JPS60131820A - Manufacture of silicon carbide or mixture containing silicon carbide - Google Patents

Manufacture of silicon carbide or mixture containing silicon carbide

Info

Publication number
JPS60131820A
JPS60131820A JP58236331A JP23633183A JPS60131820A JP S60131820 A JPS60131820 A JP S60131820A JP 58236331 A JP58236331 A JP 58236331A JP 23633183 A JP23633183 A JP 23633183A JP S60131820 A JPS60131820 A JP S60131820A
Authority
JP
Japan
Prior art keywords
silicon carbide
refractory
furnace
oxygen
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236331A
Other languages
Japanese (ja)
Inventor
Masao Onozawa
昌男 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58236331A priority Critical patent/JPS60131820A/en
Publication of JPS60131820A publication Critical patent/JPS60131820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To manufacture silicon carbide economically by a reducing method without using electric heating energy by using a specific vertical combustion furnace capable of heating a refractory tube in which raw materials are flowed downward, in a long range of the pipe at a prescribed temperature. CONSTITUTION:Plural long-sized refractory tubes 5 are provided vertically in the inside of a combustion chamber 4 of vertical furnace and, on the other hand, many blowing inlets 13 of oxygen (or air) are provided to the furnace refractories 7 of the side wall in the upper and lower directions. Gaseous fuel (for example, gas consisting essentially of H2 and CO) blowing in from an introducing inlet 15 is burned stepwise with oxygen blowing in from an introducing inlet 17 and a high temperature part of 1,650-2,000 deg.C is formed along the refractory tubes 5 in the long range. By using the furnace, briquettes consisting of silicon compound and carbon in prescribed ratios are charged to the inside of the refractory tubes 5 from a hopper 1 and are caused to fall down while forming the transferring packed bed and these are heated intermediately and caused to react for the period and the produced silicon carbide is taken out from the outlet of a hopper 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は炭化珪素を、主として気体燃料の燃焼熱を用い
て製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing silicon carbide mainly using combustion heat of gaseous fuel.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来炭化珪素は殆んどの量が電気抵抗加熱炉であるアチ
ソン炉よシ製造されたもので、主として結晶性α型炭化
珪素である。これは研磨材および耐火材等に使用され、
それなりの好ましい性質を有する。これに対しβ型炭化
珪素は最近の研究対象であるが、安価な製造方法は確立
されていないと思われる。−例として特開昭52−46
399号公報記載の方法がある。この方法は明言されて
はいないが本文中門らかに電気的加熱を想定しておシ、
投入エネルギの制約があると思われる。本発明は比較的
低温(といっても炭化珪素製造法においてであるが)の
還元方法であるのでβ型の炭化珪素が結果的に得られる
が、本発明の目的とする炭イヒ什素の用途はその結晶型
に支配されることは少ないのでβ型の製造方法と特定は
しない。
Conventionally, most silicon carbide has been produced in an Acheson furnace, which is an electric resistance heating furnace, and is mainly crystalline α-type silicon carbide. This is used in abrasive materials and refractory materials, etc.
It has certain desirable properties. On the other hand, β-type silicon carbide has been the subject of recent research, but it seems that no inexpensive manufacturing method has been established. -For example, JP-A-52-46
There is a method described in No. 399. Although this method is not explicitly stated, the text clearly assumes electrical heating.
There seems to be a constraint on input energy. Since the present invention is a relatively low-temperature reduction method (although it is a method for producing silicon carbide), β-type silicon carbide is obtained as a result, but it is not possible to reduce The use of this method is rarely determined by its crystal type, so it will not be specified as a production method for the β type.

最近のエネルギ価格の高騰により全産業でエネルギ投入
量の削減、こと炭化珪素に限って言えば、その生産はす
べて電気エネルギが用いられており文献によっても一般
的に燃料の燃焼熱を用いたfllは極めて少ない。しか
し炭化珪素は無水珪酸と炭素の混合物を加熱すれば12
Ooc位から生成しはじめ、1500℃以上では十分な
速度で炭化珪素に変ることはよく知られている。それ故
経済的な製造方法、装置が知られてムなかった訳であ′
乏。本発明者はこのような見地から珪素および炭化珪素
を燃料の燃焼熱によシ製造する研究を行なって来た。
Due to the recent rise in energy prices, energy input has been reduced in all industries.In particular, in the case of silicon carbide, all of its production uses electrical energy, and according to the literature, it is generally said that the amount of energy input is reduced using the heat of combustion of fuel. are extremely rare. However, silicon carbide can be obtained by heating a mixture of silicic anhydride and carbon.
It is well known that it begins to form at the Ooc position and transforms into silicon carbide at a sufficient rate at temperatures above 1500°C. Therefore, economical manufacturing methods and equipment were not known.
Scarcity. From this perspective, the present inventor has conducted research into producing silicon and silicon carbide using the combustion heat of fuel.

さて炭化珪素の大きな用途は耐火物、研磨拐であるが、
そのtlか鉄鋼製錬、鋳鉄鋳物で還元材、発熱材として
用いられている。また合金鉄において珪素を多量に含有
するもの、例えばフェロシリコン、シリコマンガン、シ
リニクロム等およヒ珪素の電気炉製造において中間的に
生成すそことが知られておシ、逆にこれら製造過程にお
いて炭化珪素を原料に配合して製錬電力を減らせること
も知られている。しかしこの様な用途に用いられる量は
極めて少ない。それは従来炭化珪素は研磨材等の高級用
途向けの高価、高品質の製造方法しがなかったためであ
る。
Now, the major uses of silicon carbide are refractories and abrasive materials.
It is used as a reducing agent and heat generating material in iron and steel smelting and iron casting. In addition, it is known that ferroalloys containing a large amount of silicon, such as ferrosilicon, silicomanganese, and silinichrome, are formed intermediately in the electric furnace production of silicon, and conversely, they are carbonized during the production process. It is also known that smelting power can be reduced by adding silicon to the raw materials. However, the amount used for such purposes is extremely small. This is because conventionally, silicon carbide has no expensive, high-quality manufacturing method for use in high-grade applications such as abrasives.

〔発明の構成〕[Structure of the invention]

本発明は還元反応によシ炭化珪素(StC)を生成する
ように、珪石(StO□)と還元用炭素原料(C)を約
1モル対3モルの比で細粒または粉末として混合して団
鉱を得、これを高耐熱性を有する耐火物管内に装入し移
動充填層を形成し、この耐火物管を多数本加熱炉内に立
てて構成し、この加熱炉下部から気体燃料を導入し、多
段階に燃焼して広い高温度域を形成して炭化珪素を製造
しようとするものである。
In the present invention, silica stone (StO□) and reducing carbon raw material (C) are mixed in the form of fine particles or powder in a ratio of about 1 mol to 3 mol so as to produce silicon carbide (StC) through a reduction reaction. The briquette is obtained and charged into a highly heat-resistant refractory pipe to form a moving packed bed. A large number of these refractory pipes are set up in a heating furnace, and gaseous fuel is supplied from the lower part of the heating furnace. The idea is to introduce silicon carbide and burn it in multiple stages to form a wide high temperature range to produce silicon carbide.

前述したように炭化珪素は生成条件が明らかであるが、
発明者はこれを追試してみた。珪石を100メツシユ以
下、■焼石油コークスを200メツシユ以下に粉砕し、
重量比で1:0.61の割合で混合し、アスファルト5
0%、水50係からなるアスファルト乳材を混合物に対
して5%加えてよく混練し、8I+lI+IφX8mm
+のタブレットを製造し、これを内径40鴨、高さ15
0穏の黒鉛るつは内で昇温して還元試験を行なった。そ
の結果、1700℃以上に加熱すると比較的速やかに炭
化珪素とな、9.90%以上の収車で炭化珪素が得られ
たが、1650℃以下では反応速度は遅かりた。
As mentioned above, the conditions for the formation of silicon carbide are clear, but
The inventor tried this again. Grinding silica stone to 100 mesh or less, ■ Crushed petroleum coke to 200 mesh or less,
Mixed at a weight ratio of 1:0.61, asphalt 5
Add 5% of asphalt emulsion consisting of 0% and 50 parts of water to the mixture and mix well to form a mixture of 8I+lI+IφX8mm.
Manufacture a tablet with an inner diameter of 40 mm and a height of 15 mm.
A reduction test was conducted by raising the temperature in a graphite melting pot at zero temperature. As a result, when heated to 1700°C or higher, silicon carbide was obtained relatively quickly, and silicon carbide was obtained with a yield rate of 9.90% or higher, but below 1650°C, the reaction rate was slow.

この結果にもとづいて連続的な製造を検討した。Based on this result, we considered continuous production.

