JP2006169067A - Method and system for purifying silicon carbide - Google Patents

Method and system for purifying silicon carbide Download PDF

Info

Publication number
JP2006169067A
JP2006169067A JP2004366290A JP2004366290A JP2006169067A JP 2006169067 A JP2006169067 A JP 2006169067A JP 2004366290 A JP2004366290 A JP 2004366290A JP 2004366290 A JP2004366290 A JP 2004366290A JP 2006169067 A JP2006169067 A JP 2006169067A
Authority
JP
Japan
Prior art keywords
silicon carbide
gas
zet
silica sand
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004366290A
Other languages
Japanese (ja)
Other versions
JP4869589B2 (en
Inventor
Osamu Yamada
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIPANGU ENERGY KK
Original Assignee
JIPANGU ENERGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIPANGU ENERGY KK filed Critical JIPANGU ENERGY KK
Priority to JP2004366290A priority Critical patent/JP4869589B2/en
Publication of JP2006169067A publication Critical patent/JP2006169067A/en
Application granted granted Critical
Publication of JP4869589B2 publication Critical patent/JP4869589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and system for producing purified silicon carbide from silica sand and coke. <P>SOLUTION: The purification method of silicon carbide is characterized in that silicon carbide is purified by charging a mixture of coke and silica sand into a jet gas furnace, then heating the mixture to 800-1,200°C by blowing a jet gas flame onto the mixture from above by using a jet gas burner, and separating oxygen in the silica sand. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、珪砂と、コークスの混合物を連続的に加熱して炭化珪素を精製し、これを精製することを目的とした炭化珪素精製方法及びシステムに関する。   The present invention relates to a silicon carbide purification method and system for purifying silicon carbide by continuously heating a mixture of silica sand and coke, and purifying the silicon carbide.

従来炭化珪素を精製するには、熱気加熱炉内へ珪砂とコークスの混合物を挿入し、これを電熱加熱する炭化珪素の精製方法が一般に使用されていた。   Conventionally, in order to purify silicon carbide, a silicon carbide refining method in which a mixture of silica sand and coke is inserted into a hot-air heating furnace and heated electrically is generally used.

また金属珪素、酸素を含む酸化性ガス及び炭化水素を含む還元性ガスを反応させて得た粗炭化珪素粉末と、カーボンを含む気体と、酸素を含む酸性ガスとをサイクロン型容器を有する捕集装置内へ導入し、これを500℃〜800℃で加熱し、カーボンを燃焼除却し、精製炭化珪素粉末を得ると共に、これを捕集することを特徴とした炭化珪素粉末の捕集方法が提案されている。
特開昭63−195106
Moreover, the collection | recovery which has a cyclone type container with the crude silicon carbide powder obtained by making the reducing gas containing metal silicon, the oxidizing gas containing oxygen, and the hydrocarbon react, the gas containing carbon, and the acidic gas containing oxygen A silicon carbide powder collecting method is proposed which is introduced into the apparatus and heated at 500 ° C. to 800 ° C. to burn and remove carbon to obtain a purified silicon carbide powder and to collect this. Has been.
JP-A 63-195106

前記公知技術中、電熱使用の方法は、効率が悪いのみならず、珪砂とコークスの混合が不十分の時には精製効率が悪い問題点があった。   Among the known techniques, the method of using electric heat not only has a low efficiency, but also has a problem that the purification efficiency is low when the mixing of silica sand and coke is insufficient.

また前記特許文献1の発明は、まず粗炭化珪素を精製するので、二度の加工を必須要件としており、従って効率低下の問題点があった。   In the invention of Patent Document 1, since crude silicon carbide is first purified, the second processing is an essential requirement, and thus there is a problem of efficiency reduction.

この発明は、水素と酸素の混合物よりなるゼットガスを使用して燃焼させると共に、水素によって還元できるので、効率よく精製することができて、前記従来の問題点を解決したのである。   The present invention uses a jet gas composed of a mixture of hydrogen and oxygen for combustion and can be reduced by hydrogen, so that it can be purified efficiently and solves the conventional problems.

即ち方法の発明は、コークスと珪砂の混合物をゼットガス炉に送り込み、その上部からゼットガスバーナーでゼットガス炎を吹きつけて、800℃〜1200℃に加熱し、珪砂の酸素を分離して炭化珪素を精製することを特徴とした炭化珪素の精製方法であり、コークスと珪砂の混合物をゼットガス炉に送り込み、その上部からゼットガスバーナーでゼットガス炎を吹きつけて、800℃〜1200℃に加熱し、珪砂の酸素を分離して炭化珪素を精製し、排気から水素を分離し、残余の炭酸ガスを用いて炭酸カルシウムを精製した後、放出することを特徴とした炭化珪素の精製方法である。   That is, the invention of the method is that a mixture of coke and silica sand is fed into a ZET gas furnace, a ZET gas flame is blown from above with a ZET gas burner, heated to 800 ° C. to 1200 ° C., oxygen of the silica sand is separated and silicon carbide is separated. A method for refining silicon carbide characterized by refining, wherein a mixture of coke and silica sand is sent to a zet gas furnace, a zet gas flame is blown from above with a zet gas burner, and the mixture is heated to 800 ° C. to 1200 ° C. This is a method for purifying silicon carbide characterized in that silicon carbide is purified by separating the oxygen, hydrogen is separated from exhaust gas, calcium carbonate is purified using the remaining carbon dioxide gas, and then released.

またシステムの発明は、珪砂及びコークスの混合手段と、ゼットガスバーナーを備えた炭化珪素のゼットガス炉と、排気処理手段とを組み合せたことを特徴とする炭化珪素精製システムであり、ゼットガスバーナーは、ゼットガスを吹き出し、ゼットガス炎を生成するものであり、混合手段は、粉粒体混合機としたものであり、排気処理手段は、熱交換器、サイクロン及び水素分離器としたものである。   The invention of the system is a silicon carbide refining system characterized by combining a mixing means of silica sand and coke, a silicon carbide zet gas furnace equipped with a zet gas burner, and an exhaust treatment means. The jet gas is blown out to generate a jet gas flame, the mixing means is a powder mixer, and the exhaust treatment means is a heat exchanger, a cyclone and a hydrogen separator.

前記において使用するゼットガスは、送浸透膜を通して電気分解するので、雨水、工業用水又は水道水を使用することができる。前記水を電気分解して、水素ガスと酸素ガスを生成し、これを混合したものである。   Since the zet gas used in the above is electrolyzed through the permeation membrane, rainwater, industrial water or tap water can be used. The water is electrolyzed to produce hydrogen gas and oxygen gas, which are mixed.

ゼットガスの燃焼は、気体から液体への相変化であるから、通常の爆発現象(Explosion)は発生せず、擬爆現象(Implosion)が起こる。Implosionでは、熱源の周囲に真空が発生するが、外部へエネルギーが拡散しない為安全である。   Since combustion of the zet gas is a phase change from gas to liquid, a normal explosion phenomenon (Explosion) does not occur, and a pseudo explosion phenomenon (Implosion) occurs. Implosion generates a vacuum around the heat source, but is safe because energy does not diffuse outside.

また水素ガスと酸素ガスの混合気体の為、空気中へ漏出しても環境悪化のおそれがなく、かつ拡散すれば燃焼のおそれもない。また当然のこと乍ら燃焼によって水になるので、有害物質の排出は皆無である。   Further, since it is a mixed gas of hydrogen gas and oxygen gas, there is no risk of environmental deterioration even if it leaks into the air, and there is no risk of combustion if it diffuses. Naturally, it becomes water by combustion, so there is no emission of harmful substances.

ゼットガス炎を対照物に照射すると超高温(1000℃〜4000℃)となり、総ての物を溶解するけれども、他物に移るおそれはない。またゼットガス自体が酸素を保有しているので、空気のない場所でも燃焼を継続する。更に表1のような特性をもっている。

Figure 2006169067
When the control object is irradiated with a Zet gas flame, it becomes extremely high temperature (1000 ° C. to 4000 ° C.) and dissolves all objects, but there is no risk of transferring to other objects. Also, since the zet gas itself contains oxygen, it will continue to burn even in places where there is no air. Furthermore, it has the characteristics shown in Table 1.
Figure 2006169067

前記のように、ゼットガスは、化石燃料又は化石ガスに比し特性を有するので、目的物を目的温度に加熱し、しかも公害物を排出しないので、炭化珪素の精製の熱源として最適である。   As described above, zet gas has characteristics as compared with fossil fuel or fossil gas, and therefore heats the target product to the target temperature and does not discharge pollutants. Therefore, it is optimal as a heat source for refining silicon carbide.

この発明によれば、珪砂とコークスの混合物をゼットガス炎で加熱するので、珪砂の還元と、炭素との化合が瞬時に行われると共に、他物の混入する条件がないので、高純度の炭化珪素ができる効果がある。この発明の炭化珪素は0.999・・・である。   According to this invention, since a mixture of silica sand and coke is heated with a jet gas flame, the reduction of silica sand and the combination with carbon are performed instantaneously, and there is no condition for mixing other materials, so high purity silicon carbide There is an effect that can. The silicon carbide of this invention is 0.999.

この発明は、図1のように粒度0.1mm〜10mmの珪砂粉と、同粒度のコークス粉とを1:1の割合(容量)で混合機に投入し、十分混入したならば(例えば5分〜10分)、これを、水素雰囲気のゼットガス炉に投入すると共に、上方からゼットガス炎を吹きつけて、800℃〜1000℃で加熱すると、燃焼して、CO、Hを排出する。そこでHを分離膜で回収し、COを処理する。 In the present invention, as shown in FIG. 1, silica sand powder having a particle size of 0.1 mm to 10 mm and coke powder having the same particle size are charged into a mixer at a ratio (volume) of 1: 1 and mixed sufficiently (for example, 5 This is put into a hydrogen atmosphere zet gas furnace, and a zet gas flame is blown from above and heated at 800 ° C. to 1000 ° C. to burn and discharge CO 2 and H 2 . Therefore, H 2 is recovered with a separation membrane and treated with CO 2 .

COの処理は、適当な触媒を通過させて、例えばCaCOを形成し、又はCとOに分離して、気体を放出する。この点は従来技術を使用する。 The CO 2 treatment passes a suitable catalyst to form, for example, CaCO 3 , or separates into C 2 and O 2 and releases the gas. This point uses the prior art.

この発明は、粉粒化した珪砂30と、コークス31の給送装置1、1により、混合機2へ適量の珪砂と、コークスを給送し、混合機2で均一に混合した後、この混合物をゼットガス炉3に送り込む。   In the present invention, an appropriate amount of silica sand and coke are fed to the mixer 2 by the powdered silica sand 30 and the coke 31 feeding devices 1 and 1, and the mixture is uniformly mixed by the mixer 2. Is fed into the zet gas furnace 3.

前記ゼットガス炉3には、上部に複数のゼットガスバーナー4、4を有し、このバーナーからゼットガス炎5、5を吹き出して、前記混合物を800℃〜1000℃に加熱し、炭化珪素を生成する。前記ゼットガス炉3は、予め水素雰囲気を保つように、水素が供給されている。   The jet gas furnace 3 has a plurality of jet gas burners 4 and 4 at the upper part, and jet gas flames 5 and 5 are blown from the burner to heat the mixture to 800 ° C. to 1000 ° C. to generate silicon carbide. . The zet gas furnace 3 is supplied with hydrogen in advance so as to maintain a hydrogen atmosphere.

