WO2018131135A1 - Deuterium-depleted water production apparatus - Google Patents

Deuterium-depleted water production apparatus Download PDF

Info

Publication number
WO2018131135A1
WO2018131135A1 PCT/JP2017/001017 JP2017001017W WO2018131135A1 WO 2018131135 A1 WO2018131135 A1 WO 2018131135A1 JP 2017001017 W JP2017001017 W JP 2017001017W WO 2018131135 A1 WO2018131135 A1 WO 2018131135A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
deuterium
mixed gas
electrolysis
combustion
Prior art date
Application number
PCT/JP2017/001017
Other languages
French (fr)
Japanese (ja)
Inventor
信一 東田
Original Assignee
Cdmインフラ環境株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cdmインフラ環境株式会社 filed Critical Cdmインフラ環境株式会社
Priority to PCT/JP2017/001017 priority Critical patent/WO2018131135A1/en
Publication of WO2018131135A1 publication Critical patent/WO2018131135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/38Separation by electrochemical methods
    • B01D59/40Separation by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a deuterium reduced water production apparatus.
  • deuterium-reduced water is generally produced by a deuterium-reduced water production apparatus.
  • a deuterium reduction water production apparatus using an isotope distillation column As such a deuterium reduction water production apparatus, a deuterium reduction water production apparatus using an isotope distillation column is known (for example, Patent Document 1 (Japanese translations of PCT publication No. 2008-512238)).
  • Patent Document 1 Japanese translations of PCT publication No. 2008-5122308
  • the deuterium-decreasing water production apparatus using the isotope distillation column consumes a lot of energy for the distillation of water, so there is room for improvement from the viewpoint of production cost of deuterium-decreasing water and energy saving. There is.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-158499
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-158499
  • the concentration of deuterium in hydrogen generated when water is electrolyzed decreases due to the difference in electrophoretic velocity between hydrogen ions and deuterium ions.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-158499
  • water is electrolyzed to generate hydrogen, and the generated hydrogen and the electrolysis are generated simultaneously.
  • Deuterium-reduced water is produced by introducing oxygen to the fuel cell through different paths and reacting hydrogen and oxygen in the fuel cell.
  • the amount of energy input to the production of deuterium-reduced water can be suppressed as compared with a deuterium-reduced water production apparatus using an isotope distillation column. Furthermore, since the deuterium reduction water production apparatus of Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-158499) can also use power generated in the fuel cell, the energy (input) required for the production of deuterium reduction water can be achieved. Difference between the energy to be recovered and the energy that can be recovered).
  • An object of the present invention is to provide an apparatus for producing deuterium-decreasing water that is capable of suppressing energy required for producing deuterium-decreasing water and has excellent efficiency.
  • the deuterium reduced water production apparatus includes an electrolysis mechanism, a mixed gas transport path, a combustion mechanism, a heat utilization mechanism, and a condensation mechanism.
  • the electrolysis mechanism electrolyzes water.
  • the mixed gas transport path transports oxygen and hydrogen generated by the electrolysis mechanism as a mixed gas.
  • the combustion mechanism burns the mixed gas transported by the mixed gas transport path.
  • the heat utilization mechanism uses heat generated by the combustion mechanism.
  • the condensation mechanism condenses the steam generated by the combustion mechanism to generate deuterium-decreased water.
  • the mixed gas refers to a gas in which hydrogen and oxygen generated by electrolysis are taken out in a mixed state without being separated from the electrolysis mechanism.
  • This mixed gas may be referred to as oxyhydrogen gas, HHO gas, Brown gas, or the like.
  • the ratio of hydrogen to oxygen is approximately 2: 1.
  • the mixed gas is defined as a gas different from the gas obtained by once separating and taking out hydrogen and oxygen generated from the electrolysis mechanism.
  • the deuterium-decreasing water production apparatus passes hydrogen gas and oxygen gas generated by electrolysis of water through different paths as in Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499). However, it does not lead to a fuel cell and react with the fuel cell to produce deuterium reduced water.
  • the deuterium-reduced water production apparatus produces deuterium-reduced water by introducing a mixed gas of oxygen and hydrogen generated by electrolysis of water to a combustion mechanism and burning it with the combustion mechanism. It has the composition of doing. It is known that combustion of a mixed gas of oxygen and hydrogen generated by electrolysis of water generates higher energy than the case of simply burning hydrogen gas in the presence of oxygen gas due to radical chain reaction. . For example, when a mixed gas of oxygen and hydrogen is burned, the temperature of the flame is about 700 ° C. higher than when hydrogen gas and oxygen gas are separately supplied to the combustion mechanism. Such a mixed gas is also used for applications such as welding that require a particularly high temperature. In the deuterium-decreasing water production apparatus according to the first aspect of the present invention, deuterium-decreasing water is produced while recovering high energy by using oxygen and hydrogen generated by water electrolysis as a mixed gas. be able to.
  • deuterium-decreasing water is not generated by reacting hydrogen and oxygen in the fuel cell, but deuterium-decreasing water is generated by combustion. Yes. Therefore, in the deuterium-decreasing water production apparatus according to the first aspect of the present invention, a substance eluted from a polymer proton permeable membrane of a fuel cell, or a material in which the membrane has deteriorated or cleaved, which may be a problem when the fuel cell is used. Therefore, it is easy to produce highly safe deuterium-decreasing water suitable for drinking.
  • the mixed gas does not lead the hydrogen gas and oxygen gas generated by the electrolysis of water to the combustion mechanism through different paths, but the mixed gas It is conveyed to.
  • hydrogen gas is burned in the presence of oxygen gas, an explosion reaction may occur depending on conditions.
  • a mixed gas of hydrogen and oxygen generated by water electrolysis causes an implosion reaction instead of an explosion reaction.
  • hydrogen gas and oxygen gas are simply converted by a combustion mechanism. Compared to combustion, the mixed gas is superior in safety.
  • the configuration of the present application is easy to prevent explosion accidents and is highly safe.
  • the deuterium-decreasing water production apparatus is the deuterium-decreasing water production apparatus according to the first aspect, and the heat utilization mechanism includes a power generation device that utilizes heat generated by the combustion mechanism. The electricity generated by the power generation device is supplied to the electrolysis mechanism.
  • the combustion energy of the mixed gas generated by water electrolysis is used for water electrolysis, so the amount of energy input from the outside is suppressed. be able to.
  • the deuterium reduction water production apparatus is the deuterium reduction water production apparatus according to the first aspect or the second aspect, wherein the second electrolysis mechanism, the second mixed gas transport path, A second combustion mechanism and a second condensation mechanism are further provided.
  • the second electrolysis mechanism electrolyzes at least a part of the deuterium reduced water generated by the condensation mechanism.
  • the second mixed gas transport path transports oxygen and hydrogen generated by the second electrolysis mechanism as a mixed gas.
  • the second combustion mechanism burns the mixed gas transported by the second mixed gas transport path.
  • the second condensing mechanism condenses the steam generated by the second combustion mechanism to generate deuterium reduced water.
  • deuterium reduction water is further generated using the generated deuterium reduction water as a raw material. It is possible to generate.
  • a deuterium-decreasing water production apparatus is the deuterium-decreasing water production apparatus according to any one of the first to third aspects, wherein the electrolysis mechanism includes water to be electrolyzed. Is supplied continuously.
  • the concentration of heavy water in the water increases during electrolysis, resulting in heavy water.
  • An increase in the concentration of heavy water in the hydrogen-reduced water can be suppressed.
  • a deuterium reduction water production apparatus is the deuterium reduction water production apparatus according to any of the first to fourth aspects, wherein the condensing mechanism compresses steam generated by the combustion mechanism. It is a compressor that condenses.
  • the vapor of the deuterium-decreasing water is compressed by the compressor to generate liquid deuterium-decreasing water. Easy to plan.
  • deuterium-decreasing water can be produced while recovering high energy by using oxygen and hydrogen generated by electrolysis of water as a mixed gas.
  • FIG. 1 shows schematic structure of the deuterium reduction water manufacturing apparatus which concerns on 1st Embodiment of this invention. It is a figure which shows schematic structure of the deuterium reduction water manufacturing apparatus which concerns on 2nd Embodiment of this invention. It is a figure which shows schematic structure of the deuterium reduction water manufacturing apparatus which concerns on 3rd Embodiment of this invention. It is a figure which shows schematically the additional structure for the further reduction of heavy water concentration added to the structure of FIGS. 1-3 based on the modification A.
  • FIG. It is a figure which shows the mixed gas conveyance path
  • the deuterium reduced water production apparatus 100 includes an electrolysis mechanism 10, a mixed gas transport path 20, a combustion mechanism 30, a heat utilization mechanism 40, a condensation mechanism 50, and a deuterium reduced water tank. 60 mainly.
  • Electrolysis mechanism 10 is a mechanism for electrolyzing raw water (water to be electrolyzed).
  • the raw water is, for example, general tap water.
  • raw material water is not limited to tap water, For example, groundwater etc. may be sufficient.
  • Heavy water (D 2 O) and light water (H 2 O) exist in the raw material water.
  • the concentration of heavy water in water is about 150 ppm.
  • an electrolyte may be added to the raw material water in order to reduce the solution resistance.
  • an electrolyte potassium hydroxide, sodium hydroxide, etc. may be used, for example.
  • the electrolysis mechanism 10 mainly includes a water tank 12, an anode 14, and a cathode 16 (see FIG. 1).
  • Raw water is stored in the water tank 12. It is preferable that raw water is continuously supplied to the water tank 12. Moreover, it is preferable that some raw material water in the water tank 12 is drained continuously.
  • the anode 14 and the cathode 16 are electrode rods that are respectively disposed in the water tank 12 and immersed in the raw material water.
  • the present invention is not limited to this, and various forms can be used for the anode 14 and the cathode 16.
  • the casing of the water tank 12 may be used as the anode 14 and the electrode rod as the cathode 16 may be immersed in the water tank 12.
  • Various materials that can be used as electrodes for electrolysis of water can be used for the anode 14 and the cathode 16.
  • oxygen gas and hydrogen gas are not taken out separately, but a mixed gas of oxygen and hydrogen is taken out.
  • the mixed gas refers to a gas taken out in a mixed state without separating hydrogen and oxygen generated by electrolysis as described above.
  • the mixed gas is sent to the combustion mechanism 30 via the mixed gas transport path 20.
  • the ratio of hydrogen to oxygen is approximately 2: 1.
  • hydrogen and oxygen exist in monoatomic and diatomic states.
  • water clusters that are aggregates of water molecules may exist in a gas phase state. The presence of water clusters can prevent the rapid chain reaction between hydrogen and oxygen.
  • the water tank 12 is provided with a device (not shown) for generating microbubbles (bubbles having an average bubble diameter of several tens of micrometers or less) or nanobubbles (bubbles having an average bubble diameter of several hundred nanometers or less) in the raw water. It is preferred that for example, such microbubbles and nanobubbles can be generated by vibrating the stirring member at low frequency in the raw water.
  • a microbubble or nanobubble generator By providing such a microbubble or nanobubble generator, the concentration of water clusters in the gas phase in the mixed gas is increased, and the mixed gas is in a particularly stable state (a rapid chain connection between hydrogen and oxygen). The reaction is particularly likely to be hindered).
  • the mixed gas transport path 20 is a path for transporting oxygen and hydrogen generated in the electrolysis mechanism 10 as a mixed gas.
  • the mixed gas conveyance path 20 includes a single pipe or a plurality of pipes.
  • the mixed gas conveyance path 20 connects the electrolysis mechanism 10 and the combustion mechanism 30.
  • One end of the mixed gas transport path 20 is connected to the water tank 12 of the electrolysis mechanism 10, and the mixed gas generated in the water tank 12 flows into the mixed gas transport path 20.
  • the other end of the mixed gas transport path 20 is connected to a burner 34 of a combustion mechanism 30 described later.
  • the mixed gas is conveyed from the electrolysis mechanism 10 to the combustion mechanism 30 through the mixed gas conveyance path 20.
  • route 20 may be provided with the mist separator (not shown) which removes mist.
  • the mist separator is preferably provided in the vicinity of the connection portion with the water tank 12.
  • the mixed gas transport path 20 is prevented in order to prevent the fire from reaching the electrolysis mechanism 10.
  • the fire prevention water tank 22 is a closed container, and communicates with the outside by an upstream pipe 24 and a downstream pipe 26 inserted therein.
  • the upstream pipe 24 is a pipe connected to the electrolysis mechanism 10
  • the downstream pipe 26 is a pipe connected to the burner 34 of the combustion mechanism 30.
  • Water is stored in the fire prevention water tank 22.
  • the downstream end of the upstream pipe 24 is disposed in water, and the upstream end of the downstream pipe 26 is disposed on the water surface.
  • the mixed gas transport path 20 is provided with a flashback prevention device (not shown) for preventing flashback.
  • the backfire preventer is preferably provided in the vicinity of the connection portion of the combustion mechanism 30 with the burner 34.
  • the combustion mechanism 30 is a mechanism for burning the mixed gas transported from the electrolysis mechanism 10 through the mixed gas transport path 20.
  • the combustion mechanism 30 mainly includes a reactor 32 and a burner 34 (see FIG. 1).
  • a burner 34 is arranged inside the reactor 32. Further, the reactor 32 may be connected to a pipe that guides air into the reactor 32.
  • the burner 34 is connected to the mixed gas transport path 20.
  • the mixed gas transported through the mixed gas transport path 20 is ejected into the reactor 32 by the burner 34, and the mixed gas is combusted in the reactor 32.
  • hydrogen gas is burned simply in the presence of oxygen gas by radical chain reaction (hydrogen gas and oxygen gas are led to the reactor 32) High energy is generated compared to the case of burning).
  • a mixed gas of oxygen and hydrogen is burned, the temperature of the flame is about 700 ° C. higher than when hydrogen gas and oxygen gas are separately supplied to the combustion mechanism (the flame when the mixed gas is burned). Temperature is about 2800 ° C.).
  • Water vapor generated by burning the mixed gas is discharged to the outside of the reactor 32 through an exhaust port 32a provided in the reactor 32.
  • the exhaust port 32a is provided at the bottom of the reactor 32, and water condensed in the reactor 32 is also discharged from the exhaust port 32a to the outside of the reactor 32. Water vapor or condensed water discharged from the exhaust port 32 a is sent to the condensing mechanism 50.
  • the heat utilization mechanism 40 utilizes heat generated by the combustion mechanism 30. In particular, in the heat utilization mechanism 40, power generation using the heat generated in the combustion mechanism 30 is performed.
  • the heat utilization mechanism 40 mainly includes a heat recovery unit 42, a heat medium circulation pump 44, a binary power generation device 46, and a heat medium circuit 48 (see FIG. 1).
  • the heat medium circulation pump 44 is a pump that circulates the heat medium inside the heat medium circuit 48 connected to the heat recovery unit 42 and the binary power generation device 46. That is, the heat medium circulation pump 44 is a pump for circulating the heat medium between the heat recovery unit 42 and the binary power generation device 46.
  • the heat medium circulated by the heat medium circulation pump 44 is water, but the type of the heat medium is not limited to water, and other heat medium may be used.
  • the heat recovery unit 42 is a jacket type heat exchanger provided on the outer surface of the reactor 32 of the combustion mechanism 30.
  • the heat recovery unit 42 may be configured to be able to recover the heat generated by the combustion mechanism 30 and may not be in the form of a jacket-type heat exchanger.
  • Water sent by the heat medium circulation pump 44 flows through a pipe (not shown) arranged inside the heat recovery unit 42.
  • the reactor 32 that becomes high temperature due to the combustion of the mixed gas therein is cooled by water flowing through a pipe in the heat recovery section 42.
  • the water flowing in the pipe disposed inside the heat recovery unit 42 recovers the heat of the reactor 32 and becomes high-temperature water or steam.
  • the water or steam in the pipe disposed inside the heat recovery section 42 that has become high temperature due to the heat of the reactor 32 is sent to the binary power generation device 46.
  • the binary power generation device 46 is an example of a power generation device that uses heat generated by the combustion mechanism 30.
  • the binary power generator 46 is a power generator that uses an organic Rankine cycle. More specifically, the binary power generation device 46 heats and evaporates an organic medium (for example, chlorofluorocarbon) having a relatively low boiling point with high-temperature water or water vapor obtained by the heat of the reactor 32 in the heat recovery unit 42, This is a power generator that generates power by turning the turbine.
  • an organic medium for example, chlorofluorocarbon
  • the binary power generator 46 includes an evaporator, a turbine generator, a condenser, an organic medium pump, and the like.
  • the evaporator is, for example, without limitation, a plate heat exchanger. In the evaporator, heat exchange is performed between the high-temperature water or water vapor sent from the heat recovery unit 42 and the organic medium. In the evaporator, the organic medium becomes gas, and the high-temperature water or water vapor sent from the heat recovery unit 42 becomes relatively low-temperature water.
  • the turbine generator is driven by an organic medium gas and outputs electricity.
  • the condenser is, for example, without limitation, a plate heat exchanger.
  • the condenser heat exchange is performed between the organic medium used in the turbine generator and the cooling water (for example, water sent from the cooling tower) sent to the binary power generation device 46.
  • the organic medium becomes a liquid.
  • the organic medium pump sends the organic medium liquefied in the condenser to the evaporator.
  • the electricity generated by the binary power generator 46 is preferably supplied to the electrolysis mechanism 10 and used for electrolysis of raw material water.
  • the electricity generated by the binary power generator 46 is preferably supplied to the electrolysis mechanism 10 and used for electrolysis of raw material water.
  • the condensing mechanism 50 is a mechanism that condenses water vapor generated by the combustion of the mixed gas in the combustion mechanism 30 to generate deuterium-decreased water.
  • the condensation mechanism 50 mainly has a heat exchanger 52.
  • the heat exchanger 52 is a shell and tube type heat exchanger, although not limited thereto.
  • the shell 54 (body) of the heat exchanger 52 is provided with a combustion gas inlet 54a, a condensed water outlet 54b, and an exhaust outlet (not shown) for discharging air.
  • the combustion gas inlet 54 a is connected to the exhaust port 32 a of the reactor 32.
  • the combustion gas containing water vapor from the reactor 32 discharged from the exhaust port 32a flows into the shell 54 through the combustion gas inlet 54a.
  • the water condensed in the shell 54 flows out from the condensed water outlet 54b.
  • tubes 56 heat transfer tubes
  • Cooling water for example, cooling water sent from a cooling tower
  • the tube 56 heat transfer tubes
  • heat exchanger 52 heat exchange is performed between the combustion gas flowing in from the combustion gas inlet 54a and the cooling water in the tube 56, and water vapor in the combustion gas is condensed.
  • the condensed water flows out from the condensed water outlet 54 b provided at the lower part of the shell 54 of the heat exchanger 52 and flows into the deuterium-reduced water tank 60. Note that air contained in the combustion gas, a small amount of water vapor not condensed in the combustion gas, and the like are exhausted from the exhaust port to the outside of the shell 54.
  • the concentration of deuterium contained in hydrogen in the mixed gas is smaller than the concentration of heavy water in the raw material water. Therefore, the concentration of heavy water in the water condensed from the water vapor generated by burning the mixed gas (that is, the water flowing into the deuterium-decreasing water tank 60) is lower than the concentration of heavy water in the raw material water. Become.
  • Table 1 shows the concentration of deuterium in deuterium-reduced water produced by the deuterium-reduced water production apparatus 100 (referred to simply as deuterium-reduced water) and Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499).
  • the fuel cell reacts with the concentration of heavy water in the water (referred to as comparative sample water 1) and petroleum-derived commercial hydrogen gas.
  • comparative sample water 1 concentration of heavy water in the water
  • comparative sample water 2 It is the table
  • the deuterium-decreasing water production apparatus 100 includes an electrolysis mechanism 10, a mixed gas transport path 20, a combustion mechanism 30, a heat utilization mechanism 40, and a condensation mechanism 50.
  • the electrolysis mechanism 10 electrolyzes water.
  • the mixed gas transport path 20 transports oxygen and hydrogen generated by the electrolysis mechanism 10 as a mixed gas.
  • the combustion mechanism 30 burns the mixed gas transported by the mixed gas transport path 20.
  • the heat utilization mechanism 40 uses heat generated by the combustion mechanism 30.
  • the condensing mechanism 50 condenses the water vapor generated by the combustion mechanism 30 to generate deuterium reduced water.
  • the mixed gas refers to a gas in which hydrogen and oxygen generated by electrolysis are taken out in a mixed state without being separated from the electrolysis mechanism 10 as described above.
  • the deuterium reduced water production apparatus 100 allows hydrogen gas and oxygen gas generated by electrolysis of water to pass through different paths as in Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499). Therefore, it does not lead to a fuel cell and react with the fuel cell to produce deuterium-depleted water.
  • the deuterium-decreasing water production apparatus 100 guides a mixed gas of oxygen and hydrogen generated by water electrolysis to the combustion mechanism 30 and burns the deuterium-decreasing water by the combustion mechanism 30. It has the structure of manufacturing. It is known that combustion of a mixed gas of oxygen and hydrogen generated by electrolysis of water generates higher energy than the case of simply burning hydrogen gas in the presence of oxygen gas due to radical chain reaction. . For example, when a mixed gas of oxygen and hydrogen is burned, the temperature of the flame is about 700 ° C. higher than when hydrogen gas and oxygen gas are separately supplied to the combustion mechanism 30 (the mixed gas is burned). The flame temperature in this case is about 2800 ° C.).
  • deuterium-decreasing water producing apparatus 100 Such a mixed gas is also used for applications such as welding that require a particularly high temperature.
  • deuterium-decreasing water is produced while recovering high energy by using oxygen and hydrogen generated by water electrolysis as a mixed gas. Can do.
  • deuterium-decreasing water is generated not by reacting hydrogen and oxygen in the fuel cell but by generating hydrogen. . Therefore, in the deuterium-decreasing water production apparatus 100 according to the first embodiment, substances eluted from the polymer proton permeable membrane of the fuel cell or substances whose membrane has deteriorated or cleaved can be a problem when the fuel cell is used. It is easy to produce highly safe deuterium-decreasing water suitable for drinking without being mixed into deuterium-decreasing water.
  • the heat utilization mechanism 40 includes a binary power generation apparatus 46 as an example of a power generation apparatus that uses heat generated by the combustion mechanism 30.
  • the electricity generated by the binary power generator 46 is supplied to the electrolysis mechanism 10.
  • the amount of energy input from the outside is suppressed. Can do.
  • water to be electrolyzed is continuously supplied to the electrolysis mechanism 10.
  • the concentration of heavy water in the water increases during electrolysis, resulting in heavy water.
  • An increase in the concentration of heavy water in the hydrogen-reduced water can be suppressed.
  • the deuterium reduced water production apparatus 300 includes an electrolysis mechanism 10, a mixed gas transport path 20, a gas turbine generator 330, a condensing mechanism 50, and a deuterium reduced water tank 60. Prepare mainly.
  • the electrolysis mechanism 10 Since the electrolysis mechanism 10, the mixed gas transport path 20, the condensing mechanism 50, and the deuterium-depleted water tank 60 are the same as those in the first embodiment, description thereof is omitted.
  • a gas mixture is burned by the combustion mechanism 30 and power is generated in the binary power generation device 46 of the heat utilization mechanism 40 using heat generated during combustion.
  • the gas turbine generator 330 has both a function as a combustion mechanism and a function as a heat utilization mechanism. More specifically, in the second embodiment, the gas turbine generator 330 is operated using the mixed gas as fuel to generate power. Then, water vapor generated by the combustion of the mixed gas is condensed by the condensing mechanism 50, and deuterium-decreased water is generated. Further, the condensed water generated in the gas turbine generator 330 also flows into the deuterium reduced water tank 60 via the deuterium reduced water recovery path 332.
  • the deuterium-decreasing water production apparatus 300 of the second embodiment has the same characteristics as the characteristics described in (3) Characteristics of the first embodiment.
  • the deuterium reduced water production apparatus 400 includes an electrolysis mechanism 10, a mixed gas transport path 20, a combustion mechanism 30, a heat utilization mechanism 40, a condensation mechanism 450, and a deuterium reduced water tank. 60 mainly.
  • the electrolysis mechanism 10 Since the electrolysis mechanism 10, the mixed gas transport path 20, the combustion mechanism 30, the heat utilization mechanism 40, and the deuterium-depleted water tank 60 are the same as those in the first embodiment, description thereof is omitted.
  • the condensing mechanism 50 generates deuterium-decreased water by cooling and condensing the water vapor flowing from the combustion mechanism 30 in the heat exchanger 52.
  • the condensing mechanism 450 mainly includes a compressor 452.
  • the condensation mechanism 450 the water vapor generated in the combustion mechanism 30 is condensed by being compressed by the compressor 452. Condensed water generated in the reactor 32 of the combustion mechanism 30 flows from the drain provided in the lower part of the reactor 32 into the deuterium-decreasing water tank 60 through the deuterium-decreasing water recovery path 434.
  • the deuterium reduction water production apparatus 400 generates liquid deuterium reduction water by compressing the water vapor of the deuterium reduction water by the compressor 452, so that the deuterium reduction water production apparatus 400 is made compact. It has the feature that can be aimed at.
  • the deuterium-decreasing water production apparatus 400 of the third embodiment has the same features as the features described in (3) Features of the first embodiment.
  • the deuterium-decreasing water stored in the deuterium-decreasing water tank 60 is the final product. Is not limited to this.
  • the deuterium reduced water production apparatus includes a second electrolysis mechanism 210, a second mixed gas transfer path 220, a second combustion mechanism 230, as shown in FIG.
  • the second condensing mechanism 250 may be further provided.
  • FIG. 4 the configuration described in the first to third embodiments is omitted except for the deuterium-decreasing water tank 60.
  • the second electrolysis mechanism 210 electrolyzes at least a part of the deuterium-depleted water generated by the condensation mechanism 50.
  • the second mixed gas transport path 220 transports oxygen and hydrogen generated in the second electrolysis mechanism 210 as a mixed gas.
  • the second combustion mechanism 230 burns the mixed gas transported by the second mixed gas transport path 220.
  • the second condensing mechanism 250 condenses the water vapor generated by the second combustion mechanism 230 to generate deuterium reduced water.
  • the water condensed by the second condensing mechanism 250 flows into the second deuterium reduced water tank 260.
  • the second electrolysis mechanism 210, the second mixed gas transfer path 220, the second combustion mechanism 230, the second condensation mechanism 250, and the second deuterium-depleted water tank 260 are each an electrolysis mechanism of the first embodiment. 10, since it is the structure similar to the mixed gas conveyance path
  • the deuterium-decreasing water production apparatus further generates deuterium-decreasing water by using the deuterium-decreasing water as raw material water, so that it is possible to generate deuterium-decreasing water with extremely low deuterium concentration. It has the characteristic of being.
  • the deuterium reduction water manufacturing apparatus is further provided with the 2nd heat utilization mechanism 240 using the heat which generate
  • the 2nd heat utilization mechanism 240 is the structure similar to the heat utilization mechanism 40 of 1st Embodiment, detailed description is abbreviate
  • a gas turbine generator may be provided as in the second embodiment.
  • the process of producing deuterium-decreasing water having deuterium-decreasing water as raw material water and further having a lower deuterium concentration may be repeated twice or more.
  • the raw water is continuously supplied to the water tank 12 of the electrolysis mechanism 10.
  • the electrolysis mechanism 10 may be comprised by the batch type so that the water previously stored in the water tank 12 may be electrolyzed.
  • exchange of water is performed at an appropriate time.
  • the heat generated by the combustion of the mixed gas may be used as it is outside the deuterium reduced water production apparatus.
  • the electric power generated by the heat utilization mechanism 40 or the gas turbine generator 330 may be used for purposes other than water electrolysis.
  • the deuterium-decreasing water production apparatus is useful for producing deuterium-decreasing water efficiently.
  • Electrolysis mechanism 20 Mixed gas conveyance path 30 Combustion mechanism 40 Heat utilization mechanism 46 Binary power generation device (power generation device) 50 Condensing mechanism 100 Deuterium reduced water production apparatus 210 Second electrolysis mechanism 220 Second mixed gas transport path 230 Second combustion mechanism 250 Second condensation mechanism 300 Deuterium reduced water production apparatus 330 Gas turbine generator (combustion mechanism, heat Utilization mechanism) 400 Deuterium reduction water production apparatus 450 Condensing mechanism 452 Compressor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Provided is a deuterium-depleted water production apparatus of excellent efficiency with which it is possible to limit the energy necessary for production of deuterium-depleted water. The deuterium-depleted water production apparatus (100) is provided with an electrolysis mechanism (10), a mixed gas conveyance pathway (20), a combustion mechanism (30), a heat utilization mechanism (40) and a condensation mechanism (50). The electrolysis mechanism electrolyzes water. The mixed gas conveyance pathway conveys the oxygen and hydrogen generated in the electrolysis mechanism as a mixed gas. The combustion mechanism burns the mixed gas conveyed by the mixed gas conveyance pathway. The heat utilization mechanism utilizes the heat generated by the combustion mechanism. The condensation mechanism condenses the vapor generated in the combustion mechanism and generates deuterium-depleted water.

Description

重水素減少水製造装置Deuterium reduction water production equipment
 本発明は、重水素減少水製造装置に関する。 The present invention relates to a deuterium reduced water production apparatus.
 近年、健康増進等を目的として、重水素減少水の飲用利用が着目されつつある。 In recent years, the use of deuterium-depleted water has been attracting attention for the purpose of improving health.
 このような重水素減少水は自然界にほとんど存在しないため、重水素減少水は、重水素減少水製造装置により製造されるのが一般的である。 Since such deuterium-reduced water hardly exists in nature, deuterium-reduced water is generally produced by a deuterium-reduced water production apparatus.
 このような重水素減少水製造装置としては、同位体蒸留塔を用いた重水素減少水製造装置が知られている(例えば、特許文献1(特表2008-512238号公報))。しかし、同位体蒸留塔を用いた重水素減少水製造装置には、水の蒸留のために多くのエネルギーが消費されるため、重水素減少水の製造コストや、省エネルギーの観点から、改良の余地がある。 As such a deuterium reduction water production apparatus, a deuterium reduction water production apparatus using an isotope distillation column is known (for example, Patent Document 1 (Japanese translations of PCT publication No. 2008-512238)). However, the deuterium-decreasing water production apparatus using the isotope distillation column consumes a lot of energy for the distillation of water, so there is room for improvement from the viewpoint of production cost of deuterium-decreasing water and energy saving. There is.
 他の重水素減少水製造装置として、水の電気分解を利用した重水素減少水製造装置も提案されている(例えば、特許文献2(特開2012-158499号公報))。水を電気分解した時に発生する水素中の重水素の濃度は、水素イオンと重水素イオンとの電気泳動速度の違いから低くなるという現象が知られている。特許文献2(特開2012-158499号公報)の重水素減少水製造装置では、この現象を利用して、水を電気分解して水素を発生させ、発生した水素と、電気分解により同時に発生した酸素とをそれぞれ異なる経路で燃料電池まで導き、燃料電池で水素と酸素とを反応させることで重水素減少水を製造している。このような重水素減少水製造装置では、同位体蒸留塔を用いた重水素減少水製造装置に比べ、重水素減少水の製造に投入されるエネルギーの量を抑制することができる。さらに、特許文献2(特開2012-158499号公報)の重水素減少水製造装置では燃料電池で発生した電力の利用も図ることができるため、重水素減少水の製造に必要なエネルギー(投入されるエネルギーと回収可能なエネルギーとの差)が抑制されやすい。 As another deuterium reduction water production apparatus, a deuterium reduction water production apparatus using electrolysis of water has also been proposed (for example, Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499)). It is known that the concentration of deuterium in hydrogen generated when water is electrolyzed decreases due to the difference in electrophoretic velocity between hydrogen ions and deuterium ions. In the deuterium reduced water production apparatus of Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499), by utilizing this phenomenon, water is electrolyzed to generate hydrogen, and the generated hydrogen and the electrolysis are generated simultaneously. Deuterium-reduced water is produced by introducing oxygen to the fuel cell through different paths and reacting hydrogen and oxygen in the fuel cell. In such a deuterium-reduced water production apparatus, the amount of energy input to the production of deuterium-reduced water can be suppressed as compared with a deuterium-reduced water production apparatus using an isotope distillation column. Furthermore, since the deuterium reduction water production apparatus of Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-158499) can also use power generated in the fuel cell, the energy (input) required for the production of deuterium reduction water can be achieved. Difference between the energy to be recovered and the energy that can be recovered).
 しかし、本願発明者は、特許文献2(特開2012-158499号公報)に開示された重水素減少水製造装置でも、重水素減少水の製造に必要なエネルギーの量が十分に低いとはいえず、更なる効率化の余地があることを見出した。 However, the inventor of the present application has said that the amount of energy required for the production of deuterium-reduced water is sufficiently low even in the deuterium-reduced water production apparatus disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499). They found that there was room for further efficiency.
 本発明の課題は、重水素減少水の製造に必要なエネルギーを抑制することが可能な、効率性に優れた重水素減少水製造装置を提供することにある。 An object of the present invention is to provide an apparatus for producing deuterium-decreasing water that is capable of suppressing energy required for producing deuterium-decreasing water and has excellent efficiency.
 本発明の第1観点に係る重水素減少水製造装置は、電気分解機構と、混合ガス搬送経路と、燃焼機構と、熱利用機構と、凝縮機構と、を備える。電気分解機構は、水を電気分解する。混合ガス搬送経路は、電気分解機構で発生する酸素と水素とを混合ガスとして搬送する。燃焼機構は、混合ガス搬送経路により搬送される混合ガスを燃焼させる。熱利用機構は、燃焼機構で発生する熱を利用する。凝縮機構は、燃焼機構で発生した蒸気を凝縮して重水素減少水を生成する。 The deuterium reduced water production apparatus according to the first aspect of the present invention includes an electrolysis mechanism, a mixed gas transport path, a combustion mechanism, a heat utilization mechanism, and a condensation mechanism. The electrolysis mechanism electrolyzes water. The mixed gas transport path transports oxygen and hydrogen generated by the electrolysis mechanism as a mixed gas. The combustion mechanism burns the mixed gas transported by the mixed gas transport path. The heat utilization mechanism uses heat generated by the combustion mechanism. The condensation mechanism condenses the steam generated by the combustion mechanism to generate deuterium-decreased water.
 なお、ここで、混合ガスとは、電気分解により発生する水素及び酸素を、電気分解機構から分離することなく混合状態で取り出したガスのことをいう。この混合ガスは、酸水素ガス、HHOガス、ブラウンガス等とも称されることがある。混合ガス中では、水素と酸素との比は、概ね2:1である。なお、特にここでは、混合ガスを、電気分解機構から発生した水素と酸素とを一旦分離して取り出し、その後再混合したガスとは別のガスと定義する。 Here, the mixed gas refers to a gas in which hydrogen and oxygen generated by electrolysis are taken out in a mixed state without being separated from the electrolysis mechanism. This mixed gas may be referred to as oxyhydrogen gas, HHO gas, Brown gas, or the like. In the mixed gas, the ratio of hydrogen to oxygen is approximately 2: 1. In particular, here, the mixed gas is defined as a gas different from the gas obtained by once separating and taking out hydrogen and oxygen generated from the electrolysis mechanism.
 本発明の第1観点に係る重水素減少水製造装置は、特許文献2(特開2012-158499号公報)のように水の電気分解で発生する水素ガスと酸素ガスとを別の経路を通過させて燃料電池へと導き、燃料電池で反応させて重水素減少水を製造するものではない。 The deuterium-decreasing water production apparatus according to the first aspect of the present invention passes hydrogen gas and oxygen gas generated by electrolysis of water through different paths as in Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499). However, it does not lead to a fuel cell and react with the fuel cell to produce deuterium reduced water.
 本発明の第1観点に係る重水素減少水製造装置は、水の電気分解で発生する酸素と水素との混合ガスを燃焼機構へと導き、燃焼機構で燃焼させることで重水素減少水を製造するという構成を有している。水の電気分解で発生する酸素と水素との混合ガスを燃焼させると、ラジカル連鎖反応により、単に酸素ガスの存在下で水素ガスを燃焼させる場合に比べ高いエネルギーが発生することが知られている。例えば、酸素と水素との混合ガスを燃焼させた場合、水素ガスと酸素ガスとを別々に燃焼機構に供給する場合に比べ、炎の温度が約700℃高くなる。このような混合ガスは、特に高温が必要となる溶接等の用途にも利用されている。本発明の第1観点に係る重水素減少水製造装置では、水の電気分解で発生する酸素と水素とを混合ガスとして利用することで、高エネルギーの回収を図りながら重水素減少水を製造することができる。 The deuterium-reduced water production apparatus according to the first aspect of the present invention produces deuterium-reduced water by introducing a mixed gas of oxygen and hydrogen generated by electrolysis of water to a combustion mechanism and burning it with the combustion mechanism. It has the composition of doing. It is known that combustion of a mixed gas of oxygen and hydrogen generated by electrolysis of water generates higher energy than the case of simply burning hydrogen gas in the presence of oxygen gas due to radical chain reaction. . For example, when a mixed gas of oxygen and hydrogen is burned, the temperature of the flame is about 700 ° C. higher than when hydrogen gas and oxygen gas are separately supplied to the combustion mechanism. Such a mixed gas is also used for applications such as welding that require a particularly high temperature. In the deuterium-decreasing water production apparatus according to the first aspect of the present invention, deuterium-decreasing water is produced while recovering high energy by using oxygen and hydrogen generated by water electrolysis as a mixed gas. be able to.
 また、本発明の第1観点に係る重水素減少水製造装置では、燃料電池において水素と酸素とを反応させて重水素減少水を生成するのではなく、燃焼により重水素減少水を生成している。そのため、本発明の第1観点に係る重水素減少水製造装置では、燃料電池を使用する場合に問題となり得る、燃料電池の高分子プロトン透過膜からの溶出物質や、膜が劣化・開裂した物質の重水素減少水への混入がなく、飲用に適した安全性の高い重水素減少水を生成することが容易である。 Further, in the deuterium-decreasing water production apparatus according to the first aspect of the present invention, deuterium-decreasing water is not generated by reacting hydrogen and oxygen in the fuel cell, but deuterium-decreasing water is generated by combustion. Yes. Therefore, in the deuterium-decreasing water production apparatus according to the first aspect of the present invention, a substance eluted from a polymer proton permeable membrane of a fuel cell, or a material in which the membrane has deteriorated or cleaved, which may be a problem when the fuel cell is used. Therefore, it is easy to produce highly safe deuterium-decreasing water suitable for drinking.
 さらに、本発明の第1観点に係る重水素減少水製造装置では、水の電気分解で発生する水素ガスと酸素ガスとを別の経路で燃焼機構へと導くのではなく、混合ガスが燃焼機構へと搬送される。酸素ガスの存在下で水素ガスを燃焼させた場合、条件によっては爆発反応を起こす可能性がある。これに対し、水の電気分解で発生する水素と酸素との混合ガスは、爆発反応ではなく爆縮反応を起こすことが知られており、この点で水素ガスと酸素ガスとを燃焼機構で単に燃焼させる場合に比べ、混合ガスは安全性に優れている。また、混合ガス中には、水素・酸素がmonoatomic、diatomicの状態で存在し、更に水分子の凝集体である水クラスターも気相の状態で存在し得る。そして、この水クラスターの存在により水素と酸素との連鎖的な急激な反応が妨げられる可能性がある。以上の理由から、水を電気分解して水素ガスと酸素ガスとを別々に取り出した後に燃焼させる場合とは異なり、本願の構成では、爆発事故等を防止することが容易で安全性が高い。 Furthermore, in the deuterium-decreasing water production apparatus according to the first aspect of the present invention, the mixed gas does not lead the hydrogen gas and oxygen gas generated by the electrolysis of water to the combustion mechanism through different paths, but the mixed gas It is conveyed to. When hydrogen gas is burned in the presence of oxygen gas, an explosion reaction may occur depending on conditions. On the other hand, it is known that a mixed gas of hydrogen and oxygen generated by water electrolysis causes an implosion reaction instead of an explosion reaction. In this respect, hydrogen gas and oxygen gas are simply converted by a combustion mechanism. Compared to combustion, the mixed gas is superior in safety. Further, in the mixed gas, hydrogen and oxygen are present in a monoatomic and diatomic state, and a water cluster that is an aggregate of water molecules may also exist in a gas phase. And the presence of this water cluster may hinder the chain rapid reaction between hydrogen and oxygen. For the reasons described above, unlike the case where water is electrolyzed and hydrogen gas and oxygen gas are separately taken out and combusted, the configuration of the present application is easy to prevent explosion accidents and is highly safe.
 本発明の第2観点に係る重水素減少水製造装置は、第1観点に係る重水素減少水製造装置であって、熱利用機構は、燃焼機構で発生する熱を利用する発電装置を有する。発電装置が発電した電気は、電気分解機構に供給される。 The deuterium-decreasing water production apparatus according to the second aspect of the present invention is the deuterium-decreasing water production apparatus according to the first aspect, and the heat utilization mechanism includes a power generation device that utilizes heat generated by the combustion mechanism. The electricity generated by the power generation device is supplied to the electrolysis mechanism.
 本発明の第2観点に係る重水素減少水製造装置では、水の電気分解で発生する混合ガスの燃焼エネルギーが水の電気分解に利用されるため、外部から投入されるエネルギーの量を抑制することができる。 In the deuterium reduction water production apparatus according to the second aspect of the present invention, the combustion energy of the mixed gas generated by water electrolysis is used for water electrolysis, so the amount of energy input from the outside is suppressed. be able to.
 本発明の第3観点に係る重水素減少水製造装置は、第1観点又は第2観点に係る重水素減少水製造装置であって、第2電気分解機構と、第2混合ガス搬送経路と、第2燃焼機構と、第2凝縮機構と、を更に備える。第2電気分解機構は、凝縮機構により生成された重水素減少水の少なくとも一部を電気分解する。第2混合ガス搬送経路は、第2電気分解機構で発生する酸素と水素とを混合ガスとして搬送する。第2燃焼機構は、第2混合ガス搬送経路により搬送される混合ガスを燃焼させる。第2凝縮機構は、第2燃焼機構で発生した蒸気を凝縮して重水素減少水を生成する。 The deuterium reduction water production apparatus according to the third aspect of the present invention is the deuterium reduction water production apparatus according to the first aspect or the second aspect, wherein the second electrolysis mechanism, the second mixed gas transport path, A second combustion mechanism and a second condensation mechanism are further provided. The second electrolysis mechanism electrolyzes at least a part of the deuterium reduced water generated by the condensation mechanism. The second mixed gas transport path transports oxygen and hydrogen generated by the second electrolysis mechanism as a mixed gas. The second combustion mechanism burns the mixed gas transported by the second mixed gas transport path. The second condensing mechanism condenses the steam generated by the second combustion mechanism to generate deuterium reduced water.
 本発明の第3観点に係る重水素減少水製造装置では、生成された重水素減少水を原料として利用して更に重水素減少水が生成されるので、重水濃度が極めて低い重水素減少水を生成することが可能である。 In the deuterium reduction water production apparatus according to the third aspect of the present invention, deuterium reduction water is further generated using the generated deuterium reduction water as a raw material. It is possible to generate.
 本発明の第4観点に係る重水素減少水製造装置は、第1観点から第3観点のいずれかに係る重水素減少水製造装置であって、電気分解機構には、電気分解の対象の水が連続的に供給される。 A deuterium-decreasing water production apparatus according to a fourth aspect of the present invention is the deuterium-decreasing water production apparatus according to any one of the first to third aspects, wherein the electrolysis mechanism includes water to be electrolyzed. Is supplied continuously.
 本発明の第4観点に係る重水素減少水製造装置では、電気分解機構に電気分解の対象の水が連続的に供給されるため、電気分解中に水中の重水濃度が上昇し、結果として重水素減少水中の重水濃度が上昇することを抑制することができる。 In the deuterium-decreasing water production apparatus according to the fourth aspect of the present invention, since the water to be electrolyzed is continuously supplied to the electrolysis mechanism, the concentration of heavy water in the water increases during electrolysis, resulting in heavy water. An increase in the concentration of heavy water in the hydrogen-reduced water can be suppressed.
 本発明の第5観点に係る重水素減少水製造装置は、第1観点から第4観点のいずれかに係る重水素減少水製造装置であって、凝縮機構は、燃焼機構で発生した蒸気を圧縮して凝縮する圧縮機である。 A deuterium reduction water production apparatus according to a fifth aspect of the present invention is the deuterium reduction water production apparatus according to any of the first to fourth aspects, wherein the condensing mechanism compresses steam generated by the combustion mechanism. It is a compressor that condenses.
 本発明の第5観点に係る重水素減少水製造装置では、圧縮機により重水素減少水の蒸気を圧縮して液体の重水素減少水を生成するので、重水素減少水製造装置のコンパクト化を図ることが容易である。 In the deuterium-decreasing water production apparatus according to the fifth aspect of the present invention, the vapor of the deuterium-decreasing water is compressed by the compressor to generate liquid deuterium-decreasing water. Easy to plan.
 本発明に係る重水素減少水製造装置では、水の電気分解で発生する酸素と水素とを混合ガスとして利用することで、高エネルギーの回収を図りながら重水素減少水を製造することができる。 In the deuterium-decreasing water producing apparatus according to the present invention, deuterium-decreasing water can be produced while recovering high energy by using oxygen and hydrogen generated by electrolysis of water as a mixed gas.
