JP2006169098A - 高複屈折を有する延伸ガラス - Google Patents

高複屈折を有する延伸ガラス Download PDF

Info

Publication number
JP2006169098A
JP2006169098A JP2005353228A JP2005353228A JP2006169098A JP 2006169098 A JP2006169098 A JP 2006169098A JP 2005353228 A JP2005353228 A JP 2005353228A JP 2005353228 A JP2005353228 A JP 2005353228A JP 2006169098 A JP2006169098 A JP 2006169098A
Authority
JP
Japan
Prior art keywords
glass
mass
weight
silver
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005353228A
Other languages
English (en)
Inventor
Nicholas Francis Borrelli
フランシス ボレリ ニコラス
Robert Michael Morena
マイケル モレナ ロバート
David L Morse
ラスロップ モース デイヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2006169098A publication Critical patent/JP2006169098A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/04Compositions for glass with special properties for photosensitive glass
    • C03C4/06Compositions for glass with special properties for photosensitive glass for phototropic or photochromic glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】1550nmでの2mm未満の厚さの延伸ガラスからゼロ次の半波長板を製造するための複屈折ガラスを提供する。
【解決手段】R2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2のベース組成を有し、銀、塩素、および臭素を含むガラスバッチであって、銀が少なくとも0.25質量%の量で存在し、塩素および臭素が少なくとも0.2質量%の総量で存在するガラスバッチを溶融する。少なくとも0.001の体積分率を構成する量でガラス中にハロゲン化銀の相を析出させる。ガラスに応力を加えて、その中にハロゲン化銀の粒子を延伸させる。ハロゲン化銀の相を析出させる工程が、溶融した前記ガラスを急冷し、再加熱する各工程を含む。
【選択図】なし

Description

本発明は、複屈折ガラスおよび波長板としてのその使用に関する。
線形位相差板またはリターダ板としても知られている波長板は、板を通って伝送される光の偏光成分間で位相シフトを生じさせる。波長板の複屈折特性によって、光が常光線と異常光線に分割される。これら2つの光線は、板内において異なる速度で伝わる。2つの光線間の波長で表される光路差kλは、
Figure 2006169098
によって表され、ここで、neは異常光線の屈折率であり、noは常光線の屈折率であり、lは波長板の物理的厚さであり、λは光線の波長であり、kは、波長の分数で表される遅延と考えられる。光線の速度差によって、2つの光線が再度結合したときに、板遅延とも称される位相の差角が生じる。複屈折材料を通って伝わる2つの光線間の位相の差角δは、光路差の2π/λ倍である:
Figure 2006169098
波長板は、常光線と異常光線との間で生じる位相の差角に基づいて特徴付けられる。半波長板について、δ=(2m+1)π、すなわち、πの奇数倍である。全波長板について、δ=2mπである。全波長板、半波長板、および4分の1波長板について、波長板の次数は整数mで与えられる。m=0の場合、ゼロ次の波長板が用いられる。m>0の場合、多次波長板が用いられる。ゼロ次の性質を持つ波長板により、入射角または温度の変動などの動作条件における変動に対して感度が低い遅延が生じる。波長板は通常、カルサイトなどの一軸結晶質材料から製造される。結晶質材料では、その非常に大きな複屈折のために、ゼロ次の波長板を非現実的に薄く、例えば、約25μmにする必要がある。実際には、反対の配向を持つ一軸結晶の二枚のスライスを互いに組み合わせて、適度な厚さで正味のゼロ次の性能を引き出す必要がある。
モノリス構造でゼロ次の遅延を生じる能力が非常に望ましい。特許文献1(ボレリ(Norrelli)等に発行された)には、モノリス構造のゼロ次の波長板が開示されている。この波長板は複屈折ガラスからなり、このガラスは、ハロゲン化銀粒子を含有する、相分離またはフォトクロミックガラスを高温で延伸することにより製造される。加えられる応力によって、ハロゲン化銀粒子が引き伸ばされ、ガラス内で複屈折が生じる。特許文献1には、0.5から1.5mmの厚さを有するゼロ次の波長板は、可視範囲の波長では可能であるが、いくぶん厚い厚さでは、赤外範囲の波長が必要とされるであろうことが開示されている。それゆえ、1550nmにて都合の良い厚さのゼロ次の半波長板を製造するのに十分な複屈折を有する延伸ガラスを製造することは困難であった。厚さは通常、標準的なガラス組成物について2mmよりも大きい必要がある(非特許文献1)。
米国特許第5375012号明細書 N.F.BorrelliおよびC.L.Davis, SPIE vol.1746, 336-342頁, 1992年
1550nmでの2mm未満の厚さの延伸ガラスからゼロ次の半波長板を製造する能力が望ましい。
ある態様において、本発明は、R2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2のベース組成、および少なくとも0.001の体積分率の析出ハロゲン化銀相を有する複屈折ガラスに関する。
ある実施の形態において、ハロゲン化銀相の体積分率は0.001から0.01の範囲にある。
ある実施の形態において、ガラス組成は、0.25から0.50質量%の量の銀、およぴ0.20から0.80質量%の総量の塩素と臭素を含む。
ある実施の形態において、ガラス組成は、50から65質量%のSiO2、15から25質量%のB23、5から12質量%のAl23、0から5質量%のNa2O、0から5質量%のLi2O、0から15質量%のK2O、0.25から0.50質量%のAg、0.015から0.025質量%のCuO、0.10から0.20質量%のPbO、0.10から0.50質量%のCl-、および0.10から0.30質量%のBr-を有してなる。
好ましい実施の形態において、ガラス組成は、55.7から62.7質量%のSiO2、16.6から20.9質量%のB23、7.7から10.2質量%のAl23、1.6から3.2質量%のNa2O、1.8から2.0質量%のLi2O、5.7から10.4質量%のK2O、0.30から0.41質量%のAg、0.016から0.020質量%のCuO、0.10から0.12質量%のPbO、0.15から0.30質量%のCl-、および0.12から0.20質量%のBr-を有してなる。
ガラス組成はさらに、10質量%を超えない総量で、TiO2、La23、P25、およびZrO2からなる群より選択される成分を一種類以上含んでいてもよい。
ある実施の形態において、複屈折ガラスは、1550nmで少なくとも4×10-4の複屈折を有する。
ある実施の形態において、複屈折ガラスは、検出限界未満の金属銀相を有する。
ある態様において、本発明は、R2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2のベース組成、および少なくとも0.001の体積分率の析出ハロゲン化銀相を有する複屈折ガラスからなる波長板に関する。
別の態様において、本発明は、波長板用の複屈折ガラスを製造する方法に関する。この方法は、R2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2のベース組成を有し、銀、塩素、および臭素を含むガラスバッチであって、銀が少なくとも0.25質量%の量で存在し、塩素および臭素が少なくとも0.2質量%の総量で存在するガラスバッチを溶融する工程を有してなる。この方法は、ガラス中でハロゲン化銀相を少なくとも0.001の体積分率を構成する量で析出させる工程も含む。この方法は、ガラスに応力を加えて、その中のハロゲン化銀粒子を延伸させる工程も含む。