前記ゼットガス炎5は、水素と酸素の燃焼により生じるので、燃して水蒸気を生成し、この水蒸気と、炭酸ガスと水素とが排出される。   Since the zet gas flame 5 is generated by the combustion of hydrogen and oxygen, it burns to generate water vapor, and this water vapor, carbon dioxide gas and hydrogen are discharged.

そこで排気を熱交換器9で冷却した後、分離膜を有する分離筒6で水素を回収してゼットガス炉へ供給し、水蒸気と炭酸ガスから炭素を分離し、水蒸気と酸素とを外界に放出する。従って外界への影響はきわめて軽微となる(炭酸ガスの一部が出る程度)。   Therefore, after the exhaust gas is cooled by the heat exchanger 9, hydrogen is recovered by the separation cylinder 6 having a separation membrane and supplied to the zet gas furnace, carbon is separated from the water vapor and carbon dioxide gas, and the water vapor and oxygen are released to the outside. . Therefore, the influence on the outside world is very small (a part of carbon dioxide is emitted).

この発明において使用するゼットガスは、ゼットガス発生器7で水を電気分解して生成し、これを分配器8により必要箇所へ分配して使用する。   The jet gas used in the present invention is generated by electrolyzing water with the jet gas generator 7 and is used by distributing it to a necessary place with the distributor 8.

前記ゼットガスは、水素ガスと酸素ガスの混合ガスよりなり、前記表1のような特性を有するので、この炭化珪素の製造に対しても十分の効力を発揮し、製造と精製を一度の処理で行うことができる。   The zet gas is composed of a mixed gas of hydrogen gas and oxygen gas, and has the characteristics as shown in Table 1. Therefore, it exhibits a sufficient effect for the production of this silicon carbide, and the production and purification can be performed in a single process. It can be carried out.

この発明のゼットガス生成の為の電気分解装置を図3について説明すると、電解槽10内に、多数の電極板11、11を縦に並列設置して、各電極板11、11は導板12、12aにより夫々プラス極、及びマイナス極を形成している。   Referring to FIG. 3, the electrolysis apparatus for generating the jet gas according to the present invention will be described. In the electrolytic cell 10, a large number of electrode plates 11, 11 are installed in parallel, and each electrode plate 11, 11 is a conductive plate 12, 12a forms a positive pole and a negative pole, respectively.

前記電解槽10の下部には、送水パイプ13の一端が連結され、送水パイプ13にはポンプ18を介装して、その他端は電解水槽14に連結してある。   One end of a water supply pipe 13 is connected to the lower part of the electrolytic cell 10, a pump 18 is interposed in the water supply pipe 13, and the other end is connected to the electrolytic water tank 14.

また電解槽10の上部は排水パイプ15の基端が連結され、排水パイプ15の他端は、前記電解水槽14の上部内側の分離匣16に連結されている。前記電解水槽14の上部には混合ガスの排出パイプ17が連結されている。図中24は水位計測室、25は給排気パイプ、26は水位計、27は電磁バルブ、28は給水パイプ、29は連通孔、32はセンサーである。   The upper end of the electrolytic cell 10 is connected to the base end of a drain pipe 15, and the other end of the drain pipe 15 is connected to a separation rod 16 inside the upper part of the electrolytic water tank 14. A mixed gas discharge pipe 17 is connected to the upper part of the electrolytic water tank 14. In the figure, 24 is a water level measurement chamber, 25 is a supply / exhaust pipe, 26 is a water level gauge, 27 is an electromagnetic valve, 28 is a water supply pipe, 29 is a communication hole, and 32 is a sensor.

そこで各電極板11、11に通電すると共に、送水パイプ13のポンプ18を始動すると、電解水槽14内の電解水は、矢示20、21、22のように流動し、電気分解され、生成した水素ガスと酸素ガスと水とを、排水パイプ15から矢示19のように取り出し、分離匣16でガスと水と分離して、排出パイプ17から矢示23のように分配器8に送り(図2)、分配器8から必要個所に分配することになる。   Therefore, when each electrode plate 11, 11 is energized and the pump 18 of the water supply pipe 13 is started, the electrolyzed water in the electrolyzed water tank 14 flows as indicated by arrows 20, 21, 22 and is electrolyzed and generated. Hydrogen gas, oxygen gas and water are taken out from the drain pipe 15 as shown by an arrow 19, separated from the gas and water by a separation rod 16, and sent from a discharge pipe 17 to a distributor 8 as shown by an arrow 23 ( 2), distribution is performed from the distributor 8 to a necessary place.

前記実施例は一例であって、他の電気分解装置を使用することもできる。   The above-described embodiment is an example, and other electrolysis apparatuses can be used.

この発明の実施例のブロック図。The block diagram of the Example of this invention. 同じく模式図。Similarly schematic diagram. (a)同じく電気分解装置の一部を断面した説明図、(b)同じく電極板の連結を示す一部拡大斜視図。(A) Explanatory drawing which carried out the cross section of the electrolyzer similarly, (b) The partially expanded perspective view which similarly shows the connection of an electrode plate.

符号の説明Explanation of symbols

1 給送装置
2 混合機
3 ゼットガス炉
4 ゼットガスバーナー
5 ゼットガス炎
6 分離筒
DESCRIPTION OF SYMBOLS 1 Feeding device 2 Mixer 3 Zet gas furnace 4 Zet gas burner 5 Zet gas flame 6 Separation cylinder

Claims (6)

コークスと珪砂の混合物をゼットガス炉に送り込み、その上部からゼットガスバーナーでゼットガス炎を吹きつけて、800℃〜1200℃に加熱し、珪砂の酸素を分離して炭化珪素を精製することを特徴とした炭化珪素の精製方法。   It is characterized in that a mixture of coke and quartz sand is fed into a zet gas furnace, a zet gas flame is blown from the top with a zet gas burner, heated to 800 ° C. to 1200 ° C., oxygen in the quartz sand is separated and silicon carbide is purified. Method of purified silicon carbide. コークスと珪砂の混合物をゼットガス炉に送り込み、その上部からゼットガスバーナーでゼットガス炎を吹きつけて、800℃〜1200℃に加熱し、珪砂の酸素を分離して炭化珪素を精製し、排気から水素を分離し、残余の炭酸ガスを用いて炭酸カルシウムを精製した後、放出することを特徴とした炭化珪素の精製方法。   A mixture of coke and silica sand is fed into a zet gas furnace, and a zet gas flame is blown from the top with a zet gas burner, heated to 800 ° C. to 1200 ° C., oxygen in the silica sand is separated to purify silicon carbide, and hydrogen from the exhaust A method for purifying silicon carbide, characterized in that calcium carbonate is purified using the remaining carbon dioxide gas, and then released. 珪砂及びコークスの混合手段と、ゼットガスバーナーを備えた炭化珪素のゼットガス炉と、排気処理手段とを組み合せたことを特徴とする炭化珪素精製システム。   A silicon carbide refining system comprising a combination of silica sand and coke mixing means, a silicon carbide zet gas furnace equipped with a zet gas burner, and an exhaust treatment means. ゼットガスバーナーは、ゼットガスを吹き出し、ゼットガス炎を生成することを特徴とした請求項3記載の炭化珪素精製システム。   The silicon carbide purification system according to claim 3, wherein the jet gas burner blows the jet gas to generate a jet gas flame. 混合手段は、粉粒体混合機としたことを特徴とする請求項3記載の炭化珪素精製システム。   4. The silicon carbide refining system according to claim 3, wherein the mixing means is a powder particle mixer. 排気処理手段は、熱交換器、サイクロン及び水素分離器としたことを特徴とする炭化珪素精製システム。   The silicon carbide refining system, wherein the exhaust treatment means is a heat exchanger, a cyclone and a hydrogen separator.
JP2004366290A 2004-12-17 2004-12-17 Silicon carbide generating method and system Expired - Fee Related JP4869589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366290A JP4869589B2 (en) 2004-12-17 2004-12-17 Silicon carbide generating method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366290A JP4869589B2 (en) 2004-12-17 2004-12-17 Silicon carbide generating method and system

Publications (2)

Publication Number Publication Date
JP2006169067A true JP2006169067A (en) 2006-06-29
JP4869589B2 JP4869589B2 (en) 2012-02-08

Family

ID=36670209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366290A Expired - Fee Related JP4869589B2 (en) 2004-12-17 2004-12-17 Silicon carbide generating method and system

Country Status (1)

Country Link
JP (1) JP4869589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210034395A (en) * 2019-09-20 2021-03-30 한성열 Radiant heat burner device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589807A (en) * 1981-07-10 1983-01-20 Showa Denko Kk Preparation of sic in high purity
JPS60131820A (en) * 1983-12-16 1985-07-13 Nippon Steel Corp Manufacture of silicon carbide or mixture containing silicon carbide
JPH05170420A (en) * 1991-12-21 1993-07-09 Nichia Chem Ind Ltd Production of metallic carbide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589807A (en) * 1981-07-10 1983-01-20 Showa Denko Kk Preparation of sic in high purity
JPS60131820A (en) * 1983-12-16 1985-07-13 Nippon Steel Corp Manufacture of silicon carbide or mixture containing silicon carbide
JPH05170420A (en) * 1991-12-21 1993-07-09 Nichia Chem Ind Ltd Production of metallic carbide powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210034395A (en) * 2019-09-20 2021-03-30 한성열 Radiant heat burner device
KR102410455B1 (en) * 2019-09-20 2022-06-17 한성열 Radiant heat burner device

Also Published As

Publication number Publication date
JP4869589B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
MX2013012275A (en) Treatment of waste.
JP5659491B2 (en) Semiconductor manufacturing equipment including fluorine gas generator
EP4410748A1 (en) Plant to produce glass and hydrogen, and method for producing glass and hydrogen
RU2457395C2 (en) Solid fuel combustion intensification method
JP6011014B2 (en) Carbon dioxide gas decomposition apparatus and decomposition method
CN110860553A (en) Plasma synergistic resistance furnace fly ash treatment system and treatment method
WO2018131135A1 (en) Deuterium-depleted water production apparatus
CN1724934B (en) Waste transformation method
JP4869589B2 (en) Silicon carbide generating method and system
JP4103510B2 (en) Oxygen and carbon dioxide purification and high concentration treatment method
CN211938376U (en) Fly ash treatment system of plasma synergistic resistance furnace
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JP6992772B2 (en) Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell
JP2006194232A (en) Processing and effectively using method and effectively using system of raw waste
CN107021455A (en) System and method and fuel cell for manufacturing hydrogen
CN104876190A (en) Oxygen-enriched combustion-supporting waste acid cracking process
KR20090119780A (en) System concept with low energy requirement and improved energy yield
KR101566648B1 (en) Method and a device for production of plasma
CN212403456U (en) Plasma gasification treatment system for waste emulsion
JPS62202805A (en) Medical oxygen generator
JP2018066028A (en) Hydrogen production device and hydrogen production method
CN205797972U (en) Ultralow temperature plasma debirs regeneration device
RU2007115051A (en) REMOVAL OF CARBON DIOXIDE FROM WASTE FLOWS BY JOINT PRODUCTION OF CARBONATE AND / OR BIO-CARBONATE MINERALS
JP2008292011A (en) Waste gas treatment method
JP2000102777A (en) Heating system for waste

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees