JP6992772B2 - Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell - Google Patents

Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell Download PDF

Info

Publication number
JP6992772B2
JP6992772B2 JP2019014316A JP2019014316A JP6992772B2 JP 6992772 B2 JP6992772 B2 JP 6992772B2 JP 2019014316 A JP2019014316 A JP 2019014316A JP 2019014316 A JP2019014316 A JP 2019014316A JP 6992772 B2 JP6992772 B2 JP 6992772B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
decomposition
carbon monoxide
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019014316A
Other languages
Japanese (ja)
Other versions
JP2020121901A (en
Inventor
定範 前田
尚樹 前
正澄 金澤
令慈 細川
和道 柳澤
敏夫 河野
雄也 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIOH SHINYO CO., LTD.
Kochi University NUC
Kochi Prefecture
Original Assignee
DAIOH SHINYO CO., LTD.
Kochi University NUC
Kochi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIOH SHINYO CO., LTD., Kochi University NUC, Kochi Prefecture filed Critical DAIOH SHINYO CO., LTD.
Priority to JP2019014316A priority Critical patent/JP6992772B2/en
Publication of JP2020121901A publication Critical patent/JP2020121901A/en
Application granted granted Critical
Publication of JP6992772B2 publication Critical patent/JP6992772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

特許法第30条第2項適用 ウェブサイトの掲載日 平成30年 6月11日 ウェブサイトのアドレス http://www.isiem2018.org/sites/default/files/ORAL_PRESENTATIONS.pdf 公開者 前田 定範,前 尚樹,金澤 正澄,細川 令慈,柳澤 和道,河野 敏夫,矢野 雄也 公開された発明の内容 前田 定範,前 尚樹,金澤 正澄,細川 令慈,柳澤 和道,河野 敏夫,矢野 雄也が、上記アドレスのウェブサイトで公開されたInternational Symposium on Inorganic and Environmental Materials 2018(ISIEM 2018)(無機および環境材料に関する国際シンポジウム2018)の講演予稿集にて、前田 定範,前 尚樹,金澤 正澄,細川 令慈,柳澤 和道,河野 敏夫,矢野 雄也が発明した生石灰との反応によるハイドロフルオロカーボン(HFCs)を分解し、主要な反応生成物としてフッ化カルシウムを生成する研究について公開した。 〔刊行物等〕 開催日 平成30年 6月18日 集会名、開催場所 International Symposium on Inorganic and Environmental Materials 2018(ISIEM 2018) [無機および環境材料に関する国際シンポジウム2018] Ghent University(Sint-Pietersnieuwstraat 25 B-9000 Ghent Belgium) [ゲント大学(シント-ピーテルスニウストリート25 B-9000 ゲント ベルギー)] 公開者 柳澤 和道 公開された発明の内容 柳澤 和道が、International Symposium on Inorganic and Environmental Materials 2018(ISIEM 2018)(無機および環境材料に関する国際シンポジウム2018)にて、前田 定範,前 尚樹,金澤 正澄,細川 令慈,柳澤 和道,河野 敏夫,矢野 雄也が発明した生石灰との反応によるハイドロフルオロカーボン(HFCs)を分解し、主要な反応生成物としてフッ化カルシウムを生成する研究について公開した。Article 30, Paragraph 2 of the Patent Law Applicable Website Publication Date June 11, 2018 Website Address http: // www. isiem2018. org / systems / default / files / ORAL_PRESTATIONS. pdf Publishers Masanori Maeda, Naoki Mae, Masazumi Kanazawa, Reiji Hosokawa, Kazumichi Yanagisawa, Toshio Kono, Yuya Yano Contents of the published invention Sadanori Maeda, Naoki Maeda, Masazumi Kanazawa, Reiji Hosokawa, Kazumichi Yanagisawa, Toshio Kono , Yuya Yano in the proceedings of the International Symposium on International and Environmental Materials 2018 (ISIEM 2018) (International Symposium on Inorganic and Environmental Materials 2018) published on the website at the above address, Maeda Noriyuki, Maeda Naoki, Kanazawa. We have published a study invented by Masazumi, Reiji Hosokawa, Kazumichi Yanagisawa, Toshio Kono, and Yuya Yano to decompose hydrofluorocarbons (HFCs) by reaction with quicklime to produce calcium fluoride as the main reaction product. [Publications, etc.] Date June 18, 2018 Meeting name, venue International Symposium on International and Environmentals 2018 (ISIEM 2018) [International Symposium on Inorganic and Environmental Materials 2018] Ghent University 9000 Ghent Belgium] [Ghent University (Sint-Petersniu Street 25 B-9000 Ghent Belgium)] Publisher Kazumichi Yanagisawa Contents of the published invention Kazumichi Yanagisawa is an International Symposium on Inorganic and Incorporate20 Decomposes hydrofluorocarbons (HFCs) by reaction with raw lime invented by Sadanori Maeda, Naoki Mae, Masaki Kanazawa, Reiji Hosokawa, Kazumichi Yanagisawa, Toshio Kono, and Yuya Yano at (International Symposium on Inorganic and Environmental Materials 2018). Then, the research on producing calcium fluoride as the main reaction product was published.

本発明は、水素とフッ素の双方を含むフロンガスを分解して無害化するとともに、分解ガスとして有用資源である水素を高い歩留まりで生成して、燃料電池の燃料として使用し、更には反応残渣として有用資源であるフッ化カルシウムを高純度の固形物として得るための、フロンガスの分解方法及びその装置並びに水素の製造方法、フッ化カルシウムの製造方法及びフロンガスから生成した水素を燃料とする燃料電池に関する。 The present invention decomposes and detoxifies a freon gas containing both hydrogen and fluorine, and at the same time, produces hydrogen, which is a useful resource as a decomposition gas, with a high yield and uses it as a fuel for a fuel cell, and further as a reaction residue. The present invention relates to a method for decomposing fluorogas and its equipment, a method for producing hydrogen, a method for producing calcium fluoride, and a fuel cell using hydrogen produced from freon gas as a fuel for obtaining calcium fluoride, which is a useful resource, as a high-purity solid substance. ..

従来から、電子部品の洗浄、空調設備や冷凍・冷蔵庫などの冷媒、スプレー剤等として多用されていたフロンガスのCFC(クロロフルオロカーボン),HCFC(ハイドロクロロフルオロカーボン),HFC(ハイドロフルオロカーボン),PFC(パーフルオロカーボン)等は、オゾン層破壊や地球温暖化等の環境汚染の原因となるため、適切に回収・破壊することが社会的要請となり、そのためのフロン回収・破壊法が制定されて既に15年以上が経過している。また、2015年にはフロン回収・破壊法がフロン排出抑制法に改正され、よりフロンガスの排出規制が強化されるとともに、フロンガスの再資源化という新たな視点が導入されている。即ち、資源の枯渇化に伴い、フロンガスについても単に回収・破壊するだけに止まらず、再資源化を図ることが期待されており、既に回収したフロンガスの一部は再生原料として取り扱われるようになってきている。 CFC (chlorofluorocarbon), HCFC (hydrochlorofluorocarbon), HFC (hydrofluorocarbon), PFC (par) of fluorocarbons, which have been widely used for cleaning electronic parts, refrigerants for air conditioning equipment, freezers and refrigerators, spray agents, etc. Fluorocarbon), etc. cause environmental pollution such as ozone layer depletion and global warming, so it is a social requirement to properly recover and destroy them. Has passed. In 2015, the CFC Recovery and Destruction Law was amended to the CFC Emission Control Law, which further tightens regulations on CFC emissions and introduces a new perspective of recycling CFCs. In other words, with the depletion of resources, it is expected that Freon gas will not only be recovered and destroyed, but also recycled, and some of the already recovered Freon gas will be treated as recycled raw materials. It's coming.

フロンガスの回収・破壊が喫緊の社会的要請であったフロン回収・破壊法制定当時から現在に至るまで、本発明者は特許文献1に示すフロンガスと溶媒としての水を混合したものを加熱して過熱蒸気とし、該過熱蒸気を所定の温度に加熱した常圧の反応装置内を所定の反応時間保持して通過させることにより、或いは特許文献2に示すように反応装置内に反応助剤として鉄,炭素,炭素鋼から選択された1種又は複数の物質を配置することにより、フロンガスを分解処理する手段等の過熱蒸気を使用した環境汚染ガスの種々の分解手段(以下、「過熱蒸気発明」という)を提供している。 From the time of enactment of the Freon Recovery / Destruction Law, which was an urgent social requirement for the recovery / destruction of freon gas, to the present, the present inventor heated a mixture of freon gas and water as a solvent shown in Patent Document 1. As superheated steam, iron is used as a reaction aid by passing the superheated steam through a reaction device under normal pressure heated to a predetermined temperature while holding it for a predetermined reaction time, or as shown in Patent Document 2. , Carbon, Various decomposition means of environmental pollutant gas using superheated steam such as means for decomposing freon gas by arranging one or more substances selected from carbon steel (hereinafter, "superheated steam invention") ) Is provided.

また、本発明者は過熱蒸気発明を改良・発展させる研究開発の過程の中で、研究視点を変化させて、特許文献3に示す過熱蒸気の存在下において酸化カルシウム(CaO)によってフロンガスを分解する分解手段(以下、「文献3発明」という)等の過熱蒸気に関連した種々の発明も提供している。 In addition, the present inventor changes the research viewpoint in the process of research and development to improve and develop the invention of superheated steam, and decomposes freon gas by calcium oxide (CaO) in the presence of superheated steam shown in Patent Document 3. Various inventions related to superheated steam such as decomposition means (hereinafter referred to as “Reference 3 invention”) are also provided.

特許第3219689号公報Japanese Patent No. 32196889 特許第3219706号公報Japanese Patent No. 321706 特許第3730794号公報Japanese Patent No. 3730794

過熱蒸気発明は、提供当時において分解が困難であったフロンガスを常圧で100%分解することができる画期的な発明であり、過熱蒸気発明を実施するためのフロン分解装置は全国に広く普及し、フロン分解手段としての地位を確立し、フロン分解に多大な貢献を果たしてきた。 The superheated steam invention is an epoch-making invention capable of decomposing 100% of fluorocarbon gas, which was difficult to decompose at the time of provision, at normal pressure, and a fluorocarbon decomposition device for carrying out the superheated steam invention is widely used nationwide. However, it has established itself as a means of decomposing CFCs and has made a great contribution to the decomposition of CFCs.

しかしながら、環境負荷軽減が求められ、フロン分解の技術分野が成熟し、前記したようにフロン処理に関する基準が進化した現在では、フロンガスの分解技術にもフロンガスの分解に加味して、従来と異なる視点から解決すべき新たな課題が提起されている。具体的には、「環境負荷軽減に資すること」,「より地球環境に優しい技術であること」,「再利用可能な有用資源を回収すること」,「ゼロエミッションに近づけること」,「反応残渣の処理の容易化」,「分解の効率化」,「分解装置の長寿命化」,「低コスト化(初期投資やランニングコスト等の低減)」等々である。フロン分解装置もこれらの社会的要請や時代的要請に適合するように進歩することが避けて通れない喫緊の課題となっている。 However, now that the environmental load is required to be reduced, the technical field of chlorofluorocarbon decomposition has matured, and the standards for chlorofluorocarbon treatment have evolved as described above, the chlorofluorocarbon decomposition technology is also added to the decomposition of chlorofluorocarbons, and a different perspective from the conventional one. Has raised new issues to be resolved. Specifically, "to contribute to reducing the environmental load", "to be a technology that is more environmentally friendly", "to recover useful resources that can be reused", "to approach zero emissions", and "reaction residue". "Easy processing", "Efficient disassembly", "Longer life of disassembly equipment", "Lower cost (reduction of initial investment, running cost, etc.)", etc. It is an urgent task for Freon decomposition equipment to make progress to meet these social and historical demands.

過熱蒸気発明は、当然ながら過熱蒸気を得るための設備とエネルギーを必要とする。特許文献1,2に示す過熱蒸気発明では反応温度を650℃以上とする旨が示されているが、フロン分解事業を行う実際の産業機器としては、フロンの種類によって反応速度が異なることを考慮し、フロンの種類にかかわらず安定的に連鎖反応を継続させるため、即ち、産業機器としてのフロンガス分解の実効性を担保するために、反応温度を800℃~1000℃に保持して実施している。 The invention of superheated steam naturally requires equipment and energy to obtain superheated steam. In the invention of superheated steam shown in Patent Documents 1 and 2, it is shown that the reaction temperature is set to 650 ° C. or higher. However, in order to stably continue the chain reaction regardless of the type of chlorofluorocarbon, that is, to ensure the effectiveness of chlorofluorocarbon decomposition as an industrial device, the reaction temperature is maintained at 800 ° C to 1000 ° C. There is.

そのため、フロンガス分解の技術分野が成熟し、産業機器としての経済性の追求や低コスト化、地球環境への配慮を避けて通れない昨今では、過熱蒸気発明によるフロンガス分解手段は次のような種々の問題を抱えている。そして、下記に示す過熱蒸気発明が抱える問題点は、地球環境に負荷を与える原因ともなっている。 Therefore, as the technical field of fluorocarbon decomposition has matured, it is unavoidable to pursue economic efficiency as industrial equipment, reduce costs, and consider the global environment. Nowadays, various means of fluorocarbon decomposition by the invention of superheated steam are as follows. Have a problem. The problems of the invention of superheated steam shown below are also causes of imposing a load on the global environment.

[過熱蒸気を得るためのエネルギーコストが高いこと]
過熱蒸気発明は常時、反応装置内を800℃以上の過熱蒸気の雰囲気に保持する必要があるため、過熱蒸気を造り出すための設備や過熱蒸気を得るためのエネルギーコストを必要とし、しかもそのコストが高いため、フロン分解装置としての低コスト化や経済性追求の障害となっている。
[High energy cost to obtain superheated steam]
Since the invention of superheated steam always needs to keep the inside of the reactor in an atmosphere of superheated steam of 800 ° C. or higher, it requires equipment for producing superheated steam and energy cost for obtaining superheated steam, and the cost is high. Due to its high price, it is an obstacle to cost reduction and economical pursuit as a Freon decomposition device.

[反応温度を維持するためのコスト負担が大きいこと]
過熱蒸気発明では、フロンガスを分解するための反応温度を800℃~1000℃に設定して実施しているため、分解反応が発熱反応であるとはいえ、反応器内を前記温度に維持するための電力消費量が大きく、そのコスト負担を必要とするため、フロン分解装置としての低コスト化や経済性の追求、更には環境負荷の軽減に資するという社会的要請に対応することが困難となっている。
[The cost burden for maintaining the reaction temperature is large]
In the invention of superheated steam, the reaction temperature for decomposing freon gas is set to 800 ° C. to 1000 ° C., so that although the decomposition reaction is an exothermic reaction, the inside of the reactor is maintained at the above temperature. Since the power consumption of the reactor is large and it is necessary to bear the cost, it is difficult to meet the social demands of contributing to the reduction of cost and economy as a freon decomposition device and the reduction of environmental load. ing.

[分解装置の耐久性が低く、寿命が短く、又分解反応によって強酸の分解ガスを生成すること]
過熱蒸気発明では、過熱蒸気によってフロンガスが分解されることによって、反応器内でフッ酸や塩酸といった強酸の分解ガスが生成される。これらの強酸によって反応器や強酸を中和槽に移送するための管路の腐食が激しいため、分解反応を正常に維持するために、これらの部材を消耗品として一定時間毎に交換することを余儀なくされている。とりわけ、反応器はインコネルやハステロイ等の高価な超合金を使用しているものの、数ヶ月単位で腐食が進み交換を余儀なくされている。
[Durability of the decomposition device is low, the life is short, and a strong acid decomposition gas is generated by the decomposition reaction]
In the invention of superheated steam, the decomposition of chlorofluorocarbons by the superheated steam produces a decomposition gas of a strong acid such as hydrofluoric acid or hydrochloric acid in the reactor. Since these strong acids cause severe corrosion of the reactor and the pipeline for transferring the strong acid to the neutralization tank, it is necessary to replace these parts as consumables at regular intervals in order to maintain the decomposition reaction normally. It has been forced. In particular, although the reactor uses expensive superalloys such as Inconel and Hastelloy, it has been corroded every few months and has to be replaced.

また、分解反応によって生成される強酸の分解ガスが、反応管路から系外へ漏れるようなことがあれば事故につながるため、反応管路を密閉管路とする他、安全のため反応管路内を負圧にして運転する必要があり、運転管理が複雑となっている。また、特許文献2に示すように、反応助剤として鉄を使用した場合には塩化鉄やフッ化鉄が固体として析出するため、管路の詰まりが生じる惧れがある。また、反応助剤として炭素や炭素鋼を用いた場合には管路の詰まりは生じないものの、反応容器等に含まれている鉄分が徐々に腐食して耐久性が低下するという難点があり、更に炭素自体が高価であるとともに消費量が多く必要である。よって、これらの点においてもフロン分解装置としての長寿命化,低コスト化や経済性の追求、更には環境負荷の軽減に資するという社会的要請に対応することが困難となっている。 In addition, if the decomposition gas of the strong acid generated by the decomposition reaction leaks from the reaction pipeline to the outside of the system, it will lead to an accident. It is necessary to operate with a negative pressure inside, which complicates operation management. Further, as shown in Patent Document 2, when iron is used as a reaction aid, iron chloride and iron fluoride are precipitated as a solid, which may cause clogging of the pipeline. Further, when carbon or carbon steel is used as the reaction aid, the pipeline is not clogged, but there is a problem that the iron contained in the reaction vessel or the like gradually corrodes and the durability is lowered. Furthermore, carbon itself is expensive and requires a large amount of consumption. Therefore, in these respects as well, it is difficult to meet the social demands of extending the life of the CFC decomposing device, reducing the cost, pursuing economic efficiency, and contributing to the reduction of the environmental load.

[反応残渣の処理が困難なこと]
過熱蒸気発明では、副生成物の強酸の分解ガスを無害化するため中和処理として、水酸化カルシウムと水との混合水を分解ガスにシャワー状に吹き付けている。そのため、中和処理後の反応残渣は多量の水分を含んでおり、そのままの状態では産業廃棄物として処理することができない。そのため、反応残渣に凝集剤を添加して凝集させ、フィルタープレスで脱水した後、漸く産業廃棄物として処理することが可能な状態となっている。そのため、反応残渣の処理にもコスト負担を必要とするため、フロン分解装置としての低コスト化や経済性の追求という社会的要請に対応することが困難となっている。
[Difficulty in processing reaction residue]
In the superheated steam invention, in order to detoxify the decomposition gas of the strong acid of the by-product, mixed water of calcium hydroxide and water is sprayed on the decomposition gas in a shower shape as a neutralization treatment. Therefore, the reaction residue after the neutralization treatment contains a large amount of water and cannot be treated as industrial waste as it is. Therefore, it is possible to add a flocculant to the reaction residue to coagulate it, dehydrate it with a filter press, and then treat it as industrial waste. Therefore, it is difficult to meet the social demands of cost reduction and economic efficiency as a fluorocarbon decomposition apparatus because it is necessary to bear the cost for the treatment of the reaction residue.

一方、過熱蒸気と酸化カルシウムの相互作用によって、フロンガス等を分解する文献3発明は、過熱蒸気発明における反応温度を減じることを主たる目的としており、過熱蒸気発明より遙かに低い400℃の反応温度でフロンガスを分解できたことが示されている。 On the other hand, the invention of Document 3 that decomposes freon gas or the like by the interaction between superheated steam and calcium oxide mainly aims to reduce the reaction temperature in the superheated steam invention, and has a reaction temperature of 400 ° C., which is much lower than that of the superheated steam invention. It is shown that the freon gas could be decomposed.

しかしながら、文献3発明も過熱蒸気を使用することに変わりなく、前記した過熱蒸気発明の問題点は、専ら過熱蒸気の存在に起因するため、過熱蒸気が存在し、フロンガスの分解に関与している以上、文献3発明も前記した[過熱蒸気を得るためのエネルギーコストが高いこと],[反応温度を維持するためのコスト負担が大きいこと],[分解装置の耐久性が低く、寿命が短く、又分解反応によって強酸の分解ガスを生成すること],[反応残渣の処理が困難なこと]の前記した過熱蒸気発明の問題点をそのまま残している。また、文献3発明においても、生成後に酸化カルシウムによって中和されるもののフロンガスの分解過程において過熱蒸気が介在することに起因して強酸が生成される。更に、文献3発明の分解ガスを冷却することによって過熱蒸気が水に液化され、微量の残留酸性物質が水に溶け出すこととなるので、これを中和する必要がある。加えて、分解ガスの内、メタン(CH),水素(H),一酸化炭素(CO)等の可燃ガスを燃焼処理してから排出する必要がある。 However, the invention of Document 3 still uses superheated steam, and the problem of the above-mentioned superheated steam invention is solely due to the existence of superheated steam, so that superheated steam exists and is involved in the decomposition of freon gas. As described above, the invention of Document 3 also has the above-mentioned [high energy cost for obtaining superheated steam], [high cost burden for maintaining the reaction temperature], [low durability of the decomposition device, short life, and so on. In addition, the problems of the above-mentioned superheated steam invention of [generating a decomposition gas of a strong acid by a decomposition reaction] and [difficulty in treating the reaction residue] remain as they are. Further, also in the invention of Document 3, although it is neutralized by calcium oxide after its formation, a strong acid is produced due to the intervention of superheated steam in the decomposition process of chlorofluorocarbons. Further, by cooling the decomposition gas of the invention of Document 3, the superheated steam is liquefied into water, and a trace amount of residual acidic substance is dissolved in water, and it is necessary to neutralize this. In addition, it is necessary to burn combustible gases such as methane (CH 4 ), hydrogen (H 2 ), and carbon monoxide (CO) among the decomposed gases before discharging them.

文献3発明も、これらの過熱蒸気の存在に起因する問題点を有するとともに、近時の「より地球環境に優しい技術であること」,「再利用可能な有用資源を回収すること」や「ゼロエミッションに近づけること」等々の新たに提起された社会的要請や時代的要請を満足させることができないことは過熱蒸気発明と同様である。 The invention of Document 3 also has problems due to the existence of these superheated steam, and has recently been "a technology that is more environmentally friendly", "recovering useful resources that can be reused", and "zero emission". It is the same as the invention of superheated steam that it is not possible to satisfy the newly raised social demands and historical demands such as "to get closer to the technology".

そこで、本発明は過熱蒸気の存在に起因する過熱蒸気発明や文献3発明の問題点を解決するとともに、現代のフロンガス分解に求められている新たな課題を解決するために、フロンガス等を無害化するための新たな分解技術を提供するとともに、該分解技術に基づいてフロンガス等から有用資源を生成し、その利用を図ることを目的としている。 Therefore, the present invention solves the problems of the superheated steam invention and the invention of Document 3 caused by the existence of superheated steam, and detoxifies chlorofluorocarbons and the like in order to solve the new problems required for modern chlorofluorocarbon decomposition. The purpose is to provide a new decomposition technology for the purpose of generating useful resources from chlorofluorocarbons and the like based on the decomposition technology and to utilize them.

前記した文献3発明は産業機器として実施化されていないものの、フロンガスを分解する反応剤として、過熱蒸気の存在下における酸化カルシウムの存在を示している。そこで、本発明者は、前記課題を解決するために、根本的な発想の転換を行い、必須の構成であった過熱蒸気を離れて、酸化カルシウムのみによるフロンガスの分解について鋭意研究を行った。 Although the above-mentioned invention of Document 3 has not been implemented as an industrial device, it shows the existence of calcium oxide in the presence of superheated steam as a reactant for decomposing chlorofluorocarbons. Therefore, in order to solve the above-mentioned problems, the present inventor made a fundamental change in the idea, and conducted diligent research on the decomposition of chlorofluorocarbons only by calcium oxide, away from the superheated steam which was an essential configuration.

先ず、文献3発明に開示されている反応温度400℃において、過熱蒸気を介在させることなく、即ち、溶媒としての水や水蒸気を反応器に供給することなく、フロンガスを酸化カルシウムと直接接触させることによって、フロンガスの分解がどの程度可能かを図5に示す本発明において使用する反応器を用いて試みた。 First, at a reaction temperature of 400 ° C. disclosed in Document 3, the flon gas is brought into direct contact with calcium oxide without interposing superheated steam, that is, without supplying water or steam as a solvent to the reactor. The extent to which freon gas can be decomposed was attempted using the reactor used in the present invention shown in FIG.

図5において、30は直径125mm,高さ200mmの反応器であって、耐火材としての炭化ケイ素35(SiC)の砕石を敷き、その上に反応剤として酸化カルシウム25(CaO):0.85kgを、反応器30の上方に付設した酸化カルシウム投入口32から投入して充填した。そして、加熱ヒータ34で反応器30を加熱して内部を400℃に保持し、ガスボンベ2に充填した分解対象のフロンガス1であるHFCのフロンR32(CH)を圧力調整弁37とガス流量計38を介して、ガス供給口31から0.3kg/hで供給した。そして、反応器30内で酸化カルシウム25と直接接触することにより分解されて、ガス排出口33から排出された分解ガス5をサンプリングポイント3でサンプリングして、ガスクロマトグラフで分析した。その結果、フロンR32の投入開始後20分までは分解率85%程度を維持していたが、分解率99.9%に到達することはなく、時間の経過とともに分解率が低下していった。その後、時間の経過によって分解率がほぼゼロになったところでフロンR32の供給を停止した。フロンR32の供給量は酸化カルシウム25の0.85kgに対して0.41当量に当る0.33kgであった。高い分解率を示している時間帯におけるフロンR32の分解率及び分解ガス5の成分等の実験結果を比較例1として表1に示す。 In FIG. 5, reference numeral 30 denotes a reactor having a diameter of 125 mm and a height of 200 mm, in which crushed stone of silicon carbide 35 (SiC) as a refractory material is laid, and calcium oxide 25 (CaO) as a reactant is 0.85 kg. Was charged from the calcium oxide input port 32 provided above the reactor 30 and filled. Then, the reactor 30 is heated by the heating heater 34 to keep the inside at 400 ° C., and the Freon R32 (CH 2 F 2 ) of HFC, which is the Freon gas 1 to be decomposed filled in the gas cylinder 2, is charged with the pressure adjusting valve 37 and the gas. It was supplied at 0.3 kg / h from the gas supply port 31 via the flow meter 38. Then, the decomposed gas 5 decomposed by direct contact with the calcium oxide 25 in the reactor 30 and discharged from the gas discharge port 33 was sampled at the sampling point 3 and analyzed by a gas chromatograph. As a result, the decomposition rate was maintained at about 85% until 20 minutes after the start of charging Freon R32, but the decomposition rate did not reach 99.9%, and the decomposition rate decreased with the passage of time. .. After that, the supply of Freon R32 was stopped when the decomposition rate became almost zero with the passage of time. The supply amount of Freon R32 was 0.33 kg, which is 0.41 equivalent to 0.85 kg of calcium oxide 25. Table 1 shows the experimental results of the decomposition rate of Freon R32 and the components of the decomposition gas 5 in the time zone showing a high decomposition rate as Comparative Example 1.

Figure 0006992772000001
Figure 0006992772000001

表1に示すように、比較例1の過熱蒸気が介在しない酸化カルシウムとフロンR32との直接接触反応では、文献3発明が開示する反応温度400℃では、フロンR32の分解率は最高で84.9%に止まり、フロン排出抑制法に規定する分解率99.9%以上に遠く及ばなかった。また、分解ガス5としてエチレン等の炭化水素系ガスも5.8%と相当量残留しているため、フロンガスの分解技術として採用することができない。 As shown in Table 1, in the direct contact reaction between calcium oxide and chlorofluorocarbon R32 in which superheated steam does not intervene in Comparative Example 1, the decomposition rate of chlorofluorocarbon R32 is 84. The decomposition rate was only 9%, which was far below the decomposition rate of 99.9% specified in the Freon Emission Control Law. Further, since a considerable amount of hydrocarbon gas such as ethylene remains as the decomposition gas 5 at 5.8%, it cannot be adopted as a decomposition technology for chlorofluorocarbons.

そこで、本発明者は文献3発明と比較例1の実験結果に基づき、フロンガスの分解における酸化カルシウムと過熱蒸気との技術的な因果関係について研究を進めた結果、次のような推論を得た。
推論1:反応剤としての酸化カルシウムは熱伝導はよいものの、多孔質のため熱伝導経路が長くなり、中心部まで温度が伝わるまでには一定の時間が必要となると思われること。
推論2:文献3発明から、酸化カルシウムによってフロンガスの分解反応が連鎖的に起こり始める温度が400℃と仮定すると、酸化カルシウムの加熱源に近い部分(外表面)では分解反応は始まるものの、加熱源から遠い多孔質の内部までは分解反応が進みにくく、そのため比較例1では分解率が最高で84.9%に留まったものと考えられること。
推論3:文献3発明において、99.9%以上の分解率を達成できたのは、反応温度が400℃であっても過熱蒸気が介在することによって、酸化カルシウムの多孔質の内部にまで過熱蒸気が浸潤し、熱媒体として作用することによって、酸化カルシウムの内部温度を400℃に加熱することが可能となり、連鎖的な分解反応の継続に必要な温度が維持されるためと考えられること。
推論4:文献3発明に示す400℃の過熱蒸気であってもフロンガスの分解作用を果たすものの、その分解率は極めて低く、分解効率も悪いが、酸化カルシウムとフロンガスの直接接触反応が発熱反応であるため、分解反応の進行によって酸化カルシウムの温度が局部的に上がり、この部分に接触している過熱蒸気の温度も400℃を超えて上昇するため、文献3発明においてフロンガスを分解し、酸性ガスを生成していると考えられること。
Therefore, the present inventor conducted research on the technical causal relationship between calcium oxide and superheated steam in the decomposition of freon gas based on the experimental results of the invention of Document 3 and Comparative Example 1, and as a result, the following inference was obtained. ..
Reasoning 1: Calcium oxide as a reactant has good heat conduction, but because it is porous, the heat conduction path is long, and it seems that a certain amount of time is required for the temperature to reach the center.
Inference 2: From the invention of Document 3, assuming that the temperature at which the decomposition reaction of chlorofluorocarbons begins to occur in a chain reaction due to calcium oxide is 400 ° C., the decomposition reaction starts in the portion (outer surface) close to the heating source of calcium oxide, but the heating source. It is considered that the decomposition reaction does not easily proceed to the inside of the porous material far from the surface, and therefore, in Comparative Example 1, the decomposition rate remained at the maximum of 84.9%.
Inference 3: In the invention of Document 3, the reason why the decomposition rate of 99.9% or more could be achieved is that even if the reaction temperature is 400 ° C., the inside of the porous calcium oxide is overheated by the intervention of superheated steam. It is considered that the internal temperature of calcium oxide can be heated to 400 ° C. by the infiltration of steam and acting as a heat medium, and the temperature required for the continuation of the chain decomposition reaction is maintained.
Inference 4: Although the superheated steam at 400 ° C. shown in the invention of Document 3 can decompose freon gas, its decomposition rate is extremely low and the decomposition efficiency is poor, but the direct contact reaction between calcium oxide and freon gas is an exothermic reaction. Therefore, as the decomposition reaction progresses, the temperature of calcium oxide rises locally, and the temperature of the superheated steam in contact with this portion also rises above 400 ° C. Is considered to be producing.

文献3発明では、生成された酸性ガスが反応器内で酸化カルシウムと接触することによって直ちに中和されることが開示されるとともに、中和されることなく、反応器から放出される酸性ガスを中和するための手段が必要であることも開示されている。この中和されることなく反応器から放出されるガスについては、次のように推論した。
推論5:酸性ガスが反応器の出口近辺で生成された場合は、既に酸化カルシウムと接触する機会がないこともあり、その場合は酸性ガスが中和されることなく反応器から外部に放出されると考えられること。
Document 3 discloses that the generated acid gas is immediately neutralized by contact with calcium oxide in the reactor, and the acid gas released from the reactor without being neutralized is disclosed. It is also disclosed that a means for neutralization is needed. The gas released from the reactor without being neutralized was inferred as follows.
Inference 5: If acid gas is generated near the outlet of the reactor, it may no longer have a chance to come into contact with calcium oxide, in which case the acid gas will be released from the reactor to the outside without being neutralized. To be considered.

これらの推論1~5に基づき、本発明者は文献3発明において過熱蒸気が果たしている熱媒体としての作用を他の手段で代替すれば、過熱蒸気を使用することなく、酸化カルシウムによってフロンガスをフロン排出抑制法に規定する分解率99.9%以上まで分解できるのではないかとの仮説を立てた。この仮説に基づき、過熱蒸気発明における反応温度を減じるという文献3発明の目的を離れ、比較例1と同様に図5に示すフロン分解装置の反応器を使用して比較例1と同様に溶媒としての水や水蒸気を反応器に供給することなく、即ち、過熱蒸気を介在させることなく、反応温度を450℃,500℃,550℃と上げて、分解対象のフロンガス1であるフロンR32を酸化カルシウムと直接接触させることによる分解を試み、高い分解率を示している時間帯における分解ガスの組成を分析した。その結果を比較例2~比較例4として表2に示す。 Based on these inferences 1 to 5, the present inventor substitutes the action of superheated steam as a heat medium in the invention of Document 3 by other means, and can use calcium oxide to chlorofluorocarbon without using superheated steam. It was hypothesized that the decomposition rate of 99.9% or more specified in the Emission Control Law could be decomposed. Based on this hypothesis, apart from the purpose of the invention of Document 3 to reduce the reaction temperature in the superheated steam invention, the reactor of the Freon decomposition apparatus shown in FIG. 5 was used as in Comparative Example 1 as a solvent as in Comparative Example 1. The reaction temperature was raised to 450 ° C., 500 ° C., and 550 ° C. without supplying the water or steam of We attempted decomposition by direct contact with and analyzed the composition of the decomposed gas during the time period when the decomposition rate was high. The results are shown in Table 2 as Comparative Examples 2 to 4.

Figure 0006992772000002
Figure 0006992772000002

比較例2は反応温度を450℃に、比較例3は反応温度を500℃としたものであり、比較例1の反応温度400℃から上昇させるにつれ、分解率も94.5%,99.5%と向上するものの、フロン排出抑制法に規定する分解率99.9%以上に達しなかった。反応温度が550℃に至ると分解率も99.9%以上に達するものの、極微量ではあるが、炭化水素系ガスも生成されている。これらの試験結果を踏まえて、フロンR32と酸化カルシウムの直接接触反応による分解に関して研究の結果、次の知見を得た。
知見1:反応温度を550℃以上に保持すれば、過熱蒸気を介在させることなく、分解率99.9%以上まで分解できること。
知見2:過熱蒸気発明において実施している反応温度800℃より、遙かに低い温度で分解率99.9%以上まで分解できること。
知見3:分解ガスを水素,一酸化炭素,二酸化炭素のみに、即ち、その他のガスが検出されないように制御できる可能性があり、又分解ガスにおいて水素及び一酸化炭素の生成量が多くを占めること。
知見4:分解率の向上とともに、分解ガスに含まれていたエチレン等の炭化水素系ガスがゼロに近づいていること。
知見5:分解ガスに多く含まれている水素の回収を検討する価値があること。
知見6:過熱蒸気を介在させる必要がないため、専ら過熱蒸気の存在に起因する前記した種々の問題点が生じないこと。例示すれば、反応残渣を固形物として得ることができるため、処理が容易であること等である。
知見7:固形物からなる反応残渣を分析したところ、有用資源であるフッ化カルシウムが回収可能な状態で含まれていたこと。
Comparative Example 2 had a reaction temperature of 450 ° C., and Comparative Example 3 had a reaction temperature of 500 ° C.. As the reaction temperature of Comparative Example 1 was increased from 400 ° C., the decomposition rate was 94.5%, 99.5. Although it improved to%, the decomposition rate stipulated in the Freon Emission Control Law did not reach 99.9% or more. When the reaction temperature reaches 550 ° C., the decomposition rate reaches 99.9% or more, but a hydrocarbon-based gas is also produced, although it is a very small amount. Based on these test results, the following findings were obtained as a result of research on the decomposition of chlorofluorocarbon R32 and calcium oxide by direct contact reaction.
Findings 1: If the reaction temperature is maintained at 550 ° C or higher, the decomposition rate can be decomposed to 99.9% or higher without the intervention of superheated steam.
Finding 2: It is possible to decompose to a decomposition rate of 99.9% or more at a temperature much lower than the reaction temperature of 800 ° C. carried out in the invention of superheated steam.
Finding 3: It may be possible to control the decomposition gas to hydrogen, carbon monoxide, and carbon dioxide only, that is, to prevent other gases from being detected, and the amount of hydrogen and carbon monoxide produced in the decomposition gas accounts for a large amount. matter.
Finding 4: Along with the improvement of the decomposition rate, the hydrocarbon gas such as ethylene contained in the decomposition gas is approaching zero.
Finding 5: It is worth considering the recovery of hydrogen, which is abundant in the decomposition gas.
Finding 6: Since it is not necessary to intervene superheated steam, the above-mentioned various problems caused solely by the presence of superheated steam do not occur. For example, since the reaction residue can be obtained as a solid substance, the treatment is easy.
Finding 7: Analysis of the reaction residue consisting of solid matter revealed that calcium fluoride, which is a useful resource, was contained in a recoverable state.

これらの知見を土台として更に研究を進め、本発明の課題を解決するために、請求項1により、水素とフッ素の双方を含むフロンガスを、所定温度に保持した反応器内で酸化カルシウムと直接接触反応させることによって、水素,一酸化炭素及び二酸化炭素のみからなる分解ガスに分解するフロンガスの分解方法を提供する。 In order to further study based on these findings and solve the problems of the present invention, according to claim 1, chlorofluorocarbons containing both hydrogen and fluorine are in direct contact with calcium oxide in a reactor kept at a predetermined temperature. Provided is a method for decomposing chlorofluorocarbons, which is decomposed into a decomposition gas consisting only of hydrogen, carbon monoxide and carbon dioxide by reacting.

そして、請求項2により、内部に酸化カルシウムを収納し、所定温度に加熱した反応器に、水素とフッ素の双方を含むフロンガスを供給して酸化カルシウムと直接接触反応させることにより、水素,一酸化炭素及び二酸化炭素のみからなる分解ガスに分解し、分解ガスから一酸化炭素を除去することによって、微量の二酸化炭素を含む水素からなる目的ガスを得るフロンガスの分解方法を提供する。 Then, according to claim 2, hydrogen and monoxide are generated by storing calcium oxide inside and supplying a freon gas containing both hydrogen and fluorine to a reactor heated to a predetermined temperature to cause a direct contact reaction with calcium oxide. Provided is a method for decomposing flon gas to obtain a target gas composed of hydrogen containing a trace amount of carbon dioxide by decomposing into a decomposing gas consisting only of carbon and carbon dioxide and removing carbon monoxide from the decomposing gas.

また、請求項3により、内部に酸化カルシウムを収納し、所定温度に加熱した反応器に、水素とフッ素の双方を含むフロンガスを供給して酸化カルシウムと直接接触反応させることにより、水素,一酸化炭素及び二酸化炭素のみからなる分解ガスに分解し、分解ガスを所定の温度に保持して水蒸気とともに水性シフト反応管に供給することにより水性シフト反応を生じさせて、分解ガス中の一酸化炭素から水素を生成して第2分解ガスとし、第2分解ガスを水蒸気凝縮槽に供給して第2分解ガス中の水蒸気を凝縮させて除去して第3分解ガスとし、第3分解ガスから残存する一酸化炭素を除去して、微量の二酸化炭素を含む水素からなる目的ガスを得るフロンガスの分解方法を提供する。 Further, according to claim 3, hydrogen and monoxide are generated by storing calcium oxide inside and supplying a freon gas containing both hydrogen and fluorine to a reactor heated to a predetermined temperature to cause a direct contact reaction with calcium oxide. It decomposes into a decomposition gas consisting only of carbon and carbon dioxide, and the decomposition gas is held at a predetermined temperature and supplied to the aqueous shift reaction tube together with water vapor to cause an aqueous shift reaction, from carbon monoxide in the decomposition gas. Hydrogen is generated to form a second decomposition gas, and the second decomposition gas is supplied to a steam condensing tank to condense and remove the steam in the second decomposition gas to obtain a third decomposition gas, which remains from the third decomposition gas. Provided is a method for decomposing a freon gas by removing carbon monoxide to obtain a target gas consisting of hydrogen containing a trace amount of carbon dioxide.

そして、請求項4により、分解ガスを200℃以上に保持する方法を、請求項5により、反応器内の温度を、水素とフッ素の双方を含むフロンガスの分解率が99.9%以上となる温度に保持する方法を、請求項6により、反応器内の温度を600℃以上に保持する方法を提供する。 Then, according to claim 4, the method of keeping the decomposition gas at 200 ° C. or higher, and according to claim 5, the temperature inside the reactor, the decomposition rate of freon gas containing both hydrogen and fluorine is 99.9% or more. According to claim 6, a method for keeping the temperature in the reactor at 600 ° C. or higher is provided.

請求項7により、内部に酸化カルシウムを収納した反応器と、反応器を所定温度に加熱する加熱手段と、反応器内で水素とフッ素の双方を含むフロンガスを酸化カルシウムと直接接触反応させて得られた水素,一酸化炭素及び二酸化炭素のみからなる分解ガスを供給する一酸化炭素除去装置とからなり、分解ガスから一酸化炭素を除去して、微量の二酸化炭素を含む水素からなる目的ガスを得るフロンガスの分解装置を提供する。 According to claim 7, a reactor containing calcium oxide inside, a heating means for heating the reactor to a predetermined temperature, and a freon gas containing both hydrogen and fluorine are directly contact-reacted with calcium oxide in the reactor. It consists of a carbon monoxide removal device that supplies a decomposition gas consisting only of hydrogen, carbon monoxide and carbon dioxide, and removes carbon monoxide from the decomposition gas to obtain a target gas consisting of hydrogen containing a trace amount of carbon dioxide. A device for decomposing the obtained freon gas is provided.

また、請求項8により、内部に酸化カルシウムを収納した反応器と、反応器を所定温度に加熱する加熱手段と、反応器内で水素とフッ素の双方を含むフロンガスを酸化カルシウムと直接接触反応させて得られた水素,一酸化炭素及び二酸化炭素のみからなる分解ガスと水蒸気を供給する水性シフト反応管と、水性シフト反応管内における水性シフト反応により分解ガス中の一酸化炭素から水素を生成した第2分解ガスを供給する水蒸気凝縮槽と、水蒸気凝縮槽において第2分解ガス中の水蒸気を凝縮させた第3分解ガスを供給する一酸化炭素除去装置とからなり、第3分解ガスから一酸化炭素を除去して、微量の二酸化炭素を含む水素からなる目的ガスを得るフロンガスの分解装置を提供し、請求項9により、一酸化炭素除去装置として、選択的一酸化炭素酸化装置又は一酸化炭素吸着装置を使用する構成を提供する。 Further, according to claim 8, a reactor containing calcium oxide inside, a heating means for heating the reactor to a predetermined temperature, and a freon gas containing both hydrogen and fluorine are directly contacted with calcium oxide in the reactor. An aqueous shift reaction tube that supplies water vapor and a decomposition gas consisting only of hydrogen, carbon monoxide and carbon dioxide obtained in the above process, and an aqueous shift reaction in the aqueous shift reaction tube produced hydrogen from carbon monoxide in the decomposition gas. It consists of a steam condensing tank that supplies 2 decomposition gas and a carbon monoxide remover that supplies a 3rd decomposition gas that condenses the water vapor in the 2nd decomposition gas in the steam condensing tank. Provided is a freon gas decomposition device for obtaining a target gas composed of hydrogen containing a trace amount of carbon dioxide, and according to claim 9, as a carbon monoxide removing device, a selective carbon monoxide oxidizing device or a carbon monoxide adsorption device is provided. Provides a configuration that uses the device.

更に、請求項10により、前記したフロンガスの分解方法によって、水素とフッ素の双方を含むフロンガスを分解することにより、フロンガスから微量の二酸化炭素を含む水素を生成する水素の製造方法を提供する。 Further, according to claim 10, a method for producing hydrogen which produces hydrogen containing a trace amount of carbon dioxide from chlorofluorocarbon by decomposing chlorofluorocarbon containing both hydrogen and fluorine by the above-mentioned chlorofluorocarbon decomposition method is provided.

また、請求項11により、前記したフロンガスの分解方法によって、水素とフッ素の双方を含むフロンガスを分解することにより、フロンガスの分解後の反応残渣に固形物として含まれた状態のフッ化カルシウムを生成するフッ化カルシウムの製造方法を提供し、請求項12により、フッ化カルシウムの純度が97%以上である方法を提供する。 Further, according to claim 11, by decomposing chlorofluorocarbons containing both hydrogen and fluorine by the above-mentioned chlorofluorocarbon decomposition method, calcium fluoride in a state of being contained as a solid in the reaction residue after decomposition of chlorofluorocarbons is produced. A method for producing calcium fluoride is provided, and according to claim 12, a method in which the purity of calcium fluoride is 97% or more is provided.

更に、請求項13により、前記した構成のフロンガスの分解装置を、負極と正極を電解質膜を介して隔離し、負極に燃料としての水素を供給する燃料電池に接続し、水素とフッ素の双方を含むフロンガスを前記フロンガスの分解装置に供給して分解することによって得られた微量の二酸化炭素を含む水素からなる目的ガスを燃料として負極に供給することによって発電する燃料電池を提供する。そして、請求項14により、燃料電池で発電した電力を、フロンガスの分解装置の加熱手段の電力源として使用する構成を提供する。 Further, according to claim 13, the freon gas decomposition device having the above-described configuration is connected to a fuel cell in which the negative electrode and the positive electrode are separated via an electrolyte membrane and hydrogen as a fuel is supplied to the negative electrode, and both hydrogen and fluorine are supplied. Provided is a fuel cell for generating power by supplying a target gas composed of hydrogen containing a trace amount of carbon dioxide obtained by supplying the contained freon gas to the freon gas decomposition apparatus and decomposing it to the negative electrode as fuel. Then, according to claim 14, a configuration is provided in which the electric power generated by the fuel cell is used as the electric power source of the heating means of the freon gas decomposition device.

以上記載した本発明によれば、過熱蒸気を使用しないため、従来の過熱蒸気発明や文献3発明において必要であった過熱蒸気を得るためのエネルギーや設備が不要であり、又過熱蒸気が分解に関与することに起因する酸性ガスの生成がなく、酸性ガスを中和するための水酸化カルシウムと水との混合水をシャワーリングする必要がない。そのため、反応残渣が固形物となるため、その処理が容易となり、分解装置の耐久性を高く維持することが可能である。しかも、反応温度も600℃程度でよく、過熱蒸気発明に比べて反応温度を大幅に減じることができるため、反応器内の温度を維持するための電力消費量を低減させて、ランニングコストを抑えることが可能となるとともに、分解装置の長寿命化を図ることができる。 According to the present invention described above, since the superheated steam is not used, the energy and equipment for obtaining the superheated steam required in the conventional superheated steam invention and the document 3 invention are not required, and the superheated steam is decomposed. There is no generation of acidic gas due to involvement and there is no need to shower mixed water with calcium hydroxide and water to neutralize the acidic gas. Therefore, since the reaction residue becomes a solid substance, the treatment becomes easy, and the durability of the decomposition apparatus can be maintained high. Moreover, the reaction temperature may be about 600 ° C., and the reaction temperature can be significantly reduced as compared with the superheated steam invention. Therefore, the power consumption for maintaining the temperature inside the reactor is reduced and the running cost is suppressed. This makes it possible to extend the life of the disassembly device.

また、分解ガスを水素,一酸化炭素及び二酸化炭素という特定のガスに制御でき、他に炭化水素系ガスが生成されないため、その処理が容易である。分解ガス中に含まれる水素の割合が大きいため、有用資源として回収し、再利用することができる。具体的には、水素とフッ素の双方を含むフロンガスの分解によって得た水素を大量に含む目的ガスを燃料電池の負極に燃料として供給することにより電力を生むことができ、その電力を分解装置の加熱ヒータ等の各種電力源としてそのまま利用することができる。或いはバッテリに蓄電することによって、分解装置以外にも利用することができる。本発明によって、水素とフッ素の双方を含むフロンガスの分解装置と燃料電池という異種の装置が有機的に結合した新たな装置を提供することができる。しかも、燃料電池によって得た電力を分解装置の電源として利用することにより、より地球環境に優しく、水素とフッ素の双方を含むフロンガスから再利用可能に、有用資源としての水素を回収し、限りなく、ゼロエミッションに近づけることができる。 In addition, the decomposition gas can be controlled to specific gases such as hydrogen, carbon monoxide, and carbon dioxide, and no other hydrocarbon-based gas is generated, so that the treatment is easy. Since the proportion of hydrogen contained in the decomposition gas is large, it can be recovered and reused as a useful resource. Specifically, electric power can be generated by supplying the target gas containing a large amount of hydrogen obtained by decomposing the freon gas containing both hydrogen and fluorine to the negative electrode of the fuel cell as fuel, and the electric power can be generated by the decomposition apparatus. It can be used as it is as various power sources such as a heater. Alternatively, by storing electricity in the battery, it can be used for other than the disassembling device. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a new device in which a decomposing device for chlorofluorocarbons containing both hydrogen and fluorine and a different kind of device such as a fuel cell are organically bonded. Moreover, by using the electric power obtained from the fuel cell as the power source for the decomposition device, it is more environmentally friendly, can be reused from the freon gas containing both hydrogen and fluorine, and hydrogen as a useful resource can be recovered infinitely. , Can approach zero emissions.

分解ガスには、水素とほぼ同量の一酸化炭素が含まれており、水素を燃料電池の燃料として供給するに際して、一酸化炭素は触媒毒となり触媒の寿命が極端に短くなるため、これを除去して燃焼処理させる。或いは、一酸化炭素を有効利用するために、分解ガスに水蒸気を供給し、分解ガスを所定の温度に保持することによって、水性シフト反応を生じさせ、一酸化炭素から水素を生成することにより、分解によって生成される水素と合わせて、燃料電池に供給する目的ガスに含まれる水素の量を倍増することができ、燃料電池による発電量を増加させることが可能となる。しかも一酸化炭素の燃焼処理が不要となるため、ゼロエミッションに近づくことができる。なお、目的ガスに含まれている二酸化炭素は燃料電池の電解質膜に影響を与えることのない微量であるため、水素とともに燃料電池の負極に供給すればよい。 The decomposition gas contains almost the same amount of carbon monoxide as hydrogen, and when hydrogen is supplied as fuel for a fuel cell, carbon monoxide becomes a catalyst poison and the life of the catalyst is extremely shortened. Remove and burn. Alternatively, in order to make effective use of carbon monoxide, water vapor is supplied to the decomposition gas and the decomposition gas is kept at a predetermined temperature to cause an aqueous shift reaction, and hydrogen is generated from the carbon monoxide. Together with the hydrogen produced by the decomposition, the amount of hydrogen contained in the target gas supplied to the fuel cell can be doubled, and the amount of power generated by the fuel cell can be increased. Moreover, since carbon monoxide combustion treatment is not required, it is possible to approach zero emissions. Since carbon dioxide contained in the target gas is a trace amount that does not affect the electrolyte membrane of the fuel cell, it may be supplied to the negative electrode of the fuel cell together with hydrogen.

分解するフロンガスには水素とともにフッ素も含まれているため、反応残渣として資源価値の高いフッ化カルシウムを回収可能な固形物として、しかも97%以上の高純度で得ることができ、有用資源として再利用を図ることが可能となる。よって、本発明によれば、より地球環境に優しい技術を実現することが可能となり、フロン分解装置に求められている社会的要請や時代的要請である環境負荷軽減に資することが可能となる。 Since the decomposing chlorofluorocarbon contains fluorine as well as hydrogen, calcium fluoride, which has a high resource value as a reaction residue, can be obtained as a recoverable solid substance with a high purity of 97% or more, and can be reused as a useful resource. It will be possible to use it. Therefore, according to the present invention, it is possible to realize a technology that is more friendly to the global environment, and it is possible to contribute to the reduction of the environmental load, which is the social demand and the era demand for the fluorocarbon decomposition device.

本発明にかかるフロンガスの分解方法の第1実施形態を示す基本構成図。The basic block diagram which shows 1st Embodiment of the decomposition method of chlorofluorocarbon which concerns on this invention. 本発明にかかるフロンガスの分解装置の第1実施形態を示す基本構成図。The basic block diagram which shows 1st Embodiment of the chlorofluorocarbon decomposition apparatus which concerns on this invention. 本発明にかかるフロンガスの分解方法の第2実施形態を示す基本構成図。The basic block diagram which shows the 2nd Embodiment of the decomposition method of chlorofluorocarbon which concerns on this invention. 本発明にかかるフロンガスの分解装置の第2実施形態を示す基本構成図。The basic block diagram which shows the 2nd Embodiment of the chlorofluorocarbon decomposition apparatus which concerns on this invention. 分解装置の部分構成図。Partial block diagram of the disassembly device. 分解装置の他例を示す部分構成図。A partial block diagram showing another example of the disassembly device. 酸化カルシウムによるフロンガスの分解反応を示す模式図。The schematic diagram which shows the decomposition reaction of chlorofluorocarbon by calcium oxide.

以下、本発明にかかるフロンガスの分解方法及びその装置並びに水素の製造方法、フッ化カルシウムの製造方法及び燃料電池の実施形態を図面に基づいて説明する。本発明はフロンガスの中でも、HFC(ハイドロフルオロカーボン),HCFC(ハイドロクロロフルオロカーボン)等の組成に水素とフッ素の双方を含むフロンガスを分解対象としている。よって、組成にフッ素は含むものの水素を含まないCFC(クロロフルオロカーボン),PFC(パーフルオロカーボン)等や、水素を含むもののフッ素を含まないフロンガスは分解対象としていない。 Hereinafter, a method for decomposing chlorofluorocarbons and an apparatus thereof, a method for producing hydrogen, a method for producing calcium fluoride, and an embodiment of a fuel cell according to the present invention will be described with reference to the drawings. Among chlorofluorocarbons, the present invention targets chlorofluorocarbons containing both hydrogen and fluorine in the composition of HFC (hydrofluorocarbon), HCFC (hydrochlorofluorocarbon) and the like. Therefore, CFCs (chlorofluorocarbons), PFCs (perfluorocarbons), etc., which contain fluorine but do not contain hydrogen in their composition, and chlorofluorocarbons, which contain hydrogen but do not contain fluorine, are not targeted for decomposition.

文献3発明では、分解ガスとしてメタン(CH)が多く含まれていたが、過熱蒸気の介在をなくすことによって、知見3,4,5に示すように、分解ガスの組成を特定のガス成分に制御でき、かつ、分解ガス中に占める水素の割合を多くすることができる。水素はクリーンエネルギーの代表として注目が高まっており、将来性のある有用資源である。そこで、本発明は単にフロンガスを分解して無害化するに留まらず、分解ガスから有用資源としての水素を再利用可能に回収し、更には分解装置に必要な電力を得るために燃料電池の燃料として利用することを課題の1つとしている。なお、文献3発明においても分解ガスに水素は含まれてはいたものの、分解ガスについての技術的課題は専ら最終処理のための無害化にあり、無害化以外の分解ガスからの資源回収等の課題は認識されていなかった。 In the invention of Document 3, a large amount of methane (CH 4 ) was contained as the decomposition gas, but by eliminating the intervention of superheated steam, the composition of the decomposition gas was changed to a specific gas component as shown in Findings 3, 4 and 5. It can be controlled and the ratio of hydrogen in the decomposition gas can be increased. Hydrogen is attracting attention as a representative of clean energy, and is a useful resource with future potential. Therefore, the present invention does not merely decompose the freon gas to make it harmless, but also recovers hydrogen as a useful resource from the decomposed gas in a reusable manner, and further, the fuel of the fuel cell in order to obtain the electric power required for the decomposition apparatus. One of the issues is to use it as a fuel cell. Although hydrogen was contained in the decomposed gas in the invention of Document 3, the technical problem with the decomposed gas was exclusively to detoxify it for the final treatment, such as resource recovery from the decomposed gas other than detoxification. The issue was not recognized.

また、フッ素は、冷媒フロン類,樹脂,リチウムイオン二次電池,光学ガラスなど、各種機能性化学品の原料となるほか、半導体製造や金属表面加工等の工程において洗浄剤・エッチング剤としても使用され、代替品が存在しない分野もあり、重要な資源物質である。フッ素製品の出発原料は、蛍石(フッ化カルシウム,CaF)であり、蛍石は、世界中で毎年600万トン程度が採掘されているが、残存埋蔵量は、約2億4000万トンと推定されており、あと40年程で枯渇する恐れがあるとされ、発展途上国の成長等に伴い、今後更なる需要の増加が見込まれている。また、蛍石は資源保有国が少なく、近年、最大の資源保有国である中国が輸出規制や価格引き上げ等を実施しており、わが国への安定供給が懸念されている。そのため、新たな採掘可能場所を探すと同時に、天然資源の保護の観点から、廃棄物に含まれるフッ素を何らかの原料としてリサイクルできるようにすることが重要な課題となっている。 In addition, fluorine is used as a raw material for various functional chemicals such as refrigerant fluorocarbons, resins, lithium-ion secondary batteries, and optical glass, and is also used as a cleaning agent and etching agent in processes such as semiconductor manufacturing and metal surface processing. In some fields, there are no alternatives, and it is an important resource. The starting material for fluorine products is fluorite (calcium fluoride, CaF 2 ), and about 6 million tons of fluorite are mined every year around the world, but the remaining reserves are about 240 million tons. It is estimated that it may be exhausted in about 40 years, and it is expected that demand will increase further in the future as developing countries grow. In addition, there are few resource-rich countries for fluorite, and in recent years, China, which is the largest resource-rich country, has implemented export restrictions and price increases, and there are concerns about stable supply to Japan. Therefore, it is an important issue to find a new minable place and at the same time to be able to recycle the fluorine contained in the waste as a raw material from the viewpoint of protecting natural resources.

HFC等のフッ素を含むフロンガスを分解した反応残渣にはフッ化カルシウムが含まれているものの、過熱蒸気発明や文献3発明では、過熱蒸気に起因して反応残渣の含水率が高く、反応残渣としてのフッ化カルシウムの回収が困難なばかりか、その処理方法と処理費用の増大に苦慮しているのが現状である。本発明では、知見5,6に示すように反応残渣を固形物として得ることができるため、フッ素を含むフロンガスを分解すれば、反応残渣としてフッ化カルシウムを再利用が容易な固形物の状態で回収することが可能である。そのため、本発明はフッ化カルシウムを再利用可能に回収することを課題の1つとしている。よって、本発明の分解対象は水素とフッ素の双方を含むフロンガスである。 Although calcium fluoride is contained in the reaction residue obtained by decomposing fluorine-containing chlorofluorocarbons such as HFC, in the invention of superheated steam and the invention of Document 3, the water content of the reaction residue is high due to the superheated steam, and as a reaction residue. Not only is it difficult to recover calcium fluoride, but it is also difficult to increase its treatment method and treatment cost. In the present invention, as shown in Findings 5 and 6, the reaction residue can be obtained as a solid substance. Therefore, if the fluorocarbon containing fluorine is decomposed, calcium fluoride can be easily reused as the reaction residue in the solid state. It is possible to recover. Therefore, one of the problems of the present invention is to recover calcium fluoride in a reusable manner. Therefore, the decomposition target of the present invention is a chlorofluorocarbon gas containing both hydrogen and fluorine.

本発明の分解対象となる水素とフッ素の双方を含むフロンガスの代表例としては、前記したようにHFCやHCFCが挙げられる。これらのガスは代替フロンガスとして今後も需要増加が期待され、それに比例して分解処理量も増加すると考えられる。中でも、HFCは今後代替フロンガスの主流となると考えられており、本発明を適用することによって、分解の効率化,分解装置の長寿命化,初期投資やランニングコスト等の低コスト化とともに、より地球環境に優しく、環境負荷軽減に資することができ、又再利用可能な有用資源として水素及びフッ化カルシウムを回収するとともに、全体としてゼロエミッションに近づけることが可能となる。 As described above, HFC and HCFC are typical examples of chlorofluorocarbons containing both hydrogen and fluorine, which are the targets of the present invention. Demand for these gases is expected to continue to increase as alternative chlorofluorocarbon gases, and the amount of decomposition treatment is expected to increase in proportion to this. Above all, HFC is considered to become the mainstream of alternative CFCs in the future, and by applying the present invention, the efficiency of decomposition, the life of decomposition equipment will be extended, the initial investment and running costs will be reduced, and the earth will be further improved. It is environmentally friendly, can contribute to the reduction of environmental load, and can recover hydrogen and calcium fluoride as useful resources that can be reused, and can approach zero emissions as a whole.

[第1実施形態]
本発明にかかるフロンガスの分解方法及びその装置の第1実施形態を図1,図2,図5に基づいて説明する。本発明にかかるフロンガスの分解方法は、図1に示すように、エアコンや冷凍機等から回収し、ガスボンベ2に貯留した水素とフッ素の双方を含むフロンガス1(以下、単に「フロンガス1」という)を、例えば600℃の所定温度36に保持した反応器30内で酸化カルシウム25と直接接触反応させることによって、水素10,一酸化炭素20及び二酸化炭素15のみからなる分解ガス5に分解することを基本としている。
[First Embodiment]
A method for decomposing chlorofluorocarbons according to the present invention and a first embodiment of the apparatus thereof will be described with reference to FIGS. 1, 2, and 5. As shown in FIG. 1, the method for decomposing chlorofluorocarbons according to the present invention is chlorofluorocarbon 1 containing both hydrogen and fluorine collected from an air conditioner, a refrigerator, or the like and stored in a gas cylinder 2 (hereinafter, simply referred to as "chlorofluorocarbon 1"). Is decomposed into a decomposition gas 5 consisting of only hydrogen 10, carbon monoxide 20, and carbon dioxide 15 by directly contacting and reacting with calcium oxide 25 in a reactor 30 maintained at a predetermined temperature 36 of, for example, 600 ° C. It is basic.

図2は本発明にかかるフロンガスの分解装置の第1実施形態を示す基本構成図であり、図5はその部分構成図である。反応器30の内部には、耐火材としての炭化ケイ素(SiC)35の砕石を敷き、その上に粒状又は塊状の所定量の酸化カルシウム25を、反応器30の上方に付設した酸化カルシウム投入口32から投入して収納しており、加熱ヒータ34等の加熱手段で内部を加熱して所定温度36、例えば600℃に保持してある。この反応器30内に、分解対象であるフロンガス1を、ガスボンベ2から圧力調整弁37及びガス流量計38を介して、ガス供給口31から反応器30に供給する。反応器30に炭化ケイ素35を敷設するのは、反応器30内に充填した酸化カルシウム25とフロンガス1のガス供給口31を分離して、酸化カルシウム25に対して反応器30に供給されるフロンガス1を拡散させるためである。 FIG. 2 is a basic configuration diagram showing a first embodiment of the fluorocarbon decomposition apparatus according to the present invention, and FIG. 5 is a partial configuration diagram thereof. Inside the reactor 30, crushed stone of silicon carbide (SiC) 35 as a refractory material is laid, and a predetermined amount of granular or lumpy calcium oxide 25 is placed on the crushed stone, and a calcium oxide inlet is provided above the reactor 30. It is charged from 32 and stored, and the inside is heated by a heating means such as a heating heater 34 and maintained at a predetermined temperature 36, for example, 600 ° C. In the reactor 30, the fluorocarbon 1 to be decomposed is supplied from the gas cylinder 2 to the reactor 30 from the gas supply port 31 via the pressure regulating valve 37 and the gas flow meter 38. The reason why the silicon carbide 35 is laid in the reactor 30 is that the calcium oxide 25 filled in the reactor 30 and the gas supply port 31 of the freon gas 1 are separated, and the freon gas supplied to the reactor 30 with respect to the calcium oxide 25. This is to spread 1.

反応器30に供給されたフロンガス1は、加熱ヒータ34によって所定温度36、例えば600℃に保持した酸化カルシウム25と直接接触することにより、水素10,一酸化炭素20及び二酸化炭素15のみからなる分解ガス5に分解される。この「のみ」が意味するところは分解ガス5から前記した特定の3種類のガス以外のガスが検出されないことを意味している。このように本発明は分解ガス5を前記した水素10,一酸化炭素20及び二酸化炭素15の3種類の特定のガスに制御することを特徴の1つとしている。以下に、図2,図5に示すフロンガスの分解装置を使用し、HFCのフロンR32をはじめとする各種のフロンガス1を分解した実施例1~5を示す。 The chlorofluorocarbon 1 supplied to the reactor 30 is decomposed by only hydrogen 10, carbon monoxide 20, and carbon dioxide 15 by directly contacting calcium oxide 25 held at a predetermined temperature 36, for example, 600 ° C. by a heating heater 34. It is decomposed into gas 5. The meaning of "only" means that no gas other than the above-mentioned three specific types of gas is detected from the decomposed gas 5. As described above, one of the features of the present invention is that the decomposition gas 5 is controlled to the above-mentioned three specific gases of hydrogen 10, carbon monoxide 20, and carbon dioxide 15. Hereinafter, Examples 1 to 5 in which various chlorofluorocarbons 1 including HFC chlorofluorocarbon R32 are decomposed using the chlorofluorocarbon decomposition apparatus shown in FIGS. 2 and 5 are shown.

比較例1~比較例4の実験を行った図5に示す直径125mm,高さ200mmの縦型の反応器30内に耐火材としての炭化ケイ素35(SiC)の砕石を敷き、その上に反応剤として粒径4mm程度の酸化カルシウム25(CaO)0.85kgを、反応器30の上方に付設した酸化カルシウム投入口32から投入して充填した。反応器30は空塔速度(体積流量/断面積)を0.1~0.3cm/s、空間速度(SV)を100~200h-1とした。そして、加熱ヒータ34で反応器30を加熱して内部を600℃に保持し、ガスボンベ2に充填したHFCのフロンR32(CH)を圧力調整弁37とガス流量計38を介して0.3kg/hで反応器30に供給し、ガス排出口33から排出された分解ガス5をサンプリングポイント3でサンプリングしてガスクロマトグラフで分析した。反応器30の内部温度を600℃とした以外は、酸化カルシウム25の充填量,フロンガス1の種類,フロンガス1の流量を含めて比較例1~比較例4と同一条件である。なお、ガスボンベ2と圧力調整弁37の間には仕切弁4aが、圧力調整弁37とガス流量計38の間には仕切弁4bが、ガス流量計38とガス供給口31間には仕切弁4cがそれぞれ設置され、フロンガス1の供給・遮断が可能である。 A crushed stone of silicon carbide 35 (SiC) as a refractory material was laid in a vertical reactor 30 having a diameter of 125 mm and a height of 200 mm shown in FIG. As an agent, 0.85 kg of calcium oxide 25 (CaO) having a particle size of about 4 mm was charged from the calcium oxide inlet 32 provided above the reactor 30 and filled. The reactor 30 had a superficial velocity (volume flow rate / cross-sectional area) of 0.1 to 0.3 cm / s and a space velocity (SV) of 100 to 200 h -1 . Then, the reactor 30 is heated by the heating heater 34 to keep the inside at 600 ° C., and the HFC Freon R32 (CH 2 F 2 ) filled in the gas cylinder 2 is 0 via the pressure control valve 37 and the gas flow meter 38. The decomposition gas 5 supplied to the reactor 30 at 3 kg / h and discharged from the gas discharge port 33 was sampled at the sampling point 3 and analyzed by a gas chromatograph. The conditions are the same as those of Comparative Example 1 to Comparative Example 4, including the filling amount of calcium oxide 25, the type of Freon gas 1, and the flow rate of Freon gas 1, except that the internal temperature of the reactor 30 is set to 600 ° C. A sluice valve 4a is provided between the gas cylinder 2 and the pressure control valve 37, a sluice valve 4b is provided between the pressure control valve 37 and the gas flow meter 38, and a sluice valve is provided between the gas flow meter 38 and the gas supply port 31. 4c are installed respectively, and it is possible to supply / shut off the front gas 1.

反応器30の内部温度を700℃に保持した以外は、実施例1と同様の構成でフロンR32を供給し、ガス排出口33から排出された分解ガス5をサンプリングポイント3でサンプリングしてガスクロマトグラフで分析した。 Freon R32 is supplied with the same configuration as in Example 1 except that the internal temperature of the reactor 30 is maintained at 700 ° C., and the decomposed gas 5 discharged from the gas discharge port 33 is sampled at the sampling point 3 to form a gas chromatograph. Analyzed in.

分解するフロンガス1をHFCのフロンR134a(C)とした以外は、実施例1と同一の構成で分解ガス5を分析した。 The decomposed gas 5 was analyzed with the same configuration as that of Example 1 except that the chlorofluorocarbon 1 to be decomposed was HFC chlorofluorocarbon R134a (C 2 H 2 F 4 ).

フロンガス1をHFCのフロンR410Aとした以外は、実施例1と同一の構成で分解ガス5を分析した。なお、フロンR410Aは、フロンR32(CH)とフロンR125(CHF)を50:50の割合で混合した混合フロンである。 The decomposition gas 5 was analyzed with the same configuration as that of Example 1 except that the Freon gas 1 was HFC Freon R410A. Freon R410A is a mixed Freon in which Freon R32 (CH 2 F 2 ) and Freon R 125 (C 2 HF 5 ) are mixed at a ratio of 50:50.

分解するフロンガス1をHFCのフロンR404Aとした以外は、実施例1と同一の構成で分解ガス5を分析した。なお、フロンR404Aは、フロンR143a(C)とフロンR134a(C)とフロンR125(CHF)を52:4:44の割合で混合した混合フロンである。実施例1~5に示す分解ガス5の分析結果を表3に示す。 The decomposed gas 5 was analyzed with the same configuration as that of Example 1 except that the chlorofluorocarbon 1 to be decomposed was HFC chlorofluorocarbon R404A. Freon R404A is a mixed Freon in which Freon R143a (C 2 H 3 F 3 ), Freon R134a (C 2 H 2 F 4 ) and Freon R 125 (C 2 HF 5 ) are mixed at a ratio of 52: 4: 44. be. Table 3 shows the analysis results of the decomposition gas 5 shown in Examples 1 to 5.

Figure 0006992772000003
Figure 0006992772000003

表3に示すとおり、反応温度を600℃とした実施例1の分解ガス5には、フロンR32は含まれておらず、反応残渣40に含まれるフロンR32の残留率も0.1%未満であり、フロンR32は99.9%以上の分解率で分解され無害化されている。また、実施例1の分解ガス5は、45.8%の水素10と、44.3%の一酸化炭素20と、9.9%の二酸化炭素15の3種類の特定のガスのみに制御され、他のガスは検出されていない。また、実施例1の反応温度を600℃から700℃まで上昇させた実施例2の分解ガス5にも、フロンR32は含まれておらず、反応残渣40に含まれるフロンR32の残留率も0.1%未満であり、フロンR32は99.9%以上の分解率で分解され無害化されている。また、分解ガス5は、46.2%の水素10と、44.3%の一酸化炭素20と、9.5%の二酸化炭素15の3種類の特定のガスのみに制御されており、他のガスは検出されておらず、分解ガス5の組成は実施例1と同様の構成である。 As shown in Table 3, the decomposition gas 5 of Example 1 having a reaction temperature of 600 ° C. does not contain chlorofluorocarbon R32, and the residual rate of chlorofluorocarbon R32 contained in the reaction residue 40 is less than 0.1%. Yes, Freon R32 is decomposed and detoxified at a decomposition rate of 99.9% or more. Further, the decomposition gas 5 of Example 1 is controlled only by three specific gases of 45.8% hydrogen 10, 44.3% carbon monoxide 20, and 9.9% carbon dioxide 15. , No other gas has been detected. Further, the decomposition gas 5 of Example 2 in which the reaction temperature of Example 1 was raised from 600 ° C. to 700 ° C. did not contain Freon R32, and the residual rate of Freon R32 contained in the reaction residue 40 was 0. It is less than .1%, and Freon R32 is decomposed and detoxified at a decomposition rate of 99.9% or more. Further, the decomposition gas 5 is controlled only by three specific gases of 46.2% hydrogen 10, 44.3% carbon monoxide 20, and 9.5% carbon dioxide 15. No gas was detected, and the composition of the decomposed gas 5 is the same as that of the first embodiment.

分解するフロンガスをフロンR32(実施例1,2)から、フロンR134a,フロンR410A,フロンR404Aに変更した実施例3~5においても、反応温度600℃で99.9%以上の分解率で分解され無害化されており、分解ガス5も水素10,一酸化炭素20,二酸化炭素15の3種類の特定のガスのみに制御され、他のガスは検出されていない。 Also in Examples 3 to 5 in which the chlorofluorocarbon gas to be decomposed was changed from chlorofluorocarbon R32 (Examples 1 and 2) to chlorofluorocarbon R134a, chlorofluorocarbon R410A, and chlorofluorocarbon R404A, the chlorofluorocarbon was decomposed at a reaction temperature of 600 ° C. with a decomposition rate of 99.9% or more. It is detoxified, and the decomposition gas 5 is also controlled only by three specific gases of hydrogen 10, carbon monoxide 20, and carbon dioxide 15, and no other gas is detected.

よって、フロンガスを99.9%の分解率で分解できるものの、分解ガスとして水素,一酸化炭素及び二酸化炭素以外の炭化水素系ガスが生成されてしまう反応温度550℃の比較例4に比して、反応温度を600℃とした実施例1,3~5では、フロンガス1の分解とともに分解ガス5の組成を水素10,一酸化炭素20及び二酸化炭素15の3種類の特定のガスのみに制御することができる。反応温度を700℃とした実施例2と実施例1の分解結果は同様であり、反応温度は600℃で十分なことが判る。なお、反応温度の選択は、分解ガス5が水素10,一酸化炭素20,二酸化炭素15の3種類の特定のガスのみに制御できる温度、即ち前記した以外の成分が分解ガス5から検出されない温度条件であれば600℃未満でもよく、本発明は600℃以上に温度条件を特定するものではない。 Therefore, compared to Comparative Example 4 at a reaction temperature of 550 ° C., which can decompose freon gas at a decomposition rate of 99.9%, but produces hydrocarbon-based gases other than hydrogen, carbon monoxide, and carbon dioxide as decomposition gas. In Examples 1 and 3 to 5 in which the reaction temperature is 600 ° C., the composition of the decomposition gas 5 is controlled to only three specific gases of hydrogen 10, carbon monoxide 20, and carbon dioxide 15 together with the decomposition of the freon gas 1. be able to. The decomposition results of Example 2 and Example 1 at a reaction temperature of 700 ° C. are similar, and it can be seen that a reaction temperature of 600 ° C. is sufficient. The reaction temperature is selected at a temperature at which the decomposition gas 5 can be controlled only by three specific gases of hydrogen 10, carbon monoxide 20, and carbon dioxide 15, that is, a temperature at which components other than those described above are not detected from the decomposition gas 5. If it is a condition, it may be less than 600 ° C., and the present invention does not specify the temperature condition above 600 ° C.

実施例1,実施例2に示すフロンガス1としてHFCのフロンR32(CH)を酸化カルシウム25と直接接触させた場合の分解メカニズムについて、図7に基づいて検証する。図7は、酸化カルシウム25によるフロンガスの分解反応を示す模式図であり、ステップAに示すように、酸化カルシウム25と直接接触したフロンR32は、酸化カルシウム25内に侵入し、ステップBに示すように、フロンR32(CH)のフッ素(F)と酸化カルシウム25(CaO)の酸素(O)が最初に置換され、フッ化カルシウム(CaF)が生成される。その後、ステップBに示す状態から、ステップC,D,Eに示す各反応が生じると考えられる。 The decomposition mechanism of HFC Freon R32 (CH 2 F 2 ) in direct contact with calcium oxide 25 as Freon gas 1 shown in Examples 1 and 2 will be verified with reference to FIG. 7. FIG. 7 is a schematic diagram showing the decomposition reaction of freon gas by calcium oxide 25, and as shown in step A, freon R32 in direct contact with calcium oxide 25 invades calcium oxide 25 and is as shown in step B. The fluorine (F) of Freon R32 (CH 2 F 2 ) and the oxygen (O) of calcium oxide 25 (CaO) are first substituted, and calcium fluoride (CaF 2 ) is produced. After that, it is considered that each reaction shown in steps C, D, and E occurs from the state shown in step B.

ステップCでは下記の反応式に示すように、分解ガスとして水素10,一酸化炭素20の2種類の分解ガスが放出される。
2CaO+2CH→2CaF+2CH+O→2CaF+2CO+H
In step C, as shown in the reaction formula below, two types of decomposition gases, hydrogen 10 and carbon monoxide 20, are released as decomposition gases.
2CaO + 2CH 2 F 2 → 2CaF 2 + 2CH 2 + O 2 → 2CaF 2 + 2CO + H 2

ステップDでは下記の反応式に示すように、分解ガスとして水素10と二酸化炭素15の2種類の分解ガスが放出されるとともに、酸化カルシウム25の内部には炭素(C)が残留することとなる。
2CaO+2CH→2CaF+2CH+O→2CaF+CO+C+2H
In step D, as shown in the reaction formula below, two types of decomposition gases, hydrogen 10 and carbon dioxide 15, are released as decomposition gases, and carbon (C) remains inside the calcium oxide 25. ..
2CaO + 2CH 2 F 2 → 2CaF 2 + 2CH 2 + O 2 → 2CaF 2 + CO 2 + C + 2H 2

ステップEでは下記の反応式に示すように、分解ガスとして、二酸化炭素とともに、炭化水素系ガスであるメタン(CH)が放出される。
CaO+CH→CaF+CH+0.5O→CaF+WCO+XC
(W=1,X=1,Y=1,Z=4となった場合)
In step E, as shown in the reaction formula below, methane (CH 4 ), which is a hydrocarbon gas, is released as a decomposition gas together with carbon dioxide.
CaO + CH 2 F 2 → CaF 2 + CH 2 + 0.5O 2 → CaF 2 + WCO 2 + XC Y H Z
(When W = 1, X = 1, Y = 1, Z = 4)

実施例1と比較例4は、ともにHFCのフロンR32(CH)を酸化カルシウム25と直接接触させて分解したものであり、実施例1では分解率99.9%以上を達成するとともに、分解によって生成される分解ガス5は水素10,一酸化炭素20,二酸化炭素15の3種類のみであって、その他のガスは検出されていない。一方、比較例4は分解率は99.9%以上を達成しているものの、分解ガス5として水素10,一酸化炭素20,二酸化炭素15以外の炭化水素系ガスが検出されている。この炭化水素系のガスは図7のステップEの反応に示すようにメタン(CH)と考えられる。両者の相違点は反応温度である。 In both Example 1 and Comparative Example 4, HFC Freon R32 (CH 2 F 2 ) was decomposed by directly contacting it with calcium oxide 25, and in Example 1, a decomposition rate of 99.9% or more was achieved. The decomposition gas 5 produced by the decomposition is only three types of hydrogen 10, carbon monoxide 20, and carbon dioxide 15, and no other gas is detected. On the other hand, although the decomposition rate of Comparative Example 4 is 99.9% or more, a hydrocarbon gas other than hydrogen 10, carbon monoxide 20, and carbon dioxide 15 is detected as the decomposition gas 5. This hydrocarbon gas is considered to be methane (CH 4 ) as shown in the reaction of step E in FIG. The difference between the two is the reaction temperature.

同様に反応温度を700℃に保持した実施例2,反応温度を600℃に保持するとともに、分解するフロンガスの種類を異にした実施例3~5においても、分解ガス5は水素10,一酸化炭素20,二酸化炭素15の3種類の特定のガスのみに制御され、その他のガスは検出されていない。一方、反応温度を比較例4の550℃より、更に低い500℃,450℃,400℃とした比較例3~比較例1では、分解率99.9%を達成できないばかりか、分解ガス5として炭化水素系ガスが生成されるとともに、温度が低いほど、その生成量が多くなっている。 Similarly, in Example 2 in which the reaction temperature was maintained at 700 ° C., and in Examples 3 to 5 in which the reaction temperature was maintained at 600 ° C. and the types of Freon gas to be decomposed were different, the decomposition gas 5 was hydrogen 10, monoxide. It is controlled only by three specific gases, carbon 20 and carbon dioxide 15, and no other gas is detected. On the other hand, in Comparative Examples 3 to 1 in which the reaction temperature was set to 500 ° C., 450 ° C., and 400 ° C., which are lower than 550 ° C. in Comparative Example 4, not only the decomposition rate of 99.9% could not be achieved, but also the decomposition gas 5 was used. Hydrocarbon-based gas is produced, and the lower the temperature, the larger the amount produced.

これらのことから、図7のステップC,D,Eに示す反応は反応温度に起因し、反応温度を所定の温度以上に保持すれば、フロンガスを99.9%以上の分解率で分解して無害化できるとともに、図7のステップEに示すメタン等の炭化水素系ガスを生成することなく、分解ガス5を水素10,一酸化炭素20,二酸化炭素15の3種類の特定のガスのみに制御することができ、分解ガス5に多く含まれる水素10の有効利用を図ることが可能となる。反応温度としては、実施例1,3~5に示すように600℃を保持すれば、図7のステップEに示す分解反応が生じることなく、図7のステップC,Dの分解反応に制御することが可能である。なお、反応温度の選択は、分解ガス5が水素10,一酸化炭素20,二酸化炭素15の3種類の特定のガスのみに制御できる温度、即ち前記した以外の成分が分解ガス5から検出されない温度条件であれば600℃未満でもよく、又600℃を超えてもよく、本発明は600℃以上に温度条件を特定するものではない。 From these facts, the reaction shown in steps C, D, and E in FIG. 7 is caused by the reaction temperature, and if the reaction temperature is kept above a predetermined temperature, the freon gas is decomposed at a decomposition rate of 99.9% or more. It can be detoxified, and the decomposition gas 5 is controlled to only three specific gases, hydrogen 10, carbon monoxide 20, and carbon dioxide 15, without generating a hydrocarbon gas such as methane shown in step E of FIG. It is possible to make effective use of hydrogen 10 which is contained in a large amount in the decomposition gas 5. If the reaction temperature is maintained at 600 ° C. as shown in Examples 1 and 3 to 5, the decomposition reaction shown in step E of FIG. 7 is not generated and the decomposition reaction of steps C and D of FIG. 7 is controlled. It is possible. The reaction temperature is selected at a temperature at which the decomposition gas 5 can be controlled only by three specific gases of hydrogen 10, carbon monoxide 20, and carbon dioxide 15, that is, a temperature at which components other than those described above are not detected from the decomposition gas 5. If it is a condition, it may be lower than 600 ° C. or may be higher than 600 ° C., and the present invention does not specify the temperature condition above 600 ° C.

各実施例に示す600℃に加熱保持された酸化カルシウム25とHFCのフロンR32,フロンR22,フロンR134a,フロンR125,フロンR143aの5種類のフロンガス1の分解反応は次のとおりである。
《フロンR32:CH
[主反応]
2CaO+2CH→2CaF+2CH+O→2CaF+2CO+H
[副反応]
2CaO+2CH→2CaF+2CH+O→2CaF+CO+C+2H
《フロンR22:2CHClF
[主反応]
3CaO+2CHClF→CaCl+2CaF+CO+CO+H
[副反応]
3CaO+2CHClF→CaCl+2CaF+0.5C+1.5CO+H
《フロンR134a:C
[主反応]
2CaO+C→2CaF+2CO+H
[副反応]
2CaO+C→2CaF+C+CO+H
《フロンR125:CHF
[主反応]
5CaO+2CHF→5CaF+3CO+CO+H
[副反応]
5CaO+2CHF→5CaF+1.5C+2.5CO+H
《フロンR143a:2C
[主反応]
3CaO+2C→3CaF+CO+C+3H
[副反応]
3CaO+2C→3CaF+2C+0.5CO+3H
The decomposition reactions of calcium oxide 25 heated and held at 600 ° C. and five types of chlorofluorocarbons 1 of HFC, chlorofluorocarbon R32, chlorofluorocarbon R22, chlorofluorocarbon R134a, chlorofluorocarbon R125, and chlorofluorocarbon R143a, shown in each example are as follows.
<< Freon R32: CH 2 F 2 >>
[Main reaction]
2CaO + 2CH 2 F 2 → 2CaF 2 + 2CH 2 + O 2 → 2CaF 2 + 2CO + H 2
[Adverse reaction]
2CaO + 2CH 2 F 2 → 2CaF 2 + 2CH 2 + O 2 → 2CaF 2 + CO 2 + C + 2H 2
<< Freon R22: 2CHClF 2 >>
[Main reaction]
3CaO + 2CHClF 2 → CaCl 2 + 2CaF 2 + CO + CO 2 + H 2
[Adverse reaction]
3CaO + 2CHClF 2 → CaCl 2 + 2CaF 2 + 0.5C + 1.5CO 2 + H 2
<< Freon R134a: C 2 H 2 F 4 >>
[Main reaction]
2CaO + C 2 H 2 F 4 → 2CaF 2 + 2CO + H 2
[Adverse reaction]
2CaO + C 2 H 2 F 4 → 2CaF 2 + C + CO 2 + H 2
<< Freon R125: C 2 HF 5 >>
[Main reaction]
5CaO + 2C 2 HF 5 → 5CaF 2 + 3CO + CO 2 + H 2
[Adverse reaction]
5CaO + 2C 2 HF 5 → 5CaF 2 + 1.5C + 2.5CO 2 + H 2
<< Freon R143a: 2C 2 H 3 F 3 >>
[Main reaction]
3CaO + 2C 2 H 3 F 3 → 3CaF 2 + CO + C + 3H 2
[Adverse reaction]
3CaO + 2C 2 H 3 F 3 → 3CaF 2 + 2C + 0.5CO 2 + 3H 2

分解対象であるフロンガス1の供給量と酸化カルシウム25の量の関係については、99.9%以上の分解率を達成できる範囲で適宜選択すればよい。実施例1~5に示すように、反応器30に収納した酸化カルシウム25の量0.85kgに対して、フロンガス1の供給量を0.3kg/h(体積流量2.15L/min)とすることによって、99.9%以上の分解率を達成することができた。なお、酸化カルシウム25の量が同じであれば、供給するフロンガス1の流量を少なくすることによって、後述するように生成されるフッ化カルシウムの純度が高くなる。 The relationship between the supply amount of Freon gas 1 to be decomposed and the amount of calcium oxide 25 may be appropriately selected within a range in which a decomposition rate of 99.9% or more can be achieved. As shown in Examples 1 to 5, the supply amount of Freon gas 1 is set to 0.3 kg / h (volume flow rate 2.15 L / min) with respect to the amount of calcium oxide 25 stored in the reactor 30 of 0.85 kg. As a result, a decomposition rate of 99.9% or more could be achieved. If the amount of calcium oxide 25 is the same, the purity of calcium fluoride produced as will be described later is increased by reducing the flow rate of the supplied chlorofluorocarbon 1.

次に、図2に示すように、分解ガス5を適宜の一酸化炭素除去装置50a,50bに供給して、図1に示すように一酸化炭素除去51を行う。一酸化炭素除去装置50a,50bとしては、例えば、選択的一酸化炭素酸化装置、或いは一酸化炭素吸着装置を使用することができる。一酸化炭素吸着装置としては、一酸化炭素を吸着し、二酸化炭素と水素を吸着しない細孔径を有する吸着剤を使用することができる。一酸化炭素と二酸化炭素のレナードジョーンズ定数(分子径)は、一酸化炭素が0.359nm、二酸化炭素が0.399nmであるため、その間の細孔径である0.36nm×0.36nmの細孔径を持つ構造コードRHOのゼオライトや、0.38nm×0.38nmの細孔径を持つ構造コードCHAのゼオライトで分離することが可能である。なお、上記吸着剤の細孔径は水素10の分子径より大きいが、ゼオライトは水素10を吸着しないため、水素10は単に細孔を通過するのみである。図示例では、2基の一酸化炭素除去装置50a,50bを使用したが、その数に特定があるわけではない。また、図2において、4e,4f,4g,4h,4iはそれぞれ仕切弁であって、分解ガス5の一酸化炭素除去装置50a,50bへの、或いは一酸化炭素除去装置50a,50bからの供給・遮断が可能である。 Next, as shown in FIG. 2, the decomposition gas 5 is supplied to appropriate carbon monoxide removing devices 50a and 50b, and the carbon monoxide removing 51 is performed as shown in FIG. As the carbon monoxide removing devices 50a and 50b, for example, a selective carbon monoxide oxidizing device or a carbon monoxide adsorbing device can be used. As the carbon monoxide adsorber, an adsorbent having a pore diameter that adsorbs carbon monoxide and does not adsorb carbon dioxide and hydrogen can be used. The Leonard Jones constant (molecular diameter) of carbon monoxide and carbon dioxide is 0.359 nm for carbon monoxide and 0.399 nm for carbon dioxide, so the pore diameter between them is 0.36 nm × 0.36 nm. It is possible to separate with a zeolite having a structure code RHO having a structure code of RHO or a zeolite having a structure code CHA having a pore diameter of 0.38 nm × 0.38 nm. The pore diameter of the adsorbent is larger than the molecular diameter of hydrogen 10, but since zeolite does not adsorb hydrogen 10, hydrogen 10 simply passes through the pores. In the illustrated example, two carbon monoxide removing devices 50a and 50b were used, but the number is not specified. Further, in FIG. 2, 4e, 4f, 4g, 4h, and 4i are sluice valves, respectively, and are supplied to the carbon monoxide removing devices 50a and 50b of the decomposition gas 5 or from the carbon monoxide removing devices 50a and 50b.・ It is possible to shut off.

分解ガス5から除去した一酸化炭素20は、吸着剤から脱着させる等して燃焼装置52で燃焼処理53することにより無害化した後に大気に放出52aをする。これにより、分解ガス5から一酸化炭素除去51を行って、微量の二酸化炭素15を含む水素10からなる目的ガス55を得ることができ、水素10を有用資源として回収することができる。なお、水素10を主成分とする目的ガス55には微量の二酸化炭素15が含まれているが、水素10の有効利用に際して障害となる量ではない。よって、本発明は、フロンガス1を分解することによって、フロンガス1から微量の二酸化炭素15を含む水素10を生成することにより、有用資源として再利用可能とすることを特徴の1つとしている。なお、分解ガス5から、一酸化炭素20とともに二酸化炭素15を除去するようにしてもよいし、目的ガス55から、二酸化炭素15を除去するようにしてもよい。 The carbon monoxide 20 removed from the decomposition gas 5 is detoxified by being desorbed from the adsorbent and subjected to combustion treatment 53 by the combustion device 52, and then released into the atmosphere 52a. As a result, the carbon monoxide removal 51 can be performed from the decomposition gas 5 to obtain the target gas 55 composed of the hydrogen 10 containing a trace amount of carbon dioxide 15, and the hydrogen 10 can be recovered as a useful resource. Although the target gas 55 containing hydrogen 10 as a main component contains a small amount of carbon dioxide 15, it does not hinder the effective use of hydrogen 10. Therefore, one of the features of the present invention is that hydrogen 10 containing a trace amount of carbon dioxide 15 is generated from chlorofluorocarbon 1 by decomposing chlorofluorocarbon 1, so that it can be reused as a useful resource. The carbon dioxide 15 may be removed from the decomposition gas 5 together with the carbon monoxide 20, or the carbon dioxide 15 may be removed from the target gas 55.

フロンガスの分解装置を、負極70aと正極70bを電解質膜を介して隔離し、負極70aに燃料としての水素を供給する燃料電池70に接続し、フロンガス1から生成した微量の二酸化炭素15を含む水素10からなる目的ガス55を、燃料電池70の負極70aに燃料として供給し発電をする。発電された電力はバッテリ71に蓄電し、インバータ72から適宜の制御ボックスを介して、各種電源73の電力として利用することができる。具体的には、反応器30を加熱する加熱ヒータ34の電源やその他の制御系の電源として利用することができる。フロンガスの分解装置の加熱ヒータ34やその他の制御系の電源への給電は、制御ボックスを介することなく、インバータ72から配線74を介して直接行ってもよい。これにより、フロンガス1の分解を、環境に負荷を与えることなく、しかもゼロエミッションに近い方法で実現することができる。なお、75は正極70bへ酸素を供給する酸素供給口、76は発電により生じた水,窒素,二酸化炭素等の排出口であり、77はその排出槽であって水を貯留している。 The freon gas decomposition device is connected to a fuel cell 70 that separates the negative electrode 70a and the positive electrode 70b via an electrolyte membrane and supplies hydrogen as a fuel to the negative electrode 70a, and hydrogen containing a trace amount of carbon dioxide 15 generated from the freon gas 1. The target gas 55 composed of 10 is supplied as fuel to the negative electrode 70a of the fuel cell 70 to generate power. The generated electric power is stored in the battery 71 and can be used as electric power for various power sources 73 from the inverter 72 via an appropriate control box. Specifically, it can be used as a power source for the heating heater 34 that heats the reactor 30 or as a power source for other control systems. The power supply to the heater 34 of the Freon gas decomposition device and the power supply of other control systems may be directly performed from the inverter 72 via the wiring 74 without going through the control box. As a result, the decomposition of Freon gas 1 can be realized by a method close to zero emission without imposing a load on the environment. Reference numeral 75 is an oxygen supply port for supplying oxygen to the positive electrode 70b, 76 is a discharge port for water, nitrogen, carbon dioxide, etc. generated by power generation, and 77 is a discharge tank for storing water.

一方、フロンガス1を酸化カルシウム25によって分解した後の反応残渣40は、フロンガス1の分解に過熱蒸気が介在していないため、固形物として取り出すことができ容易に処理することが可能である。この固形物は後述するようにフッ化カルシウム45の固体を含んでおり、有用資源として再利用が可能である。 On the other hand, the reaction residue 40 after decomposing the chlorofluorocarbon 1 with the calcium oxide 25 can be easily treated as a solid substance because superheated steam does not intervene in the decomposition of the chlorofluorocarbon 1. As will be described later, this solid contains a solid of calcium fluoride 45 and can be reused as a useful resource.

[第2実施形態]
次に、本発明にかかるフロンガスの分解方法及びその装置の第2実施形態を図3,図4,図5に基づいて説明する。なお、第1実施形態と同一工程及び同一部材については、同一の符号を付して、その説明を省略する。第2実施形態は分解ガス5中に含まれる一酸化炭素20から水性シフト反応60によって水素10を生成し、分解ガス5から生成される水素10の総量を増量し、ひいては燃料電池70による発電量を増加させることに特徴を有する。
[Second Embodiment]
Next, a method for decomposing chlorofluorocarbons according to the present invention and a second embodiment of the apparatus thereof will be described with reference to FIGS. 3, 4, and 5. The same steps and the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. In the second embodiment, hydrogen 10 is generated from the carbon monoxide 20 contained in the decomposition gas 5 by an aqueous shift reaction 60, the total amount of hydrogen 10 generated from the decomposition gas 5 is increased, and the amount of power generated by the fuel cell 70 is increased. It is characterized by increasing.

分解ガス5、例えば実施例1に示すフロンR32(HFC)の分解ガス5の組成は、水素10:45.8%,一酸化炭素20:44.3%,二酸化炭素15:9.9%であり、44.3%もの一酸化炭素20が含まれている。一酸化炭素20からは下記1式に示すように水性シフト反応60によって、水素10を生成することが可能であるため、分解ガス5中の一酸化炭素20を、第1実施形態に示す燃焼処理53(図1参照)に代えて、水素10を増量させるための原料として有効利用を図る。
CO+HO ⇔ CO+H (1式)
The composition of the decomposition gas 5, for example, the decomposition gas 5 of Freon R32 (HFC) shown in Example 1 is 10: 45.8% for hydrogen, 20: 44.3% for carbon monoxide, and 15: 9.9% for carbon dioxide. Yes, it contains as much as 44.3% carbon monoxide 20. Since hydrogen 10 can be generated from the carbon monoxide 20 by the aqueous shift reaction 60 as shown in the following equation 1, the carbon monoxide 20 in the decomposition gas 5 is burned as shown in the first embodiment. Instead of 53 (see FIG. 1), it will be effectively used as a raw material for increasing the amount of hydrogen 10.
CO + H 2 O ⇔ CO 2 + H 2 (1 set)

そのため、反応器30から排出された水素10,一酸化炭素20,二酸化炭素15からなる分解ガス5を、水性シフト反応管65(図4参照)に供給し、水性シフト反応管65内に水蒸気供給管66から所定量の水蒸気供給61を行なうとともに、分解ガス5の温度を所定温度62(例えば、200℃)に保持することによって、水性シフト反応60によって分解ガス5中の一酸化炭素20から水素10を生成して第2分解ガス6とする。なお、図4においてもガスサンプリングポイント3以降の管路においても、必要な適宜の箇所に仕切弁(図示略)がそれぞれ設置され、第2分解ガス6等のガスの供給・遮断が可能である。 Therefore, the decomposition gas 5 composed of hydrogen 10, carbon monoxide 20, and carbon dioxide 15 discharged from the reactor 30 is supplied to the aqueous shift reaction tube 65 (see FIG. 4), and steam is supplied into the aqueous shift reaction tube 65. By supplying a predetermined amount of steam 61 from the tube 66 and keeping the temperature of the decomposition gas 5 at a predetermined temperature 62 (for example, 200 ° C.), hydrogen monoxide 20 in the decomposition gas 5 is hydrogenated by the aqueous shift reaction 60. 10 is generated and used as the second decomposition gas 6. In addition, in FIG. 4 and in the pipeline after the gas sampling point 3, sluice valves (not shown) are installed at appropriate positions, and gas such as the second decomposition gas 6 can be supplied / shut off. ..

水性シフト反応60は温度によって、1式の右辺と左辺のどちらからの反応も進み、温度が低いほど、左辺から右辺に反応が進行して水素が生成される。また、平衡定数は温度が低いほど大きくなるものの、反応速度は遅くなる。そこで、平衡定数と一般的に制御可能な温度域から、実施可能な温度域における所定温度62として、本実施形態では200℃を選択した。加えて、分解ガス5は、フロンガス1と酸化カルシウム25を600℃で直接接触反応させることによって生成されたものであり、分解ガス5の温度を200℃より低い温度に冷却するためのコスト高騰を避けるためでもある。なお、分解ガス5の所定温度62は200℃に限定されるものではなく、水性シフト反応60に適した温度を適宜選択すればよい。 In the aqueous shift reaction 60, the reaction from either the right side or the left side of the set proceeds depending on the temperature, and the lower the temperature, the more the reaction proceeds from the left side to the right side to generate hydrogen. The equilibrium constant increases as the temperature decreases, but the reaction rate slows down. Therefore, in this embodiment, 200 ° C. was selected as the predetermined temperature 62 in the feasible temperature range from the equilibrium constant and the generally controllable temperature range. In addition, the decomposition gas 5 is produced by directly contacting the fluorocarbon gas 1 and the calcium oxide 25 at 600 ° C., which increases the cost for cooling the temperature of the decomposition gas 5 to a temperature lower than 200 ° C. It is also to avoid it. The predetermined temperature 62 of the decomposition gas 5 is not limited to 200 ° C., and a temperature suitable for the aqueous shift reaction 60 may be appropriately selected.

200℃の時の平衡定数K=2.359×10であるから、反応前の各ガスのモル濃度を[一酸化炭素:1モル/V][水:1モル/V]とすると,平衡時の右辺の二酸化炭素と水のモル濃度は同じであり、これをxとすると平衡定数の定義から下記2式のとおりとなる。

Figure 0006992772000004
(2式)


この2式をxについてとけば
x=0.94(mol/v)
が得られる。したがって1モルの一酸化炭素20から0.94モルの水素10が生成されることになり、この状態で平衡状態となる。実施例1の分解ガス5についての水性シフト反応60の結果を表4に示す。 Since the equilibrium constant K = 2.359 × 102 at 200 ° C., if the molar concentration of each gas before the reaction is [carbon monoxide: 1 mol / V] [water: 1 mol / V], the equilibrium is achieved. The molar concentration of carbon dioxide and water on the right side of time is the same, and if this is x, the following two equations are obtained from the definition of the equilibrium constant.
Figure 0006992772000004
(2 formulas)


If these two equations are solved for x
x = 0.94 (mol / v)
Is obtained. Therefore, 0.94 mol of hydrogen 10 is produced from 1 mol of carbon monoxide 20, and an equilibrium state is reached in this state. Table 4 shows the results of the aqueous shift reaction 60 for the decomposition gas 5 of Example 1.

Figure 0006992772000005
Figure 0006992772000005

水性シフト反応60は、水性シフト反応管65に設置したガスサンプリング口67から分解ガス5中の水素濃度計測63(図3参照)を行いつつ進行させ、必要に応じて水蒸気供給管66から分解ガス5に水蒸気供給61を繰り返して行う。分解ガス5中の一酸化炭素20から水素10の生成が終了すると、水性シフト反応60を経た第2分解ガス6を水蒸気凝縮装置68に供給して水蒸気凝縮64を行って、水蒸気を除去することによって、第3分解ガス7を得る。その後、第3分解ガス7を適宜の一酸化炭素除去装置50に供給して、一酸化炭素除去51を行って目的ガス55を得る。第3分解ガス7から除去した一酸化炭素20は、吸着剤から脱着させる等して燃焼装置52で燃焼処理53することにより無害化した後に大気に放出52aをする。水性シフト反応60は平衡反応であり、全ての一酸化炭素20を水素10に変換することができないため、残存する一酸化炭素20の無害化処理が必要となるためである。 The aqueous shift reaction 60 is allowed to proceed while measuring the hydrogen concentration in the decomposed gas 5 (see FIG. 3) from the gas sampling port 67 installed in the aqueous shift reaction tube 65, and the decomposed gas is taken from the steam supply pipe 66 as needed. The steam supply 61 is repeated in step 5. When the production of hydrogen 10 from the carbon monoxide 20 in the decomposition gas 5 is completed, the second decomposition gas 6 that has undergone the aqueous shift reaction 60 is supplied to the steam condensing device 68 to perform steam condensation 64 to remove steam. The third decomposition gas 7 is obtained. After that, the third decomposition gas 7 is supplied to an appropriate carbon monoxide removing device 50, and the carbon monoxide removing 51 is performed to obtain the target gas 55. The carbon monoxide 20 removed from the third decomposition gas 7 is detoxified by a combustion treatment 53 by a combustion device 52 such as by desorbing from an adsorbent, and then released into the atmosphere 52a. This is because the aqueous shift reaction 60 is an equilibrium reaction and cannot convert all the carbon monoxide 20 into hydrogen 10, so that the remaining carbon monoxide 20 needs to be detoxified.

上記した水性シフト反応60によって得られた水素10は分解ガス5中に含まれる水素10に加えて、分解ガス5中の一酸化炭素20が水素10に変換されているため、第1実施形態に比して略2倍量の水素10を得ることができる。 Since the hydrogen 10 obtained by the aqueous shift reaction 60 described above has carbon monoxide 20 in the decomposition gas 5 converted to hydrogen 10 in addition to the hydrogen 10 contained in the decomposition gas 5, the first embodiment is used. About twice the amount of hydrogen 10 can be obtained.

得られた目的ガス55を第1実施形態と同様に、燃料電池70の負極70aに燃料として供給して発電を行い、第1実施形態と同様にして、加熱ヒータ34の電源等として再利用を行う。 The obtained target gas 55 is supplied as fuel to the negative electrode 70a of the fuel cell 70 to generate electricity in the same manner as in the first embodiment, and is reused as a power source for the heating heater 34 or the like in the same manner as in the first embodiment. conduct.

本発明の分解対象であるフロンガス1には、水素とともにフッ素を含んでいるため、第1実施形態及び第2実施形態ともに、反応残渣40には有用資源としてのフッ化カルシウム(CaF,蛍石)45が固形物として含まれている。そのため本発明によれば、フッ化カルシウム45を再利用可能な固形物の状態で回収することができる。仮に、反応残渣40を廃棄する場合でも固形物であるため、その処理が容易である。よって、本発明はフロンガス1を分解することによって、フロンガス1の分解後の反応残渣40に固形物として含まれた状態のフッ化カルシウム45を生成し、有用資源として再利用可能とすることを特徴の1つとしている。更に、回収するフッ化カルシウム45の純度を高くなるように制御することができれば、より再利用の途が広がる。 Since the chlorofluorocarbon 1 to be decomposed in the present invention contains fluorine as well as hydrogen, calcium fluoride (CaF 2 , fluorite) as a useful resource for the reaction residue 40 in both the first embodiment and the second embodiment ) 45 is contained as a solid substance. Therefore, according to the present invention, calcium fluoride 45 can be recovered in the form of a reusable solid substance. Even if the reaction residue 40 is discarded, it is a solid substance, so that the treatment is easy. Therefore, the present invention is characterized in that by decomposing chlorofluorocarbon 1, calcium fluoride 45 in a state of being contained as a solid in the reaction residue 40 after decomposition of chlorofluorocarbon 1 is generated and can be reused as a useful resource. It is one of. Further, if the purity of the recovered calcium fluoride 45 can be controlled to be high, the possibility of reuse will be further expanded.

フッ化カルシウム45の純度が60%~80%のものは通常の天然品の蛍石の純度と同等であり、主に鋳鋼製品の製鋼工程で不純物除去のためカルシウム酸化物のスラグ化促進融剤として使用されている。また、純度97%以上となると、主にフッ酸の原料として使用可能となり、その価値は飛躍的に高まる。更に、純度99.95%以上となると、主に高級レンズ等の光学結晶材料として使用されている。 Calcium fluoride 45 with a purity of 60% to 80% is equivalent to the purity of ordinary natural fluorite, and is a slag-promoting flux for calcium oxide mainly for removing impurities in the steelmaking process of cast steel products. It is used as. Further, when the purity is 97% or more, it can be used mainly as a raw material for hydrofluoric acid, and its value is dramatically increased. Further, when the purity is 99.95% or more, it is mainly used as an optical crystal material for high-grade lenses and the like.

前記した実施例1の反応残渣40に含まれるフッ化カルシウム45の純度を確認したところ、49.4%であった。フロンR32の投入量は酸化カルシウム25:0.85kgに対して、0.4当量に当たる0.32kgであった。反応残渣40に含まれるフッ化カルシウム45の純度を上げるためには、反応器30内に収納した酸化カルシウム25に対して供給するフロンガス1の量を増加させ、酸化カルシウム25と反応するフッ素の量を増加させる必要があるが、単に酸化カルシウム25の量に対するフロンガス1の供給量を増加させてしまうと、反応器30内に収納した酸化カルシウム25の分解能力を超えることとなって分解率が悪化してしまい、99.9%以上の分解率を達成することができなくなってしまう。 When the purity of calcium fluoride 45 contained in the reaction residue 40 of Example 1 was confirmed, it was 49.4%. The amount of Freon R32 added was 0.32 kg, which corresponds to 0.4 equivalent, with respect to 25: 0.85 kg of calcium oxide. In order to increase the purity of the calcium fluoride 45 contained in the reaction residue 40, the amount of freon gas 1 supplied to the calcium oxide 25 stored in the reactor 30 is increased, and the amount of fluorine that reacts with the calcium oxide 25 is increased. However, if the supply amount of flon gas 1 is simply increased with respect to the amount of calcium oxide 25, the decomposition capacity of calcium oxide 25 stored in the reactor 30 will be exceeded and the decomposition rate will deteriorate. Therefore, it becomes impossible to achieve a decomposition rate of 99.9% or more.

そこで、本発明では99.9%以上のフロンガス1の分解率を保持した上で、反応残渣40に含まれるフッ化カルシウム45の純度を上げるために、フロンガス1の分解装置の他例として、反応器30の役割を、反応残渣40に含まれるフッ化カルシウム45の純度を上げるための第1反応器30aと、99.9%以上のフロンガスの分解率を保持するための第2反応器30bに役割分担することとした。この役割分担によって、フロンガス1を分解率99.9%以上に分解するとともに、反応残渣40に固形物として含まれているフッ化カルシウム45の純度を高く制御することができ、例えば純度97%以上で回収することが可能となる。その構成を図6に基づいて説明するとともに、HFCのフロンR32をはじめとする各種のフロンガス1の分解を行った。なお、第1反応器30a及び第2反応器30bは、前記した第1実施形態及び第2実施形態のいずれであっても、反応器30に代えて使用することができる。 Therefore, in the present invention, in order to maintain the decomposition rate of Freon gas 1 of 99.9% or more and increase the purity of calcium fluoride 45 contained in the reaction residue 40, the reaction is carried out as another example of the decomposition apparatus of Freon gas 1. The role of the vessel 30 is to be assigned to the first reactor 30a for increasing the purity of calcium fluoride 45 contained in the reaction residue 40 and the second reactor 30b for maintaining the decomposition rate of chlorofluorocarbons of 99.9% or more. We decided to divide the roles. By this division of roles, chlorofluorocarbon 1 can be decomposed to a decomposition rate of 99.9% or more, and the purity of calcium fluoride 45 contained as a solid substance in the reaction residue 40 can be controlled to be high, for example, a purity of 97% or more. It will be possible to collect it at. The configuration was described with reference to FIG. 6, and various chlorofluorocarbons 1 including HFC chlorofluorocarbon R32 were decomposed. The first reactor 30a and the second reactor 30b can be used in place of the reactor 30 in any of the first and second embodiments described above.

図6に示すように、直径125mm,長さ200mmの第1反応器30aと同一構成の第2反応器30bを直列に繋ぎ、それぞれの内部に耐火材としての炭化ケイ素(SiC)35の砕石を敷き、その上に反応剤として酸化カルシウム25:0.85kgを、第1反応器30a,第2反応器30bの上方に付設した酸化カルシウム投入口32a,32bからそれぞれの内部に投入して充填した。そして、加熱ヒータ34a,34bで第1反応器30a及び第2反応器30bを加熱して、それぞれ内部を600℃に保持し、ガスボンベ2に充填したHFCのフロンR32(CH)を、ガス供給口31aから第1反応器30a内に供給して、酸化カルシウム25と直接接触させて分解し、第1反応器30aのガス排出口33aから排出した分解ガス5を、ガス供給口31bから第2反応器30b内に供給して、酸化カルシウム25と直接接触させて分解し、第2反応器30bのガス排出口33bから排出した。このガス排出口33bから排出された分解ガス5をサンプリングポイント3でサンプリングして、ガスクロマトグラフで分析することにより、ガス排出口33bから排出された分解ガス5の分解率が99.9%以上を保持できる範囲で、第1反応器30aに充填した0.85kgの酸化カルシウム25に対して、0.7当量(0.54kg)となるように圧力調整弁37とガス流量計38を介して0.3kg/hで供給した。第1反応器30a及び第2反応器30bにおける反応残渣40におけるフッ化カルシウム45の純度を測定した。なお、図6において4a,4b,4c,4m,4n,4oは仕切弁であって、それぞれの管路においてフロンガス1や分解ガス5の供給・遮断が可能である。 As shown in FIG. 6, a second reactor 30b having the same configuration as the first reactor 30a having a diameter of 125 mm and a length of 200 mm is connected in series, and crushed stone of silicon carbide (SiC) 35 as a refractory material is placed inside each of them. It was laid, and calcium oxide 25: 0.85 kg as a reactant was charged into each of the calcium oxide inlets 32a and 32b provided above the first reactor 30a and the second reactor 30b and filled therein. .. Then, the first reactor 30a and the second reactor 30b are heated by the heating heaters 34a and 34b, the inside of each is kept at 600 ° C., and the HFC front R32 (CH 2 F 2 ) filled in the gas bomb 2 is charged. The decomposed gas 5 supplied from the gas supply port 31a into the first reactor 30a, directly contacted with the calcium oxide 25 to decompose, and discharged from the gas discharge port 33a of the first reactor 30a is discharged from the gas supply port 31b. It was supplied into the second reactor 30b, directly contacted with calcium oxide 25 to decompose, and discharged from the gas discharge port 33b of the second reactor 30b. By sampling the decomposition gas 5 discharged from the gas discharge port 33b at the sampling point 3 and analyzing it with a gas chromatograph, the decomposition rate of the decomposition gas 5 discharged from the gas discharge port 33b is 99.9% or more. 0 through the pressure control valve 37 and the gas flow meter 38 so as to be 0.7 equivalent (0.54 kg) with respect to 0.85 kg of calcium oxide 25 filled in the first reactor 30a within the range that can be held. It was supplied at 3 kg / h. The purity of calcium fluoride 45 in the reaction residue 40 in the first reactor 30a and the second reactor 30b was measured. In FIG. 6, 4a, 4b, 4c, 4m, 4n, and 4o are sluice valves, and Freon gas 1 and decomposition gas 5 can be supplied / shut off in their respective pipelines.

フロンR32の供給量を1.0当量(0.78kg)とした以外は、実施例6と同様の構成で、第1反応器30a及び第2反応器30bにおける反応残渣40におけるフッ化カルシウム45の純度を測定した。 Calcium fluoride 45 in the reaction residue 40 in the first reactor 30a and the second reactor 30b has the same configuration as in Example 6 except that the supply amount of Freon R32 is 1.0 equivalent (0.78 kg). The purity was measured.

フロンR32の供給量を1.1当量(0.86kg)とした以外は、実施例6と同様の構成で、第1反応器30a及び第2反応器30bにおける反応残渣40におけるフッ化カルシウム45の純度を測定した。 Calcium fluoride 45 in the reaction residue 40 in the first reactor 30a and the second reactor 30b has the same configuration as in Example 6 except that the supply amount of Freon R32 is 1.1 equivalent (0.86 kg). The purity was measured.

フロンR32の供給量を1.2当量(0.94kg)とした以外は、実施例6と同様の構成で、第1反応器30a及び第2反応器30bにおける反応残渣40におけるフッ化カルシウム45の純度を測定した。実施例6~実施例9に示す分解ガス5及び反応残渣40に含まれるフッ化カルシウム45の純度等の分析結果を表5に示す。 Calcium fluoride 45 in the reaction residue 40 in the first reactor 30a and the second reactor 30b has the same configuration as in Example 6 except that the supply amount of Freon R32 is 1.2 equivalent (0.94 kg). The purity was measured. Table 5 shows the analysis results of the purity and the like of calcium fluoride 45 contained in the decomposition gas 5 and the reaction residue 40 shown in Examples 6 to 9.

Figure 0006992772000006
Figure 0006992772000006

表5に示すように、フロンR32の供給量を1.1(0.86kg)以上とすることによって、第1反応器30aの反応残渣40から、フッ素化学メーカーでフッ酸の原料として使用可能な純度である純度97%を超える高純度のフッ化カルシウム45を回収することができる。よって、フロンガスの供給量を調節することによって、反応残渣40から回収するフッ化カルシウム45の純度を制御することが可能である。 As shown in Table 5, by setting the supply amount of Freon R32 to 1.1 (0.86 kg) or more, the reaction residue 40 of the first reactor 30a can be used as a raw material for hydrofluoric acid by a fluorine chemical manufacturer. High-purity calcium fluoride 45 having a purity of more than 97% can be recovered. Therefore, it is possible to control the purity of calcium fluoride 45 recovered from the reaction residue 40 by adjusting the supply amount of Freon gas.

実施例6~実施例9では、フロンR32の分解率99.9%以上を保持するため、第2反応器30bにおける反応残渣40としてのフッ化カルシウム45の純度が著しく低くなっている。この第2反応器30bにおける反応残渣40を新たに分解を行う第1反応器30aに酸化カルシウム25とともに収納して、フロンガス1の分解を行うことにより、フッ化カルシウム45の純度を上げることができる。その例を実施例8における第2反応器30bにおける反応残渣40を使用して実施例10として示す。 In Examples 6 to 9, since the decomposition rate of Freon R32 is maintained at 99.9% or more, the purity of calcium fluoride 45 as the reaction residue 40 in the second reactor 30b is remarkably low. The purity of calcium fluoride 45 can be increased by storing the reaction residue 40 in the second reactor 30b together with the calcium oxide 25 in the first reactor 30a to be newly decomposed and decomposing the chlorofluorocarbon 1. .. An example is shown as Example 10 using the reaction residue 40 in the second reactor 30b in Example 8.

実施例8における第2反応器30bにおける反応残渣40:0.90kgを、第1反応器30aに収納する酸化カルシウム25に加えて第1反応器30aに収納した以外は、実施例8と同様の構成で、フロンR32を0.3kg/hで計算上で第1反応器30aの反応残渣40のフッ化カルシウム45の純度が97%に達する時点まで供給し、第1反応器30a及び第2反応器30bにおける反応残渣40におけるフッ化カルシウム45の純度を測定した。その結果を表6に示す。フロンR32の投入量は酸化カルシウム25の0.85kgに対して0.82当量に当る0.65kgであった。 The same as in Example 8 except that the reaction residue 40: 0.90 kg in the second reactor 30b in Example 8 was stored in the first reactor 30a in addition to the calcium oxide 25 stored in the first reactor 30a. In the configuration, Freon R32 was supplied at 0.3 kg / h until the purity of calcium fluoride 45 in the reaction residue 40 of the first reactor 30a reached 97%, and the first reactor 30a and the second reaction were supplied. The purity of calcium fluoride 45 in the reaction residue 40 in the reactor 30b was measured. The results are shown in Table 6. The amount of Freon R32 added was 0.65 kg, which is 0.82 equivalent to 0.85 kg of calcium oxide 25.

Figure 0006992772000007
Figure 0006992772000007

実施例10に示すように、フッ化カルシウム45の純度が18.5%に留まる実施例8の第2反応器30bにおける反応残渣40を、新たなフロンガス1の分解に際して、酸化カルシウム25とともに第1反応器30aに収納して、フロンガス1の分解を行うことによって、反応残渣40に含まれるフッ化カルシウム45の純度を97.2%と飛躍的に高めることができた。以後、この作業を繰り返すことによって、得られる反応残渣40に含まれるフッ化カルシウム45の純度を高く制御することが可能となり、例えば純度97%以上で回収することが可能である。なお、分解ガス5を水素10,一酸化炭素20,二酸化炭素15の3種類の特定のガスのみに制御すること、水素10の有効利用,一酸化炭素20からの水素の生成等は第1実施形態及び第2実施形態と同様である。 As shown in Example 10, the reaction residue 40 in the second reactor 30b of Example 8 in which the purity of calcium fluoride 45 remains at 18.5% is first combined with calcium oxide 25 in the decomposition of the new freon gas 1. By storing it in the reactor 30a and decomposing the freon gas 1, the purity of calcium fluoride 45 contained in the reaction residue 40 could be dramatically increased to 97.2%. After that, by repeating this operation, the purity of calcium fluoride 45 contained in the obtained reaction residue 40 can be controlled to be high, and for example, it can be recovered with a purity of 97% or more. The first implementation is to control the decomposition gas 5 to only three specific gases, hydrogen 10, carbon monoxide 20, and carbon dioxide 15, to make effective use of hydrogen 10, and to generate hydrogen from carbon monoxide 20. It is the same as the embodiment and the second embodiment.

近年、新たな電源として燃料電池が注目を集めている。最も代表的な水素―酸素燃料電池は水素と酸素(空気)との電気化学反応から直接電気を得るものであり、燃料電池そのものからは水しか排出しないため、クリーンであるとともに極めて静粛性にも優れている。燃料電池は電解質膜によって隔てられた一方から水素などの燃料を、他方からは酸素(空気)を供給する構成で成り立っている。負極活物質である燃料は正極活物質である酸素に対して電子を渡したがる性質を持ち、正負両極を外部回路を通じて繋ぐと負極活物質から正極活物質に電子が移動することにより電流が流れる。ここで、正負両活物質が直接接触すると、直接電子の授受が起こるいわゆるショートの状態となり、外部に電流が取り出せなくなるため、正負両電極は電解質膜で隔てられている。しかし、正負電極間で外部回路を通じて電子の移動が起こるだけでは正負両電極に同種の電荷が溜まり続けることになり、電流はすぐに流れなくなってしまう。そのため、電解質膜が正負両電極の間でイオンを導通することで溜まった電荷を逃がし、定常的な電流が得られるようになっている。最も代表的な水素―酸素燃料電池の反応を以下に示す。
→2H+2e …………………………(3式)
1/2O+2H+2e→HO ………………(4式)
In recent years, fuel cells have been attracting attention as a new power source. The most typical hydrogen-oxygen fuel cell obtains electricity directly from the electrochemical reaction between hydrogen and oxygen (air), and since only water is discharged from the fuel cell itself, it is clean and extremely quiet. Are better. A fuel cell is configured to supply fuel such as hydrogen from one side separated by an electrolyte membrane and oxygen (air) from the other side. Fuel, which is a negative electrode active material, has the property of wanting to pass electrons to oxygen, which is a positive electrode active material, and when both positive and negative electrodes are connected through an external circuit, current is generated by the movement of electrons from the negative electrode active material to the positive electrode active material. It flows. Here, when the positive and negative active materials come into direct contact with each other, a so-called short-circuit state in which electrons are directly exchanged occurs, and a current cannot be taken out to the outside. Therefore, both the positive and negative electrodes are separated by an electrolyte membrane. However, if electrons move between the positive and negative electrodes through an external circuit, the same kind of charge will continue to accumulate in both the positive and negative electrodes, and the current will not flow immediately. Therefore, the electrolyte membrane conducts ions between the positive and negative electrodes to release the accumulated charge, and a steady current can be obtained. The most typical hydrogen-oxygen fuel cell reactions are shown below.
H 2 → 2H + + 2e ………………………… (3 formulas)
1/2O 2 + 2H + + 2e- → H 2 O ……………… (4 formulas)

水素を含むフロンガスを分解することによって、分解ガス中に水素が生成されるが、この分解ガス中に含まれる水素と燃料電池を結びつける知見は従来存在しなかった。また、次のような阻害事由があるため、単に水素を含むフロンガスの分解装置と燃料電池を接続するだけでは、水素を含むフロンガスの分解によって生成した水素を燃料電池の燃料として利用することはできなかった。また、水素の利用を実際の産業機器として可能とするためには、次のような水素を含むフロンガスの分解装置によって生成する水素量と燃料電池で発電した電力用途についての課題が解決しなければ、水素を含むフロンガスの分解装置と燃料電池を結合させることによる相乗効果を奏することができない。この従来技術に対して、本発明はフロンガス1を分解することによって生成した水素10を、燃料として燃料電池70に供給して発電し、得られた電力をフロンガス1の分解装置の加熱ヒータ34等の電力源として用いることを特徴の1つとしている。そこで、本発明によって得られた微量の二酸化炭素15を含む水素10からなる目的ガス55を燃料とする燃料電池70の課題,発電量,電力用途等について以下に検証する。 Hydrogen is generated in the decomposed gas by decomposing the chlorofluorocarbon gas containing hydrogen, but there has been no knowledge that links the hydrogen contained in the decomposed gas with the fuel cell. In addition, due to the following obstacles, hydrogen generated by the decomposition of freon gas containing hydrogen can be used as fuel for the fuel cell simply by connecting the decomposing device for the freon gas containing hydrogen to the fuel cell. There wasn't. In addition, in order to enable the use of hydrogen as an actual industrial device, the following issues regarding the amount of hydrogen generated by the hydrogen-containing freon gas decomposition device and the power generation generated by the fuel cell must be solved. , It is not possible to achieve a synergistic effect by combining a fuel cell with a decomposing device for freon gas containing hydrogen. In contrast to this conventional technique, the present invention supplies hydrogen 10 generated by decomposing freon gas 1 to a fuel cell 70 as fuel to generate electric power, and the obtained electric power is used as a heater 34 of a decomposing device for freon gas 1 and the like. One of the features is that it is used as a power source for. Therefore, the problems, the amount of power generation, the power application, and the like of the fuel cell 70 using the target gas 55 composed of hydrogen 10 containing a trace amount of carbon dioxide 15 obtained by the present invention as fuel will be verified below.

先ず、本発明によって生成する水素10を燃料電池70の燃料として利用する際に阻害事由となる燃料電池と一酸化炭素の問題について検証する。燃料電池の電極として多く用いられている白金触媒は一酸化炭素によって腐食するため、分解ガス中に水素とともに一酸化炭素が含まれていると、水素を燃料電池の燃料として利用することができない。燃料電池を長期間使用可能とするために、一酸化炭素を数ppmオーダー以下の濃度に削減する必要がある。本発明にかかる分解ガスには、水素に加え、一酸化炭素が高濃度で存在しており、そのままでは燃料電池の燃料として利用することができない。 First, the problems of the fuel cell and carbon monoxide, which are obstacles when the hydrogen 10 produced by the present invention is used as the fuel of the fuel cell 70, will be examined. Since the platinum catalyst, which is often used as an electrode of a fuel cell, is corroded by carbon monoxide, if the decomposition gas contains carbon monoxide together with hydrogen, hydrogen cannot be used as a fuel for the fuel cell. In order to make the fuel cell usable for a long period of time, it is necessary to reduce the concentration of carbon monoxide to the order of several ppm or less. In addition to hydrogen, carbon monoxide is present in the decomposition gas according to the present invention at a high concentration, and cannot be used as it is as a fuel for a fuel cell.

一方、二酸化炭素は電極を腐食させることがないため、水素とともに一定量を燃料電池に供給したとしても燃料電池の発電に悪影響を与えることがない。 On the other hand, since carbon dioxide does not corrode the electrodes, even if a certain amount is supplied to the fuel cell together with hydrogen, the power generation of the fuel cell is not adversely affected.

次に、本発明によって生成する水素10の量,発電量及び発電した電力の用途の問題について検証する。分解ガス中に含まれる水素と燃料電池を結合させるためには、燃料電池の発電を可能とする必要量の水素を確保する必要がある。また、燃料電池によって発電した電力を本発明にかかるフロンガス1の分解装置の電力として利用することによって、初めて両者の相乗効果が奏する。 Next, the problems of the amount of hydrogen 10 produced by the present invention, the amount of power generation, and the use of the generated power will be verified. In order to combine the hydrogen contained in the decomposition gas with the fuel cell, it is necessary to secure the necessary amount of hydrogen that enables the fuel cell to generate electricity. Further, by using the electric power generated by the fuel cell as the electric power of the decomposition device of the front gas 1 according to the present invention, the synergistic effect of the two can be achieved for the first time.

本発明では前記した阻害事由及び課題を解決するために、分解ガス5中に含まれる一酸化炭素20を一酸化炭素除去装置50で除去することによって、分解ガス5は水素10と燃料電池70の燃料として許容される微量の二酸化炭素15となる。また、分解ガス5中に水素10と略同量含まれる一酸化炭素20に注目し、単に除去するのではなく、前記した水性シフト反応60によって一酸化炭素20から水素10を生成し、僅かに残る一酸化炭素20を一酸化炭素除去装置50で除去することによって、目的ガス55には分解ガス5に含まれる水素10の略2倍量の水素10と燃料電池70の燃料として許容される微量の二酸化炭素15となる。即ち、目的ガス55は微量の二酸化炭素15を含む水素10からなる。更に、水素10の量が不足する場合は、生成した水素10をガスボンベ等に貯留して燃料電池の燃料として利用することも可能である。 In the present invention, in order to solve the above-mentioned inhibition reasons and problems, the carbon monoxide 20 contained in the decomposition gas 5 is removed by the carbon monoxide removing device 50, so that the decomposition gas 5 is the hydrogen 10 and the fuel cell 70. It becomes a trace amount of carbon dioxide 15 that is acceptable as a fuel. Further, paying attention to the carbon monoxide 20 contained in the decomposition gas 5 in substantially the same amount as the hydrogen 10, hydrogen 10 is generated from the carbon monoxide 20 by the above-mentioned aqueous shift reaction 60 instead of simply removing the hydrogen monoxide 20, and the amount of hydrogen 10 is slightly increased. By removing the remaining carbon monoxide 20 with the carbon monoxide removing device 50, the target gas 55 contains approximately twice the amount of hydrogen 10 contained in the decomposition gas 5 and a trace amount allowed as fuel for the fuel cell 70. It becomes 15 carbon monoxide. That is, the target gas 55 is composed of hydrogen 10 containing a trace amount of carbon dioxide 15. Further, when the amount of hydrogen 10 is insufficient, the generated hydrogen 10 can be stored in a gas cylinder or the like and used as fuel for a fuel cell.

上記した水素10と燃料電池70の燃料として許容される微量の二酸化炭素量15、即ち微量の二酸化炭素15を含む水素10を、負極70aと正極70bを電解質膜を介して隔離し、負極70aに燃料としての水素10を供給する燃料電池70の負極70aに燃料として供給して発電する。よって、本発明によれば、前記した阻害事由及び課題を解決でき、フロンガス1を分解することによって生成した水素10を燃料電池70の燃料として有効利用できる。 The negative electrode 70a and the positive electrode 70b are separated from each other by separating the negative electrode 70a and the positive electrode 70b with the negative electrode 70a and the negative electrode 70a. It is supplied as fuel to the negative electrode 70a of the fuel cell 70 that supplies hydrogen 10 as fuel to generate power. Therefore, according to the present invention, the above-mentioned reasons for inhibition and problems can be solved, and the hydrogen 10 produced by decomposing the chlorofluorocarbon 1 can be effectively used as the fuel for the fuel cell 70.

次に、フロンR32(分子量52g/mol)を例として、フロンガス1を分解することによる水素10及び一酸化炭素20の生成量と、得られた一酸化炭素20を原料として水性シフト反応60によって水素10を生成し、分解反応によって得られた水素10に加味した場合の最大水素量について検証する。酸化カルシウム25によるフロンR32の分解反応は、下記5式より、1モルのフロンから1モルの水素が得られるため、1モルの水素の体積である22.4lの水素が生成されることとなる。フロンR32の供給量を5kg(5000g)/hとする、1時間の分解処理によって7式のとおり、2153.7l/hの水素が得られることとなる。
CaO+CH=CaF+CO+H (5式)
フロンの処理モル数5000/52=96.15mol/h (6式)
22.4l/mol×96.15mol/h=2153.7l/h (7式)
Next, taking Freon R32 (molecular weight 52 g / mol) as an example, the amount of hydrogen 10 and carbon monoxide 20 produced by decomposing Freon gas 1 and the obtained carbon monoxide 20 as raw materials are subjected to hydrogen by an aqueous shift reaction 60. 10 is generated, and the maximum amount of hydrogen when added to the hydrogen 10 obtained by the decomposition reaction is verified. In the decomposition reaction of CFCs R32 by calcium oxide 25, 1 mol of hydrogen is obtained from 1 mol of CFCs from the following 5 equations, so that 22.4 liters of hydrogen, which is the volume of 1 mol of hydrogen, is produced. .. When the supply amount of Freon R32 is 5 kg (5000 g) / h, hydrogen of 2153.7 l / h can be obtained by the decomposition treatment for 1 hour as shown in the formula 7.
CaO + CH 2 F 2 = CaF 2 + CO + H 2 (5 formulas)
Number of treated moles of Freon 5000/52 = 96.15 mol / h (6 formulas)
22.4 l / mol × 96.15 mol / h = 2153.7 l / h (7 formulas)

同様に5式より、1モルのフロンから1モルの一酸化炭素も得られるため、1モルの一酸化炭素の体積である22.4lの一酸化炭素が生成されることとなる。フロンR32の供給量が5kg/hの場合は、下記8式のとおり、2153.7l/hの一酸化炭素が得られる。
22.4l/mol×96.15mol/h=2153.7l/h (8式)
Similarly, from the formula 5, 1 mol of carbon monoxide can be obtained from 1 mol of freon, so that 22.4 liters of carbon monoxide, which is the volume of 1 mol of carbon monoxide, is produced. When the supply amount of Freon R32 is 5 kg / h, carbon monoxide of 2153.7 l / h can be obtained as shown in the following formula 8.
22.4 l / mol × 96.15 mol / h = 2153.7 l / h (8 formulas)

同様にして、本発明の分解対象である各フロンガス1について、時間当たりの供給量を5kg/hとした場合の水素10及び一酸化炭素20並びに一酸化炭素20を原料として水性シフト反応60により生成した水素10を加えた最大水素量について計算した結果を表7に示す。 Similarly, for each freon gas 1 to be decomposed in the present invention, hydrogen 10 and carbon monoxide 20 and carbon monoxide 20 are produced by an aqueous shift reaction 60 as raw materials when the supply amount per hour is 5 kg / h. Table 7 shows the results of calculation for the maximum amount of hydrogen to which the hydrogen 10 was added.

Figure 0006992772000008
Figure 0006992772000008

次に、前記した生成量の水素を燃料とする燃料電池の発電量、換言すれば燃料電池による発電に必要な燃料としての水素の量について検証する。電気分解の反応式をまとめると次式のとおりである。
2HO=2H+O+2×236.965(kJ)
電子の移動量は水の各水素原子から1個とって流れるから合計4個の電子が移動することになる。したがって、ファラデーの法則と水素の原子価が1であることを考慮すると、1g当量の水素を取り出すのに1F(ファラデー)=96500(C/mol)の電荷が必要となる。この値はeが持つ電荷1.60206×10-19(C)と電子1モル(1価の場合、原子1モルから放出される電子は原子1モルの数と同じであるから)の数6.02486×1023(1/mol)を乗じた値である。電気分解反応式によると、4モルの水素原子から各1個の電子が流れているため、合計96500×4=386000(C)の電荷が流れていることになる。
Next, the amount of power generated by the fuel cell using the above-mentioned amount of hydrogen as fuel, in other words, the amount of hydrogen as fuel required for power generation by the fuel cell will be verified. The reaction formulas for electrolysis are summarized below.
2H 2 O = 2H 2 + O 2 + 2 × 236.965 (kJ)
Since the amount of movement of electrons is one from each hydrogen atom of water, a total of four electrons move. Therefore, considering Faraday's law and the fact that the valence of hydrogen is 1, a charge of 1F (Faraday) = 96500 (C / mol) is required to extract 1 g equivalent of hydrogen. This value is the number of e - charge 1.60206 × 10-19 (C) and 1 mol of electrons (in the case of monovalent, the number of electrons emitted from 1 mol of atom is the same as the number of 1 mol of atom). It is a value multiplied by 6.02486 × 10 23 (1 / mol). According to the electrolysis reaction formula, one electron is flowing from each of 4 mol hydrogen atoms, so that a total charge of 96500 × 4 = 386000 (C) is flowing.

電解反応式のギブスの自由エネルギーを調べると、水自身の自由エネルギーはΔG=―236.965KJであるが、移行して+となるため、通常は右への反応が進まない吸熱反応である。電気エネルギーを加えることで右に反応が進み、必要なエネルギーは
2×236.965=473.93KJ
となる。
このエネルギーを加えるためには、
W(J/S)=V(v)×A(C/S)より、
473.93(KJ)/386(KC)=1.228(V)
の電圧が必要となる。この電圧は、流す電荷の量には影響されない一定値である。流れる電荷量と自由エネルギー(ΔG)の関係は比例しているからである。実際には電極周辺で起きる分極などの影響で過電圧が発生し、この電圧では分解は進まず少なくても2(v)以上は必要と言われている。
Examining the free energy of Gibbs in the electrolytic reaction formula, the free energy of water itself is ΔG = -236.965KJ, but since it shifts to +, it is an endothermic reaction in which the reaction to the right does not normally proceed. By adding electrical energy, the reaction proceeds to the right, and the required energy is 2 x 236.965 = 473.93KJ.
Will be.
To add this energy
From W (J / S) = V (v) x A (C / S)
473.93 (KJ) /386 (KC) = 1.228 (V)
Voltage is required. This voltage is a constant value that is not affected by the amount of charge that flows. This is because the relationship between the amount of electric charge flowing and the free energy (ΔG) is proportional. In reality, an overvoltage is generated due to the influence of polarization that occurs around the electrode, and it is said that decomposition does not proceed at this voltage and at least 2 (v) or more is required.

燃料電池70による発電に必要な水素10の量について検証する。負極70aと正極70bを電解質膜を介して隔離し、負極70aに燃料としての水素10を供給する燃料電池70の反応は前記した電気分解の逆で、次のとおりである。
2H+O=2HO-2×236.965(KJ)
燃料極である負極70aに流れてきた水素10は、白金触媒により電子を取られH+eとなる。電子は電解液を通過できないため導線を進み、水素イオンは+に引かれ(電子を放出した時点で反対局は電位が高くなる)電解質を移動する。一方、酸素極である正極70bでは流れてきた電子を白金触媒効果で受け取りOとなる。この酸素イオンと電解質を通過してきた水素イオン2個が反応してHOとなる。一般的な電解質は固体高分子型電解質(PEFC)で、これは水素イオンのみを通過させる(通過穴が小さく水素イオンのみ通過可能)。発生する電圧を計算すると自由エネルギー(ΔG)と通過電子の数4個であり(水素4原子であるから)、水分解の時の数字がそのまま使えて、
473930(J)=4×96500(C)×V(v)であるから、V=1.2277(v)となる。ただし、これも電極周辺の分極などで実際には0.9~0.7(v)となる。反応エンタルピー変化ΔH=-285.56KJ/molであり、ΔH-ΔG=-285.56-(-236.965)=-48.595KJは電力(KW)からでなくても周囲からの熱からとってもよい。
The amount of hydrogen 10 required for power generation by the fuel cell 70 will be verified. The reaction of the fuel cell 70, which separates the negative electrode 70a and the positive electrode 70b via an electrolyte membrane and supplies hydrogen 10 as a fuel to the negative electrode 70a, is the reverse of the above-mentioned electrolysis and is as follows.
2H 2 + O 2 = 2H 2 O-2 x 236.965 (KJ)
The hydrogen 10 flowing to the negative electrode 70a, which is the fuel electrode, takes electrons by a platinum catalyst and becomes H + + e . Since the electrons cannot pass through the electrolytic solution, they travel through the conducting wire, and the hydrogen ions are attracted to + (the potential of the opposite station increases when the electrons are emitted) and move through the electrolyte. On the other hand, the positive electrode 70b, which is an oxygen electrode, receives the flowing electrons by the platinum catalytic effect and becomes O−. These oxygen ions react with two hydrogen ions that have passed through the electrolyte to form H2O . A common electrolyte is a polymer electrolyte electrolyte (PEFC), which allows only hydrogen ions to pass through (small passage holes and only hydrogen ions can pass through). When the generated voltage is calculated, the free energy (ΔG) and the number of passing electrons are 4 (because it is 4 hydrogen atoms), and the numbers at the time of water splitting can be used as they are.
Since 473930 (J) = 4 × 96500 (C) × V (v), V = 1.2277 (v). However, this is also actually 0.9 to 0.7 (v) due to polarization around the electrodes. The reaction enthalpy change is ΔH f = 285.56 KJ / mol, and ΔH f −ΔG f = 285.56- (-236.965) = −48.595 KJ is from the surroundings even if it is not from the electric power (KW). It can be taken from the heat.

ここで燃料電池70に供給しなくてはならない水素10の量を概算で求めてみる。今1個のセルの起電力が0.7Vになるとすると、100000(A)流して、出力70(KW)となる。1F(ファラデー)=96500(C)より、
100000(C)/96500(C)=1.036≒1となるから、水素元素(H)の1g当量は1gであるから、10万(A)流すためにはほぼ1F電荷が必要で1gの水素が必要となる。水素分子(H)は2g/molであり、22.4lであるから1gは22.4/2=11.2(l)である。したがって1秒で11.2lの水素を流せば、1cellで70KWの出力が得られる。ただし、通常の燃料電池の電圧は100V程度の直流電圧をインバーターで交流変換して使用する。つまり(100/0.7=)142個程度のcellを直列につないで使用することになる。直列につなぐ場合は、電圧は加算であるが、1cell当たりの水素流量は出力70000(w)で電圧100(v)であるから、70000(w)/100(v)=700(A)の電流が必要となる。
700(C)/96500(C)=7.25×10-3
したがって、各cellに流す単位時間(1s)当たりに必要な水素量は、
11.2(l)×7.25×10-3=0.082(l)となる。
Here, the amount of hydrogen 10 that must be supplied to the fuel cell 70 is roughly calculated. Assuming that the electromotive force of one cell is 0.7V, 100000 (A) is passed and the output is 70 (KW). From 1F (Faraday) = 96500 (C)
Since 100,000 (C) / 96500 (C) = 1.036≈1, 1 g equivalent of hydrogen element (H) is 1 g, so approximately 1 F charge is required to flow 100,000 (A), and 1 g. Hydrogen is needed. Since the hydrogen molecule (H 2 ) is 2 g / mol and 22.4 l, 1 g is 22.4 / 2 = 11.2 (l). Therefore, if 11.2 liters of hydrogen is flowed in 1 second, an output of 70 KW can be obtained in 1 cell. However, the voltage of a normal fuel cell is used by AC-converting a DC voltage of about 100 V with an inverter. That is, (100 / 0.7 =) 142 cells are connected in series and used. When connected in series, the voltage is additive, but the hydrogen flow rate per cell is 70,000 (w) and the voltage is 100 (v), so the current is 70,000 (w) / 100 (v) = 700 (A). Is required.
700 (C) / 96500 (C) = 7.25 × 10 -3
Therefore, the amount of hydrogen required per unit time (1s) flowing through each cell is
11.2 (l) × 7.25 × 10 -3 = 0.082 (l).

以上記載した本発明によれば、過熱蒸気を使用しないため、従来の過熱蒸気発明や文献3発明において必要であった過熱蒸気を得るためのエネルギーや設備が不要であり、又過熱蒸気が分解に関与することに起因する酸性ガスの生成がなく、酸性ガスを中和するための水酸化カルシウムと水との混合水をシャワーリングする必要がない。そのため、反応残渣が固形物となるため、その処理が容易となり、分解装置の耐久性を高く維持することが可能である。しかも、反応温度も600℃程度でよく、過熱蒸気発明に比べて反応温度を大幅に減じることができ、反応器内の温度を維持するための電力消費量を低減させることができるため、ランニングコストを抑えることが可能となるとともに、分解装置の長寿命化を図ることができる。 According to the present invention described above, since the superheated steam is not used, the energy and equipment for obtaining the superheated steam required in the conventional superheated steam invention and the document 3 invention are not required, and the superheated steam is decomposed. There is no generation of acidic gas due to involvement and there is no need to shower mixed water with calcium hydroxide and water to neutralize the acidic gas. Therefore, since the reaction residue becomes a solid substance, the treatment becomes easy, and the durability of the decomposition apparatus can be maintained high. Moreover, the reaction temperature may be about 600 ° C., the reaction temperature can be significantly reduced as compared with the superheated steam invention, and the power consumption for maintaining the temperature inside the reactor can be reduced, so that the running cost can be reduced. It is possible to suppress the problem and to extend the life of the disassembly device.

また、分解ガスを水素,一酸化炭素及び二酸化炭素という特定のガスに制御でき、他に炭化水素系ガスが生成されないため、その処理が容易である。分解ガス中に含まれる水素の割合が大きいため、有用資源として回収し、再利用することができる。具体的には、水素とフッ素の双方を含むフロンガスの分解によって得た水素を大量に含む目的ガスを燃料電池の負極に燃料として供給することにより電力を生むことができ、その電力を分解装置の加熱ヒータ等の各種電力源としてそのまま利用することができる。或いはバッテリに蓄電することによって、分解装置以外にも利用することができる。本発明によって、水素とフッ素の双方を含むフロンガスの分解装置と燃料電池という異種の装置が有機的に結合した新たな装置を提供することができる。しかも、燃料電池によって得た電力を分解装置の電源として利用することにより、より地球環境に優しく、水素とフッ素の双方を含むフロンガスから再利用可能に、有用資源としての水素を回収し、限りなく、ゼロエミッションに近づけることができる。 In addition, the decomposition gas can be controlled to specific gases such as hydrogen, carbon monoxide, and carbon dioxide, and no other hydrocarbon-based gas is generated, so that the treatment is easy. Since the proportion of hydrogen contained in the decomposition gas is large, it can be recovered and reused as a useful resource. Specifically, electric power can be generated by supplying the target gas containing a large amount of hydrogen obtained by decomposing the freon gas containing both hydrogen and fluorine to the negative electrode of the fuel cell as fuel, and the electric power can be generated by the decomposition apparatus. It can be used as it is as various power sources such as a heater. Alternatively, by storing electricity in the battery, it can be used for other than the disassembling device. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a new device in which a decomposing device for chlorofluorocarbons containing both hydrogen and fluorine and a different kind of device such as a fuel cell are organically bonded. Moreover, by using the electric power obtained from the fuel cell as the power source for the decomposition device, it is more environmentally friendly, can be reused from the freon gas containing both hydrogen and fluorine, and hydrogen as a useful resource can be recovered infinitely. , Can approach zero emissions.

分解ガスには、水素とほぼ同量の一酸化炭素が含まれており、水素を燃料電池の燃料として供給するに際して、一酸化炭素は触媒毒となり触媒の寿命が極端に短くなるため、これを除去して燃焼処理させる。或いは、一酸化炭素を有効利用するために、分解ガスに水蒸気を供給し、分解ガスを所定の温度に保持することによって、水性シフト反応を生じさせ、一酸化炭素から水素を生成することにより、分解によって生成される水素と合わせて、燃料電池に供給する目的ガスに含まれる水素の量を倍増することができ、燃料電池による発電量を増加させることが可能となる。しかも一酸化炭素の燃焼処理が不要となるため、ゼロエミッションに近づくことができる。なお、目的ガスに含まれている二酸化炭素は燃料電池の電解質膜に影響を与えることのない微量であるため、水素とともに燃料電池の負極に供給すればよい。 The decomposition gas contains almost the same amount of carbon monoxide as hydrogen, and when hydrogen is supplied as fuel for a fuel cell, carbon monoxide becomes a catalyst poison and the life of the catalyst is extremely shortened. Remove and burn. Alternatively, in order to make effective use of carbon monoxide, water vapor is supplied to the decomposition gas and the decomposition gas is kept at a predetermined temperature to cause an aqueous shift reaction, and hydrogen is generated from the carbon monoxide. Together with the hydrogen produced by the decomposition, the amount of hydrogen contained in the target gas supplied to the fuel cell can be doubled, and the amount of power generated by the fuel cell can be increased. Moreover, since carbon monoxide combustion treatment is not required, it is possible to approach zero emissions. Since carbon dioxide contained in the target gas is a trace amount that does not affect the electrolyte membrane of the fuel cell, it may be supplied to the negative electrode of the fuel cell together with hydrogen.

分解するフロンガスには水素とともにフッ素も含まれているため、反応残渣として資源価値の高いフッ化カルシウムを回収可能な固形物として、しかも97%以上の高純度で得ることができ、有用資源として再利用を図ることが可能となる。よって、本発明によれば、より地球環境に優しい技術を実現することが可能となり、フロン分解装置に求められている社会的要請や時代的要請である環境負荷軽減に資することが可能となる。 Since the decomposing chlorofluorocarbon contains fluorine as well as hydrogen, calcium fluoride, which has a high resource value as a reaction residue, can be obtained as a recoverable solid substance with a high purity of 97% or more, and can be reused as a useful resource. It will be possible to use it. Therefore, according to the present invention, it is possible to realize a technology that is more friendly to the global environment, and it is possible to contribute to the reduction of the environmental load, which is the social demand and the era demand for the fluorocarbon decomposition device.

1…水素とフッ素の双方を含むフロンガス
2…ガスボンベ
3…サンプリングポイント
5…分解ガス
6…第2分解ガス
7…第3分解ガス
10…水素
15…二酸化炭素
20…一酸化炭素
25…酸化カルシウム
30…反応器
31…ガス供給口
32…酸化カルシウム投入口
33…ガス排出口
34…加熱ヒータ
35…炭化ケイ素
36,62…所定温度
37…圧力調整弁
38…ガス流量計
40…反応残渣
45…フッ化カルシウム
50,50a,50b…一酸化炭素除去装置
55…目的ガス
60…水性シフト反応
61…水蒸気供給
63…水素濃度計測
64…水蒸気凝縮
65…水性シフト反応管
66…水蒸気供給管
67…ガスサンプリング口
68…水蒸気凝縮装置
70…燃料電池
70a…負極
70b…正極
1 ... Freon gas containing both hydrogen and fluorine 2 ... Gas cylinder 3 ... Sampling point 5 ... Decomposition gas 6 ... Second decomposition gas 7 ... Third decomposition gas 10 ... Hydrogen 15 ... Carbon dioxide 20 ... Carbon monoxide 25 ... Calcium oxide 30 ... Reactor 31 ... Gas supply port 32 ... Calcium oxide inlet 33 ... Gas discharge port 34 ... Heating heater 35 ... Silicon carbide 36, 62 ... Predetermined temperature 37 ... Pressure control valve 38 ... Gas flow meter 40 ... Reaction residue 45 ... Huh Calcium chemicals 50, 50a, 50b ... Carbon monoxide remover 55 ... Target gas 60 ... Aqueous shift reaction 61 ... Steam supply 63 ... Hydrogen concentration measurement 64 ... Steam condensation 65 ... Aqueous shift reaction tube 66 ... Steam supply tube 67 ... Gas sampling Mouth 68 ... Steam condensing device 70 ... Fuel cell 70a ... Negative negative 70b ... Positive

Claims (14)

水素とフッ素の双方を含むフロンガスを、所定温度に保持した反応器内で酸化カルシウムと直接接触反応させることによって、水素,一酸化炭素及び二酸化炭素のみからなる分解ガスに分解することを特徴とするフロンガスの分解方法。 It is characterized in that chlorofluorocarbons containing both hydrogen and fluorine are decomposed into decomposition gas consisting only of hydrogen, carbon monoxide and carbon dioxide by directly contact-reacting with calcium oxide in a reactor kept at a predetermined temperature. How to decompose fluorocarbons. 内部に酸化カルシウムを収納し、所定温度に加熱した反応器に、水素とフッ素の双方を含むフロンガスを供給して酸化カルシウムと直接接触反応させることにより、水素,一酸化炭素及び二酸化炭素のみからなる分解ガスに分解し、
分解ガスから一酸化炭素を除去することによって、微量の二酸化炭素を含む水素からなる目的ガスを得ることを特徴とするフロンガスの分解方法。
It consists of only hydrogen, carbon monoxide and carbon dioxide by supplying calcium oxide inside and supplying fluorocarbon gas containing both hydrogen and fluorine to a reactor heated to a predetermined temperature and causing a direct contact reaction with calcium oxide. Decomposes into decomposition gas,
A method for decomposing chlorofluorocarbons, which comprises removing carbon monoxide from the decomposition gas to obtain a target gas consisting of hydrogen containing a trace amount of carbon dioxide.
内部に酸化カルシウムを収納し、所定温度に加熱した反応器に、水素とフッ素の双方を含むフロンガスを供給して酸化カルシウムと直接接触反応させることにより、水素,一酸化炭素及び二酸化炭素のみからなる分解ガスに分解し、
分解ガスを所定の温度に保持して水蒸気とともに水性シフト反応管に供給することにより水性シフト反応を生じさせて、分解ガス中の一酸化炭素から水素を生成して第2分解ガスとし、
第2分解ガスを水蒸気凝縮槽に供給して第2分解ガス中の水蒸気を凝縮させて除去して第3分解ガスとし、
第3分解ガスから残存する一酸化炭素を除去して、微量の二酸化炭素を含む水素からなる目的ガスを得ることを特徴とするフロンガスの分解方法。
It consists of only hydrogen, carbon monoxide and carbon dioxide by supplying calcium oxide inside and supplying fluorocarbon gas containing both hydrogen and fluorine to a reactor heated to a predetermined temperature and causing a direct contact reaction with calcium oxide. Decomposes into decomposition gas,
The decomposition gas is held at a predetermined temperature and supplied to the aqueous shift reaction tube together with steam to cause an aqueous shift reaction, and hydrogen is generated from carbon monoxide in the decomposition gas to obtain a second decomposition gas.
The second decomposition gas is supplied to the steam condensing tank to condense and remove the steam in the second decomposition gas to obtain the third decomposition gas.
A method for decomposing chlorofluorocarbons, which comprises removing residual carbon monoxide from a third decomposition gas to obtain a target gas composed of hydrogen containing a trace amount of carbon dioxide.
分解ガスを200℃以上に保持する請求項3記載のフロンガスの分解方法。 The method for decomposing chlorofluorocarbons according to claim 3, wherein the decomposition gas is maintained at 200 ° C. or higher. 反応器内の温度を、水素とフッ素の双方を含むフロンガスの分解率が99.9%以上となる温度に保持する請求項1,2,3又は4記載のフロンガスの分解方法。 The method for decomposing chlorofluorocarbons according to claim 1, 2, 3 or 4, wherein the temperature in the reactor is maintained at a temperature at which the decomposition rate of chlorofluorocarbons containing both hydrogen and fluorine is 99.9% or more. 反応器内の温度を600℃以上に保持する請求項1,2,3又は4記載のフロンガスの分解方法。 The method for decomposing chlorofluorocarbons according to claim 1, 2, 3 or 4, wherein the temperature in the reactor is maintained at 600 ° C. or higher. 内部に酸化カルシウムを収納した反応器と、反応器を所定温度に加熱する加熱手段と、反応器内で水素とフッ素の双方を含むフロンガスを酸化カルシウムと直接接触反応させて得られた水素,一酸化炭素及び二酸化炭素のみからなる分解ガスを供給する一酸化炭素除去装置とからなり、
分解ガスから一酸化炭素を除去して、微量の二酸化炭素を含む水素からなる目的ガスを得ることを特徴とするフロンガスの分解装置。
A reactor containing calcium oxide inside, a heating means for heating the reactor to a predetermined temperature, and hydrogen obtained by directly reacting freon gas containing both hydrogen and fluorine in the reactor with calcium oxide. It consists of a carbon monoxide remover that supplies a decomposition gas consisting only of carbon oxide and carbon dioxide.
A chlorofluorocarbon decomposition device characterized by removing carbon monoxide from the decomposition gas to obtain a target gas consisting of hydrogen containing a trace amount of carbon dioxide.
内部に酸化カルシウムを収納した反応器と、反応器を所定温度に加熱する加熱手段と、反応器内で水素とフッ素の双方を含むフロンガスを酸化カルシウムと直接接触反応させて得られた水素,一酸化炭素及び二酸化炭素のみからなる分解ガスと水蒸気を供給する水性シフト反応管と、水性シフト反応管内における水性シフト反応により分解ガス中の一酸化炭素から水素を生成した第2分解ガスを供給する水蒸気凝縮槽と、水蒸気凝縮槽において第2分解ガス中の水蒸気を凝縮させた第3分解ガスを供給する一酸化炭素除去装置とからなり、
第3分解ガスから一酸化炭素を除去して、微量の二酸化炭素を含む水素からなる目的ガスを得ることを特徴とするフロンガスの分解装置。
A reactor containing calcium oxide inside, a heating means for heating the reactor to a predetermined temperature, and hydrogen obtained by directly contacting a freon gas containing both hydrogen and fluorine in the reactor with calcium oxide. An aqueous shift reaction tube that supplies a decomposition gas and water vapor consisting only of carbon oxide and carbon dioxide, and a water vapor that supplies a second decomposition gas that produces hydrogen from carbon monoxide in the decomposition gas by an aqueous shift reaction in the aqueous shift reaction tube. It consists of a condensing tank and a carbon monoxide removing device that supplies a third decomposition gas obtained by condensing the water vapor in the second decomposition gas in the steam condensing tank.
A fluorocarbon decomposition apparatus characterized in that carbon monoxide is removed from the third decomposition gas to obtain a target gas composed of hydrogen containing a trace amount of carbon dioxide.
一酸化炭素除去装置として、選択的一酸化炭素酸化装置又は一酸化炭素吸着装置を使用する請求項7又は8記載のフロンガスの分解装置。 The fluorocarbon gas decomposition device according to claim 7 or 8, wherein a selective carbon monoxide oxidizing device or a carbon monoxide adsorbing device is used as the carbon monoxide removing device. 請求項2~3のいずれかに記載のフロンガスの分解方法によって、水素とフッ素の双方を含むフロンガスを分解することにより、フロンガスから微量の二酸化炭素を含む水素を生成することを特徴とする水素の製造方法。 Hydrogen characterized by producing hydrogen containing a trace amount of carbon dioxide from chlorofluorocarbon by decomposing chlorofluorocarbon containing both hydrogen and fluorine by the method for decomposing chlorofluorocarbon according to any one of claims 2 to 3. Production method. 請求項1~6のいずれかに記載のフロンガスの分解方法によって、水素とフッ素の双方を含むフロンガスを分解することにより、フロンガスの分解後の反応残渣に固形物として含まれた状態のフッ化カルシウムを生成することを特徴とするフッ化カルシウムの製造方法。 Calcium fluoride in a state of being contained as a solid in the reaction residue after decomposition of chlorofluorocarbons by decomposing chlorofluorocarbons containing both hydrogen and fluorine by the method for decomposing chlorofluorocarbons according to any one of claims 1 to 6. A method for producing calcium fluoride, which comprises producing. フッ化カルシウムの純度が97%以上である請求項11記載のフッ化カルシウムの製造方法。 The method for producing calcium fluoride according to claim 11, wherein the purity of calcium fluoride is 97% or more. 請求項7~9のいずれかに記載のフロンガスの分解装置を、負極と正極を電解質膜を介して隔離し、負極に燃料としての水素を供給する燃料電池に接続し、水素とフッ素の双方を含むフロンガスを前記フロンガスの分解装置に供給して分解することによって得られた微量の二酸化炭素を含む水素からなる目的ガスを燃料として負極に供給することによって発電することを特徴とする燃料電池。 The freon gas decomposition device according to any one of claims 7 to 9 is connected to a fuel cell that separates the negative electrode and the positive electrode via an electrolyte membrane and supplies hydrogen as a fuel to the negative electrode, and transfers both hydrogen and fluorine. A fuel cell characterized in that power is generated by supplying a target gas composed of hydrogen containing a trace amount of carbon dioxide obtained by supplying the contained freon gas to the freon gas decomposition apparatus and decomposing it to the negative electrode as fuel. 燃料電池で発電した電力を、フロンガスの分解装置の加熱手段の電力源として使用する請求項13記載の燃料電池。 The fuel cell according to claim 13, wherein the electric power generated by the fuel cell is used as a power source for a heating means of a freon gas decomposition device.
JP2019014316A 2019-01-30 2019-01-30 Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell Active JP6992772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014316A JP6992772B2 (en) 2019-01-30 2019-01-30 Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014316A JP6992772B2 (en) 2019-01-30 2019-01-30 Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell

Publications (2)

Publication Number Publication Date
JP2020121901A JP2020121901A (en) 2020-08-13
JP6992772B2 true JP6992772B2 (en) 2022-01-13

Family

ID=71992149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014316A Active JP6992772B2 (en) 2019-01-30 2019-01-30 Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell

Country Status (1)

Country Link
JP (1) JP6992772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974167B (en) * 2020-08-21 2021-07-09 浙江独山能源有限公司 Hydrogen recovery system is used in PTA production
GB202013382D0 (en) * 2020-08-26 2020-10-07 Ucl Business Ltd Production of inorganic salts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201005A (en) 2000-11-13 2002-07-16 Air Products & Chemicals Inc Removing carbon monoxide/water in feeding gas to fuel cell
JP2009242171A (en) 2008-03-31 2009-10-22 Nippon Oil Corp Apparatus for producing hydrogen and fuel cell system using the same
JP2010202433A (en) 2009-03-02 2010-09-16 Hideki Yamamoto Method for recovering calcium fluoride
JP2012005929A (en) 2010-06-23 2012-01-12 Central Glass Co Ltd Method of removing fluorine-containing compound gas
JP2012507394A (en) 2008-10-31 2012-03-29 ゼネラル・エレクトリック・カンパニイ Fluoride ion cleaning method
JP2012507629A (en) 2008-10-31 2012-03-29 ゼネラル・エレクトリック・カンパニイ Fluoride ion cleaning system and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201005A (en) 2000-11-13 2002-07-16 Air Products & Chemicals Inc Removing carbon monoxide/water in feeding gas to fuel cell
JP2009242171A (en) 2008-03-31 2009-10-22 Nippon Oil Corp Apparatus for producing hydrogen and fuel cell system using the same
JP2012507394A (en) 2008-10-31 2012-03-29 ゼネラル・エレクトリック・カンパニイ Fluoride ion cleaning method
JP2012507629A (en) 2008-10-31 2012-03-29 ゼネラル・エレクトリック・カンパニイ Fluoride ion cleaning system and apparatus
JP2010202433A (en) 2009-03-02 2010-09-16 Hideki Yamamoto Method for recovering calcium fluoride
JP2012005929A (en) 2010-06-23 2012-01-12 Central Glass Co Ltd Method of removing fluorine-containing compound gas

Also Published As

Publication number Publication date
JP2020121901A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
TW448069B (en) Apparatus and method for recovering and refining SF6 gas
JP5484689B2 (en) Exhaust gas treatment system and method for removing mercury in exhaust gas
US20090028767A1 (en) Waste Treatment and Energy Production Utilizing Halogenation Processes
US20220305439A1 (en) Gas production apparatus, gas production system, steel production system, chemical production system, and gas production method
JP6992772B2 (en) Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell
KR101709867B1 (en) Apparatus for capturing of carbon dioxide
CN109482049B (en) Dry desulfurization, denitrification and purification integrated process for coke oven flue gas
JP5659491B2 (en) Semiconductor manufacturing equipment including fluorine gas generator
KR101699217B1 (en) Perfluoride decomposition treatment method and treatment device
JP2006130216A (en) Method and apparatus for decomposing organic chlorine compound
KR101499333B1 (en) System and method for processing waste gas
JP4518460B2 (en) Method for selectively recovering fluorine components from exhaust gas
JP2020148373A (en) PFCs-CONTAINING EXHAUST GAS TREATMENT DEVICE AND METHOD
KR102388825B1 (en) Pressurized Oxy-Combustion System comprising water electrolysis module
CN102351149A (en) System for recovering and removing chlorine from hydrogen chloride
JP2020033593A (en) Mercury recovery apparatus and method
KR102508350B1 (en) Gas processing device
JP7137597B2 (en) Decomposition method of environmental pollutant gas
CN116445673B (en) Energy-saving water-saving blast furnace gas purification method
JP2007275764A (en) Method and apparatus for decomposing pfc gas produced in aluminum refining
JP4820023B2 (en) Effective use of ion-exchange resin recycling waste
JPH1094716A (en) Method and device for decomposing fluorocarbon
EP4011485A1 (en) Exhaust gas treatment method and treatment equipment
JP2005040766A (en) Treating agent and treating method of waste gas containing acid gas and/or hydrocarbon
JP4523936B2 (en) Synthetic fluorite manufacturing method and synthetic fluorite manufacturing apparatus

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6992772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150