本発明の他の特徴および利点が、以下の説明および添付の特許請求の範囲から明らかとなる。
以下、本発明を、いくつかの好ましい実施の形態を参照して、詳細に説明する。以下の説明において、本発明を完全に理解するために、多くの特定の詳細が述べられている。しかしながら、本発明は、これら特定の詳細のいくつかまたは全てを伴わずに実施してもよいことが当業者には明白であろう。他の例において、本発明を不必要に分かりにくくしないために、よく知られた特徴および/またはプロセス工程は詳細には説明しない。本発明の特徴および利点は、添付の図面および以下の議論を参照してよりよく理解されるであろう。
相分離ガラスは、熱処理によって、少なくとも2相に分離するガラスである。分離相は、マトリクス相中に分散された、非晶質または結晶質いずれかの粒子の形態にある。ガラスが引き伸ばされると、粒子が延伸されて、ガラス中に複屈折が生じる。ハロゲン化銀粒子を含有する延伸ガラスにおける複屈折の程度は、延伸されたハロゲン化物粒子のアスペクト比および粒子数密度によって決まることを示すことができる。漸近限界において、複屈折値fは、以下の式によって与えられ:
Figure 2006169098
ここで、Vfはハロゲン化物相の体積分率であり、naは延伸方向に平行な向きに沿った屈折率であり、nbは延伸方向に垂直な向きに沿った屈折率であり、nは周囲のガラス媒体の平均屈折率であり、εは周囲のガラス媒体の誘電率に対して標準化されたハロゲン化物相の誘電率である(非特許文献1)。それゆえ、ハロゲン化物相の体積分率が大きいほど、複屈折が大きくなる。さらに、複屈折が大きいほど、所望の遅延を生じるためには、波長板の厚さを薄くしなければならない。
本発明の実施の形態は、ハロゲン化銀相を高い体積分率で生じるガラス組成物を提供する。典型的な体積分率は0.001から0.01の範囲にある。本発明の実施の形態によるガラスは、臭化銀および/または塩化銀の粒子を含有する。波長板の目的のために、高温でガラスに応力を加えて、そのガラスを複屈折にすることができる。546nmで約5×10-4の大きな複屈折が達成された。1550nmでの複屈折は、約4×10-4である。この複屈折の大きさによって、実施可能な厚さのモノリス体でゼロ次の波長板を作製することができる。可視範囲の波長について、0.5mmから0.6mmの板厚が可能である。赤外範囲の波長について、1.5mmから2.0mmの板厚が可能である。
本発明の実施の形態によるガラスは、フォトクロミックであってもなくてもよい。ベースガラスは、R2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2であることが好ましい。ガラスバッチは、銀の供給源および臭素と塩素から選択されるハロゲンの少なくとも一種類の供給源を含有する。ガラスバッチが塩素と臭素の供給源を含有することが好ましい。ガラスバッチは、CuO、Pb25、La25、TiO2、およびZrO2などの添加剤を含んでもよい。実際のバッチ成分は、他の成分と一緒に溶融されたときに、適切な比率で所望の酸化物に転化される、酸化物または他の化合物いずれかの材料を含んでよい。
本発明のある実施の形態による好ましいガラス組成は、50から65質量%のSiO2、15から25質量%のB23、5から12質量%のAl23、0から5質量%のNa2O、0から5質量%のLi2O、0から15質量%のK2O、0.25から0.50質量%のAg、0.015から0.025質量%のCuO、0.10から0.20質量%のPbO、0.10から0.50質量%のCl-、および0.10から0.30質量%のBr-を含有する。このガラス組成は、TiO2、La23、P25、およびZrO2などの他の成分を含んでいてもよい。これらの成分が存在する場合には、その合計が10質量%を超えないことが好ましい。ガラス組成中の全アルカリの合計は、8から20%の範囲にあることが好ましい。
より好ましいガラス組成範囲は、55.7から62.7質量%のSiO2、16.6から20.9質量%のB23、7.7から10.2質量%のAl23、1.6から3.2質量%のNa2O、1.8から2.0質量%のLi2O、5.7から10.4質量%のK2O、0.30から0.41質量%のAg、0.016から0.020質量%のCuO、0.10から0.12質量%のPbO、0.15から0.30質量%のCl-、および0.12から0.20質量%のBr-である。このガラス組成は、TiO2、La23、P25、およびZrO2などの他の成分を含んでいてもよい。これらの成分が存在する場合には、その合計が10質量%を超えないことが好ましい。ガラス組成中の全アルカリの合計は、8から20%の範囲にあることが好ましい。
ハロゲン化銀相は、適切に溶融されたガラスバッチが冷却されたときに本発明のガラス中で析出してもよい。しかしながら、溶融したガラスバッチを急冷し、次いで、冷却したガラスを再加熱して、ハロゲン化銀相を析出させることが一般に望ましい。この目的のために、ガラスは歪み点より高く加熱される。一般に、この目的のためには600℃から700℃の範囲の温度が好ましいが、600から800℃の範囲の温度が考えられる。好ましい熱処理温度は660℃である。本発明によるガラス組成物は、少なくとも0.001のハロゲン化銀相の体積分率を有する。一般に、ハロゲン化銀相の体積分率は、0.001から0.01の範囲にある。複屈折ガラスは、ハロゲン化銀粒子が析出しているガラスに応力を加えることにより製造される。これは通常、ガラスに延伸力を加える工程を含む。ガラスに応力を加えた後のハロゲン化銀粒子のアスペクト比は、5:1より大きいことが好ましい。
本発明の実施の形態によるガラスの例が表1に示されている。これらのガラスは、適切なガラスバッチを溶融し、溶融物をガラス体に成形することによって製造した。次いで、ガラスを、ストライク・イン(strike-in)のために再溶融し、注いでパティー状にし、焼鈍し、約25mm(1インチ)のディスクに穿孔した。次いで、これらのディスクを研究室の押出機内で725℃に加熱し、635℃に冷却し、635℃で4mmの円柱体に押し出した。表1は、ストライク・イン中に析出した任意のハロゲン化銀相および金属銀相についての長期のX線回折(XRD)データを示している。ガラスFは、金属銀が析出したというXRDの証拠なく、多量のハロゲン化銀相を析出させた。Agが析出せずにむしろガラスF中でハロゲン化物相を形成する傾向が大きいのは、金属銀が、他のガラスと比較してガラスFのR因子の値が低いことに関係するからであろう。R因子は、ガラス中のアルカリ陽イオンに関連するホウ素基の分画の尺度である。この因子は転じてAgイオンへの結合に利用できるハロゲン化物種の数を調節するであろう。R因子は、方程式:
Figure 2006169098
から計算される酸化物基準の陽イオン%で表され、ここで、M2Oはアルカリ金属酸化物を表し、MOはアルカリ土類金属酸化物を表す。R因子の好ましい範囲は0.20から0.50であり、0.25から0.35の範囲の値が最も好ましい。
Figure 2006169098
ある研究において、ガラスFを約9kg(20ポンド)の溶融物として再溶融し、注型して約81cm(32インチ)のバーにした。このバーを、ハロゲン化銀相をストライク・インするために730℃に熱処理し、次いで、約10cm(4.0インチ)(幅)×約11mm(0.44インチ)(厚さ)×約76cm(30インチ)(長さ)のバーに機械加工した。ある温度範囲を用いてこのバーを再度線引きし、ある範囲の温度と延伸負荷に亘り試験片を収集した。最大の延伸応力は595℃で約27.6MPa(約4000psi)であった。完成した小片の厚さは約1.8mmであった。位相シフトの測定を試験片に行った。
図1に示したように、標準的な試験工程を用いた。図1において、試験片100が交差偏光子102と分析器104との間に挿入されている。試験片100は、偏光子102に関して45°回転される。4分の1波長板106が試験片100と分析器104との間に挿入されている。4分の1波長板106は、試験片100の光軸のいずれかにアライメントされる。レーザなどの光源108がビーム110を発生し、このビームは、偏向子102、試験片100、および4分の1波長板106を通って分析器104まで通過する。このシステムがゼロではない場合、ビーム110が分析器104から出て、検出器112により検出される。分析器104がゼロを生じるために交差90°位置から回転される角度によって、試験片100の位相シフトの尺度が提供される。
偏光子102に対する分析器104の角度の関数としてのビーム110の強度が以下の方程式によって表される:
Figure 2006169098
ここで、δは複屈折媒体の位相差であり、θは分析器の角度である。コサインの項が180°に達すると強度がゼロ(ヌル点)になることが容易に分かる。このことは、元の交差位置θ=90°に対する回転角がΔθ=δ/2である条件に等しい。
二色性である複屈折媒体について、光軸に対応する2方向に等しくない透過がある。方程式(5)は、以下のように二色性を説明するように変更することができる:
Figure 2006169098
パラメータαは二色性の程度を特徴付けるために用いられ、coshは(α/2)の双曲線コサインである。αは以下の方程式によって定義される:
Figure 2006169098
ここで、Tminは延伸方向に平行な向きで測定した透過率であり、Tmaxは延伸方向に垂直な向きで測定した透過率である。
ヌル条件は、
Figure 2006169098
を必要とするので、決して達成されることがないのが方程式(6)から明らかである。この条件は、coshが常に1より大きいので決して満たせることがない。しかしながら、それでも透過率の最小値は、方程式(5)に相当する条件でも生じる。このことは、方程式(6)の微分をとり、それをゼロに等しく設定することによって容易に示すことができる。それゆえ、複屈折の測定への二色性の主要な影響は、いわゆるヌル条件の弱体化である。これはもはや本当のゼロではなく、最小である。それゆえ、位相シフトの推測はまだ、上述した方法によって得ることができる。
表2は、546nmでの三種類の試験片に関する測定結果を示している。1550nmでの複屈折は表2に報告された値の約80%である。1mmに線引きされた標準的な偏光ガラスの試料の測定結果も参照のために含まれている。参照試料は以下の組成を有する:58.1質量%のSiO2、18.2質量%のB23、9.5質量%のAl23、1.6質量%のNa2O、1.8質量%のLi2O、9.6質量%のK2O、0.32質量%のZrO2、0.31質量%のAg、0.016質量%のCuO、0.30質量%のCl-、0.15質量%のBr-、および0.11質量%のPbO。表2は、参照試料よりもほぼ2の因子大きい試験片の複屈折の増加を示す。1550nmでの半波長板の厚さは約1.5mmであろう。
Figure 2006169098
本発明を限られた数の実施の形態に関して説明してきたが、当業者は、この開示の恩恵を受けて、ここに開示した本発明の範囲から逸脱しない他の実施の形態も考えられることが認識するであろう。したがって、本発明の範囲は、添付の特許請求の範囲のみによって限定されるべきである。
位相シフトの測定構成要素を示す概略図
符号の説明
100 試験片
102 偏光子
104 分析器
106 4分の1波長板
108 光源
110 ビーム
112 検出器

Claims (12)

  1. 2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2のベース組成、および0.001から0.01の範囲にある体積分率を持つ析出ハロゲン化銀相を有する複屈折ガラスであって、
    1550nmで少なくとも4×10-4の複屈折を有することを特徴とする複屈折ガラス。
  2. 前記ガラスの組成が、0.25から0.50質量%の量の銀、および0.20から0.80質量%の総量の塩素と臭素を含むことを特徴とする請求項1記載の複屈折ガラス。
  3. 前記ガラスの組成が、50から65質量%のSiO2、15から25質量%のB23、5から12質量%のAl23、0から5質量%のNa2O、0から5質量%のLi2O、0から15質量%のK2O、0.25から0.50質量%のAg、0.015から0.025質量%のCuO、0.10から0.20質量%のPbO、0.10から0.50質量%のCl-、および0.10から0.30質量%のBr-を有してなることを特徴とする請求項1記載の複屈折ガラス。
  4. 前記ガラスの組成が、55.7から62.7質量%のSiO2、16.6から20.9質量%のB23、7.7から10.2質量%のAl23、1.6から3.2質量%のNa2O、1.8から2.0質量%のLi2O、5.7から10.4質量%のK2O、0.30から0.41質量%のAg、0.016から0.020質量%のCuO、0.10から0.12質量%のPbO、0.15から0.30質量%のCl-、および0.12から0.20質量%のBr-を有してなることを特徴とする請求項1記載の複屈折ガラス。
  5. 前記ガラスの組成が、10質量%を超えない総量で、TiO2、La23、P25、およびZrO2からなる群より選択される成分を一種類以上さらに含むことを特徴とする請求項3または4記載の複屈折ガラス。
  6. 前記ガラスが検出限界未満の金属銀相を有することを特徴とする請求項1から4いずれか1項記載の複屈折ガラス。
  7. 請求項1から6いずれか1項記載の複屈折ガラスからなる波長板。
  8. ゼロ次の遅延を生じることを特徴とする請求項7記載の波長板。
  9. 1550nmで1.5から2.0mmの範囲の厚さを有する半波長板であることを特徴とする請求項8記載の波長板。
  10. 波長板のための複屈折ガラスを製造する方法において、
    2Oがアルカリ金属酸化物を表す、R2O−Al23−B23−SiO2のベース組成を有し、銀、塩素、および臭素を含むガラスバッチであって、銀が少なくとも0.25質量%の量で存在し、塩素および臭素が少なくとも0.2質量%の総量で存在するガラスバッチを溶融し、
    少なくとも0.001の体積分率を構成する量で前記ガラス中にハロゲン化銀の相を析出させ、
    前記ガラスに応力を加えて、その中に前記ハロゲン化銀の粒子を延伸させる、
    各工程を有してなり、
    前記ハロゲン化銀の相を析出させる工程が、溶融した前記ガラスを急冷し、再加熱する各工程を含むことを特徴とする方法。
  11. 前記ガラスバッチが、50から65質量%のSiO2、15から25質量%のB23、5から12質量%のAl23、0から5質量%のNa2O、0から5質量%のLi2O、0から15質量%のK2O、0.25から0.50質量%のAg、0.015から0.025質量%のCuO、0.10から0.20質量%のPbO、0.10から0.50質量%のCl-、および0.10から0.30質量%のBr-を有してなることを特徴とする請求項10記載の方法。
  12. 前記ガラスバッチが、55.7から62.7質量%のSiO2、16.6から20.9質量%のB23、7.7から10.2質量%のAl23、1.6から3.2質量%のNa2O、1.8から2.0質量%のLi2O、5.7から10.4質量%のK2O、0.30から0.41質量%のAg、0.016から0.020質量%のCuO、0.10から0.12質量%のPbO、0.15から0.30質量%のCl-、および0.12から0.20質量%のBr-を有してなることを特徴とする請求項10記載の方法。
JP2005353228A 2004-12-07 2005-12-07 高複屈折を有する延伸ガラス Withdrawn JP2006169098A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/007,431 US20060122050A1 (en) 2004-12-07 2004-12-07 Stretched glass with high birefringence

Publications (1)

Publication Number Publication Date
JP2006169098A true JP2006169098A (ja) 2006-06-29

Family

ID=36575077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353228A Withdrawn JP2006169098A (ja) 2004-12-07 2005-12-07 高複屈折を有する延伸ガラス

Country Status (3)

Country Link
US (1) US20060122050A1 (ja)
JP (1) JP2006169098A (ja)
DE (1) DE102005058489A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078524A1 (ja) * 2006-12-26 2008-07-03 Arisawa Mfg. Co., Ltd. 偏光ガラスおよび偏光ガラスの製造方法
JP2008225483A (ja) * 2008-03-27 2008-09-25 Arisawa Mfg Co Ltd 偏光ガラスおよび偏光ガラスの製造方法
WO2010061660A1 (ja) * 2008-11-27 2010-06-03 日本山村硝子株式会社 高消光比偏光ガラス
JP2010150132A (ja) * 2008-11-27 2010-07-08 Nihon Yamamura Glass Co Ltd 高消光比偏光ガラス
JP2011013246A (ja) * 2009-06-30 2011-01-20 Opnext Japan Inc 干渉計、復調器及び光通信モジュール
JP2013072984A (ja) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd ガラス偏光子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468148B2 (en) * 2005-10-24 2008-12-23 Corning Incorporated Visible polarizing glass and process
US20080151245A1 (en) * 2006-12-04 2008-06-26 Carl Zeiss Smt Ag method and a device for processing birefringent and/or optically active materials and phase plate
JP5569942B2 (ja) * 2009-10-27 2014-08-13 学校法人東京理科大学 発光ガラス、当該発光ガラスを備えた発光装置及び発光ガラスの製造方法
GB201601960D0 (en) * 2016-02-03 2016-03-16 Glaxosmithkline Biolog Sa Novel device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518019A1 (en) * 1991-06-13 1992-12-16 Corning Incorporated Birefringent glass waveplate
US5491117A (en) * 1995-01-23 1996-02-13 Corning Incorporated Optical filter glasses

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078524A1 (ja) * 2006-12-26 2008-07-03 Arisawa Mfg. Co., Ltd. 偏光ガラスおよび偏光ガラスの製造方法
JP2008225483A (ja) * 2008-03-27 2008-09-25 Arisawa Mfg Co Ltd 偏光ガラスおよび偏光ガラスの製造方法
JP4659849B2 (ja) * 2008-03-27 2011-03-30 株式会社有沢製作所 偏光ガラスおよび偏光ガラスの製造方法
WO2010061660A1 (ja) * 2008-11-27 2010-06-03 日本山村硝子株式会社 高消光比偏光ガラス
JP2010150132A (ja) * 2008-11-27 2010-07-08 Nihon Yamamura Glass Co Ltd 高消光比偏光ガラス
JP2010150122A (ja) * 2008-11-27 2010-07-08 Nihon Yamamura Glass Co Ltd 高消光比偏光ガラス
JP4524330B2 (ja) * 2008-11-27 2010-08-18 日本山村硝子株式会社 高消光比偏光ガラス
JP4611438B2 (ja) * 2008-11-27 2011-01-12 日本山村硝子株式会社 高消光比偏光ガラス
JP2011013246A (ja) * 2009-06-30 2011-01-20 Opnext Japan Inc 干渉計、復調器及び光通信モジュール
US8699122B2 (en) 2009-06-30 2014-04-15 Oclaro Japan, Inc. Interferometer, demodulator, and optical fiber communication module
JP2013072984A (ja) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd ガラス偏光子

Also Published As

Publication number Publication date
US20060122050A1 (en) 2006-06-08
DE102005058489A1 (de) 2006-07-06

Similar Documents

Publication Publication Date Title
JP2006169098A (ja) 高複屈折を有する延伸ガラス
KR102664949B1 (ko) 투명한, 근적외선-차폐 유리 세라믹
US4304584A (en) Method for making polarizing glasses by extrusion
JP2885655B2 (ja) ガラス製の偏光子およびその製造方法
JP4653121B2 (ja) 広帯域コントラスト偏光ガラス
US5375012A (en) Birefringent glass waveplate
US8534095B2 (en) Polarizing photorefractive glass
JPH02248341A (ja) 赤外線偏光ガラスの製造方法
US20200247714A1 (en) Photosensitive glasses and glass ceramics and composite glass materials made therefrom
JP2011510896A5 (ja)
US5627676A (en) Birefringent glass waveplate containing copper halide crystals
US20090190214A1 (en) Polarizing photorefractive glass
Kabalci et al. Novel compositions of Bi2O3-ZnO-TeO2 glasses: Structure and hardness analysis
Zhang et al. Enhanced thermostability, thermo‐optics, and thermomechanical properties of barium gallo‐germanium oxyfluoride glasses and glass‐ceramics
Li et al. Infrared GRIN GeS2–Sb2S3–CsCl chalcogenide glass–ceramics
US20090190215A1 (en) Polarizing photorefractive glass
WO2005118497A2 (en) Highly birefringent glass
Souza et al. Effect of Bromine on NaF Crystallization in Photo‐Thermo‐Refractive Glass
WO2022176915A1 (ja) 偏光ガラス及び光アイソレータ
Guo et al. Controllable crystallization of cesium halides in GeS2–Sb2S3 based chalcogenide glasses
Anmin et al. Preparation of Whisker β‐Spodumene Glass–Ceramics
JPH07215732A (ja) 偏光光学系用光学ガラスおよび光弾性定数制御方法
Chang et al. Effects of RbI on the optical and mechanical properties of Ge23Se67Sb10 Glass

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303