内径50mφ、100mφ、200mmφ、300−φ
のアルミナ製の耐火物管を用い、1長さ2mの耐火物管
の周囲を高アルミナ煉瓦で構築した燃焼炉とし、一方耐
火物管内に前述したタブレットを連続的に降下するよう
な構成の還元炉をつくり、ここに径2IIl+および4
mのペレj)またij 8 +m 。
Inner diameter 50mφ, 100mφ, 200mmφ, 300-φ
A combustion furnace was constructed using high alumina bricks around the refractory pipe with a length of 2 m, and the above-mentioned tablets were continuously lowered into the refractory pipe. Make a furnace, here diameter 2IIl+ and 4
m pele j) also ij 8 +m.

16■、32簡、48■、64■(高さ、径とも)の円
筒型タブレットを前述と同様にして製造して装入した。
Cylindrical tablets of 16 cm, 32 cm, 48 cm, and 64 cm (both height and diameter) were produced and charged in the same manner as described above.

211IIlおよび4mのものはタブレットとして杖製
造がやや困難のためペレットとした。
211III and 4m were made into pellets because it was somewhat difficult to produce them as tablets.

はじめ8■の円筒型タブレットを内径50調φの耐火物
管に装入し、下部から通常の気体燃料または液体燃料に
よる加熱を行なった。単純に空気□を用・いて燃焼する
場合は1700℃以上に維持すること紘困難であるが、
燃焼用空気に酸素を富化するか予熱を行なうことによっ
てこの温度に維持す−ること拡難しいことで杜ない。そ
れにもかかわらず単純にこのような還元を行なうと多く
の問題を生じた。
Initially, 8 mm cylindrical tablets were placed in a refractory tube with an inner diameter of 50 mm, and heated from the bottom with ordinary gaseous fuel or liquid fuel. When burning simply by using air, it is difficult to maintain the temperature above 1700℃;
Maintaining this temperature by enriching the combustion air with oxygen or by preheating it is difficult and unavoidable. Nevertheless, simply carrying out such a reduction caused many problems.

即ち、燃焼室温度を最高点で1700〜2000℃に保
つと燃料の効率は著しく悪く、燃焼室排ガス温度も著し
く高くなる。また、理論燃焼温度が2500℃を越すよ
うな高い酸素富化を行なうと部盆的な偏熱を生じ、耐火
物保護管の損傷を招いたシ、内容物の不均一な反応や急
激な反応を生じて炭化珪素の収車を低下せしめる。結局
この問題は珪−石の炭素還元に多大な反応熱を要するた
めその熱の供給方法が難しいということに帰着する。
That is, if the temperature of the combustion chamber is maintained at 1,700 to 2,000° C. at the highest point, the fuel efficiency will be extremely poor and the temperature of the exhaust gas in the combustion chamber will also be extremely high. In addition, high oxygen enrichment with a theoretical combustion temperature exceeding 2,500°C will cause uneven heat in the basin, leading to damage to the refractory protection tube, and uneven or sudden reactions of the contents. This results in a decrease in silicon carbide collection. Ultimately, this problem comes down to the fact that carbon reduction in silica stone requires a large amount of reaction heat, and it is difficult to find a way to supply that heat.

この様なことから1700℃〜2000℃に制御して燃
焼する必要があることが分シ、長いフレームを避けるた
め水素、−酸化炭素等の気体燃料を用い、燃焼空気も広
い区間に多段に分けて供給するものとした。このように
することによって黒鉛るつは内の単一実験と同一の製品
が得られるようになった。
For this reason, it is necessary to control combustion at 1,700℃ to 2,000℃.To avoid long flames, gaseous fuels such as hydrogen and carbon oxide are used, and the combustion air is also divided into wide sections in multiple stages. It will be provided by By doing this, we were able to obtain the same product as in a single experiment within the graphite melt.

次いで各サイズのタブレットと各サイズの耐火物管の組
み合せ試験、を行なった。
Next, a combination test of tablets of various sizes and refractory pipes of various sizes was conducted.

径2fiのペレットは全体が固結して能率が低下し、耐
火物管の中央部に装入されたペレットは未反応で残った
The entire pellet with a diameter of 2fi solidified and the efficiency decreased, and the pellet charged in the center of the refractory pipe remained unreacted.

4Mの(レットも同じ結果となった。いずれも時々移動
層の吹抜け、吹上げをおこし、耐火物管内の圧力も非常
に上昇する。8■のタブレットは製品品質は良好である
が若干吹抜は傾向がある。
The same result was obtained for 4M tablets.In both cases, the moving layer sometimes causes blow-through and blow-up, and the pressure inside the refractory pipe increases significantly.The product quality of the 8■ tablet is good, but there is some blow-through. Tend.

球状のペレットの方が円筒状のタブレットより通気性が
よいと考えられるのでこれは団鉱法の差ではなくサイズ
の問題と思われる。こうした傾向を防ぐには生産速度を
著しく低下させる必要があった。以上の結果から中間の
方法をとって下限寸法は6闇で可能、12閣で良好と推
定する。
Since spherical pellets are thought to have better air permeability than cylindrical tablets, this seems to be a size issue rather than a difference in the briquetting method. To prevent this trend, production rates had to be significantly reduced. Based on the above results, we take an intermediate method and estimate that the lower limit size is possible with 6 dimensions and good with 12 dimensions.

64■のタブレットは高さ2mの耐火物管を3時間かけ
て降下させても反応は完結しなかった。
The reaction of No. 64 tablets was not completed even though the tablets were lowered down a 2 m high refractory pipe over a period of 3 hours.

径8圏〜48咽の団鉱(−!?レットまたはブリケット
)は、団鉱径をd1耐大物管径をDとするとき、D/d
が5〜18の範囲では、dが同一であればD2 に比例
して生産能兆は増大し製品も良好であった。3.2以下
では製品の品質は変シないが、生産能富からは不利であ
る。25以上では耐火物管中央部の未反応部がふえるた
め好ましくない。
For briquettes (-!?lets or briquettes) with a diameter of 8 to 48, D/d where the briquette diameter is d1 and the large pipe diameter is D.
In the range of 5 to 18, if d was the same, the productivity increased in proportion to D2, and the product was good. If it is less than 3.2, the quality of the product will not change, but it will be disadvantageous in terms of production capacity. If it is 25 or more, the unreacted area in the center of the refractory pipe increases, which is not preferable.

但しこの傾向は耐火物管下部から一酸化炭素ガスまたは
アルコ1ンがスを通すことによって相当軽減され25倍
の場合も問題は減少した。また耐火物管径が300間で
は団鉱径にかかわらず中央部の未反応部が残った。この
傾向も耐火物管下部からのがス吹込によって緩和される
ことが分った。
However, this tendency was considerably alleviated by passing carbon monoxide gas or alcohol gas through the lower part of the refractory pipe, and the problem was reduced even when the fire rate was 25 times larger. Moreover, when the refractory pipe diameter was 300 mm, an unreacted part remained in the center regardless of the briquette diameter. It was found that this tendency was also alleviated by injecting soot from the lower part of the refractory pipe.

耐火物として緻密な材質を用いても内外の若干の滲透は
免れない。それ故筒内金完全な還元雰囲気に保つために
は下方から不活性ガスを流しこむ一方で、筒内の圧力を
高めて部外の酸化性ガスが筒内に拡散しないようにする
必要がある。
Even if a dense material is used as a refractory, some seepage inside and outside cannot be avoided. Therefore, in order to maintain a completely reducing atmosphere inside the cylinder, it is necessary to inject inert gas from below, while increasing the pressure inside the cylinder to prevent outside oxidizing gas from diffusing into the cylinder. .

更に問題であることはD/dが一定であれば、耐火物管
の高さが一定である限シ一本当シ時間当シの生産能率が
ほとんど一定範囲に収まることである。
A further problem is that if D/d is constant, the production efficiency per unit per hour will almost fall within a constant range as long as the height of the refractory pipe is constant.

以上まとめると団鉱径はもっとも重要で小さすぎても太
きすぎても品質が劣化し生産能率も著しく低下すること
、耐火物管の高さが一定である限シ一本当シの生産能率
には限度のあることである。
To summarize the above, the diameter of the briquette is the most important, and if it is too small or too thick, the quality will deteriorate and the production efficiency will drop significantly.As long as the height of the refractory pipe is constant, the production efficiency of one pipe There is a limit.

団鉱径は限られた実験の結果でおるが6〜56閣の厚み
をもつものと推定される。また最適のサイズは12〜4
8fiと推定される。実験では球又は円筒を用いたが、
伝熱上は厚みが支配すると考えるので団鉱の最小方法又
は厚みで表示される。
Although the diameter of the briquette is based on the results of limited experiments, it is estimated to be between 6 and 56 mins thick. Also, the optimal size is 12-4
Estimated to be 8fi. Although a sphere or cylinder was used in the experiment,
Since the thickness is considered to control heat transfer, it is expressed by the minimum method or thickness of the briquette.

ここに用いることのできる耐火物管としてはアルミナ、
ムライト程度に限られる。従来製造されているものは1
9 (l 0℃まで耐熱性はあるがこのような構造をと
シ機械的強度をもたせるには長さはどうしても限られる
。また緻密で通気性のない磁製管としては1〜2mのも
のが通常生産されている長さである。以下の実施例では
数本を接合管を介してつなぎ合わせて用いたが、工業的
生産炉としては1本では能力が小さくまた限られた能力
となるため多数本を伝熱性能を考えて配列構成すること
が必要である。
Refractory pipes that can be used here include alumina,
Limited to mullite. The conventionally manufactured products are 1
9 (l) Although it is heat resistant up to 0°C, the length is inevitably limited in order to provide such a structure with mechanical strength.Also, as a dense and non-porous porcelain tube, a length of 1 to 2 m is required. This is the length that is normally produced.In the following example, several tubes were connected together via a joint tube, but as an industrial production furnace, a single tube would have a small and limited capacity. It is necessary to arrange a large number of them in consideration of heat transfer performance.

以上の経過から知られるように燃料としては不完全燃焼
をしない気体燃料がよい。従って一酸化炭素、水素を主
成分とするガスがもつとも好ましい。プロパン、ブタン
等を多量に含むものは好ましくない。ただ実施例1に示
すように予備燃焼炉で部分燃焼で必要酸素量の半量近く
を使用する形式がとシうることがら若干量の炭化水素の
含有は差支えない。
As is known from the above process, a gaseous fuel that does not undergo incomplete combustion is preferable as a fuel. Therefore, it is preferable to use a gas containing carbon monoxide or hydrogen as a main component. Those containing large amounts of propane, butane, etc. are not preferred. However, as shown in Example 1, it is possible to use nearly half of the required amount of oxygen through partial combustion in the pre-combustion furnace, so there is no problem with the inclusion of a small amount of hydrocarbons.

珪酸原料としては珪石、珪砂等の珪酸鉱物のほかろう石
のようにアルミナ等信の酸化物等との化合物、混合物を
用いることも可能である。この場合は炭化珪素と他の酸
化物等との混合物が成品として得られる。炭化原料とし
ては石油コークス、コークス、木炭等いずれも使用可能
である。
As the silicic acid raw material, in addition to silicate minerals such as silica stone and silica sand, it is also possible to use compounds and mixtures with oxides of alumina and the like, such as waxite. In this case, a mixture of silicon carbide and other oxides is obtained as a finished product. Petroleum coke, coke, charcoal, etc. can all be used as carbonization raw materials.

原料中の珪酸分に対する炭素分は1モルに対し3モルの
比惠で配合される。この配合比よシ珪酸分の多いときは
中間生成物である一酸化珪素StOがガスとして飛散し
、炭化珪素取高の低下を招く。
The carbon content relative to the silicic acid content in the raw materials is blended at a ratio of 1 mole to 3 moles. When the silicic acid content is higher than this blending ratio, silicon monoxide StO, which is an intermediate product, is scattered as a gas, resulting in a decrease in silicon carbide yield.

−万炭素の配合量が多量ときは余剰分がそのまま残留す
る。この炭素分は成品を800℃以下に再加熱して酸化
除去できるが、一般には炭素分を理論量の5係以下の過
剰配合とすべきである。炭素分はやや過剰に配合しない
とやは9 SiOとしての損失を生ずる。
- When the blended amount of carbon is large, the excess remains as it is. This carbon content can be removed by oxidation by reheating the product to 800° C. or lower, but generally the carbon content should be added in excess of 5 parts or less of the theoretical amount. Unless the carbon content is blended in a slightly excessive amount, loss as 9 SiO will occur.

第1図および第2図は基礎試験の結果にもとづいて製作
されたパイロットプラントであシ、6本の高耐火性耐火
物管で構成されている。第1図は垂直断面図で、このA
A断面で切った水平断面図が第2図に示されているが、
このBB線で切ったものが第1図の断面図である。1は
原料団鉱のホッノ4で、団鉱はフィーダ2を介し、気密
に保たれて、排ガスへ、ダ3を介して耐火物管5に供給
される。土は燃焼室で、多数本の耐火物管5、例えばこ
の例では6本の耐火物管が燃料ガスおよび燃焼空気また
は酸素の導入口を考慮して構成配置されている。7は炉
耐火物である。耐火物管5は支持板9によって支持され
ているが、炉耐゛火物とは密に接触させることが不可能
であるから鉛、錫の如き低融点金属のシール6および8
にょシ燃焼室先に対して気密に構成する。生成した炭化
珪素はフィーダ11にとシ取シ出されホッノぐ12から
外部にとシ出される。排出室10はガス吹込口16から
不活性ガスまたは還元性ガス、好ましくは一酸化炭素が
導入されることによりて成品による排出室10の過熱が
防がれる。この見地から発明の構成で述べたように不活
性ガスは積極的に耐火物管5内に少雪流しこむ構成をと
ることもできる。
Figures 1 and 2 show a pilot plant constructed based on the results of basic tests, and is composed of six highly refractory refractory pipes. Figure 1 is a vertical sectional view of this A
A horizontal sectional view taken along section A is shown in Figure 2.
The cross-sectional view of FIG. 1 is taken along line BB. Reference numeral 1 indicates a raw material briquette 4, and the briquette is kept airtight through a feeder 2, and is supplied to the exhaust gas through a feeder 3 to a refractory pipe 5. The soil is a combustion chamber in which a number of refractory pipes 5, for example six refractory pipes in this example, are constructed and arranged in consideration of the inlets for fuel gas and combustion air or oxygen. 7 is a furnace refractory. The refractory pipe 5 is supported by a support plate 9, but since it is impossible to make intimate contact with the furnace refractory, seals 6 and 8 are made of a low melting point metal such as lead or tin.
Constructed airtight to the end of the combustion chamber. The generated silicon carbide is taken out by a feeder 11 and taken out from a hook 12 to the outside. An inert gas or a reducing gas, preferably carbon monoxide, is introduced into the discharge chamber 10 through a gas inlet 16, thereby preventing the discharge chamber 10 from being overheated by the product. From this point of view, as described in the configuration of the invention, a configuration may be adopted in which the inert gas is actively poured into the refractory pipe 5 in a small amount.

13は燃焼支持空気または酸素の吹込口で、図からも明
らかなように非常に広い部分に分割して供給される。1
4はその杭管である。15は気体燃料送入口、17は燃
焼支持空気または酸素の導入口、18は還元によシ副生
じた一酸化炭素排出口、19は燃焼排ガスの排出口であ
る。
Reference numeral 13 denotes an inlet for combustion support air or oxygen, which is divided into very wide portions and supplied as is clear from the figure. 1
4 is the pile pipe. 15 is a gaseous fuel inlet, 17 is an inlet for combustion support air or oxygen, 18 is an outlet for carbon monoxide produced as a by-product of reduction, and 19 is an outlet for combustion exhaust gas.

耐火物管を十分な長さとするため、同質の短管を用いて
図示したように接合して用いることができる。この場合
、温度のやや低い上部は材質を変え、耐火度は低くても
耐スポーリング性及び機械的強度の高いものに変えるこ
とができる。排出口18以降の管路には制御弁を入れ耐
火物管5内の圧力を燃焼炉4内の圧力よシ高めるのが好
ましい。
In order to make the refractory pipe of sufficient length, short pipes of the same quality can be used and joined as shown. In this case, the material of the upper part, which is at a slightly lower temperature, can be changed to a material with low fire resistance but high spalling resistance and mechanical strength. It is preferable to insert a control valve into the pipe line after the discharge port 18 to increase the pressure inside the refractory pipe 5 higher than the pressure inside the combustion furnace 4.

これによシ管自体の透過性および管つなぎ部からの漏洩
を防ぐことができる。
This can prevent the permeability of the pipe itself and leakage from the pipe joint.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

〔実施例1〕 前述のパイロットプラントは外径100m、内径50m
の高純アルミナ管よシなる長さ4mの管を6本構成した
ものである。ここに本文中に示した珪石、石油コークス
よ構成る16mφX16mのタプレ、トを供給した。コ
ークスを純酸素および水蒸気混合ガスでガス化し、約水
素33%、−酸化炭素654の気体燃料を得、予め除塵
、精製しておく。このガスを予備燃焼炉で純酸素で部分
燃焼して1500℃とし、これを気体燃料導入口15か
ら導入する。導入口17からは純酸素を導入し輻射温度
計によシ吹込口13のある撚焼帯の炉atたは耐火物管
が1700〜19oo℃になるように制御して運転し、
下方から炭化珪素を耐火物管1本、1時間当fi 3.
5 kgの割合で得た。収車はおよそ92〜”95チで
数俤の炭素を含む緑白色め粉末である。炉全体での気体
燃料使用量は80.4Nms/hであシ、予備燃焼炉に
゛おける純酸素使用量a 18.0 Nm” /h、本
燃焼炉における純酸素使用量は22.2 Nm” /h
であった。
[Example 1] The aforementioned pilot plant has an outer diameter of 100 m and an inner diameter of 50 m.
It is made up of six 4m long tubes made of high-purity alumina tubes. Here, a tapelet of 16 mφ x 16 m consisting of silica stone and petroleum coke as shown in the text was supplied. Coke is gasified with a mixed gas of pure oxygen and water vapor to obtain a gaseous fuel containing approximately 33% hydrogen and 654% carbon oxide, which is previously dust-removed and purified. This gas is partially combusted with pure oxygen in a pre-combustion furnace to a temperature of 1500° C., and is introduced from the gaseous fuel inlet 15. Pure oxygen is introduced from the inlet 17, and the furnace is controlled and operated so that the temperature of the twisted zone furnace or refractory pipe with the inlet 13 is 1700 to 190°C as measured by a radiation thermometer.
3. Pour silicon carbide from below into one refractory pipe for 1 hour.
It was obtained at a rate of 5 kg. The collected vehicle is approximately 92 to 95 inches and is a greenish white powder containing several grains of carbon.The gaseous fuel consumption in the entire furnace is 80.4Nms/h, and the use of pure oxygen in the pre-combustion furnace. Amount a: 18.0 Nm"/h, pure oxygen consumption in this combustion furnace: 22.2 Nm"/h
Met.

〔実施例2〕 前記実施例と全く同一の運転を行ない、ただ酸素を33
.396に富化した富化空気を導入口17から導入した
。同じように耐火物管1本1時間当93、5 k&の炭
化珪素生産を行なった場合、気体燃料ガスの使用量は1
0.7.4 Nm”/hであり燃焼空気の酸素富化に用
いた純酸素量はあわせて25.8 Nm” /hであり
たO 二つの実施例にみるよ、うに燃焼温度が1900℃を保
ちうる限bti燃焼支持ガスの酸素濃度は下げても差支
えなく、燃料と使用純酸素とのコストのinは若干増大
する程度である。しかし排出ガス排出口19からの排ガ
スの温度は上昇するし完全燃焼すると酸化窒素が生成し
公害防止上除去を図る配慮が生じるなど、一般には酸素
濃度の高い方力;好ましい@ 〔発明の効果〕 本発明は基本的には通常の気体燃料によシ有用な用途を
有する・炭化珪素を製造する方法を提供したことである
。この炭化珪素はβ型炭化珪素でおシ、研磨材、耐火材
に現在使われているものと異なる。また純度面でも必ず
しも十分でない。
[Example 2] Exactly the same operation as in the previous example was carried out, except that oxygen was
.. Enriched air enriched with 396% was introduced from the inlet 17. Similarly, if one refractory pipe produces 93.5 k& of silicon carbide per hour, the amount of gaseous fuel gas used is 1
0.7.4 Nm"/h, and the total amount of pure oxygen used to enrich the combustion air with oxygen was 25.8 Nm"/h. The oxygen concentration of the bti combustion support gas may be lowered as long as the temperature can be maintained at 0.degree. C., but the cost of fuel and pure oxygen used will only increase slightly. However, the temperature of the exhaust gas from the exhaust gas outlet 19 rises, and complete combustion produces nitrogen oxides, which must be removed to prevent pollution. Generally, a method with a higher oxygen concentration is preferable. The present invention basically provides a method for producing silicon carbide which has useful applications in addition to conventional gaseous fuels. This silicon carbide is β-type silicon carbide, which is different from those currently used in abrasives, abrasives, and refractory materials. Furthermore, the purity is not always sufficient.

しかし簡易な製法で安価な炭化珪素を提供することによ
シ従来と異なる分野、たとえば鉄鋼の加熱、脱酸材、あ
るいは合金鉄の原料等に使用する可能性を増大した。む
ろん従来分野への適用も可能である。研磨材には使用は
できないが耐火物原料としては使用可能である。
However, by providing silicon carbide at low cost through a simple manufacturing method, the possibility of its use in fields different from conventional ones, such as heating of steel, deoxidizing material, or raw material for ferroalloys, has increased. Of course, it can also be applied to conventional fields. Although it cannot be used as an abrasive, it can be used as a raw material for refractories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に使用した還元炉の断面図
で、第1図は第2図BB線による垂直断面図、第2図は
第1図のAA線による横断平面図である。 1・・・ホッパー、2・・・フィーダ、3・・・排ガス
ヘッダ、4・・・燃焼室、5・・・耐火物管、6・・・
シール、7・・・炉耐火物、8・・・シール、9・・・
支持板、10・・・排出室、11・・・フィーダ、12
・・・ホッパ、13・・・吹込口、14・・・柱管、1
5・・・気体燃料送入口、16・・・がス吹込口、17
・・・導入口、18・・・−酸化炭素排出口、19・・
・燃焼排ガス排出口。 第1 図 第2図
Figures 1 and 2 are cross-sectional views of the reduction furnace used in the present invention, where Figure 1 is a vertical cross-sectional view taken along line BB in Figure 2, and Figure 2 is a cross-sectional plan view taken along line AA in Figure 1. . 1... Hopper, 2... Feeder, 3... Exhaust gas header, 4... Combustion chamber, 5... Refractory pipe, 6...
Seal, 7... Furnace refractory, 8... Seal, 9...
Support plate, 10... Discharge chamber, 11... Feeder, 12
...hopper, 13...inlet, 14...pillar pipe, 1
5... Gaseous fuel inlet, 16... Gas inlet, 17
...Inlet, 18... - Carbon oxide outlet, 19...
- Combustion exhaust gas outlet. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 耐火物加熱室内に多本数の高耐熱性耐火物管を構成し、
この加熱室に気体燃料ガスを通じ、これに空気または酸
素富化あるいは予熱した空気を用いて段階的に燃焼する
ことによって1650〜2000℃の高温部を広く形成
し、一方前記耐火物管内に上部から珪酸を含む原料と必
豐量の還元用炭素分を混合してなる団鉱を装入して移動
充填層を形成し、下部から反応生成物を取シ出すこと′
!i−特徴とする炭化珪素または炭化珪素を含有する混
合物の製造方法。
A large number of high heat resistant refractory pipes are constructed in the refractory heating chamber,
Gaseous fuel gas is passed through this heating chamber, and air or oxygen-enriched or preheated air is used to burn the gas in stages to form a wide high-temperature zone of 1650 to 2000°C, while inside the refractory pipe from above. A moving packed bed is formed by charging a briquette made by mixing a raw material containing silicic acid with a required amount of reducing carbon, and the reaction product is taken out from the bottom.
! i- A method for producing a silicon carbide or a mixture containing silicon carbide.
JP58236331A 1983-12-16 1983-12-16 Manufacture of silicon carbide or mixture containing silicon carbide Pending JPS60131820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236331A JPS60131820A (en) 1983-12-16 1983-12-16 Manufacture of silicon carbide or mixture containing silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236331A JPS60131820A (en) 1983-12-16 1983-12-16 Manufacture of silicon carbide or mixture containing silicon carbide

Publications (1)

Publication Number Publication Date
JPS60131820A true JPS60131820A (en) 1985-07-13

Family

ID=16999219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236331A Pending JPS60131820A (en) 1983-12-16 1983-12-16 Manufacture of silicon carbide or mixture containing silicon carbide

Country Status (1)

Country Link
JP (1) JPS60131820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169067A (en) * 2004-12-17 2006-06-29 Jipangu Energy:Kk Method and system for purifying silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169067A (en) * 2004-12-17 2006-06-29 Jipangu Energy:Kk Method and system for purifying silicon carbide

Similar Documents

Publication Publication Date Title
US4054444A (en) Method for controlling the carbon content of directly reduced iron
US4292276A (en) Apparatus for producing silicon carbide
CN86107592A (en) Immersion combustion in melted material
US2220849A (en) Method for forming synthesis gas
CN101448962B (en) Method for manufacturing molten irons by injecting a hydrocarbon gas and apparatus for manufacturing molten irons using the same
CA2970818C (en) Metallurgical furnace for producing metallic alloys
EP0357395B1 (en) A silicon smelting process and a furnace therefor
CN104302787A (en) Method for loading raw material into blast furnace
JPS6359965B2 (en)
WO2015131438A1 (en) Device for online modification of thermal-state smelting slag
GB2188067A (en) Increasing carbon content of direct reduced iron
JPS60131820A (en) Manufacture of silicon carbide or mixture containing silicon carbide
JPS6053091B2 (en) Aluminum smelting method using smelting furnace method
US4997474A (en) Silicon smelting process
US4588438A (en) Moulded object of alumina matter-containing raw material for aluminum smelting by blast furnace method
US3295955A (en) Smelting method and device
CA1336646C (en) Reduced chromium-ore bearing powder and method for producing the same
JP2661478B2 (en) Cylindrical furnace and method for producing hot metal using the same
JPS6024047B2 (en) Silicon carbide manufacturing method
WO1990015296A1 (en) Calcium carbide production furnace by oxy-thermal process
WO2024070135A1 (en) Iron ore pellet production method
JP2666396B2 (en) Hot metal production method
RU2016069C1 (en) Method for production of sponge metal in shaft furnace
US1815379A (en) Process for volatilization of phosphorus
SU1049546A1 (en) Method for blast furnace smelting