granular body. 前記無機化合物は、粉末粒を所定の形状に成形固化した無機化合物成形体であることを特徴とする請求項1に記載の溶解装置。 The melting apparatus according to claim 1, wherein the inorganic compound is an inorganic compound molded body in which powder particles are molded and solidified into a predetermined shape. 前記無機化合物成形体の外郭寸法は、前記水回路の配管内径より大きいことを特徴とする請求項3に記載の溶解装置。 The melting device according to claim 3, wherein an outer dimension of the inorganic compound molded body is larger than a pipe inner diameter of the water circuit. 湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記請求項1〜4のいずれか1項に記載の溶解装置を、前記浴槽水注湯回路上で、かつ、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置。 A bath water pouring circuit that supplies hot water to the bathtub and a bath water pouring valve that opens and closes the bath water pouring circuit, and the melting device according to any one of claims 1 to 4, A hot water supply apparatus, which is disposed on a bathtub water pouring circuit and downstream of the bathtub water pouring valve. 湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記請求項1〜4のいずれか1項に記載の収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置。 It equips with the bathtub water pouring circuit which supplies hot water to a bathtub, and the bathtub water pouring valve which opens and closes the bathtub water pouring circuit, The equivalent diameter of the storage means given in any 1 paragraph of Claims 1-4 Is made larger than the equivalent diameter of the bathtub water pouring circuit. 前記請求項1〜4のいずれか1項に記載の溶解装置を、給湯装置の本体筐体内に配設したことを特徴とする給湯装置。 The hot water supply apparatus characterized by arrange | positioning the melting | dissolving apparatus of any one of the said Claims 1-4 in the main body housing | casing of a hot water supply apparatus.
JP2010165658A 2010-07-23 2010-07-23 Water heater Expired - Fee Related JP4858633B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165658A JP4858633B1 (en) 2010-07-23 2010-07-23 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165658A JP4858633B1 (en) 2010-07-23 2010-07-23 Water heater

Publications (2)

Publication Number Publication Date
JP4858633B1 JP4858633B1 (en) 2012-01-18
JP2012026643A true JP2012026643A (en) 2012-02-09

Family

ID=45604529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165658A Expired - Fee Related JP4858633B1 (en) 2010-07-23 2010-07-23 Water heater

Country Status (1)

Country Link
JP (1) JP4858633B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165581A1 (en) * 2012-05-03 2013-11-07 Dober Chemical Corporation Apparatus and methods for controlled release of additive compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
CN105581900A (en) * 2014-02-18 2016-05-18 李隆 Method for intervening cold-and-hot feeling of cold-and-hot-water alternating bath

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555718A (en) * 1991-08-23 1993-03-05 Kyocera Corp Circuit board
JPH07178393A (en) * 1993-12-24 1995-07-18 Sekisui Plastics Co Ltd Antimicrobial float
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JP2004313821A (en) * 2003-04-10 2004-11-11 Planet Company:Kk Water circulation system and hair collector in facilities using circulating water
JP2006102734A (en) * 2004-10-08 2006-04-20 Susumu Matsushita Circulating water sterilizing and purifying apparatus
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function
JP2010036082A (en) * 2008-08-04 2010-02-18 Taiyo:Kk Composite circulation antibacterial bathtub system, composite circulation antibacterial warm water supply system, composite circulation antibacterial cooling tower system, composite circulation antibacterial pool system, composite circulation antibacterial water and sewerage system and composite circulation antibacterial water system for agriculture, fishing and fisheries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555718A (en) * 1991-08-23 1993-03-05 Kyocera Corp Circuit board
JPH07178393A (en) * 1993-12-24 1995-07-18 Sekisui Plastics Co Ltd Antimicrobial float
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JP2004313821A (en) * 2003-04-10 2004-11-11 Planet Company:Kk Water circulation system and hair collector in facilities using circulating water
JP2006102734A (en) * 2004-10-08 2006-04-20 Susumu Matsushita Circulating water sterilizing and purifying apparatus
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function
JP2010036082A (en) * 2008-08-04 2010-02-18 Taiyo:Kk Composite circulation antibacterial bathtub system, composite circulation antibacterial warm water supply system, composite circulation antibacterial cooling tower system, composite circulation antibacterial pool system, composite circulation antibacterial water and sewerage system and composite circulation antibacterial water system for agriculture, fishing and fisheries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165581A1 (en) * 2012-05-03 2013-11-07 Dober Chemical Corporation Apparatus and methods for controlled release of additive compositions

Also Published As

Publication number Publication date
JP4858633B1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US20170159979A1 (en) High Porosity Particulate Beds Structurally Stabilized by Epoxy
JP4858633B1 (en) Water heater
US20080000613A1 (en) System for delivering coolant to a laser system
JP5894402B2 (en) Water heater
JP5295385B2 (en) Bubble generation method and bubble generation apparatus
JP2016117051A (en) Scale removal device, water heater and scale removal method
US10071926B2 (en) Scale prevention for aircraft water system
US20100163479A1 (en) Cold water tank and water treatment apparatus having the same
JP2012026601A (en) Hot water storage tank and storage type water heater
JP2010190466A (en) Water heater
CN110836276A (en) Tap water outlet mechanism
JP2011033250A (en) Water heater
JP2013002669A (en) Water heater
JP5640808B2 (en) Water heater
JP5527257B2 (en) Melting apparatus and hot water supply apparatus including the same
JP2012081438A (en) Dissolving device and device for supplying hot water including the same
WO2018010684A1 (en) Water heater system and control method therefor
JP5856327B1 (en) Water treatment agent and water treatment method
EP2420627A2 (en) Water storage tank
JP5375769B2 (en) Water heater
JP5177241B2 (en) Water heater
JP2012021715A (en) Dissolving device, and water heater with the same
JP2016017542A (en) Hydrogen storage/discharge device and hydrogen storage/discharge method
JP2012220074A (en) Dissolving device, and water heater including the same
JP2012042147A (en) Dissolving apparatus, and water heater with the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R151 Written notification of patent or utility model registration

Ref document number: 4858633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees