JP2006173533A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2006173533A
JP2006173533A JP2004367734A JP2004367734A JP2006173533A JP 2006173533 A JP2006173533 A JP 2006173533A JP 2004367734 A JP2004367734 A JP 2004367734A JP 2004367734 A JP2004367734 A JP 2004367734A JP 2006173533 A JP2006173533 A JP 2006173533A
Authority
JP
Japan
Prior art keywords
layer
light emitting
electrode
emitting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004367734A
Other languages
Japanese (ja)
Inventor
Masaki Kojima
勝紀 小島
Minoru Hirose
実 廣瀬
Masanobu Senda
昌伸 千田
Masahisa Kamiya
真央 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004367734A priority Critical patent/JP2006173533A/en
Publication of JP2006173533A publication Critical patent/JP2006173533A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device that can efficiently takes out light from a face-up mounted semiconductor light emitting element. <P>SOLUTION: The light emitting device is provided with the semiconductor light emitting element 100 in which a p-layer and an n-layer are laminated upon another and a p-electrode electrically connected to the p-layer and an n-electrode electrically connected to the n-layer are formed on the same surface. The light emitting element 100 is mounted on a mounting member having circuits respectively electrically connected to the p- and n-electrodes with the electrodes on the upside. The p- and n-electrodes are connected to the circuits of the mounting member through conductive wires. The light emitting element 100 has a slope from the p-layer to the n-layer and the surface of the slope is constituted in a recessed and projecting structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光装置に用いられる発光素子に関するものである。特に、マウント部材にフェースアップ実装する発光素子の観測面側への光取り出しを向上させた発光装置に関する。   The present invention relates to a light emitting element used in a light emitting device. In particular, the present invention relates to a light emitting device that improves light extraction from a light emitting element face-up mounted on a mount member to the observation surface side.

窒化物半導体を層構造に含む発光ダイオードは、高輝度純緑色発光LED、青色発光LEDとして、フルカラーLEDディスプレイ、交通信号灯、バックライトなど、様々な分野で広く利用されている。   A light-emitting diode including a nitride semiconductor in a layer structure is widely used as a high-luminance pure green light-emitting LED or blue light-emitting LED in various fields such as a full-color LED display, a traffic signal lamp, and a backlight.

これらのLEDは、一般に、サファイアなどの基板上にn型窒化物半導体層、活性層、p型窒化物半導体層が順に積層された構造となっている。さらに、p型窒化物半導体層上にはp側電極が配置され、n型窒化物半導体層上にはn側電極が配置されている。たとえば、p側電極とn側電極とを同一面側に設ける場合は、p型窒化物半導体層上にp側電極が配置されると共に、p型窒化物半導体層、活性層、およびn型窒化物半導体層の一部がエッチングなどにより除去され、露出したn型窒化物半導体層上にn側電極が配置された構成となる。さらに、光取り出しを向上させることを目的として、LEDの構造として様々なものが提案されている(例えば特許文献1及び2)。
特開2004−6662 特開2004−221529
These LEDs generally have a structure in which an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are sequentially stacked on a substrate such as sapphire. Furthermore, a p-side electrode is disposed on the p-type nitride semiconductor layer, and an n-side electrode is disposed on the n-type nitride semiconductor layer. For example, when the p-side electrode and the n-side electrode are provided on the same surface side, the p-side electrode is disposed on the p-type nitride semiconductor layer, and the p-type nitride semiconductor layer, the active layer, and the n-type nitridation are provided. A part of the physical semiconductor layer is removed by etching or the like, and the n-side electrode is arranged on the exposed n-type nitride semiconductor layer. Further, various LED structures have been proposed for the purpose of improving light extraction (for example, Patent Documents 1 and 2).
JP20046662 JP2004-221529

しかしながら、従来の構造では、フェースアップ実装された発光素子側面に達する光が効率よく取り出せないという問題点があった。   However, the conventional structure has a problem in that light reaching the side surface of the light-emitting element mounted face-up cannot be extracted efficiently.

そこで、本発明はフェースアップ実装された半導体発光素子から効率よく光を取り出すことが出来る発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a light emitting device capable of efficiently extracting light from a semiconductor light emitting element mounted face up.

以上の目的を達成するために、本発明に係る発光装置は、p層及びn層が積層され、前記p層と電気的に接続しているp電極及び前記n層と電気的に接続しているn電極が同一面に形成さている半導体発光素子と、前記半導体発光素子は前記p電極及び前記n電極のそれぞれに電気的に接続する回路を有するマウント部材に電極を上面にしてマウントし、前記p電極及び前記n電極は、前記マウント部材の前記回路に導電性ワイヤを介して接続され、前記半導体発光素子は、前記p層から前記n層までの斜面を有し、前記斜面は表面凹凸構造からなることを特徴としている。   In order to achieve the above object, a light-emitting device according to the present invention includes a p-layer and an n-layer stacked and electrically connected to a p-electrode and the n-layer electrically connected to the p-layer. A semiconductor light emitting device having n electrodes formed on the same surface, and the semiconductor light emitting device mounted on a mounting member having a circuit electrically connected to each of the p electrode and the n electrode, The p electrode and the n electrode are connected to the circuit of the mount member via a conductive wire, and the semiconductor light emitting element has a slope from the p layer to the n layer, and the slope has a surface uneven structure. It is characterized by comprising.

本発明に係る発光装置は、フェースアップ実装された発光素子側面に達する光を効率よく取り出すことができる。   The light emitting device according to the present invention can efficiently extract light reaching the side surface of the light emitting element mounted face up.

本発明に係る発光装置に配置される発光素子を構成する各半導体層としては種々の窒化物半導体を用いることができる。具体的には、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)などにより基板上にInAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)等の半導体を複数形成させたものが好適に用いられる。また、その層構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、各層を超格子構造としたり、活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。 Various nitride semiconductors can be used as each semiconductor layer constituting the light emitting element disposed in the light emitting device according to the present invention. Specifically, In X Al Y Ga 1- XYN (0 ≦ X, 0 ≦ Y, X + Y ≦) is formed on the substrate by metal organic vapor phase epitaxy (MOCVD), hydride vapor phase epitaxy (HVPE), or the like. A semiconductor in which a plurality of semiconductors such as 1) are formed is preferably used. In addition, the layer structure includes a homo structure having a MIS junction, a PIN junction or a PN junction, a hetero structure, or a double hetero structure. Each layer may have a superlattice structure, or may have a single quantum well structure or a multiple quantum well structure in which an active layer is formed in a thin film in which a quantum effect is generated.

発光素子は、一般的には、特定の基板上に各半導体層を成長させて形成されるが、その際、基板としてサファイア等の絶縁性基板を用いる。この場合、通常、p側電極およびn側電極はいずれも半導体層上の同一面側に形成されることになる。もちろん、最終的に基板を除去した上で、実装することもできる。なお、基板はサファイアに限定されず、スピネル、SiC、GaN、GaAs等、公知の部材を用いることができる。   The light-emitting element is generally formed by growing each semiconductor layer on a specific substrate. At this time, an insulating substrate such as sapphire is used as the substrate. In this case, usually, both the p-side electrode and the n-side electrode are formed on the same surface side on the semiconductor layer. Of course, it is possible to mount the circuit board after finally removing the board. The substrate is not limited to sapphire, and a known member such as spinel, SiC, GaN, or GaAs can be used.

以下、図面を参照しながら、本発明に係る実施の形態を窒化物半導体発光素子について説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光装置を例示するものであって、本発明は発光装置を以下のものに特定しない。   Embodiments according to the present invention will be described below with reference to the drawings for nitride semiconductor light emitting devices. However, the embodiment described below exemplifies a light emitting device for embodying the technical idea of the present invention, and the present invention does not specify the light emitting device as follows.

(実施の形態1)
図1に、本発明の実施例に係るIII族窒化物系化合物半導体素子100の模式的な平面図を、図2にはその断面図を示す。また、図3には、そのIII族窒化物系化合物半導体素子100を用いた発光装置の断面図を示す。
(Embodiment 1)
FIG. 1 is a schematic plan view of a group III nitride compound semiconductor device 100 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. FIG. 3 is a cross-sectional view of a light emitting device using the group III nitride compound semiconductor element 100.

III族窒化物系化合物半導体素子100は、次の構成を有する発光素子である。図1に示す様に、一辺300μmの幅を有しており、発光素子周囲にジグザグな形状を有した溝150を有しており、その溝150の一部にn電極140を形成し、また中央のジグザグ形状をした島状部分に、ほぼ全面に透明な透光性電極110配置し、その透光性電極110の一部に金ワイヤーをボンディングする厚膜p電極120を配置している。   The group III nitride compound semiconductor device 100 is a light emitting device having the following configuration. As shown in FIG. 1, each side has a width of 300 μm, a groove 150 having a zigzag shape around the light emitting element, an n-electrode 140 is formed in a part of the groove 150, and A transparent translucent electrode 110 is disposed on almost the entire surface of an island-like portion having a zigzag shape in the center, and a thick film p-electrode 120 for bonding a gold wire is disposed on a part of the translucent electrode 110.

次に図2に示すように、厚さ約300μmのサファイア基板101の上に、窒化アルミニウム(AlN)から成る膜厚約15nmのAlNバッファ層102が成膜され、その上に膜厚約500nmのノンドープのGaN層103が成膜され、その上にシリコン(Si)を1×1018/cm3ドープしたGaNから成る膜厚約5μmのn型コンタクト層104(高キャリア濃度n+層)が形成されている。 Next, as shown in FIG. 2, an AlN buffer layer 102 made of aluminum nitride (AlN) and having a thickness of about 15 nm is formed on a sapphire substrate 101 having a thickness of about 300 μm. A non-doped GaN layer 103 is formed, and an n-type contact layer 104 (high carrier concentration n + layer) having a film thickness of about 5 μm made of GaN doped with silicon (Si) at 1 × 10 18 / cm 3 is formed thereon. Has been.

また、このn型コンタクト層104の上には、シリコン(Si)を1×1018/cm3でドープしたAl0.15Ga0.85Nから成る膜厚約25nmのn型クラッド層105が形成されている。更にその上には、膜厚約3nmのノンドープIn0.2Ga0.8Nから成る井戸層と膜厚約20nmのノンドープGaNから成る障壁層とを3ペア積層して多重量子井戸構造の発光層106が形成されている。 On the n-type contact layer 104, an n-type cladding layer 105 having a thickness of about 25 nm made of Al 0.15 Ga 0.85 N doped with silicon (Si) at 1 × 10 18 / cm 3 is formed. . Further thereon, three pairs of a well layer made of non-doped In 0.2 Ga 0.8 N having a thickness of about 3 nm and a barrier layer made of non-doped GaN having a thickness of about 20 nm are stacked to form a light emitting layer 106 having a multiple quantum well structure. Has been.

更に、この発光層106の上には、Mgを2×1019/cm3ドープした膜厚約25nmのp型Al0.15Ga0.85Nから成るp型クラッド層(第1のp層)107が形成されている。p型クラッド層107の上には、Mgを8×1019/cm3ドープした膜厚約100nmのp型GaNから成るp型コンタクト層(第2のp層)108が形成されている。 Further, a p-type cladding layer (first p layer) 107 made of p-type Al 0.15 Ga 0.85 N having a film thickness of about 25 nm doped with 2 × 10 19 / cm 3 of Mg is formed on the light emitting layer 106. Has been. On the p-type cladding layer 107, a p-type contact layer (second p layer) 108 made of p-type GaN having a thickness of about 100 nm doped with 8 × 10 19 / cm 3 of Mg is formed.

又、p型コンタクト層(第2のp層)108の上には金属蒸着による透光性電極110が、n型コンタクト層104上にはn電極140が形成されている。透光性電極110は、膜厚約5nmのコバルト(Co)より成る第1層と、このコバルト膜に接合する膜厚約10nmの金(Au)より成る第2層とで構成されている。   A translucent electrode 110 formed by metal deposition is formed on the p-type contact layer (second p layer) 108, and an n-electrode 140 is formed on the n-type contact layer 104. The translucent electrode 110 includes a first layer made of cobalt (Co) having a thickness of about 5 nm and a second layer made of gold (Au) having a thickness of about 10 nm bonded to the cobalt film.

厚膜p電極120は、膜厚約1500nmの金(Au)から成る第1層123と、膜厚約10nmのアルミニウム(Al)から成る第2層124とを透光性電極110の上に順次積層させることにより構成されている。   The thick p-electrode 120 is formed by sequentially forming a first layer 123 made of gold (Au) with a thickness of about 1500 nm and a second layer 124 made of aluminum (Al) with a thickness of about 10 nm on the translucent electrode 110. It is configured by stacking.

多層構造のn電極140は、n型コンタクト層104の一部露出された部分の上から、膜厚約20nmのバナジウム(V)より成る第1層と膜厚約100nmのアルミニウム(Al)より成る第2層とを積層させることにより構成されている。   The n-electrode 140 having a multilayer structure is composed of a first layer made of vanadium (V) with a thickness of about 20 nm and aluminum (Al) with a thickness of about 100 nm from above a part of the n-type contact layer 104 that is partially exposed. It is configured by laminating the second layer.

また、最上部には、必要によりSiO2膜より成る保護膜がn電極140及びp電極120の上部を除き、形成しても良い。サファイア基板101の底面に当たる外側の最下部には、膜厚約500nmのアルミニウム(Al)より成る反射金属層を、金属蒸着により成膜しても良い。尚、反射金属層は、Rh、Ti、W等の金属の他、TiN、HfN等の窒化物でも良い。 Further, a protective film made of a SiO 2 film may be formed on the uppermost portion except for the upper portions of the n-electrode 140 and the p-electrode 120 if necessary. A reflective metal layer made of aluminum (Al) with a film thickness of about 500 nm may be formed on the lowermost part on the outer side corresponding to the bottom surface of the sapphire substrate 101 by metal deposition. The reflective metal layer may be a metal such as Rh, Ti, or W, or a nitride such as TiN or HfN.

上記の構成のIII族窒化物系化合物半導体素子100は次のように製造された。III族窒化物系化合物半導体素子100は、有機金属気相成長法(以下「MOVPE」と略す)により製造された。用いられたガスは、アンモニア(NH3)、キャリアガス(H2及びN2)、トリメチルガリウム(Ga(CH33)(以下「TMG」と記す)、トリメチルアルミニウム(Al(CH33)(以下「TMA」と記す)、トリメチルインジウム(In(CH33)(以下「TMI」と記す)、シラン(SiH4)とシクロペンタジエニルマグネシウム(Mg(C552)(以下「CP2Mg」と記す)である。 The group III nitride compound semiconductor device 100 having the above-described configuration was manufactured as follows. Group III nitride compound semiconductor device 100 was manufactured by metal organic vapor phase epitaxy (hereinafter abbreviated as “MOVPE”). The gases used were ammonia (NH 3 ), carrier gas (H 2 and N 2 ), trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”), trimethylaluminum (Al (CH 3 ) 3 (Hereinafter referred to as “TMA”), trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ) and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (Hereinafter referred to as “CP 2 Mg”).

まず、有機洗浄及び熱処理により洗浄したA面を主面とした単結晶のサファイア基板101をMOVPE装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を反応室に流しながら温度1100℃でサファイア基板101をベーキングした。 First, a single crystal sapphire substrate 101 whose main surface is an A surface cleaned by organic cleaning and heat treatment is mounted on a susceptor mounted in a reaction chamber of an MOVPE apparatus. Next, the sapphire substrate 101 was baked at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at normal pressure.

次に、サファイア基板101の温度を400℃に低下させ、H2、NH3及びTMAを供給してAlNバッファ層102を約15nmの膜厚に形成した。 Next, the temperature of the sapphire substrate 101 was lowered to 400 ° C., and H 2 , NH 3 and TMA were supplied to form the AlN buffer layer 102 with a thickness of about 15 nm.

次に、サファイア基板101の温度を1150℃に保持し、H2、NH3、TMGを供給して、その上にノンドープGaN層103を形成した。次に、H2、NH3、TMG、シランを供給して、その上にシリコン(Si)を1×1018/cm3ドープしたGaNから成る膜厚約5μmのn型コンタクト層104(高キャリア濃度n+層)を形成した。 Next, the temperature of the sapphire substrate 101 was maintained at 1150 ° C., H 2 , NH 3 , and TMG were supplied, and the non-doped GaN layer 103 was formed thereon. Next, H 2 , NH 3 , TMG and silane are supplied, and n-type contact layer 104 (high carrier) having a film thickness of about 5 μm made of GaN doped with silicon (Si) at 1 × 10 18 / cm 3 thereon. Density n + layer).

この後、H2、NH3、TMG、TMA、シランの供給量を制御して、シリコン(Si)を1×1018/cm3でドープしたAl0.15Ga0.85Nから成る膜厚約25nmのn型クラッド層105を形成した。 Thereafter, the supply amount of H 2 , NH 3 , TMG, TMA, and silane is controlled, and an n 0.15 Ga 0.85 N film made of Al 0.15 Ga 0.85 N doped with silicon (Si) at 1 × 10 18 / cm 3 is formed. A mold cladding layer 105 was formed.

次に、サファイア基板101の温度を825℃にまで低下させて、N2又はH2、NH3、TMG及びTMIの供給量を制御して、膜厚約3nmのノンドープIn0.2Ga0.8Nから成る井戸層と膜厚約20nmのノンドープGaNから成る障壁層とを3ペア積層して多重量子井戸構造の発光層106が形成した。 Next, the temperature of the sapphire substrate 101 is lowered to 825 ° C., and the supply amount of N 2 or H 2 , NH 3 , TMG, and TMI is controlled to comprise about 3 nm of non-doped In 0.2 Ga 0.8 N. A light emitting layer 106 having a multiple quantum well structure was formed by laminating three pairs of well layers and barrier layers made of non-doped GaN having a thickness of about 20 nm.

次に、サファイア基板101の温度を1050℃に保持し、N2又はH2、NH3、TMG、TMA及びCP2Mgを制御しながら供給して、Mgを2×1019/cm3ドープした膜厚約25nmのp型Al0.15Ga0.85Nから成るp型クラッド層(第1のp層)107を形成した。次にN2又はH2、NH3、TMG及びCP2Mgを制御しながら供給して、Mgを8×1019ドープした膜厚約100nmのp型GaNから成るp型コンタクト層(第2のp層)108を形成した。 Next, the temperature of the sapphire substrate 101 is maintained at 1050 ° C., and N 2 or H 2 , NH 3 , TMG, TMA and CP 2 Mg are supplied while being controlled, and Mg is doped 2 × 10 19 / cm 3 . A p-type cladding layer (first p layer) 107 made of p-type Al 0.15 Ga 0.85 N having a thickness of about 25 nm was formed. Next, N 2 or H 2 , NH 3 , TMG and CP 2 Mg are supplied while being controlled, and a p-type contact layer made of p-type GaN having a thickness of about 100 nm doped with 8 × 10 19 Mg (the second type) p layer) 108 was formed.

以上の結晶成長工程を経たサファイア基板(以下ウェハと呼ぶ)について、ウェハ全面にフォトレジストを塗布し、フォトリソグラフィによりIII族窒化物系化合物半導体素子100の最外周部がジグザグの形状となるようにフォトレジストを除去して窓を形成し、また同時に、n電極140を形成する部分のフォトレジストを除去して窓を形成した。   With respect to the sapphire substrate (hereinafter referred to as a wafer) that has undergone the above crystal growth process, a photoresist is applied to the entire surface of the wafer, and the outermost periphery of the group III nitride compound semiconductor device 100 is formed in a zigzag shape by photolithography. The photoresist was removed to form a window, and at the same time, the portion of the photoresist where the n-electrode 140 was to be formed was removed to form a window.

続いて、フォトレジストで覆われていない窓部分のIII族窒化物系化合物半導体p型コンタクト層(第2のp層)108、p型クラッド層107、活性層106、n型クラッド層105、およびn型コンタクト層104の一部を、イオンエッチングによってα=60度の角度を有する凸凹の側面160を形成するようにエッチングして、III族窒化物系化合物半導体素子100の最外周部がジグザグの形状となるようにn型コンタクト層104を露出させ、また同時に、n電極140を形成する部分のn型コンタクト層104を露出させた。   Subsequently, the group III nitride compound semiconductor p-type contact layer (second p layer) 108, the p-type cladding layer 107, the active layer 106, the n-type cladding layer 105, and the window portion not covered with the photoresist, A part of the n-type contact layer 104 is etched by ion etching so as to form an uneven side surface 160 having an angle of α = 60 degrees, and the outermost peripheral portion of the group III nitride compound semiconductor device 100 is zigzag. The n-type contact layer 104 was exposed so as to have a shape, and at the same time, the portion of the n-type contact layer 104 where the n-electrode 140 was formed was exposed.

次に、膜厚約5nmのコバルト(Co)と膜厚約10nmの金(Au)の順に、ウェハ全面に連続して蒸着した。続いて、ウェハ全面にフォトレジストを塗布し、フォトリソグラフィにより透光性電極110を形成する部分にフォトレジストを形成した。その後、露出しているコバルト(Co)と金(Au)の積層膜をエッチングにより除去し、p型コンタクト層(第2のp層)108上に 透光性電極110としてコバルト(Co)と金(Au)の積層膜を形成した。   Next, cobalt (Co) having a film thickness of about 5 nm and gold (Au) having a film thickness of about 10 nm were sequentially deposited on the entire surface of the wafer. Subsequently, a photoresist was applied to the entire surface of the wafer, and a photoresist was formed on a portion where the translucent electrode 110 was formed by photolithography. Thereafter, the exposed laminated film of cobalt (Co) and gold (Au) is removed by etching, and cobalt (Co) and gold are formed on the p-type contact layer (second p layer) 108 as the translucent electrode 110. A (Au) laminated film was formed.

次に、ウェハ全面にフォトレジストを塗布し、フォトリソグラフィにより厚膜p電極120を形成する部分のフォトレジストを除去して窓を形成し、透光性電極110を露出させた。続いて、膜厚約1500nmの金(Au)と、膜厚約10nmのアルミニウム(Al)の順に蒸着した。この後、フォトレジストとともにフォトレジスト上の金(Au)/アルミニウム(Al)積層膜を除去し、透光性電極110上に厚膜p電極120として金(Au)/アルミニウム(Al)積層膜を形成した。   Next, a photoresist was applied to the entire surface of the wafer, a portion of the photoresist where the thick p-electrode 120 was to be formed was removed by photolithography, a window was formed, and the translucent electrode 110 was exposed. Subsequently, gold (Au) having a thickness of about 1500 nm and aluminum (Al) having a thickness of about 10 nm were deposited in this order. Thereafter, the gold (Au) / aluminum (Al) multilayer film on the photoresist is removed together with the photoresist, and a gold (Au) / aluminum (Al) multilayer film is formed as the thick p-electrode 120 on the translucent electrode 110. Formed.

次に、ウェハ全面にフォトレジストを塗布し、フォトリソグラフィによりn電極140を形成する部分のフォトレジストを除去して窓を形成し、n型コンタクト層104を露出させた。続いて、膜厚約20nmのバナジウム(V)、膜厚約100nmのアルミニウム(Al)の順に蒸着した。この後、フォトレジストとともにフォトレジスト上のバナジウム(V)とアルミニウム(Al)の積層膜を除去し、n型コンタクト層104上にn電極140としてバナジウム(V)/アルミニウム(Al)積層膜を形成した。
次に、ウェハにO2雰囲気で500℃、5分程度の熱処理を行い、n型コンタクト層104とn電極140、p型コンタクト層108と透光性電極110を合金化処理してオーミック接続を確保した。

次に、ウェハ全面にSiO2膜を150nm形成した。続いて、ウェハ全面にフォトレジストを塗布し、フォトリソグラフィにより厚膜p電極120とn電極140の部分のフォトレジストを除去して窓を形成し、SiO2膜を露出させた。その後、フォトレジストで覆われていない部分のSiO2膜をウェットエッチングにより除去して厚膜p電極120とn電極140を露出させ、透光性電極110の保護膜130としてSiO2膜を形成した。
Next, a photoresist was applied to the entire surface of the wafer, a portion of the photoresist where the n-electrode 140 was to be formed was removed by photolithography to form a window, and the n-type contact layer 104 was exposed. Subsequently, vanadium (V) with a thickness of about 20 nm and aluminum (Al) with a thickness of about 100 nm were deposited in this order. Thereafter, the laminated film of vanadium (V) and aluminum (Al) on the photoresist is removed together with the photoresist, and a vanadium (V) / aluminum (Al) laminated film is formed as an n electrode 140 on the n-type contact layer 104. did.
Next, the wafer is heat-treated in an O 2 atmosphere at 500 ° C. for about 5 minutes, and the n-type contact layer 104 and the n-electrode 140, and the p-type contact layer 108 and the translucent electrode 110 are alloyed to ensure ohmic connection. did.

Next, a 150 nm SiO2 film was formed on the entire wafer surface. Subsequently, a photoresist was applied to the entire surface of the wafer, and the photoresist was removed from the thick p-electrode 120 and n-electrode 140 portions by photolithography to form windows and to expose the SiO2 film. Thereafter, the portion of the SiO2 film not covered with the photoresist was removed by wet etching to expose the thick p-electrode 120 and the n-electrode 140, and an SiO2 film was formed as the protective film 130 of the translucent electrode 110.

その後、個々の発光素子部分をダイシングにより分離する。   Thereafter, the individual light emitting element portions are separated by dicing.

以上の様にして、半導体層側から光を取り出すフェイスアップ型のIII族窒化物系化合物半導体素子100を製造した。   As described above, the face-up type III-nitride compound semiconductor device 100 for extracting light from the semiconductor layer side was manufactured.

次に、図3には、上記にて製造した半導体素子100を用いた発光装置200を示している。このIII族窒化物系化合物半導体素子100をリフレクタ部220を有する樹脂ケース210の凹部中央に銀ペースト240で固定し、樹脂ケース210に形成されたp側電極211とIII族窒化物系化合物半導体素子100のp電極120と、又、樹脂ケースに形成されたn側電極212とIII族窒化物系化合物半導体素子100のn電極140をそれぞれ金ワイヤ250で電気的に接続固定した。そして、樹脂ケースの凹部に透明材料であるシリコン樹脂等の封止材料230を充填し、III族窒化物系化合物半導体素子100及び金ワイヤー250を保護した発光装置200を製造した。   Next, FIG. 3 shows a light emitting device 200 using the semiconductor element 100 manufactured as described above. The group III nitride compound semiconductor element 100 is fixed to the center of the recess of the resin case 210 having the reflector portion 220 with a silver paste 240, and the p-side electrode 211 formed on the resin case 210 and the group III nitride compound semiconductor element 100 p-electrodes 120, n-side electrode 212 formed on the resin case, and n-electrode 140 of group III nitride compound semiconductor device 100 were electrically connected and fixed by gold wires 250, respectively. And the sealing material 230, such as a silicone resin which is a transparent material, was filled in the recessed part of the resin case, and the light-emitting device 200 which protected the group III nitride compound semiconductor element 100 and the gold wire 250 was manufactured.

本発明の実施の形態1に係る発光装置200によれば、III族窒化物系化合物半導体素子100の溝150の側面160にであるジグザグとなる凹凸を形成するため、側面160にて光が拡散され、かつ、側面160の角度α=60度であるため、側面160に到達した光は、全反射せず、発光素子外へ取り出される。そして、溝150の反対側にも、反射面となるジグザグとなる凹凸面が存在するため、効率よく発光観測面側に光を取り出すことが可能となる。   According to the light emitting device 200 according to the first embodiment of the present invention, light is diffused on the side surface 160 in order to form the zigzag unevenness that is the side surface 160 of the groove 150 of the group III nitride compound semiconductor element 100. In addition, since the angle α of the side surface 160 is 60 degrees, the light reaching the side surface 160 is not totally reflected and is extracted outside the light emitting element. And since the uneven surface which becomes a zigzag which becomes a reflective surface exists also on the opposite side of the groove | channel 150, it becomes possible to extract light to the light emission observation surface side efficiently.

なお、実施の形態に示したIII族窒化物系化合物半導体素子100の形状には、特に限らず、例えば、発光素子100に設けられる溝150のジグザクは、波型に置き換えることが出来、溝150側面160の角度αは、60度に限らず、55度以上で90度未満が好ましく、さらに言えば、55度以上70度が好ましい。なぜなら、55度より角度が小さくなると、光が側面で全反射して、光が取り出せなくなり、70度を越える角度では、取り出された光が再度発光素子内に取り込まれる恐れがあるためである。
(実施の形態2)
図4に、本発明の実施の形態2に係るIII族窒化物系化合物半導体素子300の模式的な平面図を示す。
Note that the shape of the group III nitride compound semiconductor device 100 shown in the embodiment is not particularly limited. For example, the zigzag of the groove 150 provided in the light emitting element 100 can be replaced with a wave shape. The angle α of the side surface 160 is not limited to 60 degrees, but is preferably 55 degrees or more and less than 90 degrees, and more preferably 55 degrees or more and 70 degrees. This is because if the angle is smaller than 55 degrees, the light is totally reflected on the side surface and the light cannot be extracted, and if it exceeds 70 degrees, the extracted light may be taken into the light emitting element again.
(Embodiment 2)
FIG. 4 shows a schematic plan view of a group III nitride compound semiconductor device 300 according to the second embodiment of the present invention.

III族窒化物系化合物半導体素子300は周囲の残余部320と中心の島状部分310を連結する連結部330が形成されていることを除きIII族窒化物系化合物半導体素子100と同様に製造した。   The group III nitride compound semiconductor device 300 is manufactured in the same manner as the group III nitride compound semiconductor device 100 except that a connecting portion 330 that connects the surrounding residual portion 320 and the central island portion 310 is formed. .

本発明の実施の形態2に係るIII族窒化物系化合物半導体素子200によれば、連結部分330が形成されるため、同一基板上で形成される多数の発光素子のp層側が素子分離するまで電気的に接続しているため、個々の発光素子となる部分で荷電することがないため、pn界面が静電気破壊されにくい効果がある。   According to the group III nitride compound semiconductor device 200 according to the second embodiment of the present invention, since the connecting portion 330 is formed, until the p-layer side of many light emitting devices formed on the same substrate is separated. Since they are electrically connected, they are not charged at the portions that become individual light emitting elements, and the pn interface is less likely to be electrostatically destroyed.

図1は本発明の実施の形態1にかかる半導体発光素子の平面図である。FIG. 1 is a plan view of a semiconductor light emitting element according to a first embodiment of the present invention. 図2は本発明の実施の形態1にかかる半導体発光素子の断面図である。FIG. 2 is a cross-sectional view of the semiconductor light emitting element according to the first embodiment of the present invention. 図3は本発明の実施の形態1にかかる発光装置の断面図である。FIG. 3 is a sectional view of the light emitting device according to the first embodiment of the present invention. 図4は本発明の実施の形態2にかかるの半導体発光素子の平面図である。FIG. 4 is a plan view of a semiconductor light emitting element according to the second embodiment of the present invention.

符号の説明Explanation of symbols

100、300 発光素子
120 p電極
140 n電極
150 溝
200 発光装置
100, 300 Light-emitting element 120 p-electrode 140 n-electrode 150 groove 200 light-emitting device

Claims (4)

発光装置において、
p層及びn層が積層され、前記p層と電気的に接続しているp電極及び前記n層と電気的に接続しているn電極が同一面に形成さている半導体発光素子と、
前記半導体発光素子は前記p電極及び前記n電極のそれぞれに電気的に接続する回路を有するマウント部材に電極を上面にしてマウントし、前記p電極及び前記n電極は、前記マウント部材の前記回路に導電性ワイヤを介して接続され、
前記半導体発光素子は、前記p層から前記n層までの斜面を有し、前記斜面は表面凹凸構造からなる、
ことを特徴とする発光装置。
In the light emitting device,
a semiconductor light emitting element in which a p layer and an n layer are stacked, and a p electrode electrically connected to the p layer and an n electrode electrically connected to the n layer are formed on the same surface;
The semiconductor light emitting device is mounted on a mount member having a circuit electrically connected to each of the p electrode and the n electrode with the electrode as an upper surface, and the p electrode and the n electrode are mounted on the circuit of the mount member. Connected through conductive wires,
The semiconductor light emitting device has a slope from the p layer to the n layer, and the slope has a surface uneven structure.
A light emitting device characterized by that.
前記半導体発光素子の前記斜面は、溝状に形成されていることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the slope of the semiconductor light emitting element is formed in a groove shape. 前記凹凸構造は、表裏方向に伸びたのこぎり歯状であることを特徴とする請求項1又は2記載の発光装置。   The light emitting device according to claim 1, wherein the concavo-convex structure has a sawtooth shape extending in a front and back direction. 前記半導体発光素子の前記斜面は、55度以上70度以下の角度を有することを特徴とする請求項1から3のいずれかに記載の発光装置。   4. The light emitting device according to claim 1, wherein the inclined surface of the semiconductor light emitting element has an angle of 55 degrees or more and 70 degrees or less.
JP2004367734A 2004-12-20 2004-12-20 Light emitting device Withdrawn JP2006173533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367734A JP2006173533A (en) 2004-12-20 2004-12-20 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367734A JP2006173533A (en) 2004-12-20 2004-12-20 Light emitting device

Publications (1)

Publication Number Publication Date
JP2006173533A true JP2006173533A (en) 2006-06-29

Family

ID=36673917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367734A Withdrawn JP2006173533A (en) 2004-12-20 2004-12-20 Light emitting device

Country Status (1)

Country Link
JP (1) JP2006173533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059969A (en) * 2007-08-31 2009-03-19 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element, light-emitting device, luminaire, display unit, and method for fabricating semiconductor light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059969A (en) * 2007-08-31 2009-03-19 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element, light-emitting device, luminaire, display unit, and method for fabricating semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
JP3659098B2 (en) Nitride semiconductor light emitting device
JP2666228B2 (en) Gallium nitride based compound semiconductor light emitting device
CN101882660B (en) Light emitting device, package, and system
US11094850B2 (en) Light emitting device and lighting apparatus having enhanced optical and electrical characteristics by diffusion barrier layer
KR100895452B1 (en) Positive electrode for semiconductor light-emitting device
US8772805B2 (en) High efficiency light emitting diode and method for fabricating the same
KR101735670B1 (en) A light emitting device
JP2003152220A (en) Manufacturing method for semiconductor light emitting element and the semiconductor light emitting element
JP5816243B2 (en) Light emitting device and light emitting device package
KR101860320B1 (en) Light emitting device
US8829538B2 (en) Light emitting device package
KR20080089859A (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2009302314A (en) GaN-BASED SEMICONDUCTOR DEVICE
JP5677753B2 (en) Light emitting device and manufacturing method thereof
US9741903B2 (en) Light-emitting device and light emitting device package having the same
JP2004356213A (en) Semiconductor light emitting device
KR20140013249A (en) Uv light emitting device and light emitting device package
JP5379703B2 (en) Ultraviolet semiconductor light emitting device
KR101689164B1 (en) Light-Emitting device
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
JP4483566B2 (en) Light emitting device
KR20210023423A (en) Light emitting device and method of fabricating the same
JP2006173533A (en) Light emitting device
KR102237137B1 (en) Light emitting device and light emitting device package thereof
JP2003197966A (en) Gallium nitride-based compound semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090930