JP3659098B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP3659098B2
JP3659098B2 JP34003999A JP34003999A JP3659098B2 JP 3659098 B2 JP3659098 B2 JP 3659098B2 JP 34003999 A JP34003999 A JP 34003999A JP 34003999 A JP34003999 A JP 34003999A JP 3659098 B2 JP3659098 B2 JP 3659098B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
type
light emitting
emitting device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34003999A
Other languages
Japanese (ja)
Other versions
JP2001156331A (en
Inventor
稔生 小牧
晃行 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP34003999A priority Critical patent/JP3659098B2/en
Publication of JP2001156331A publication Critical patent/JP2001156331A/en
Application granted granted Critical
Publication of JP3659098B2 publication Critical patent/JP3659098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4945Wire connectors having connecting portions of different types on the semiconductor or solid-state body, e.g. regular and reverse stitches

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化物半導体を利用した発光素子に関わり、特に発光効率を高めより高輝度に発光可能な窒化物半導体発光素子を提供するものである。
【0002】
【従来技術】
今日、窒化物半導体を利用した発光素子はそのバンドギャップによって紫外域から赤色領域までが効率よく発光可能な発光素子として注目されている。このような窒化物半導体を用いた発光素子400の一例を図4に示す。図4にはサファイア基板上にGaNのバッファ層を介してn型GaNを利用したn型コンタクト層、多重量子井戸構造とされるGaN層とInGaN層とを複数層積層させた発光層、p型AlGaNのクラッド層、p型GaNのp型コンタクト層及びp型コンタクト層からなる窒化物半導体層401が形成されLEDチップである発光ダイオードを構成している。n型コンタクト層の一部は露出されn型電極402が又透光性電極403上にはp型電極404が積層されている。n型及びp型電極に電流を流すことにより、LEDチップから所望の発光スペクトルを効率よく放出させることができる。
【0003】
しかしながら、窒化物半導体を利用した発光素子の利用分野が広がるにつれて、より発光輝度が高く、且つ消費電力の低い発光効率の優れた発光素子が要望されている。特に、窒化物半導体を利用した発光素子はその半導体特性が十分解明されていないことから、発光素子の効率向上が極めて難しい。
【0004】
【発明が解決しようとする課題】
したがって、上記発光素子の構成では十分ではなく、本発明は更なる発光効率向上が可能な窒化物半導体を利用した発光素子を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、基板上にp型及びn型に積層された少なくともGaを含む窒化物半導体を有する発光素子であって、p型及びn型に積層された少なくともGaを含む電気的に複数分離された島状の窒化物半導体層は、基板の外周状に互いに隣り合って配置されてなり、島状の窒化物半導体層の電極は、それぞれ電気的に直列及び/又は並列に接続され、基板上の外周に沿ってp型及びn型の台座電極が設けられている、窒化物半導体発光素子である。これによって、より発光輝度が高く、且つ消費電力の低い発光効率の優れた発光素子とすることができる。また中心光度を向上させることができる。
【0006】
本発明の請求項2に記載の窒化物半導体発光素子は、上記p型及びn型の台座電極は対向する隅部に設けられている、請求項1に記載の窒化物半導体発光素子である。これにより島状に分離した窒化物半導体層から均一に発光することができる。
【0007】
本発明に記載の窒化物半導体発光素子は、導電性ワイヤがそれぞれ電気的に分離された個々の窒化物半導体層の電極をボールボンディングを用いて順次結線することもできる。ウエッジボンダーを用いて結線されたものと比べステッチボンドと同等の結線を行うことができる。したがって、成膜基板上に形成された各窒化物半導体の配置や方向性に関係なくボンディングすることが可能となる。これにより異種混合されたパターンでのボンディング可能化・ボンディング時間の短縮・電極接合強度の向上を図ることができる。
本発明に記載の窒化物半導体発光素子は、窒化物半導体層の少なくとも一部の電極が、ステッチボンディングされたワイヤ上に、ボールボンディングされ隣接する窒化物半導体層の電極と電気的に接続することもできる。これによって、ステッチボンディング上にボールボンディングをする場合においても、同一成膜基板上であるため信頼性よく比較的強固に密着することができる。また、小型化時においても量産性よく窒化物半導体を形成させることができる。これによって、より発光効率を高めた窒化物半導体発光素子とすることができる。
【0008】
【発明の実施の形態】
本発明は種々の実験の結果、窒化物半導体発光素子から放出される光は同一電圧を印可したときに発光する発光強度はその面積の大きさに比例しないことを見出し本発明をなすに至った。さらに、このような発光素子における結線がで量産性や信頼性が大きく変わることを見出し本発明を成すにいたった。
【0009】
すなわち、窒化物半導体発光素子においては同一電流を流した場合、発光素子を大きくすればするほど、その発光面積の増大に伴って発光輝度が高くなるものではない。むしろ発光効率が低下する傾向にある。そのため、本発明は複数の窒化物半導体を直列接続させた発光素子とすることにより、同一発光面積の単一発光素子よりも発光効率の優れた発光素子としうるものである。なお、本発明による発光効率向上は不明であるが窒化物半導体自体の抵抗が高く、欠陥が多いことに起因していると考えられる。次に、発光効率を向上させるために、同一成膜基板上を複数の窒化物半導体を積層させ、それぞれの電極を導電性ワイヤを用いて電気的に接続させた場合、直並列接続の組合せによっては極めて狭い箇所に方向性なく強固にワイヤを密着させる必要がある。このような場合、ボールボンディングを利用し、ステッチボンディング上には再びボールを形成させることで安定性よく密着性を向上させることができる。特に、本発明のごときく極めて狭い空間でもワイヤボンディングさせる場合は、同一成膜基板にステッチボンド及びボールボンドを続けて行っても安定して密着性よく形成することができる。
【0010】
以下、本発明の窒化物半導体発光素子について図1を用いて説明する。図1は本発明の窒化物半導体発光素子を示した模式的平面図であり、図2は図1のAA断面図である。略矩形状のサファイア基板105上に複数の島状に分離した窒化物半導体層101が形成されている。島状に分離した窒化物半導体層101はそれぞれがサファイア基板105上に、GaNを用いたバッファ層201、n型コンタクト層となるGaN202、InGaNとGaNとを複数組積層させた量子井戸構造とされる発光層203、p型クラッド層となるAlGaN204、p型コンタクト層となるGaN205が順次積層されている。p型コンタクト層上にはほぼ全面に透光性電極206及びその上にp型台座電極207が設けられている。他方、エッチングにより矩形状窒化物半導体の一部を部分的に除去してn型コンタクト層を露出させてある。なお、n型コンタクト層の露出とサファイア基板上に各窒化物半導体を島状に分離させることをエッチングにより同時に行うこともできる。n型コンタクト層上にはn型の台座電極が形成されており、平面状から見てp型台座電極とn型台座電極とが矩形形状の対向する隅部に配置されている。また、島状に分離された各p型及びn型の台座電極は、サファイア基板の外周状に沿って隣り合う島状の窒化物半導体と近接して配置されている。少なくとも一箇所のp型及びn型台座電極間は金線を利用してダイボンド接続され直列接続されている。台座電極間が近接して配置されているために、金線の使用量が極めて少なくてすむ。また、対向する隅部に各p型及びn型の台座電極が設けられていることにより、島状に分離した窒化物半導体層から均一に発光することができる。さらに、サファイア基板の外周に沿ってp型及びn型の台座電極が設けられていることにより、窒化物半導体発光素子の中心光度を向上させることができる。そのため、このような発光素子をレンズ効果のあるモールド部材で被覆させるときには光学設計を極めて簡単に行うことができる。なお、各島状の窒化物半導体層を電気的に絶縁するために絶縁性保護膜208を形成してもよい。
【0011】
図中では4個の島状に分離させたp型及びn型がそれぞれ積層された窒化物半導体を金線で3箇所直列に接続させてある。金線にて接続させていない隣接する窒化物半導体層上のp型及びn型の台座電極は、窒化物半導体発光素子のp電極及びn電極として機能することとなる。各ワイヤー103は、窒化物半導体層の一方の電極上でボールボンディングし第一のボール部102を形成した後、隣接する窒化物半導体層の電極とステッチボンディングする。このステッチチボンディング部にはこの上から更にボールボンディングを行い第二のボール部104を形成させるる。以下、本発明の窒化物半導体発光素子の具体的形成方法について説明するがこれのみに限られないことはいうまでもない。
【0012】
【実施例】
あらかじめ、酸で表面を洗浄させた2インチのサファイア基板(α−アルミナ基板)をMOCVD法を利用する反応装置内に配置させる。真空排気後、1000℃にまで上げクリーニングを行う。続いて、水素ガスを流しながら大気圧とさせる。次に、成膜温度を530℃に下げ反応装置内に、原料ガスとしてTMG(トリメチルガリウム)、窒素ガスをキャリアガスとして水素ガスと共に流し、厚さ約200ÅのGaN層を成膜させる。なお、バッファ層は窒化物半導体と基板との格子不整合を緩和させるために設けられるものであり、GaNの他、AlN、GaAlNなどを好適に利用することができる。また、基板はサファイアの他、スピネル、ルビーなど種々のものを利用することができる。
【0013】
次に、一旦キャリアガスのみとした後に成膜温度を1050℃に上げる。成膜温度が一定となった後に原料ガスとしてTMGガス、窒素ガス、ドーパントガスとしてシランガス、キャリアガスとして水素ガスを流しn型GaNであるコンタクト層兼クラッド層を成膜させる。なお、窒化物半導体は静電耐圧が他の半導体に比べて低いため、n型コンタクト層をアンドープのGaNなどでサンドイッチさせ結晶性と耐電圧を向上させ得るように構成しても良い。
【0014】
次に、活性層としてGaNとInGaNの多層膜を形成させる。成膜温度を1050℃に維持したまま、原料ガスとしてTMGガス、窒素ガス及びキャリアガスとして水素ガスを流してGaN層を形成する。続いて、一旦キャリアガスのみとして、成膜温度を800℃にまで低下させる。温度が一定となった後に、原料ガスとしてTMGガス、TMI(トリメチルインジウム)ガス、窒素ガスを流し、InGaN層を形成させる。これを3回繰り返した後、最後に上述のアンドープGaNと同様の成膜条件にてGaN層を成膜させる。これにより、多重量子井戸構造とされる活性層を成膜させる。発光素子の発光スペクトルは井戸層のバンドギャップに左右されるためInGaNの他、AlGaInNやAlGaNなどとすることができる。同様に、Siなどのn型不純物やMgなどのp型不純物を含有させることもできる。
【0015】
活性層成膜後、成膜温度を1050℃に保持して、原料ガスをTMA(トリメチルアルミニウム)ガス、TMGガス、窒素ガス、ドーパントガスとしてCp2Mgガス及びキャリアガスとして水素ガスを流し、p型クラッド層となるAlGaN層を成膜させる。p型クラッド層は結晶性を向上させためにGaNとAlGaNの超格子構造とさせることもできる。
【0016】
成膜温度を維持したまま、原料ガスをTMGガス、窒素ガス、ドーピングガスとしてCp2Mgガス及びキャリアガスとして水素ガスを流し、p型コンタクト層となるGaN層を成膜させることができる。
【0017】
こうして成膜させた窒化物半導体ウエハにマスクをかけた後、エッチングにより本発明のごとく、同一成膜基板上に電気的に分離され且つ、pn接合などを持った複数の島状半導体の窒化物半導体を個々に形成する。n型電極を形成させるn型コンタクト層の一部及び窒化物半導体を島状に分離させマスクを除去後、再び電極形成用のマスクを形成させてスパッタリング法によりp型透光性電極としてAuを成膜させる。
【0018】
p型台座電極としてNi/Au及びn型台座電極としてW/Alを、あらかじめ図1のごとく配置できるようにマスクを形成してある。電極形成後、電極表面を残して、SiO2により保護膜を形成させる。
【0019】
続いて島状に分離した4個の窒化物半導体をひとまとめにして、ダイサー及びスクライバーにより分離した溝に沿ってサファイア基板を切断する。
【0020】
次に、島状の窒化物半導体のn型台座電極と、隣り合う島状の窒化物半導体のp型台座電極とをワイヤボンディングにより電気的に直列接続させる。より具体的には、あらかじめ金線にボールを形成させた後、島状窒化物半導体のn型台座電極或いはp型台座電極にボールボンディングさせる。ボールボンディングさせた金線を延ばしつつ、隣り合う島状窒化物半導体のp型台座電極或いはn型台座電極にステッチボンディングさせ隣り合う島状窒化物半導体を直列接続させる。続いて、成膜基板上に形成された窒化物半導体を固定させるワークを回転させることなく、一度ステッチボンディングさせたワイヤ上に再びボールボンディングを行う。続いて、ステッチボンディング上にボールボンディングさせた金線を延ばしつつ、次に隣り合う隣り合う島状窒化物半導体のp型台座電極或いはn型台座電極にステッチボンディングさせ隣り合う島状窒化物半導体を電気的に直列接続させる。なお、窒化物半導体の大きさが極めて小さい場合、ボールボンディングをn型及びp型台座電極に直接押しつけることによって一度に直列接続させることもできる。
【0021】
同一の発光面積を持った単一窒化物半導体発光素子に比べて、同一成膜基板上に形成させた複数の窒化物半導体からなる窒化物半導体発光素子の方が発光効率が高い。そのために直列接続のみに限らず、並列接続或いは直並列接続した本発明の窒化物半導体発光素子とさせることもできる。また、各島状窒化物半導体を集中して配置させることもできるし、図3のごとく、直線上に配置させることもできる。サファイア基板305上に形成させた島状の窒化物半導体素子301を図3(A)に示すようにワイヤー303で直列接続させる場合、各島状窒化物半導体に抵抗を少なく電流を流す必要があることからボワイヤボンディングにより直列接続させることが好ましい。特に、ボールボンディングさせた第一のボール部302の他方に形成されるステッチボンディング上には再びボールとして第二のボール部304を形成することが好ましい。同様に図3(B)に示すごとく並列接続させることもできる。
【0022】
島状窒化物半導体の個々の大きさが約150μm角として上述の窒化物半導体発光素子を形成させる。また、本発明と比較のために発光面積がほぼ同様とさせ、一つの窒化物半導体を積層させた以外は同様にして約600μm角の窒化物半導体発光素子を形成させる。本発明の窒化物半導体発光素子の発光強度を100として比較したところ、比較のための発光素子は82%にしかすぎなかった。本発明の窒化物半導体は一つの窒化物半導体に比較して発光効率が優れていることが分かったが、島状窒化物半導体の個々の大きさがそれぞれ約80μmより大きく、約300μm未満において、より量産性を満たしつつ効率を向上させることができる。したがって、より発光面積の大きい窒化物半導体を高輝度に発光させるためには、個々に分割させた窒化物半導体を直列に接続させた窒化物半導体とすることが好ましい。なお、図においては、正方形の窒化物半導体素子のみを示したが、サファイア基板の分離しやすさのために菱形やフリップチップ実装を考慮した長方形としたものにも応用できる。
【0023】
【発明の効果】
本発明の窒化物半導体発光素子とすることによって、大面積においても効率よく発光可能な窒化物半導体発光素子とすることができる。また、ウエッジボンダーでのステッチボンドではできなかった方向性なくボンディングすることが可能となる。したがって、異種混合されたパターンでのボンディグ可能化・ボンディグ時間の短縮・電極接合強度の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】 本発明の窒化物半導体発光素子の模式的平面図である。
【図2】 図1のAA断面における模式的断面図である。
【図3】 図3(A)は直列接続させた本発明の別の窒化物半導体発光素子の模式的平面図であり、図3(B)は、並列接続させた本発明の窒化物半導体発光素子の模式的平面図である。
【図4】 本発明と比較のために示す窒化物半導体発光素子の模式的平面図である。
【符号の説明】
100…本発明の窒化物半導体発光素子
101…同一成膜基板上に形成された個々の島状窒化物半導体
102…第一のボール部
103…ワイヤー
104…スッテチボンディグ上に形成された第二のボール部
105…サファイア基板
201…バッファ層
202…n型コンタクト層
203…多重量子井戸構造とされる活性層
204…p型クラッド層
205…p型コンタクト層
206…透光性電極
207…p型台座電極
208…絶縁性保護膜
300…直列接続された本発明の窒化物半導体発光素子
301…同一成膜基板上に形成された個々の島状窒化物半導体
302…ワイヤーのボール
303…ワイヤー
304…スッテチボンディグ上に形成されたボール
305…サファイア基板
301…並列接続された本発明の窒化物半導体発光素子
400…本発明と比較のために示された窒化物半導体発光素子
401…窒化物半導体層
402…n型電極
403…透光性電極
404…p型電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device using a nitride semiconductor, and more particularly, to provide a nitride semiconductor light emitting device capable of emitting light with higher luminance by increasing luminous efficiency.
[0002]
[Prior art]
Today, light-emitting elements using nitride semiconductors are attracting attention as light-emitting elements that can emit light efficiently from the ultraviolet region to the red region due to their band gaps. An example of a light-emitting element 400 using such a nitride semiconductor is shown in FIG. FIG. 4 shows an n-type contact layer using n-type GaN through a GaN buffer layer on a sapphire substrate, a light emitting layer in which a plurality of GaN layers and InGaN layers having a multiple quantum well structure are stacked, and p-type A nitride semiconductor layer 401 composed of an AlGaN cladding layer, a p-type GaN p-type contact layer, and a p-type contact layer is formed to constitute a light-emitting diode that is an LED chip. A part of the n-type contact layer is exposed, and an n-type electrode 402 is laminated on the translucent electrode 403. By passing a current through the n-type and p-type electrodes, a desired emission spectrum can be efficiently emitted from the LED chip.
[0003]
However, as the field of application of light-emitting elements using nitride semiconductors expands, there is a demand for light-emitting elements that have higher emission luminance and lower power consumption and excellent light emission efficiency. In particular, since the semiconductor characteristics of a light emitting element using a nitride semiconductor have not been sufficiently elucidated, it is extremely difficult to improve the efficiency of the light emitting element.
[0004]
[Problems to be solved by the invention]
Therefore, the structure of the light emitting element is not sufficient, and the present invention is to provide a light emitting element using a nitride semiconductor capable of further improving the light emission efficiency.
[0005]
[Means for Solving the Problems]
The present invention is a light-emitting element having a nitride semiconductor including at least Ga stacked on a substrate in p-type and n-type, and is electrically separated into a plurality of layers including at least Ga stacked in p-type and n-type. The island-shaped nitride semiconductor layers are arranged adjacent to each other on the outer periphery of the substrate, and the electrodes of the island-shaped nitride semiconductor layer are electrically connected in series and / or in parallel to each other on the substrate. This is a nitride semiconductor light emitting device in which p-type and n-type pedestal electrodes are provided along the outer periphery of the substrate. Accordingly, a light-emitting element with higher light emission luminance and lower power consumption and excellent light emission efficiency can be obtained. Further, the central luminous intensity can be improved.
[0006]
The nitride semiconductor light emitting device according to claim 2 of the present invention is the nitride semiconductor light emitting device according to claim 1, wherein the p-type and n-type pedestal electrodes are provided at opposing corners . As a result, light can be emitted uniformly from the nitride semiconductor layer separated into islands.
[0007]
In the nitride semiconductor light emitting device according to the present invention, electrodes of individual nitride semiconductor layers in which conductive wires are electrically separated can be sequentially connected by ball bonding. Wire connection equivalent to a stitch bond can be performed as compared with a wire bonded using a wedge bonder. Therefore, bonding can be performed regardless of the arrangement and direction of each nitride semiconductor formed on the film formation substrate. As a result, bonding with a heterogeneous mixed pattern can be achieved, bonding time can be shortened, and electrode bonding strength can be improved.
In the nitride semiconductor light emitting device according to the present invention, at least a part of the electrodes of the nitride semiconductor layer is ball-bonded on the stitch-bonded wire and electrically connected to the electrode of the adjacent nitride semiconductor layer. You can also. Accordingly, even when ball bonding is performed on stitch bonding, since it is on the same film formation substrate, it can be reliably and relatively firmly adhered. In addition, a nitride semiconductor can be formed with high productivity even at the time of downsizing. As a result, a nitride semiconductor light emitting device with higher luminous efficiency can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various experiments, the present invention has found that the light emitted from the nitride semiconductor light emitting device emits light when the same voltage is applied, and the light emission intensity is not proportional to the size of the area. . Furthermore, the inventors have found that the connection in such a light-emitting element greatly changes mass productivity and reliability.
[0009]
That is, in the nitride semiconductor light emitting device, when the same current is passed, the larger the light emitting device is, the higher the light emission luminance becomes with the increase in the light emitting area. Rather, the luminous efficiency tends to decrease. Therefore, according to the present invention, a light emitting device in which a plurality of nitride semiconductors are connected in series can be a light emitting device having a light emitting efficiency superior to that of a single light emitting device having the same light emitting area. Although the improvement in luminous efficiency according to the present invention is unclear, it is considered that the resistance of the nitride semiconductor itself is high and there are many defects. Next, in order to improve luminous efficiency, when a plurality of nitride semiconductors are stacked on the same film formation substrate and each electrode is electrically connected using a conductive wire, a combination of series-parallel connection is used. Needs to be firmly attached to a very narrow portion without directionality. In such a case, the adhesion can be improved with good stability by using ball bonding and forming the ball again on the stitch bonding. In particular, when wire bonding is performed even in an extremely narrow space as in the present invention, a stable and good adhesion can be formed even if stitch bonding and ball bonding are continuously performed on the same film formation substrate.
[0010]
Hereinafter, the nitride semiconductor light emitting device of the present invention will be described with reference to FIG. FIG. 1 is a schematic plan view showing a nitride semiconductor light emitting device of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. A plurality of island-shaped nitride semiconductor layers 101 are formed on a substantially rectangular sapphire substrate 105. Each of the nitride semiconductor layers 101 separated in an island shape has a quantum well structure in which a buffer layer 201 using GaN, GaN 202 serving as an n-type contact layer, and a plurality of pairs of InGaN and GaN are stacked on a sapphire substrate 105. The light emitting layer 203, the AlGaN 204 serving as a p-type cladding layer, and the GaN 205 serving as a p-type contact layer are sequentially stacked. On the p-type contact layer, a translucent electrode 206 and a p-type base electrode 207 are provided on almost the entire surface. On the other hand, the n-type contact layer is exposed by partially removing a part of the rectangular nitride semiconductor by etching. The exposure of the n-type contact layer and the separation of each nitride semiconductor into islands on the sapphire substrate can be simultaneously performed by etching. An n-type pedestal electrode is formed on the n-type contact layer, and the p-type pedestal electrode and the n-type pedestal electrode are arranged at opposite corners of the rectangular shape when viewed from the plane. The p-type and n-type pedestal electrodes separated into island shapes are arranged in close proximity to adjacent island-shaped nitride semiconductors along the outer periphery of the sapphire substrate. At least one p-type and n-type pedestal electrode is die-bonded and connected in series using a gold wire. Since the base electrodes are arranged close to each other, the amount of gold wire used can be extremely small. Further, by providing the p-type and n-type pedestal electrodes at the opposing corners, light can be emitted uniformly from the nitride semiconductor layer separated into island shapes. Furthermore, by providing the p-type and n-type pedestal electrodes along the outer periphery of the sapphire substrate, the central luminous intensity of the nitride semiconductor light emitting device can be improved. Therefore, when such a light emitting element is covered with a mold member having a lens effect, optical design can be performed very easily. Note that an insulating protective film 208 may be formed to electrically insulate each island-shaped nitride semiconductor layer.
[0011]
In the figure, nitride semiconductors in which p-type and n-type layers separated into four islands are stacked are connected in series at three locations with gold wires. The p-type and n-type pedestal electrodes on the adjacent nitride semiconductor layers that are not connected by the gold wire function as the p-electrode and n-electrode of the nitride semiconductor light-emitting element. Each wire 103 is ball-bonded on one electrode of the nitride semiconductor layer to form the first ball portion 102, and then stitch-bonded to the electrode of the adjacent nitride semiconductor layer. Ball stitching is further performed on the stitching bonding portion from above to form a second ball portion 104. Hereinafter, a specific method for forming the nitride semiconductor light emitting device of the present invention will be described, but it is needless to say that the method is not limited thereto.
[0012]
【Example】
A 2-inch sapphire substrate (α-alumina substrate) whose surface is washed with an acid in advance is placed in a reaction apparatus using the MOCVD method. After evacuation, the temperature is raised to 1000 ° C. for cleaning. Subsequently, atmospheric pressure is applied while flowing hydrogen gas. Next, the film formation temperature is lowered to 530 ° C., and TMG (trimethylgallium) as a source gas and nitrogen gas as a carrier gas are flowed together with hydrogen gas in the reactor to form a GaN layer having a thickness of about 200 mm. The buffer layer is provided to alleviate lattice mismatch between the nitride semiconductor and the substrate, and AlN, GaAlN, etc. can be suitably used in addition to GaN. In addition to sapphire, various substrates such as spinel and ruby can be used.
[0013]
Next, after only the carrier gas is used, the film forming temperature is raised to 1050 ° C. After the deposition temperature becomes constant, a contact layer and cladding layer made of n-type GaN is deposited by flowing TMG gas, nitrogen gas, silane gas as a dopant gas, and hydrogen gas as a carrier gas. Since nitride semiconductors have a lower electrostatic withstand voltage than other semiconductors, an n-type contact layer may be sandwiched with undoped GaN or the like so that crystallinity and withstand voltage can be improved.
[0014]
Next, a multilayer film of GaN and InGaN is formed as an active layer. While maintaining the film forming temperature at 1050 ° C., a TMG gas, a nitrogen gas, and a hydrogen gas as a carrier gas are allowed to flow to form a GaN layer. Subsequently, the film forming temperature is lowered to 800 ° C. once using only the carrier gas. After the temperature becomes constant, TMG gas, TMI (trimethylindium) gas, and nitrogen gas are flowed as source gases to form an InGaN layer. After repeating this three times, a GaN layer is finally formed under the same film formation conditions as the above-mentioned undoped GaN. Thereby, an active layer having a multiple quantum well structure is formed. Since the emission spectrum of the light emitting element depends on the band gap of the well layer, it can be AlGaInN, AlGaN or the like in addition to InGaN. Similarly, an n-type impurity such as Si or a p-type impurity such as Mg can be contained.
[0015]
After film formation of the active layer, the film formation temperature is maintained at 1050 ° C., TMA (trimethylaluminum) gas, TMG gas, nitrogen gas, Cp 2 Mg gas as the dopant gas, and hydrogen gas as the carrier gas are allowed to flow, p An AlGaN layer to be a mold cladding layer is formed. The p-type cladding layer can also have a superlattice structure of GaN and AlGaN in order to improve crystallinity.
[0016]
While maintaining the film formation temperature, the source gas can be TMG gas, nitrogen gas, Cp2Mg gas as a doping gas, and hydrogen gas as a carrier gas can be flown to form a GaN layer to be a p-type contact layer.
[0017]
After masking the nitride semiconductor wafer thus formed, a plurality of island-shaped semiconductor nitrides having a pn junction and the like electrically isolated on the same film formation substrate by etching as in the present invention Semiconductors are formed individually. A part of the n-type contact layer for forming the n-type electrode and the nitride semiconductor are separated into islands, the mask is removed, a mask for electrode formation is formed again, and Au is formed as a p-type translucent electrode by sputtering. Make a film.
[0018]
A mask is formed in advance so that Ni / Au as the p-type pedestal electrode and W / Al as the n-type pedestal electrode can be arranged as shown in FIG. After electrode formation, a protective film is formed of SiO 2 leaving the electrode surface.
[0019]
Subsequently, the four nitride semiconductors separated into island shapes are collected together, and the sapphire substrate is cut along the grooves separated by the dicer and the scriber.
[0020]
Next, the n-type base electrode of the island-shaped nitride semiconductor and the p-type base electrode of the adjacent island-shaped nitride semiconductor are electrically connected in series by wire bonding. More specifically, after a ball is formed in advance on a gold wire, ball bonding is performed on an n-type pedestal electrode or a p-type pedestal electrode of an island-like nitride semiconductor. While extending the ball-bonded gold wire, the adjacent island-shaped nitride semiconductors are connected in series by stitch bonding to the p-type base electrode or the n-type base electrode of the adjacent island-shaped nitride semiconductor. Subsequently, ball bonding is performed again on the wire once stitch-bonded without rotating the work for fixing the nitride semiconductor formed on the film formation substrate. Subsequently, while extending the gold wire ball-bonded on the stitch bonding, the next adjacent island-shaped nitride semiconductor is stitch-bonded to the adjacent p-type base electrode or n-type base electrode of the adjacent island-shaped nitride semiconductor. Electrically connected in series. When the size of the nitride semiconductor is extremely small, the ball bonding can be directly connected to the n-type and p-type pedestal electrodes to be connected in series at a time.
[0021]
Compared with a single nitride semiconductor light emitting device having the same light emitting area, a nitride semiconductor light emitting device made of a plurality of nitride semiconductors formed on the same deposition substrate has higher luminous efficiency. Therefore, not only the serial connection but also the nitride semiconductor light emitting device of the present invention connected in parallel or in series and parallel can be used. Also, the island-like nitride semiconductors can be concentrated and arranged on a straight line as shown in FIG. When the island-shaped nitride semiconductor elements 301 formed on the sapphire substrate 305 are connected in series with the wire 303 as shown in FIG. 3A, it is necessary to pass a current through each island-shaped nitride semiconductor with less resistance. Therefore, it is preferable to connect them in series by means of bowire bonding. In particular, it is preferable to form the second ball portion 304 again as a ball on the stitch bonding formed on the other side of the first ball portion 302 subjected to ball bonding. Similarly, they can be connected in parallel as shown in FIG.
[0022]
The above-described nitride semiconductor light emitting device is formed with the individual size of the island-like nitride semiconductor being about 150 μm square. For comparison with the present invention, a nitride semiconductor light emitting element having a square of about 600 μm is formed in the same manner except that the light emitting area is substantially the same and one nitride semiconductor is laminated. When the light emission intensity of the nitride semiconductor light emitting device of the present invention was compared with 100, the light emitting device for comparison was only 82%. The nitride semiconductor of the present invention was found to have better luminous efficiency than one nitride semiconductor, but the individual size of the island-like nitride semiconductor is greater than about 80 μm and less than about 300 μm, Efficiency can be improved while satisfying mass productivity. Therefore, in order to emit a nitride semiconductor having a larger light emitting area with high luminance, it is preferable to use a nitride semiconductor in which individually divided nitride semiconductors are connected in series. Although only a square nitride semiconductor element is shown in the figure, the present invention can also be applied to a rectangular shape considering rhombus or flip chip mounting for easy separation of the sapphire substrate.
[0023]
【The invention's effect】
By using the nitride semiconductor light emitting device of the present invention, a nitride semiconductor light emitting device capable of efficiently emitting light even in a large area can be obtained. In addition, it becomes possible to perform bonding without directionality that could not be achieved by stitch bonding with a wedge bonder. Accordingly, it is possible to enable bonding with a mixed pattern, shorten the bonding time, and improve the electrode bonding strength.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a nitride semiconductor light emitting device of the present invention.
FIG. 2 is a schematic cross-sectional view taken along the AA cross section of FIG.
FIG. 3 (A) is a schematic plan view of another nitride semiconductor light emitting device of the present invention connected in series, and FIG. 3 (B) shows the nitride semiconductor light emitting device of the present invention connected in parallel. It is a schematic plan view of an element.
FIG. 4 is a schematic plan view of a nitride semiconductor light emitting device shown for comparison with the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 ... Nitride semiconductor light-emitting device 101 of this invention ... Individual island-like nitride semiconductor 102 formed on the same film-forming substrate ... First ball part 103 ... Wire 104 ... Second formed on a solder bond Ball portion 105 of sapphire substrate 201 Buffer layer 202 n-type contact layer 203 Active layer 204 having a multiple quantum well structure p-type cladding layer 205 p-type contact layer 206 translucent electrode 207 p-type Base electrode 208 ... Insulating protective film 300 ... Nitride semiconductor light emitting element 301 of the present invention connected in series ... Individual island-like nitride semiconductor 302 formed on the same film formation substrate 302 ... Wire ball 303 ... Wire 304 ... Balls 305 formed on the solder bond ... Sapphire substrate 301 ... Nitride semiconductor light emitting device 400 of the present invention connected in parallel. And nitride semiconductor light emitting element 401 for comparison with nitride semiconductor layer 402 n-type electrode 403 translucent electrode 404 p-type electrode

Claims (2)

基板上にp型及びn型に積層された少なくともGaを含む窒化物半導体を有する発光素子であって、前記p型及びn型に積層された少なくともGaを含む電気的に複数分離された島状の窒化物半導体層は、前記基板の外周状に互いに隣り合って配置されてなり、前記島状の窒化物半導体層の電極は、それぞれ電気的に直列及び/又は並列に接続され、前記基板上の外周に沿って前記p型及びn型の台座電極が設けられている、窒化物半導体発光素子。A light-emitting element having a nitride semiconductor including at least Ga stacked on a substrate in p-type and n-type, and having a plurality of electrically isolated islands including at least Ga stacked in p-type and n-type And the electrodes of the island-shaped nitride semiconductor layers are electrically connected in series and / or in parallel , respectively , on the substrate. A nitride semiconductor light emitting device in which the p-type and n-type pedestal electrodes are provided along the outer periphery of the semiconductor device. 前記p型及びn型の台座電極は対向する隅部に設けられている、請求項1に記載の窒化物半導体発光素子。The nitride semiconductor light-emitting element according to claim 1, wherein the p-type and n-type pedestal electrodes are provided at opposing corners .
JP34003999A 1999-11-30 1999-11-30 Nitride semiconductor light emitting device Expired - Lifetime JP3659098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34003999A JP3659098B2 (en) 1999-11-30 1999-11-30 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34003999A JP3659098B2 (en) 1999-11-30 1999-11-30 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001156331A JP2001156331A (en) 2001-06-08
JP3659098B2 true JP3659098B2 (en) 2005-06-15

Family

ID=18333160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34003999A Expired - Lifetime JP3659098B2 (en) 1999-11-30 1999-11-30 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3659098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620399A (en) * 2012-09-07 2015-05-13 首尔伟傲世有限公司 Wafer level light-emitting diode array

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585014B2 (en) * 2002-04-12 2010-11-24 ソウル セミコンダクター カンパニー リミテッド Light emitting device
JP3822545B2 (en) * 2002-04-12 2006-09-20 士郎 酒井 Light emitting device
WO2004023568A1 (en) 2002-08-29 2004-03-18 Nitride Semiconductors Co.,Ltd. Light-emitting device having light-emitting elements
KR101138944B1 (en) * 2005-01-26 2012-04-25 서울옵토디바이스주식회사 Light emitting device having a plurality of light emitting cells connected in series and method of fabricating the same
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
CN101672436B (en) 2005-06-28 2013-06-12 首尔Opto仪器股份有限公司 Light emitting device for AC power operation
US8896216B2 (en) 2005-06-28 2014-11-25 Seoul Viosys Co., Ltd. Illumination system
KR100608920B1 (en) 2005-06-30 2006-08-03 서울옵토디바이스주식회사 Wire form of light emitting device, wherein a plurality of light emitting cell is arrayed
KR100721454B1 (en) * 2005-11-10 2007-05-23 서울옵토디바이스주식회사 Light emitting device for ac power operation having photonic crystal structure and method of fbbricating the same
US7948770B2 (en) 2005-12-09 2011-05-24 Industrial Technology Research Institute AC—LED system in single chip with three metal contacts
EP2372224A3 (en) 2005-12-21 2012-08-01 Cree, Inc. Lighting Device and Lighting Method
WO2007075742A2 (en) 2005-12-21 2007-07-05 Cree Led Lighting Solutions, Inc. Lighting device
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
WO2007123938A2 (en) 2006-04-18 2007-11-01 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US8998444B2 (en) 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
WO2007124036A2 (en) 2006-04-20 2007-11-01 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
CN101485001B (en) 2006-05-01 2011-02-02 三菱化学株式会社 Integrated semiconductor light emitting device and method for manufacturing same
WO2007126093A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Integrated semiconductor light-emitting device and its manufacturing method
KR20090019871A (en) 2006-05-31 2009-02-25 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device and method of lighting
KR100765240B1 (en) 2006-09-30 2007-10-09 서울옵토디바이스주식회사 Light emitting diode package having light emitting cell with different size and light emitting device thereof
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
JP5481769B2 (en) * 2006-11-22 2014-04-23 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
EP2089654B1 (en) 2006-12-07 2016-08-03 Cree, Inc. Lighting device and lighting method
WO2008091837A2 (en) 2007-01-22 2008-07-31 Cree Led Lighting Solutions, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
KR101506356B1 (en) 2007-01-22 2015-03-26 크리, 인코포레이티드 Illumination devices using externally interconnected arrays of light emitting devices, and methods of febricating same
US20080198572A1 (en) 2007-02-21 2008-08-21 Medendorp Nicholas W LED lighting systems including luminescent layers on remote reflectors
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
KR100974923B1 (en) * 2007-03-19 2010-08-10 서울옵토디바이스주식회사 Light emitting diode
KR20100017668A (en) 2007-05-08 2010-02-16 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device and lighting method
TWI489648B (en) 2007-05-08 2015-06-21 Cree Inc Lighting device and lighting method
KR20100022969A (en) 2007-05-08 2010-03-03 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device and lighting method
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
EP2153113B1 (en) 2007-05-08 2016-01-06 Cree, Inc. Lighting device and lighting method
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
TWI481068B (en) 2007-10-10 2015-04-11 克里公司 Lighting device and method of making
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8333631B2 (en) 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US9324691B2 (en) 2009-10-20 2016-04-26 Epistar Corporation Optoelectronic device
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
US20120097985A1 (en) * 2010-10-21 2012-04-26 Wen-Huang Liu Light Emitting Diode (LED) Package And Method Of Fabrication
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US20130050653A1 (en) 2011-08-23 2013-02-28 Stanley Electric Co., Ltd. Led array capable of reducing uneven brightness distribution
US8937323B2 (en) 2011-09-02 2015-01-20 Stanley Electric Co., Ltd. LED array capable of reducing uneven brightness distribution
TW201318147A (en) * 2011-10-26 2013-05-01 Phostek Inc A light emitting diode array
JP5960426B2 (en) 2011-12-16 2016-08-02 スタンレー電気株式会社 Semiconductor device and method for manufacturing semiconductor device
JP5992695B2 (en) 2012-02-29 2016-09-14 スタンレー電気株式会社 Semiconductor light emitting element array and vehicle lamp
US10804316B2 (en) 2012-08-07 2020-10-13 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
US10388690B2 (en) 2012-08-07 2019-08-20 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
CN104521012B (en) * 2012-08-07 2018-04-24 首尔伟傲世有限公司 Wafer level led array and its manufacture method
US9318529B2 (en) 2012-09-07 2016-04-19 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
KR20140028964A (en) * 2012-08-31 2014-03-10 일진엘이디(주) Semiconductor light emitting device having with excellent light emitting distribution
CN204577466U (en) 2012-09-26 2015-08-19 松下知识产权经营株式会社 Light emitting module
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
JP7011185B2 (en) * 2019-07-23 2022-01-26 日亜化学工業株式会社 Luminescent device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620399A (en) * 2012-09-07 2015-05-13 首尔伟傲世有限公司 Wafer level light-emitting diode array
CN104620399B (en) * 2012-09-07 2020-02-21 首尔伟傲世有限公司 Wafer level light emitting diode array

Also Published As

Publication number Publication date
JP2001156331A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
JP3659098B2 (en) Nitride semiconductor light emitting device
KR101193740B1 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US5369289A (en) Gallium nitride-based compound semiconductor light-emitting device and method for making the same
US7842959B2 (en) Light emitting device having a plurality of light emitting cells and package mounting the same
US7994523B2 (en) AC light emitting diode having improved transparent electrode structure
KR101891257B1 (en) Light Emitting Device and Manufacturing Method thereof
US8735926B2 (en) Semiconductor light emitting device and manufacturing method of the same
US20110133242A1 (en) Light emitting apparatus
JP5816243B2 (en) Light emitting device and light emitting device package
US9450017B2 (en) Semiconductor light emitting device and method of fabricating the same
JPH114020A (en) Semiconductor light-emitting element, manufacture thereof and semiconductor light-emitting device
JPH0936431A (en) Semiconductor light emitting element
JP3921989B2 (en) Semiconductor light emitting device
JPH0997922A (en) Light-emitting element
KR100953662B1 (en) Light emitting diode device having improved color uniformity and preparation method thereof
KR20010088929A (en) AlGaInN LED device and their fabrication method
JPH06338632A (en) Gallium nitride compound semiconductor light-emitting element
JP5471805B2 (en) Light emitting device and manufacturing method thereof
JP4810751B2 (en) Nitride semiconductor device
JPH10173230A (en) Light emitting element
KR100898585B1 (en) Light emitting element having arrayed cells and method of fabricating the same
JP2006147679A (en) Integrated light emitting diode, manufacturing method thereof, display and lighting apparatus for light emitting diode
JP2003197966A (en) Gallium nitride-based compound semiconductor element
KR100447029B1 (en) Semiconductor LED device and method thereof
JP4483566B2 (en) Light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Ref document number: 3659098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term