本発明の第1実施形態に係る重水素減少水製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the deuterium reduction water manufacturing apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る重水素減少水製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the deuterium reduction water manufacturing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る重水素減少水製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the deuterium reduction water manufacturing apparatus which concerns on 3rd Embodiment of this invention. 変形例Aに係る、図1-図3の構成に付加される、重水濃度の更なる低減のための追加構成を概略的に示す図である。It is a figure which shows schematically the additional structure for the further reduction of heavy water concentration added to the structure of FIGS. 1-3 based on the modification A. FIG. 図1の重水素減少水製造装置の混合ガス搬送経路の他の例に係る、防火用水槽が設けられた混合ガス搬送経路を示す図である。It is a figure which shows the mixed gas conveyance path | route in which the water tank for fire prevention was provided based on the other example of the mixed gas conveyance path | route of the deuterium reduction water manufacturing apparatus of FIG.
 以下に、本発明の実施形態について図面を参照しながら説明する。なお、以下で説明する本発明の実施形態は例示に過ぎず、本発明の要旨を変更しない範囲で適宜変更されてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention described below is merely an example, and may be appropriately changed without departing from the gist of the present invention.
 <第1実施形態>
 (1)全体構成
 本発明の第1実施形態に係る重水素減少水製造装置100について説明する。
<First Embodiment>
(1) Overall Configuration A deuterium-decreasing water production apparatus 100 according to the first embodiment of the present invention will be described.
 図1に示すように、重水素減少水製造装置100は、電気分解機構10と、混合ガス搬送経路20と、燃焼機構30と、熱利用機構40と、凝縮機構50と、重水素減少水水槽60と、を主に備える。 As shown in FIG. 1, the deuterium reduced water production apparatus 100 includes an electrolysis mechanism 10, a mixed gas transport path 20, a combustion mechanism 30, a heat utilization mechanism 40, a condensation mechanism 50, and a deuterium reduced water tank. 60 mainly.
 (2)詳細構成
 重水素減少水製造装置100の、電気分解機構10と、混合ガス搬送経路20と、燃焼機構30と、熱利用機構40と、凝縮機構50と、について詳細を説明する。
(2) Detailed Configuration Details of the electrolysis mechanism 10, the mixed gas transport path 20, the combustion mechanism 30, the heat utilization mechanism 40, and the condensation mechanism 50 of the deuterium-decreasing water production apparatus 100 will be described.
 (2-1)電気分解機構
 電気分解機構10は、原料水(電気分解の対象の水)を電気分解する機構である。
(2-1) Electrolysis mechanism The electrolysis mechanism 10 is a mechanism for electrolyzing raw water (water to be electrolyzed).
 原料水は、例えば、一般的な水道水である。ただし、原料水は水道水に限定されるものではなく、例えば地下水等であってもよい。原料水中には、重水(DO)と軽水(HO)とが存在する。一般的な天然水では、水中の重水の濃度は150ppm程度である。 The raw water is, for example, general tap water. However, raw material water is not limited to tap water, For example, groundwater etc. may be sufficient. Heavy water (D 2 O) and light water (H 2 O) exist in the raw material water. In general natural water, the concentration of heavy water in water is about 150 ppm.
 なお、原料水には、溶液抵抗を低減するため、電解質が添加されてもよい。限定するものではないが、電解質として、例えば、水酸化カリウム、水酸化ナトリウム等が用いられてもよい。 Note that an electrolyte may be added to the raw material water in order to reduce the solution resistance. Although not limited, as an electrolyte, potassium hydroxide, sodium hydroxide, etc. may be used, for example.
 電気分解機構10は、水槽12と、陽極14と、陰極16とを主に含む(図1参照)。 The electrolysis mechanism 10 mainly includes a water tank 12, an anode 14, and a cathode 16 (see FIG. 1).
 水槽12には、原料水が貯留される。水槽12には、原料水が連続的に供給されることが好ましい。また、水槽12中の原料水の一部は、連続的に排水されることが好ましい。 Raw water is stored in the water tank 12. It is preferable that raw water is continuously supplied to the water tank 12. Moreover, it is preferable that some raw material water in the water tank 12 is drained continuously.
 陽極14及び陰極16は、それぞれ、水槽12内に配置され、原料水に浸漬される電極棒である。ただし、これに限定されるものではなく、陽極14及び陰極16には、様々な形態を利用可能である。例えば、水槽12の躯体を陽極14として利用し、水槽12の内部に陰極16としての電極棒を浸漬してもよい。陽極14及び陰極16には、水の電気分解のための電極として利用可能な各種材質を利用可能である。 The anode 14 and the cathode 16 are electrode rods that are respectively disposed in the water tank 12 and immersed in the raw material water. However, the present invention is not limited to this, and various forms can be used for the anode 14 and the cathode 16. For example, the casing of the water tank 12 may be used as the anode 14 and the electrode rod as the cathode 16 may be immersed in the water tank 12. Various materials that can be used as electrodes for electrolysis of water can be used for the anode 14 and the cathode 16.
 原料水中の陽極14に正の電圧を、陰極16に負の電圧を印加することで、陽極14からは酸素が、陰極16からは水素が、それぞれ発生する。 By applying a positive voltage to the anode 14 in the raw material water and a negative voltage to the cathode 16, oxygen is generated from the anode 14, and hydrogen is generated from the cathode 16.
 軽水素イオンHと重水素イオンDとの水中の移動度(Mobility)には差があることが知られている。軽水素イオンHの移動度は約25×10-4(cm/sV)であるのに対し、重水素イオンDの移動度は約20×10-4(cm/sV)である。このような軽水素イオンHと重水素イオンDとの水中の移動度の違いにより、陰極16で発生する水素中の重水素の濃度を、原料水中の重水の濃度より低くすることができる。つまり、陰極16では、重水素の割合の低い水素を発生させることができる。 It is known that there is a difference in the mobility of light hydrogen ions H + and deuterium ions D + in water. The mobility of light hydrogen ions H + is about 25 × 10 −4 (cm 2 / sV), whereas the mobility of deuterium ions D + is about 20 × 10 −4 (cm 2 / sV). . Due to the difference in the mobility of light hydrogen ions H + and deuterium ions D + in water, the concentration of deuterium in the hydrogen generated at the cathode 16 can be made lower than the concentration of heavy water in the raw material water. . That is, the cathode 16 can generate hydrogen with a low deuterium ratio.
 なお、電気分解機構10からは、酸素ガスと水素ガスとがそれぞれ別々に取り出されるのではなく、酸素と水素との混合ガスが取り出される。混合ガスとは、前述のように電気分解により発生する水素及び酸素を分離することなく混合状態で取り出したガスのことをいう。混合ガスは、混合ガス搬送経路20を介して燃焼機構30へと送られる。 In addition, from the electrolysis mechanism 10, oxygen gas and hydrogen gas are not taken out separately, but a mixed gas of oxygen and hydrogen is taken out. The mixed gas refers to a gas taken out in a mixed state without separating hydrogen and oxygen generated by electrolysis as described above. The mixed gas is sent to the combustion mechanism 30 via the mixed gas transport path 20.
 混合ガス中では、水素と酸素との比は、概ね2:1である。混合ガス中には、水素・酸素がmonoatomic、diatomicの状態で存在する。また、混合ガス中には、水分子の凝集体である水クラスターが気相の状態で存在し得る。水クラスターの存在により水素と酸素との連鎖的な急激な反応が妨げられることができる。 In the mixed gas, the ratio of hydrogen to oxygen is approximately 2: 1. In the mixed gas, hydrogen and oxygen exist in monoatomic and diatomic states. In the mixed gas, water clusters that are aggregates of water molecules may exist in a gas phase state. The presence of water clusters can prevent the rapid chain reaction between hydrogen and oxygen.
 なお、水槽12には、原料水中にマイクロバブル(平均気泡径が数十マイクロメートル以下の気泡)やナノバブル(平均気泡径が数百ナノメートル以下の気泡)の発生装置(図示せず)が設けられることが好ましい。例えば、原料水中で撹拌部材を低周波振動させることで、このようなマイクロバブルやナノバブルを発生させることができる。このようなマイクロバブルやナノバブルの発生装置を設けることで、混合ガス中の気相の状態の水クラスターの濃度を上昇させ、混合ガスを特に安定した状態(水素と酸素との連鎖的な急激な反応が特に妨げられやすい状態)とすることができる。 The water tank 12 is provided with a device (not shown) for generating microbubbles (bubbles having an average bubble diameter of several tens of micrometers or less) or nanobubbles (bubbles having an average bubble diameter of several hundred nanometers or less) in the raw water. It is preferred that For example, such microbubbles and nanobubbles can be generated by vibrating the stirring member at low frequency in the raw water. By providing such a microbubble or nanobubble generator, the concentration of water clusters in the gas phase in the mixed gas is increased, and the mixed gas is in a particularly stable state (a rapid chain connection between hydrogen and oxygen). The reaction is particularly likely to be hindered).
 (2-2)混合ガス搬送経路
 混合ガス搬送経路20は、電気分解機構10で発生する酸素と水素とを混合ガスとして搬送する経路である。混合ガス搬送経路20は、単一の又は複数の配管を含む。
(2-2) Mixed Gas Transport Path The mixed gas transport path 20 is a path for transporting oxygen and hydrogen generated in the electrolysis mechanism 10 as a mixed gas. The mixed gas conveyance path 20 includes a single pipe or a plurality of pipes.
 混合ガス搬送経路20は、電気分解機構10と燃焼機構30とを接続する。混合ガス搬送経路20の一端は、電気分解機構10の水槽12に接続され、水槽12内で発生した混合ガスは、混合ガス搬送経路20に流入する。混合ガス搬送経路20の他端は、後述する燃焼機構30のバーナ34と接続されている。混合ガスは、混合ガス搬送経路20を通って、電気分解機構10から燃焼機構30へと運ばれる。 The mixed gas conveyance path 20 connects the electrolysis mechanism 10 and the combustion mechanism 30. One end of the mixed gas transport path 20 is connected to the water tank 12 of the electrolysis mechanism 10, and the mixed gas generated in the water tank 12 flows into the mixed gas transport path 20. The other end of the mixed gas transport path 20 is connected to a burner 34 of a combustion mechanism 30 described later. The mixed gas is conveyed from the electrolysis mechanism 10 to the combustion mechanism 30 through the mixed gas conveyance path 20.
 なお、混合ガス搬送経路20には、ミストを除去するミストセパレータ(図示せず)が設けられてもよい。ミストセパレータを設ける場合、ミストセパレータは、水槽12との接続部の近傍に設けられることが好ましい。 In addition, the mixed gas conveyance path | route 20 may be provided with the mist separator (not shown) which removes mist. When the mist separator is provided, the mist separator is preferably provided in the vicinity of the connection portion with the water tank 12.
 また、万一、燃焼機構30の炎が混合ガス搬送経路20内を流れる混合ガスに引火した場合であっても、火が電気分解機構10にまで達することを防止するため、混合ガス搬送経路20には図5のような防火用水槽22が設けられてもよい。防火用水槽22は、閉じられた容器であり、内部に挿入される、上流側配管24と下流側配管26とにより外部と連通する。なお、上流側配管24は電気分解機構10と接続される配管であって、下流側配管26は燃焼機構30のバーナ34と接続される配管である。防火用水槽22には水が貯留される。防火用水槽22において、上流側配管24の下流側端部は水中に配置され、下流側配管26の上流側端部は水面上に配置される。このような防火用水槽22が混合ガス搬送経路20に設けられることで、仮に下流側配管26内で混合ガスが燃焼したとても、火が上流側配管24へと及ぶことを防止できる。 Further, even if the flame of the combustion mechanism 30 ignites the mixed gas flowing in the mixed gas transport path 20, the mixed gas transport path 20 is prevented in order to prevent the fire from reaching the electrolysis mechanism 10. 5 may be provided with a fire prevention water tank 22 as shown in FIG. The fire prevention water tank 22 is a closed container, and communicates with the outside by an upstream pipe 24 and a downstream pipe 26 inserted therein. The upstream pipe 24 is a pipe connected to the electrolysis mechanism 10, and the downstream pipe 26 is a pipe connected to the burner 34 of the combustion mechanism 30. Water is stored in the fire prevention water tank 22. In the fire prevention water tank 22, the downstream end of the upstream pipe 24 is disposed in water, and the upstream end of the downstream pipe 26 is disposed on the water surface. By providing such a fire prevention water tank 22 in the mixed gas transport path 20, it is possible to prevent the fire from reaching the upstream pipe 24 because the mixed gas has burned in the downstream pipe 26.
 また、混合ガス搬送経路20には、逆火を防止する逆火防止器(図示せず)が設けられることが好ましい。逆火防止器を設ける場合、逆火防止器は、燃焼機構30のバーナ34との接続部の近傍に設けられることが好ましい。 In addition, it is preferable that the mixed gas transport path 20 is provided with a flashback prevention device (not shown) for preventing flashback. In the case of providing a backfire preventer, the backfire preventer is preferably provided in the vicinity of the connection portion of the combustion mechanism 30 with the burner 34.
 (2-3)燃焼機構
 燃焼機構30は、混合ガス搬送経路20により電気分解機構10から搬送される混合ガスを燃焼させる機構である。
(2-3) Combustion Mechanism The combustion mechanism 30 is a mechanism for burning the mixed gas transported from the electrolysis mechanism 10 through the mixed gas transport path 20.
 燃焼機構30は、リアクタ32と、バーナ34とを主に有する(図1参照)。 The combustion mechanism 30 mainly includes a reactor 32 and a burner 34 (see FIG. 1).
 リアクタ32の内部には、バーナ34が配置される。また、リアクタ32には、リアクタ32内部に空気を導く配管が接続されてもよい。 A burner 34 is arranged inside the reactor 32. Further, the reactor 32 may be connected to a pipe that guides air into the reactor 32.
 バーナ34は、混合ガス搬送経路20と接続されている。混合ガス搬送経路20を搬送されてきた混合ガスはバーナ34によりリアクタ32内に噴出され、リアクタ32内で混合ガスが燃焼させられる。水の電気分解で発生する酸素と水素との混合ガスを燃焼させると、ラジカル連鎖反応により、単に酸素ガスの存在下で水素ガスを燃焼させる場合(水素ガスと酸素ガスとをリアクタ32へと導き燃焼させる場合)に比べ高いエネルギーが発生する。酸素と水素との混合ガスを燃焼させた場合、水素ガスと酸素ガスとを別々に燃焼機構に供給する場合に比べ、炎の温度が約700℃高くなる(混合ガスを燃焼させた場合の炎の温度は約2800℃になる)。 The burner 34 is connected to the mixed gas transport path 20. The mixed gas transported through the mixed gas transport path 20 is ejected into the reactor 32 by the burner 34, and the mixed gas is combusted in the reactor 32. When a mixed gas of oxygen and hydrogen generated by electrolysis of water is burned, hydrogen gas is burned simply in the presence of oxygen gas by radical chain reaction (hydrogen gas and oxygen gas are led to the reactor 32) High energy is generated compared to the case of burning). When a mixed gas of oxygen and hydrogen is burned, the temperature of the flame is about 700 ° C. higher than when hydrogen gas and oxygen gas are separately supplied to the combustion mechanism (the flame when the mixed gas is burned). Temperature is about 2800 ° C.).
 混合ガスを燃焼させることで発生する水蒸気は、リアクタ32に設けられた排気口32aからリアクタ32外部へと排出される。好ましくは、排気口32aはリアクタ32底部に設けられ、リアクタ32内で凝縮した水も、排気口32aからリアクタ32外部へと排出される。排気口32aから排出される水蒸気や凝縮水は、凝縮機構50へと送られる。 Water vapor generated by burning the mixed gas is discharged to the outside of the reactor 32 through an exhaust port 32a provided in the reactor 32. Preferably, the exhaust port 32a is provided at the bottom of the reactor 32, and water condensed in the reactor 32 is also discharged from the exhaust port 32a to the outside of the reactor 32. Water vapor or condensed water discharged from the exhaust port 32 a is sent to the condensing mechanism 50.
 (2-4)熱利用機構
 熱利用機構40は、燃焼機構30で発生する熱を利用する。特に、熱利用機構40では、燃焼機構30で発生する熱を利用した発電が行われる。
(2-4) Heat Utilization Mechanism The heat utilization mechanism 40 utilizes heat generated by the combustion mechanism 30. In particular, in the heat utilization mechanism 40, power generation using the heat generated in the combustion mechanism 30 is performed.
 熱利用機構40は、熱回収部42と、熱媒体循環ポンプ44と、バイナリ発電装置46と、熱媒体回路48とを主に含む(図1参照)。 The heat utilization mechanism 40 mainly includes a heat recovery unit 42, a heat medium circulation pump 44, a binary power generation device 46, and a heat medium circuit 48 (see FIG. 1).
 熱媒体循環ポンプ44は、熱回収部42とバイナリ発電装置46とに接続される熱媒体回路48の内部で熱媒体を循環させるポンプである。つまり、熱媒体循環ポンプ44は、熱回収部42とバイナリ発電装置46との間で熱媒体を循環させるためのポンプである。ここでは、熱媒体循環ポンプ44が循環させる熱媒体は水であるが、熱媒体の種類は水に限定されるものではなく、他の熱媒体が利用されてもよい。 The heat medium circulation pump 44 is a pump that circulates the heat medium inside the heat medium circuit 48 connected to the heat recovery unit 42 and the binary power generation device 46. That is, the heat medium circulation pump 44 is a pump for circulating the heat medium between the heat recovery unit 42 and the binary power generation device 46. Here, the heat medium circulated by the heat medium circulation pump 44 is water, but the type of the heat medium is not limited to water, and other heat medium may be used.
 熱回収部42は、燃焼機構30のリアクタ32の外面に設けられるジャケット式の熱交換器である。ただし、熱回収部42は、燃焼機構30で発生する熱を回収可能に構成されればよく、ジャケット式の熱交換器の形態ではなくてもよい。熱回収部42の内部に配置された配管(図示せず)には、熱媒体循環ポンプ44により送液される水が流れる。内部での混合ガスの燃焼により高温となるリアクタ32は、熱回収部42内の配管を流れる水により冷却される。一方で、熱回収部42の内部に配置された配管内を流れる水は、リアクタ32の熱を回収して高温の水又は水蒸気となる。リアクタ32の熱により高温となった熱回収部42の内部に配置された配管内の水又は蒸気は、バイナリ発電装置46へと送られる。 The heat recovery unit 42 is a jacket type heat exchanger provided on the outer surface of the reactor 32 of the combustion mechanism 30. However, the heat recovery unit 42 may be configured to be able to recover the heat generated by the combustion mechanism 30 and may not be in the form of a jacket-type heat exchanger. Water sent by the heat medium circulation pump 44 flows through a pipe (not shown) arranged inside the heat recovery unit 42. The reactor 32 that becomes high temperature due to the combustion of the mixed gas therein is cooled by water flowing through a pipe in the heat recovery section 42. On the other hand, the water flowing in the pipe disposed inside the heat recovery unit 42 recovers the heat of the reactor 32 and becomes high-temperature water or steam. The water or steam in the pipe disposed inside the heat recovery section 42 that has become high temperature due to the heat of the reactor 32 is sent to the binary power generation device 46.
 バイナリ発電装置46は、燃焼機構30で発生する熱を利用する発電装置の一例である。バイナリ発電装置46は、有機ランキンサイクルを利用した発電機である。より具体的には、バイナリ発電装置46は、熱回収部42においてリアクタ32の熱により得られた高温の水又は水蒸気により、沸点の比較的低い有機媒体(例えばフロンガス)を加熱・蒸発させて、その上記によりタービンを回し発電する発電装置である。 The binary power generation device 46 is an example of a power generation device that uses heat generated by the combustion mechanism 30. The binary power generator 46 is a power generator that uses an organic Rankine cycle. More specifically, the binary power generation device 46 heats and evaporates an organic medium (for example, chlorofluorocarbon) having a relatively low boiling point with high-temperature water or water vapor obtained by the heat of the reactor 32 in the heat recovery unit 42, This is a power generator that generates power by turning the turbine.
 バイナリ発電装置46は、図示は省略するが、蒸発器、タービン発電機、凝縮器、有機媒体ポンプ等を構成として有する。蒸発器は、限定するものではないが、例えばプレート熱交換器である。蒸発器では、熱回収部42から送られてくる高温の水又は水蒸気と有機媒体との間で熱交換が行われる。蒸発器において、有機媒体はガスとなり、熱回収部42から送られてくる高温の水又は水蒸気は、比較的低温の水となる。タービン発電機は、有機媒体のガスにより駆動されて電気を出力する。凝縮器は、限定するものではないが、例えばプレート熱交換器である。凝縮器では、タービン発電機で利用された有機媒体と、バイナリ発電装置46に送られる冷却水(例えば、クーリングタワーから送られてくる水)との間で熱交換が行われる。凝縮器において、有機媒体は液体となる。有機媒体ポンプは、凝縮器において液化した有機媒体を蒸発器へと送液する。 Although the illustration is omitted, the binary power generator 46 includes an evaporator, a turbine generator, a condenser, an organic medium pump, and the like. The evaporator is, for example, without limitation, a plate heat exchanger. In the evaporator, heat exchange is performed between the high-temperature water or water vapor sent from the heat recovery unit 42 and the organic medium. In the evaporator, the organic medium becomes gas, and the high-temperature water or water vapor sent from the heat recovery unit 42 becomes relatively low-temperature water. The turbine generator is driven by an organic medium gas and outputs electricity. The condenser is, for example, without limitation, a plate heat exchanger. In the condenser, heat exchange is performed between the organic medium used in the turbine generator and the cooling water (for example, water sent from the cooling tower) sent to the binary power generation device 46. In the condenser, the organic medium becomes a liquid. The organic medium pump sends the organic medium liquefied in the condenser to the evaporator.
 なお、バイナリ発電装置46で発電した電気は、電気分解機構10に供給され、原料水の電気分解に利用されることが好ましい。このように、水の電気分解で発生する混合ガスの燃焼エネルギーを水の電気分解に利用することで、外部から重水素減少水製造装置100に投入されるエネルギーの量を抑制することができる。 The electricity generated by the binary power generator 46 is preferably supplied to the electrolysis mechanism 10 and used for electrolysis of raw material water. Thus, by using the combustion energy of the mixed gas generated by water electrolysis for water electrolysis, the amount of energy input to the deuterium reduced water production apparatus 100 from the outside can be suppressed.
 (2-5)凝縮機構
 凝縮機構50は、燃焼機構30において混合ガスの燃焼により発生した水蒸気を凝縮し、重水素減少水を生成する機構である。
(2-5) Condensing mechanism The condensing mechanism 50 is a mechanism that condenses water vapor generated by the combustion of the mixed gas in the combustion mechanism 30 to generate deuterium-decreased water.
 凝縮機構50は、主に熱交換器52を有する。熱交換器52は、限定するものではないが、シェルアンドチューブタイプの熱交換器である。 The condensation mechanism 50 mainly has a heat exchanger 52. The heat exchanger 52 is a shell and tube type heat exchanger, although not limited thereto.
 熱交換器52のシェル54(胴体)には、燃焼ガス入口54aと、凝縮水出口54bと、空気を排出する排気口(図示せず)と、が設けられる。燃焼ガス入口54aは、リアクタ32の排気口32aと接続される。排気口32aから排出されるリアクタ32からの水蒸気を含む燃焼ガスは、燃焼ガス入口54aを介してシェル54の内部に流入する。シェル54内で凝縮した水は、凝縮水出口54bから流出する。 The shell 54 (body) of the heat exchanger 52 is provided with a combustion gas inlet 54a, a condensed water outlet 54b, and an exhaust outlet (not shown) for discharging air. The combustion gas inlet 54 a is connected to the exhaust port 32 a of the reactor 32. The combustion gas containing water vapor from the reactor 32 discharged from the exhaust port 32a flows into the shell 54 through the combustion gas inlet 54a. The water condensed in the shell 54 flows out from the condensed water outlet 54b.
 また、熱交換器52のシェル54の内部には、多数のチューブ56(伝熱管)が配置されている。チューブ56には、冷却水(例えば、クーリングタワーから送られてくる冷却水)が流れる。熱交換器52では、燃焼ガス入口54aから流入する燃焼ガスと、チューブ56内の冷却水との間で熱交換が行われ、燃焼ガス中の水蒸気が凝縮する。凝縮した水は、熱交換器52のシェル54の下部に設けられた凝縮水出口54bから流出し、重水素減少水水槽60へと流入する。なお、燃焼ガスに含まれていた空気や、燃焼ガス中の凝縮しなかった微量の水蒸気等は、排気口からシェル54の外部へと排気される。 Further, a large number of tubes 56 (heat transfer tubes) are arranged inside the shell 54 of the heat exchanger 52. Cooling water (for example, cooling water sent from a cooling tower) flows through the tube 56. In the heat exchanger 52, heat exchange is performed between the combustion gas flowing in from the combustion gas inlet 54a and the cooling water in the tube 56, and water vapor in the combustion gas is condensed. The condensed water flows out from the condensed water outlet 54 b provided at the lower part of the shell 54 of the heat exchanger 52 and flows into the deuterium-reduced water tank 60. Note that air contained in the combustion gas, a small amount of water vapor not condensed in the combustion gas, and the like are exhausted from the exhaust port to the outside of the shell 54.
 上記のように、混合ガス中の水素に含まれる重水素の濃度は、原料水中の重水の濃度よりも小さい。そのため、混合ガスを燃焼させて発生する水蒸気を凝縮した水(つまり、凝縮機構50から重水素減少水水槽60へと流入する水)中の重水の濃度は、原料水中の重水の濃度よりも低くなる。 As described above, the concentration of deuterium contained in hydrogen in the mixed gas is smaller than the concentration of heavy water in the raw material water. Therefore, the concentration of heavy water in the water condensed from the water vapor generated by burning the mixed gas (that is, the water flowing into the deuterium-decreasing water tank 60) is lower than the concentration of heavy water in the raw material water. Become.
 以下の表1は、本重水素減少水製造装置100で製造される重水素減少水(単に重水素減少水と呼ぶ)中の重水の濃度と、特許文献2(特開2012-158499号公報)のように電気分解で水素ガスだけを取り出し、これを燃料電池で反応させて得られる水(比較サンプル水1と呼ぶ)中の重水の濃度と、石油由来の市販の水素ガスを燃料電池で反応させて得られる水(比較サンプル水2と呼ぶ)中の重水の濃度と、を比較した表である。  Table 1 below shows the concentration of deuterium in deuterium-reduced water produced by the deuterium-reduced water production apparatus 100 (referred to simply as deuterium-reduced water) and Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499). As shown in the figure, only hydrogen gas is extracted by electrolysis and reacted in the fuel cell. The fuel cell reacts with the concentration of heavy water in the water (referred to as comparative sample water 1) and petroleum-derived commercial hydrogen gas. It is the table | surface which compared the density | concentration of the heavy water in the water (it is called the comparison sample water 2) obtained by making it carry out.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、重水素減少水の重水濃度が、電気分解で水素ガスだけを取り出しこれを燃料電池で反応させて得られる比較サンプル水1の重水濃度に比べても極めて低いことが分かる。このことから、特に燃焼機構30において混合ガスを燃焼させることが、重水素減少水の重水濃度の低減に大きく貢献していることが分かる。現時点では証明されていないが、この原因として、酸素ガスと電気分解で発生する水素ガスとを燃焼させる場合に比べ炎の温度が高くなる等の特異な性質を有する混合ガスを燃焼機構30で燃焼させる際に、重水素原子を水素原子に変化する反応が生じている可能性も考えられる。 From the results in Table 1, it can be seen that the heavy water concentration of deuterium-decreasing water is extremely low compared to the heavy water concentration of comparative sample water 1 obtained by extracting only hydrogen gas by electrolysis and reacting it with a fuel cell. From this, it can be seen that the combustion of the mixed gas in the combustion mechanism 30 greatly contributes to the reduction of the heavy water concentration of the deuterium reduced water. Although not proved at the present time, this is caused by the combustion mechanism 30 burning a mixed gas having unique properties such as a higher flame temperature than when oxygen gas and hydrogen gas generated by electrolysis are burned. It is also possible that a reaction that changes a deuterium atom into a hydrogen atom has occurred.
 (3)特徴
 (3-1)
 第1実施形態に係る重水素減少水製造装置100は、電気分解機構10と、混合ガス搬送経路20と、燃焼機構30と、熱利用機構40と、凝縮機構50と、を備える。電気分解機構10は、水を電気分解する。混合ガス搬送経路20は、電気分解機構10で発生する酸素と水素とを混合ガスとして搬送する。燃焼機構30は、混合ガス搬送経路20により搬送される混合ガスを燃焼させる。熱利用機構40は、燃焼機構30で発生する熱を利用する。凝縮機構50は、燃焼機構30で発生した水蒸気を凝縮して重水素減少水を生成する。
(3) Features (3-1)
The deuterium-decreasing water production apparatus 100 according to the first embodiment includes an electrolysis mechanism 10, a mixed gas transport path 20, a combustion mechanism 30, a heat utilization mechanism 40, and a condensation mechanism 50. The electrolysis mechanism 10 electrolyzes water. The mixed gas transport path 20 transports oxygen and hydrogen generated by the electrolysis mechanism 10 as a mixed gas. The combustion mechanism 30 burns the mixed gas transported by the mixed gas transport path 20. The heat utilization mechanism 40 uses heat generated by the combustion mechanism 30. The condensing mechanism 50 condenses the water vapor generated by the combustion mechanism 30 to generate deuterium reduced water.
 なお、ここで、混合ガスとは、上記のように電気分解により発生する水素及び酸素を、電気分解機構10から分離することなく混合状態で取り出したガスのことをいう。 Here, the mixed gas refers to a gas in which hydrogen and oxygen generated by electrolysis are taken out in a mixed state without being separated from the electrolysis mechanism 10 as described above.
 第1実施形態に係る重水素減少水製造装置100は、特許文献2(特開2012-158499号公報)のように水の電気分解で発生する水素ガスと酸素ガスとを別の経路を通過させて燃料電池へと導き、燃料電池で反応させて重水素減少水を製造するものではない。 The deuterium reduced water production apparatus 100 according to the first embodiment allows hydrogen gas and oxygen gas generated by electrolysis of water to pass through different paths as in Patent Document 2 (Japanese Patent Laid-Open No. 2012-158499). Therefore, it does not lead to a fuel cell and react with the fuel cell to produce deuterium-depleted water.
 第1実施形態に係る重水素減少水製造装置100は、水の電気分解で発生する酸素と水素との混合ガスを燃焼機構30へと導き、燃焼機構30で燃焼させることで重水素減少水を製造するという構成を有している。水の電気分解で発生する酸素と水素との混合ガスを燃焼させると、ラジカル連鎖反応により、単に酸素ガスの存在下で水素ガスを燃焼させる場合に比べ高いエネルギーが発生することが知られている。例えば、酸素と水素との混合ガスを燃焼させた場合、水素ガスと酸素ガスとを別々に燃焼機構30に供給する場合に比べ、炎の温度が約700℃高くなる(混合ガスを燃焼させた場合の炎の温度は、約2800℃)。このような混合ガスは、特に高温が必要となる溶接等の用途にも利用されている。第1実施形態に係る重水素減少水製造装置100では、水の電気分解で発生する酸素と水素とを混合ガスとして利用することで、高エネルギーの回収を図りながら重水素減少水を製造することができる。 The deuterium-decreasing water production apparatus 100 according to the first embodiment guides a mixed gas of oxygen and hydrogen generated by water electrolysis to the combustion mechanism 30 and burns the deuterium-decreasing water by the combustion mechanism 30. It has the structure of manufacturing. It is known that combustion of a mixed gas of oxygen and hydrogen generated by electrolysis of water generates higher energy than the case of simply burning hydrogen gas in the presence of oxygen gas due to radical chain reaction. . For example, when a mixed gas of oxygen and hydrogen is burned, the temperature of the flame is about 700 ° C. higher than when hydrogen gas and oxygen gas are separately supplied to the combustion mechanism 30 (the mixed gas is burned). The flame temperature in this case is about 2800 ° C.). Such a mixed gas is also used for applications such as welding that require a particularly high temperature. In the deuterium-decreasing water producing apparatus 100 according to the first embodiment, deuterium-decreasing water is produced while recovering high energy by using oxygen and hydrogen generated by water electrolysis as a mixed gas. Can do.
 また、第1実施形態に係る重水素減少水製造装置100では、燃料電池において水素と酸素とを反応させて重水素減少水を生成するのではなく、燃焼により重水素減少水を生成している。そのため、第1実施形態に係る重水素減少水製造装置100では、燃料電池を使用する場合に問題となり得る、燃料電池の高分子プロトン透過膜からの溶出物質や、膜が劣化・開裂した物質の重水素減少水への混入がなく、飲用に適した安全性の高い重水素減少水を生成することが容易である。 Further, in the deuterium-decreasing water manufacturing apparatus 100 according to the first embodiment, deuterium-decreasing water is generated not by reacting hydrogen and oxygen in the fuel cell but by generating hydrogen. . Therefore, in the deuterium-decreasing water production apparatus 100 according to the first embodiment, substances eluted from the polymer proton permeable membrane of the fuel cell or substances whose membrane has deteriorated or cleaved can be a problem when the fuel cell is used. It is easy to produce highly safe deuterium-decreasing water suitable for drinking without being mixed into deuterium-decreasing water.
 さらに、第1実施形態に係る重水素減少水製造装置100では、水の電気分解で発生する水素ガスと酸素ガスとを別の経路で燃焼機構30へと導くのではなく、混合ガスが燃焼機構30へと搬送される。酸素ガスの存在下で水素ガスを燃焼させた場合、条件によっては爆発反応を起こす可能性がある。これに対し、水の電気分解で発生する水素と酸素との混合ガスは、爆発反応ではなく爆縮反応を起こすことが知られており、この点で水素ガスと酸素ガスとを燃焼機構30で単に燃焼させる場合に比べ、混合ガスは安全性に優れている。また、混合ガス中には、水素・酸素がmonoatomic、diatomicの状態で存在し、更に水分子の凝集体である水クラスターも気相の状態で存在し得る。そして、この水クラスターの存在により水素と酸素との連鎖的な急激な反応が妨げられる可能性がある。以上の理由から、水を電気分解して水素ガスと酸素ガスとを別々に取り出した後に燃焼させる場合とは異なり、本願の構成では、爆発事故等を防止することが容易で安全性が高い。 Furthermore, in the deuterium-decreasing water production apparatus 100 according to the first embodiment, hydrogen gas and oxygen gas generated by water electrolysis are not led to the combustion mechanism 30 through different paths, but a mixed gas is used as the combustion mechanism. It is conveyed to 30. When hydrogen gas is burned in the presence of oxygen gas, an explosion reaction may occur depending on conditions. On the other hand, it is known that a mixed gas of hydrogen and oxygen generated by water electrolysis causes an implosion reaction instead of an explosion reaction. Compared to simple combustion, the mixed gas is superior in safety. Further, in the mixed gas, hydrogen and oxygen are present in a monoatomic and diatomic state, and a water cluster that is an aggregate of water molecules may also exist in a gas phase. And the presence of this water cluster may hinder the chain rapid reaction between hydrogen and oxygen. For the reasons described above, unlike the case where water is electrolyzed and hydrogen gas and oxygen gas are separately taken out and combusted, the configuration of the present application is easy to prevent explosion accidents and is highly safe.
 (3-2)
 第1実施形態に係る重水素減少水製造装置100では、熱利用機構40は、燃焼機構30で発生する熱を利用する発電装置の一例としてのバイナリ発電装置46を有する。バイナリ発電装置46が発電した電気は、電気分解機構10に供給される。
(3-2)
In the deuterium-decreasing water manufacturing apparatus 100 according to the first embodiment, the heat utilization mechanism 40 includes a binary power generation apparatus 46 as an example of a power generation apparatus that uses heat generated by the combustion mechanism 30. The electricity generated by the binary power generator 46 is supplied to the electrolysis mechanism 10.
 第1実施形態に係る重水素減少水製造装置100では、水の電気分解で発生する混合ガスの燃焼エネルギーが水の電気分解に利用されるため、外部から投入されるエネルギーの量を抑制することができる。 In the deuterium reduced water production apparatus 100 according to the first embodiment, since the combustion energy of the mixed gas generated by water electrolysis is used for water electrolysis, the amount of energy input from the outside is suppressed. Can do.
 (3-3)
 第1実施形態に係る重水素減少水製造装置100では、電気分解機構10に、電気分解の対象の水が連続的に供給される。
(3-3)
In the deuterium-decreasing water production apparatus 100 according to the first embodiment, water to be electrolyzed is continuously supplied to the electrolysis mechanism 10.
 第1実施形態に係る重水素減少水製造装置100では、電気分解機構10に電気分解の対象の水が連続的に供給されるため、電気分解中に水中の重水濃度が上昇し、結果として重水素減少水中の重水の濃度が上昇することを抑制することができる。 In the deuterium-decreasing water production apparatus 100 according to the first embodiment, since water to be electrolyzed is continuously supplied to the electrolysis mechanism 10, the concentration of heavy water in the water increases during electrolysis, resulting in heavy water. An increase in the concentration of heavy water in the hydrogen-reduced water can be suppressed.
 <第2実施形態>
 本発明の第2実施形態に係る重水素減少水製造装置300について説明する。
Second Embodiment
A deuterium reduced water production apparatus 300 according to a second embodiment of the present invention will be described.
 図2に示すように、重水素減少水製造装置300は、電気分解機構10と、混合ガス搬送経路20と、ガスタービン発電機330と、凝縮機構50と、重水素減少水水槽60と、を主に備える。 As shown in FIG. 2, the deuterium reduced water production apparatus 300 includes an electrolysis mechanism 10, a mixed gas transport path 20, a gas turbine generator 330, a condensing mechanism 50, and a deuterium reduced water tank 60. Prepare mainly.
 電気分解機構10と、混合ガス搬送経路20と、凝縮機構50と、重水素減少水水槽60とは、第1実施形態と同様であるため説明は省略する。 Since the electrolysis mechanism 10, the mixed gas transport path 20, the condensing mechanism 50, and the deuterium-depleted water tank 60 are the same as those in the first embodiment, description thereof is omitted.
 第1実施形態では、燃焼機構30で混合ガスを燃焼させ、燃焼時に発生する熱を利用して熱利用機構40のバイナリ発電装置46において発電を行っている。そして、燃焼機構30において混合ガスが燃焼することで生じた水蒸気が凝縮機構50で凝縮され、重水素減少水が生成される。 In the first embodiment, a gas mixture is burned by the combustion mechanism 30 and power is generated in the binary power generation device 46 of the heat utilization mechanism 40 using heat generated during combustion. And the water vapor | steam produced when the mixed gas combusted in the combustion mechanism 30 is condensed by the condensation mechanism 50, and deuterium reduction water is produced | generated.
 これに対し、第2実施形態では、ガスタービン発電機330が、燃焼機構としての機能と、熱利用機構としての機能とを兼ね備える。より具体的には、第2実施形態では、混合ガスを燃料としてガスタービン発電機330が運転され発電が行われる。そして、混合ガスが燃焼して生じた水蒸気が凝縮機構50で凝縮され、重水素減少水が生成される。また、ガスタービン発電機330内で発生する凝縮水についても、重水素減少水回収経路332を経て重水素減少水水槽60へと流入する。 On the other hand, in the second embodiment, the gas turbine generator 330 has both a function as a combustion mechanism and a function as a heat utilization mechanism. More specifically, in the second embodiment, the gas turbine generator 330 is operated using the mixed gas as fuel to generate power. Then, water vapor generated by the combustion of the mixed gas is condensed by the condensing mechanism 50, and deuterium-decreased water is generated. Further, the condensed water generated in the gas turbine generator 330 also flows into the deuterium reduced water tank 60 via the deuterium reduced water recovery path 332.
 第2実施形態の重水素減少水製造装置300も、第1実施形態の(3)特徴に記載した特徴と同様の特徴を有する。 The deuterium-decreasing water production apparatus 300 of the second embodiment has the same characteristics as the characteristics described in (3) Characteristics of the first embodiment.
 <第3実施形態>
 本発明の第3実施形態に係る重水素減少水製造装置400について説明する。
<Third Embodiment>
A deuterium reduced water production apparatus 400 according to a third embodiment of the present invention will be described.
 図3に示すように、重水素減少水製造装置400は、電気分解機構10と、混合ガス搬送経路20と、燃焼機構30と、熱利用機構40と、凝縮機構450と、重水素減少水水槽60と、を主に備える。 As shown in FIG. 3, the deuterium reduced water production apparatus 400 includes an electrolysis mechanism 10, a mixed gas transport path 20, a combustion mechanism 30, a heat utilization mechanism 40, a condensation mechanism 450, and a deuterium reduced water tank. 60 mainly.
 電気分解機構10と、混合ガス搬送経路20と、燃焼機構30と、熱利用機構40と、重水素減少水水槽60とは、第1実施形態と同様であるため説明は省略する。 Since the electrolysis mechanism 10, the mixed gas transport path 20, the combustion mechanism 30, the heat utilization mechanism 40, and the deuterium-depleted water tank 60 are the same as those in the first embodiment, description thereof is omitted.
 第1実施形態では、凝縮機構50は、燃焼機構30から流入する水蒸気を熱交換器52において冷却し凝縮させることで、重水素減少水を生成する。 In the first embodiment, the condensing mechanism 50 generates deuterium-decreased water by cooling and condensing the water vapor flowing from the combustion mechanism 30 in the heat exchanger 52.
 これに対し、第3実施形態では、凝縮機構450は、主に圧縮機452を有する。そして、凝縮機構450では、燃焼機構30で発生した水蒸気を圧縮機452で圧縮することで凝縮している。なお、燃焼機構30のリアクタ32内で生じた凝縮水については、リアクタ32の下部に設けられたドレンから重水素減少水回収経路434を経て重水素減少水水槽60へと流入する。 In contrast, in the third embodiment, the condensing mechanism 450 mainly includes a compressor 452. In the condensation mechanism 450, the water vapor generated in the combustion mechanism 30 is condensed by being compressed by the compressor 452. Condensed water generated in the reactor 32 of the combustion mechanism 30 flows from the drain provided in the lower part of the reactor 32 into the deuterium-decreasing water tank 60 through the deuterium-decreasing water recovery path 434.
 第3実施形態に係る重水素減少水製造装置400は、圧縮機452により重水素減少水の水蒸気を圧縮して液体の重水素減少水を生成するので、重水素減少水製造装置400のコンパクト化を図ることができるという特徴を有する。 The deuterium reduction water production apparatus 400 according to the third embodiment generates liquid deuterium reduction water by compressing the water vapor of the deuterium reduction water by the compressor 452, so that the deuterium reduction water production apparatus 400 is made compact. It has the feature that can be aimed at.
 また、第3実施形態の重水素減少水製造装置400も、第1実施形態の(3)特徴に記載した特徴と同様の特徴を有する。 Also, the deuterium-decreasing water production apparatus 400 of the third embodiment has the same features as the features described in (3) Features of the first embodiment.
 <変形例>
 上記第1実施形態~第3実施形態に係る重水素減少水製造装置の構成は、互いに矛盾しない限り適宜組み合わされてもよい。
<Modification>
The configurations of the deuterium-decreasing water production apparatuses according to the first to third embodiments may be appropriately combined as long as they do not contradict each other.
 以下に、上記実施形態の変形例を示す。 The following is a modification of the above embodiment.
 (1)変形例A
 上記第1実施形態~第3実施形態に係る重水素減少水製造装置では、重水素減少水水槽60に貯まる重水素減少水が最終的な生成物であるが、重水素減少水製造装置の構成はこれに限定されるものではない。
(1) Modification A
In the deuterium-decreasing water producing apparatus according to the first to third embodiments, the deuterium-decreasing water stored in the deuterium-decreasing water tank 60 is the final product. Is not limited to this.
 例えば、第1実施形態~第3実施形態に係る重水素減少水製造装置は、図4のように、第2電気分解機構210と、第2混合ガス搬送経路220と、第2燃焼機構230と、第2凝縮機構250と、を更に備えてもよい。なお、図4では、第1実施形態~第3実施形態で説明した構成については、重水素減少水水槽60を除いて図示を省略している。第2電気分解機構210は、凝縮機構50により生成された重水素減少水の少なくとも一部を電気分解する。第2混合ガス搬送経路220は、第2電気分解機構210で発生する酸素と水素とを混合ガスとして搬送する。第2燃焼機構230は、第2混合ガス搬送経路220により搬送される混合ガスを燃焼させる。第2凝縮機構250は、第2燃焼機構230で発生した水蒸気を凝縮して重水素減少水を生成する。第2凝縮機構250で凝縮された水は第2重水素減少水水槽260へと流入する。 For example, the deuterium reduced water production apparatus according to the first to third embodiments includes a second electrolysis mechanism 210, a second mixed gas transfer path 220, a second combustion mechanism 230, as shown in FIG. The second condensing mechanism 250 may be further provided. In FIG. 4, the configuration described in the first to third embodiments is omitted except for the deuterium-decreasing water tank 60. The second electrolysis mechanism 210 electrolyzes at least a part of the deuterium-depleted water generated by the condensation mechanism 50. The second mixed gas transport path 220 transports oxygen and hydrogen generated in the second electrolysis mechanism 210 as a mixed gas. The second combustion mechanism 230 burns the mixed gas transported by the second mixed gas transport path 220. The second condensing mechanism 250 condenses the water vapor generated by the second combustion mechanism 230 to generate deuterium reduced water. The water condensed by the second condensing mechanism 250 flows into the second deuterium reduced water tank 260.
 なお、第2電気分解機構210、第2混合ガス搬送経路220、第2燃焼機構230、第2凝縮機構250、及び第2重水素減少水水槽260は、それぞれ、第1実施形態の電気分解機構10、混合ガス搬送経路20、燃焼機構30、凝縮機構50、及び重水素減少水水槽60と同様の構成であるため、詳細な説明は省略する。 The second electrolysis mechanism 210, the second mixed gas transfer path 220, the second combustion mechanism 230, the second condensation mechanism 250, and the second deuterium-depleted water tank 260 are each an electrolysis mechanism of the first embodiment. 10, since it is the structure similar to the mixed gas conveyance path | route 20, the combustion mechanism 30, the condensation mechanism 50, and the deuterium reduction water tank 60, detailed description is abbreviate | omitted.
 変形例Aでは、重水素減少水製造装置は、重水素減少水を原料水として利用して更に重水素減少水を生成するので、重水濃度が極めて低い重水素減少水を生成することが可能であるという特徴を有する。 In the modified example A, the deuterium-decreasing water production apparatus further generates deuterium-decreasing water by using the deuterium-decreasing water as raw material water, so that it is possible to generate deuterium-decreasing water with extremely low deuterium concentration. It has the characteristic of being.
 なお、第2燃焼機構230が設けられる場合、重水素減少水製造装置は、図4のように、第2燃焼機構230で発生する熱を利用する第2熱利用機構240を更に備えることが好ましい。第2熱利用機構240は、第1実施形態の熱利用機構40と同様の構成であるため、詳細な説明は省略する。 In addition, when the 2nd combustion mechanism 230 is provided, it is preferable that the deuterium reduction water manufacturing apparatus is further provided with the 2nd heat utilization mechanism 240 using the heat which generate | occur | produces in the 2nd combustion mechanism 230, as shown in FIG. . Since the 2nd heat utilization mechanism 240 is the structure similar to the heat utilization mechanism 40 of 1st Embodiment, detailed description is abbreviate | omitted.
 なお、変形例Aにおいて、第2燃焼機構230及び第2熱利用機構240を設ける代わりに、第2実施形態の様にガスタービン発電機が設けられてもよい。 In Modification A, instead of providing the second combustion mechanism 230 and the second heat utilization mechanism 240, a gas turbine generator may be provided as in the second embodiment.
 また、重水素減少水製造装置では、重水素減少水を原料水として、更に重水濃度が低い重水素減少水を製造する工程が2回以上繰り返し行われてもよい。 Further, in the deuterium-decreasing water production apparatus, the process of producing deuterium-decreasing water having deuterium-decreasing water as raw material water and further having a lower deuterium concentration may be repeated twice or more.
 (2)変形例B
 上記実施形態では、電気分解機構10の水槽12に原料水が連続的に供給される。ただし、これに限定されるものではなく、電気分解機構10は、予め水槽12に貯留されている水を電気分解するようバッチ式に構成されてもよい。なお、このように構成される場合、水槽12中の重水濃度が次第に増加するため、適切な時点で水の入れ替えが行われることが好ましい。
(2) Modification B
In the above embodiment, the raw water is continuously supplied to the water tank 12 of the electrolysis mechanism 10. However, it is not limited to this, The electrolysis mechanism 10 may be comprised by the batch type so that the water previously stored in the water tank 12 may be electrolyzed. In addition, when comprised in this way, since the heavy-water density | concentration in the water tank 12 increases gradually, it is preferable that replacement | exchange of water is performed at an appropriate time.
 (3)変形例C
 上記実施形態では、混合ガスの燃焼で発生する熱を利用して、熱利用機構40又はガスタービン発電機330で発電が行われ、その電力が電気分解機構10で利用されるが、重水素減少水製造装置は、このように構成されていなくてもよい。
(3) Modification C
In the above embodiment, heat is generated by the heat utilization mechanism 40 or the gas turbine generator 330 using the heat generated by the combustion of the mixed gas, and the electric power is used by the electrolysis mechanism 10. The water production apparatus may not be configured in this way.
 例えば、混合ガスの燃焼で発生する熱は、重水素減少水製造装置の外でそのまま熱利用されてもよい。また、熱利用機構40又はガスタービン発電機330で発生した電力は、水の電気分解以外の用途に利用されてもよい。 For example, the heat generated by the combustion of the mixed gas may be used as it is outside the deuterium reduced water production apparatus. Moreover, the electric power generated by the heat utilization mechanism 40 or the gas turbine generator 330 may be used for purposes other than water electrolysis.
 ただし、水素と酸素との反応で発生する熱を利用して発電を行い、これを水の電気分解に利用することで、重水素減少水製造装置に投入するエネルギーの量を抑制できる。 However, by generating electricity using the heat generated by the reaction between hydrogen and oxygen and using it for the electrolysis of water, the amount of energy input to the deuterium reduced water production apparatus can be suppressed.
 本発明に係る重水素減少水製造装置は、重水素減少水を効率良く製造でき有用である。 The deuterium-decreasing water production apparatus according to the present invention is useful for producing deuterium-decreasing water efficiently.
10  電気分解機構
20  混合ガス搬送経路
30  燃焼機構
40  熱利用機構
46  バイナリ発電装置(発電装置)
50  凝縮機構
100 重水素減少水製造装置
210 第2電気分解機構
220 第2混合ガス搬送経路
230 第2燃焼機構
250 第2凝縮機構
300 重水素減少水製造装置
330 ガスタービン発電機(燃焼機構、熱利用機構)
400 重水素減少水製造装置
450 凝縮機構
452 圧縮機
DESCRIPTION OF SYMBOLS 10 Electrolysis mechanism 20 Mixed gas conveyance path 30 Combustion mechanism 40 Heat utilization mechanism 46 Binary power generation device (power generation device)
50 Condensing mechanism 100 Deuterium reduced water production apparatus 210 Second electrolysis mechanism 220 Second mixed gas transport path 230 Second combustion mechanism 250 Second condensation mechanism 300 Deuterium reduced water production apparatus 330 Gas turbine generator (combustion mechanism, heat Utilization mechanism)
400 Deuterium reduction water production apparatus 450 Condensing mechanism 452 Compressor
特表2008-512238号公報Special table 2008-512238 gazette 特開2012-158499号公報JP 2012-158499 A

Claims (5)

  1.  水を電気分解する電気分解機構と、
     前記電気分解機構で発生する酸素と水素とを混合ガスとして搬送する混合ガス搬送経路と、
     前記混合ガス搬送経路により搬送される前記混合ガスを燃焼させる燃焼機構と、
     前記燃焼機構で発生する熱を利用する熱利用機構と、
     前記燃焼機構で発生した蒸気を凝縮して重水素減少水を生成する凝縮機構と、
    を備えた重水素減少水製造装置。
    An electrolysis mechanism for electrolyzing water;
    A mixed gas transport path for transporting oxygen and hydrogen generated by the electrolysis mechanism as a mixed gas;
    A combustion mechanism for combusting the mixed gas conveyed by the mixed gas conveying path;
    A heat utilization mechanism that utilizes heat generated by the combustion mechanism;
    A condensing mechanism for condensing steam generated by the combustion mechanism to generate deuterium-reduced water;
    A device for producing deuterium-reduced water.
  2.  前記熱利用機構は、前記燃焼機構で発生する熱を利用する発電装置を有し、
     前記発電装置が発電した電気は、前記電気分解機構に供給される、
    請求項1に記載の重水素減少水製造装置。
    The heat utilization mechanism has a power generation device that utilizes heat generated by the combustion mechanism,
    The electricity generated by the power generator is supplied to the electrolysis mechanism.
    The deuterium-reduced water production apparatus according to claim 1.
  3.  前記凝縮機構により生成された重水素減少水の少なくとも一部を電気分解する第2電気分解機構と、
     前記第2電気分解機構で発生する酸素と水素とを前記混合ガスとして搬送する第2混合ガス搬送経路と、
     前記第2混合ガス搬送経路により搬送される前記混合ガスを燃焼させる第2燃焼機構と、
     前記第2燃焼機構で発生した蒸気を凝縮して重水素減少水を生成する第2凝縮機構と、
    を更に備えた、
    請求項1又は2に記載の重水素減少水製造装置。
    A second electrolysis mechanism for electrolyzing at least part of the deuterium-depleted water generated by the condensation mechanism;
    A second mixed gas transport path for transporting oxygen and hydrogen generated by the second electrolysis mechanism as the mixed gas;
    A second combustion mechanism for burning the mixed gas transported by the second mixed gas transport path;
    A second condensing mechanism for condensing steam generated in the second combustion mechanism to generate deuterium-reduced water;
    Further comprising
    The deuterium reduced water production apparatus according to claim 1 or 2.
  4.  前記電気分解機構には、電気分解の対象の水が連続的に供給される、
    請求項1から3のいずれか1項に記載の重水素減少水製造装置。
    The electrolysis mechanism is continuously supplied with water to be electrolyzed,
    The deuterium reduced water production apparatus according to any one of claims 1 to 3.
  5.  前記凝縮機構は、前記燃焼機構で発生した蒸気を圧縮して凝縮する圧縮機である、
    請求項1から4のいずれか1項に記載の重水素減少水製造装置。
    The condensation mechanism is a compressor that compresses and condenses the steam generated in the combustion mechanism.
    The deuterium-decreasing water production apparatus according to any one of claims 1 to 4.
PCT/JP2017/001017 2017-01-13 2017-01-13 Deuterium-depleted water production apparatus WO2018131135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001017 WO2018131135A1 (en) 2017-01-13 2017-01-13 Deuterium-depleted water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001017 WO2018131135A1 (en) 2017-01-13 2017-01-13 Deuterium-depleted water production apparatus

Publications (1)

Publication Number Publication Date
WO2018131135A1 true WO2018131135A1 (en) 2018-07-19

Family

ID=62839487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001017 WO2018131135A1 (en) 2017-01-13 2017-01-13 Deuterium-depleted water production apparatus

Country Status (1)

Country Link
WO (1) WO2018131135A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019512A (en) * 2018-08-20 2018-12-18 宋开泉 A kind of reaction unit being used to prepare no deuterium-oxide
CN109052824A (en) * 2018-08-20 2018-12-21 安徽国科生物科技有限公司 The hydrogen-rich that dechlorinates is electrolysed low deuterium healthy water preparation system
CN110342464A (en) * 2019-06-27 2019-10-18 深圳百奥捷生物科技有限公司 The method for preparing the process system of low deuterium-oxide and preparing low deuterium-oxide using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3037633U (en) * 1996-11-05 1997-05-20 相▲南▼ 金 Hydrogen-oxygen gas generator electrolyzer structure
JP2004337843A (en) * 2003-04-25 2004-12-02 Showa Denko Kk Method and apparatus for concentrating hydrogen isotope water
JP2005232512A (en) * 2004-02-18 2005-09-02 Japan Techno Co Ltd Method for hermetically filling vessel with hydrogen-oxygen mixture gas and apparatus therefor
JP2011104478A (en) * 2009-11-13 2011-06-02 Toshihiro Abe Water purification apparatus
JP2014114756A (en) * 2012-11-16 2014-06-26 Senryou:Kk Power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3037633U (en) * 1996-11-05 1997-05-20 相▲南▼ 金 Hydrogen-oxygen gas generator electrolyzer structure
JP2004337843A (en) * 2003-04-25 2004-12-02 Showa Denko Kk Method and apparatus for concentrating hydrogen isotope water
JP2005232512A (en) * 2004-02-18 2005-09-02 Japan Techno Co Ltd Method for hermetically filling vessel with hydrogen-oxygen mixture gas and apparatus therefor
JP2011104478A (en) * 2009-11-13 2011-06-02 Toshihiro Abe Water purification apparatus
JP2014114756A (en) * 2012-11-16 2014-06-26 Senryou:Kk Power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019512A (en) * 2018-08-20 2018-12-18 宋开泉 A kind of reaction unit being used to prepare no deuterium-oxide
CN109052824A (en) * 2018-08-20 2018-12-21 安徽国科生物科技有限公司 The hydrogen-rich that dechlorinates is electrolysed low deuterium healthy water preparation system
CN110342464A (en) * 2019-06-27 2019-10-18 深圳百奥捷生物科技有限公司 The method for preparing the process system of low deuterium-oxide and preparing low deuterium-oxide using it
CN110342464B (en) * 2019-06-27 2023-04-07 深圳百奥捷生物科技有限公司 Process system for preparing deuterium-depleted water and method for preparing deuterium-depleted water by applying process system

Similar Documents

Publication Publication Date Title
US7785744B2 (en) Fuel cell water purification system and method
WO2018131135A1 (en) Deuterium-depleted water production apparatus
JP5636059B2 (en) Method and system for producing hydrogen using sodium ion separation membrane
KR20080074142A (en) Electrolysis
JP7394226B2 (en) Apparatus and method for preparing high purity hydrogen and/or oxygen by electrolysis of water
JP2009517547A (en) Electrolysis equipment
US20190323132A1 (en) Method for generating clean water, hydrogen, and oxygen from contaminated effluent
CN110467232B (en) Low-energy-consumption wastewater treatment device and method for removing salt and organic matters
JP2009043487A (en) Generating system
CN102964017A (en) Method for treatment of high salinity organic wastewater through microwave electrocatalytic oxidation
CN105696013A (en) High-temperature steam electrolytic hydrogen production system using medium-low-temperature heat source
US11655547B2 (en) Method for generating clean water, hydrogen, and oxygen from contaminated effluent
WO2020029684A1 (en) System and method for treating high-salt and high-organic-matter wastewater and recovering energy
WO2012120835A1 (en) Energy system
US20230332302A1 (en) Heat recovery during electrolysis processes
JP6692394B2 (en) Carbon recovery fuel cell power generation system
JP2015109767A (en) Power generation system
KR101617618B1 (en) Hydrogen generating system by solid waste mater H
CN112110588A (en) Treatment method and treatment system for medium-high temperature MVR wastewater of degradable organic matter
KR101612015B1 (en) Fuel Cell Heat Recovery ORC Power System
CN205367998U (en) Salt -containing wastewater treatment system
CN215250125U (en) Supercritical fluid extraction and electrochemical coupling treatment system for high-salt and high-organic wastewater
JP2007106656A (en) Hydrogen production apparatus and hydrogen production method
US20220290312A1 (en) Producing Carbon Monoxide
JP2008002725A (en) Hydrogen fuel combustion device and operation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP