JP3037633U - Hydrogen-oxygen gas generator electrolyzer structure - Google Patents

Hydrogen-oxygen gas generator electrolyzer structure

Info

Publication number
JP3037633U
JP3037633U JP1996011211U JP1121196U JP3037633U JP 3037633 U JP3037633 U JP 3037633U JP 1996011211 U JP1996011211 U JP 1996011211U JP 1121196 U JP1121196 U JP 1121196U JP 3037633 U JP3037633 U JP 3037633U
Authority
JP
Japan
Prior art keywords
electrolytic cell
gas
bolt
hydrogen
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1996011211U
Other languages
Japanese (ja)
Inventor
相▲南▼ 金
Original Assignee
相▲南▼ 金
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 相▲南▼ 金 filed Critical 相▲南▼ 金
Priority to JP1996011211U priority Critical patent/JP3037633U/en
Application granted granted Critical
Publication of JP3037633U publication Critical patent/JP3037633U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】 【課題】 望ましい放熱効果を有し、かつ連続的な稼動
による高純度,高品質の水素−酸素ガスを得る電解槽の
提供。 【解決手段】 水素−酸素ガスを発生させる電解槽Bの
構造において、四方にボルト孔1aが形成され、中心の
上側及び下側にガス流通長孔1bと電解液流通長孔1c
が互に垂直になるように形成された多数個の電極板1
と、前記電極板1の間に設置され外側に突出されたボル
トハウジング孔2aが形成された多数個のスペーサ2を
相互交番的に結合させ、スペーサ2の内周縁面2bには
オーリング3でシリングして電解液充填室7を形成する
と共に、前記の電極板1の両側には電流連結ボルト6b
とガス連結ニップル6c及び電解液連結ニップル6dと
を持つ電解槽仕上板6を装着して、前記電極板1のボル
ト孔1a、スペーサ2のボルトハウジング孔2a及び電
解槽仕上板6のボルト孔6aに挟まれたステイボルト4
にナット5を締結して電極板1、スペーサ2及び電解槽
仕上板6を相互結合させて構成したことを特徴とする水
素−酸素ガス発生機の電解槽構造。
(57) [Abstract] [PROBLEMS] To provide an electrolytic cell which has a desired heat dissipation effect and which obtains high purity and high quality hydrogen-oxygen gas by continuous operation. SOLUTION: In a structure of an electrolytic cell B for generating hydrogen-oxygen gas, bolt holes 1a are formed on all sides, and a gas flow elongated hole 1b and an electrolyte solution elongated hole 1c are formed above and below the center.
A large number of electrode plates 1 formed so that they are perpendicular to each other
And a plurality of spacers 2 provided between the electrode plates 1 and having bolt housing holes 2a protruding outward are alternately coupled to each other, and an O-ring 3 is formed on the inner peripheral surface 2b of the spacers 2. The electrolyte filling chamber 7 is formed by schilling, and the current connecting bolts 6b are provided on both sides of the electrode plate 1.
An electrolytic cell finishing plate 6 having a gas connection nipple 6c and an electrolyte connection nipple 6d is mounted, and the bolt hole 1a of the electrode plate 1, the bolt housing hole 2a of the spacer 2 and the bolt hole 6a of the electrolytic cell finish plate 6 are mounted. Stay bolt 4 sandwiched between
An electrolyzer structure for a hydrogen-oxygen gas generator, characterized in that a nut 5 is fastened to the electrode plate 1, a spacer 2 and an electrolyzer finish plate 6 are connected to each other.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

この考案は、水素−酸素ガス発生機の電解槽構造に関する。 This invention relates to an electrolytic cell structure of a hydrogen-oxygen gas generator.

【0002】[0002]

【従来の技術】[Prior art]

水素−酸素ガスは水の電気分解方式によって生産されるものとして、酸素と水 素が1:2の理想的な混合比率で生成された混合ガスを意味する。 Hydrogen-oxygen gas means a mixed gas in which oxygen and hydrogen are produced at an ideal mixing ratio of 1: 2, as produced by an electrolysis method of water.

【0003】 一方、電気分解の基本学問である電気化学は約200年前から研究及び実施さ れたとも言え、1833年faradayによって電気分解に対する実用化が最 初でなされたと言うことができ、現在使っている用語もその頃使用し始めたこと と知られている。On the other hand, it can be said that electrochemistry, which is a basic discipline of electrolysis, has been studied and carried out for about 200 years, and it can be said that the first practical application for electrolysis was made by faraday in 1833. It is known that the terms I used started to be used around that time.

【0004】 このような根拠のもとで、水素−酸素ガスは最近に入ってその実用性が研究さ れているが、いまだ十分に経済性があると認められるほどの高効率の電解槽は完 成できず、今まで最も実用性があると認定される方法はオーストラリアのブラウ ン エネルギー システム テクノロジー ピーティワイ会社(Brown E nergy System Technology PTY.LTD.)のユル ブラウン博士(Dr.Yull Brown)によって開発されたガス発生機 が知られている。On the basis of such a ground, hydrogen-oxygen gas has recently been researched for its practicality, but a high-efficiency electrolytic cell that is still considered to be sufficiently economical is not available. The method that could not be completed and was deemed to be the most practical to date has been developed by Dr. Yull Brown of Brown Energy System Technology PTY. LTD. Known gas generators are known.

【0005】 そして、一般的に知られているガス発生装置は、AC電流がDC電流に整流さ れて電解液が充たされた電解槽に導電され、この時、電気分解が起り、反応式は H2 O→H2 +1/2 O2 が適用される。In a generally known gas generator, an AC current is rectified into a DC current to conduct electricity to an electrolytic cell filled with an electrolytic solution, at which time electrolysis occurs and a reaction formula is generated. Applies H 2 O → H 2 +1/2 O 2 .

【0006】 反応式において反応体は水であり、結果的には酸素1対水素2の比率で水素− 酸素ガスが生成される。In the reaction formula, the reactant is water, and as a result, hydrogen-oxygen gas is produced at a ratio of oxygen 1 to hydrogen 2.

【0007】 このような作用はガス圧力をコントロールすることによって、ガス生産と中断 を繰り返して行われる。Such an action is performed by repeating gas production and interruption by controlling the gas pressure.

【0008】 即ち、ガスチャンバ(gas chamber)の圧力がセッティング値の上 限値に到達すればスイッチによって電源が遮断され、ガス生産が中断される。ま た、ガスを消耗することによってガスチャンバ内部のガス圧力が下がり下限値に 達すれば、再びスイッチ動作状態(switch on)になってガス生産が始 まる。このような過程を繰り返しながら一定量の水素−酸素ガスを生産するよう になる。That is, when the pressure in the gas chamber reaches the upper limit value of the set value, the power is cut off by the switch and the gas production is interrupted. Further, when the gas pressure inside the gas chamber falls and reaches the lower limit value due to exhaustion of gas, the switch operation state (switch on) is resumed and gas production starts. By repeating this process, a certain amount of hydrogen-oxygen gas will be produced.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、前記のすでに知られている水素エネルギーの場合もその量と質におい て産業上利用できる充分な高効率性の方法とかガスを得ることは果たしていない 。それで、最近はもっと向上された方法で高効率の水素エネルギーを発生させる ガス発生機の電解槽を提供するためいろいろな方法が多角的で開発が進められて いるが、ここでこの考案は多角的に開発されているいろいろな方法中の一つであ る電気分解方式に基づいて改良した水素−酸素ガス発生機の電解槽構造を案出す るようになった。 However, even in the case of the already known hydrogen energy, it has not been possible to obtain a sufficiently efficient method or gas that can be industrially used in terms of quantity and quality. Therefore, recently, various methods have been developed in various ways in order to provide an electrolytic cell of a gas generator that generates highly efficient hydrogen energy by a more improved method. It came to devise an improved electrolytic cell structure of hydrogen-oxygen gas generator based on the electrolysis method which is one of the various methods developed in.

【0010】 一方、今まで知られたガス発生機の電解槽は電解槽内部に単に電極板だけ形成 して(+)電極と(−)電極を交互に配列する方法、もしくは(+)極を中心に 置き、円筒形の電極筒を積み重ねて配列する方法等で、電解槽の外郭形態が箱状 または円筒形の容器形態で囲まれているので放熱が充分にされず、分解修理に難 しい点があった。On the other hand, the known electrolytic cell of the gas generator is a method in which only the electrode plate is formed inside the electrolytic cell and the (+) electrode and the (−) electrode are alternately arranged, or the (+) electrode is formed. It is difficult to disassemble and repair due to insufficient heat dissipation because the outer shape of the electrolytic cell is surrounded by a box shape or a cylindrical container shape by a method of stacking and arranging cylindrical electrode tubes placed in the center. There was a point.

【0011】 従って、電解槽の内部からガスラインへ水蒸気が混入され水素−酸素ガスの質 が低下する。場合によっては、作動時間が何十分も過ぎない内にトーチチップ( torch tip)から泡状の水が流出され、また火が消える場合もあったし 、水素−酸素ガスを他の用途で使用する時も同様に連続的使用ができないため、 その効用価値が低くなるという不都合もあった。Therefore, water vapor is mixed into the gas line from the inside of the electrolytic cell, and the quality of hydrogen-oxygen gas is reduced. In some cases, foamy water was discharged from the torch tip and the fire was extinguished within several ten minutes of operation, and hydrogen-oxygen gas was used for other purposes. At the same time, there is also the inconvenience that its utility value is reduced because it cannot be used continuously.

【0012】 この考案は叙上の点に着目して成されたもので、板状の電極板を始め、スペー サとオーリングをそれぞれ形成した後、電極板を垂直で結合して放熱機形態でそ の内部に電解液充填室を形成させ、ここに電解液の循環を効率的に行うため電解 液タンクとガスタンクとを分離して具備させるように電解槽を形成すると共にこ のような電解槽は連続的に熱が発生される電解槽の熱を効果的に冷却することが できるので電解槽の最高温度を55℃〜65℃以内で維持することが可能となり 、良質の水素−酸素ガスを作れるようにすることを目的とする。This invention was made by paying attention to the above points. After forming a plate-shaped electrode plate, a spacer and an O-ring, respectively, the electrode plates are vertically connected to form a radiator. In order to efficiently circulate the electrolytic solution, an electrolytic solution filling chamber is formed inside the electrolytic solution filling chamber. Since the cell can effectively cool the heat of the electrolyzer, which generates heat continuously, it becomes possible to maintain the maximum temperature of the electrolyzer within 55 ° C to 65 ° C. The purpose is to be able to make.

【0013】 言い換えれば、この考案の電解槽は、電極板とスペーサをステイボルトで結合 してラジエーターのごとく垂直に形成する一方、その内部に電解液充填室が形成 されるので電解液は電解槽の内部に充填され、電解液が充填された電解槽は放熱 機のような形式で構成されて外部の空気が電解槽の外部に突出された電極板の間 を通りながら電解槽を効果的に冷却させるようにすることにある。In other words, in the electrolytic cell of the present invention, the electrode plate and the spacer are joined together by stay bolts to form a vertical shape like a radiator, and the electrolytic solution filling chamber is formed inside the electrolytic cell, so that the electrolytic solution is filled with the electrolytic solution. The electrolytic cell filled with electrolyte and filled with electrolyte is structured like a radiator to allow the outside air to pass between the electrode plates protruding to the outside of the electrolytic cell to effectively cool the electrolytic cell. To do so.

【0014】[0014]

【課題を解決するための手段】[Means for Solving the Problems]

この考案は叙上の点に着目して成されたもので、以下の構成を備えることによ って前記課題を解決した。 The present invention was made by paying attention to the above points, and solved the above problems by providing the following configurations.

【0015】 (1)水素−酸素ガスを発生させる電解槽の構造において、四方にボルト孔が形 成され、中心の上側及び下側にガス流通長孔と電解液流通長孔が互に垂直になる ように形成された多数個の電極板と、前記電極板の間に設置され外側に突出され たボルトハウジング孔が形成された多数個のスペーサを相互交番的に結合させ、 スペーサの内周縁面にはオーリングでシリングして電解液充填室を形成すると共 に、前記の電極板の両側には電流連結ボルトとガス連結ニップル及び電解液連結 ニップルとを持つ電解槽仕上板を装着して、前記電極板のボルト孔、スペーサの ボルトハウジング孔及び電解槽仕上板のボルト孔に挟まれたステイボルトにナッ トを締結して電極板、スペーサ及び電解槽仕上板を相互結合させて構成したこと を特徴とする水素−酸素ガス発生機の電解槽構造。(1) In the structure of the electrolytic cell for generating hydrogen-oxygen gas, bolt holes are formed on all sides, and the gas flow elongated holes and the electrolyte solution elongated holes are perpendicular to each other above and below the center. A large number of electrode plates that are formed as described above and a large number of spacers that are installed between the electrode plates and that have bolt housing holes that protrude outward are formed by alternately connecting them to each other. In addition to forming an electrolyte solution filling chamber by silling with O-rings, an electrolytic cell finishing plate having a current connection bolt, a gas connection nipple and an electrolyte solution connection nipple is attached to both sides of the electrode plate to attach the electrode. A nut is fastened to the stay bolt sandwiched between the bolt hole of the plate, the bolt housing hole of the spacer and the bolt hole of the electrolytic cell finishing plate to connect the electrode plate, spacer and electrolytic cell finishing plate to each other. An electrolytic cell structure of a hydrogen-oxygen gas generator characterized by:

【0016】 (2)前記(1)において、前記電解槽の電解液連結ニップルに連結された第2 電解液管路を通じて電解液タンクに貯蔵された電解液は第1電解液管路を通じて ガスタンクから流入され、このガスタンクには電解槽のガス連結ニップルに結合 されたガス流出通路を経て流入される水素−酸素ガスが上部に一定量充たされる ように構成したことを特徴とする水素−酸素ガス発生機の電解槽構造。(2) In the above (1), the electrolyte solution stored in the electrolyte solution tank through the second electrolyte solution conduit connected to the electrolyte solution connection nipple of the electrolyte tank is discharged from the gas tank through the first electrolyte solution conduit. The hydrogen-oxygen gas generation is characterized in that a certain amount of hydrogen-oxygen gas, which is flowed in and is flowed in through the gas outflow passage connected to the gas connection nipple of the electrolytic cell, is filled in the upper portion. Machine electrolyzer structure.

【0017】[0017]

【考案の実施の形態】[Embodiment of the invention]

以下に、この考案の実施の形態を説明する。 Hereinafter, an embodiment of the present invention will be described.

【0018】 このように、この考案を添付図面の図1ないし図7に従って詳しく説明すれば 、次のとおりである。The present invention will now be described in detail with reference to FIGS. 1 to 7 of the accompanying drawings.

【0019】 先ず、図7は本考案が装置されるガス発生機の構造を全般的に説明するブロッ ク図であり、このようなガス発生機の主な構造は、二つの電解液タンクAが両側 の下部に対置し、その上に電解槽Bが装置され、その電解槽Bの上部両側にガス タンクCが装置されてガスタンクCの間にファン(fan)Dが備えてあり、ま た電気変換装置Eを始めとしたP.CコントラルFと圧力スイッチ(press ure switch)G,圧力計H,自動給水装置I,凝縮ドライヤー(co ndensing dryer)J,ドレインバルブ(drain valve )Kが備えられ、フレームアレスター(flame arrester)Lを始 めとしたコックバルブMとレギュレーチングバルブ(regulating v alve)N及びトーチ(torch)Oが相互適切に結合されて構成される。First, FIG. 7 is a block diagram for generally explaining the structure of a gas generator in which the present invention is installed. The main structure of such a gas generator is that two electrolytic solution tanks A are provided. Opposite the lower part of both sides, the electrolytic cell B is installed on it, the gas tanks C are installed on both upper parts of the electrolytic cell B, and a fan D is provided between the gas tanks C. The conversion device E and other P.I. A C control F, a pressure switch G, a pressure gauge H, an automatic water supply device I, a condensing dryer J, and a drain valve K are provided, and a flame arrester L is provided. The starting cock valve M, the regulating valve N and the torch O are properly connected to each other.

【0020】 一方、この考案の電解槽Bは図1に示したとおりに構成されるが、この時、電 解槽Bの構造は添付図面の図3に詳しく図示したように、数十または数百個(容 量または大きさに従って可変的に連結構成する)の電極板1とスペーサ2を形成 し、シーリングのためのオーリング(O−ring、以下オーリングと称する) 3を形成、交互に繰り返して結合構成される。On the other hand, the electrolytic cell B of the present invention is constructed as shown in FIG. 1, and at this time, the structure of the electrolytic cell B is several tens or several as shown in detail in FIG. 3 of the accompanying drawings. One hundred electrode plates 1 (variably connected according to capacity or size) and spacers 2 are formed, and an O-ring (hereinafter referred to as O-ring) 3 for sealing is formed, and alternately. It is composed repeatedly.

【0021】 この時の結合方法は、ステイボルト(stay bolt)4にスペーサ(s pacer)2を挟んでオーリング3を前記のスペーサ2内周縁面2bに挟み、 その両面に電極板1を密着させる順序を繰り返して一定の長さになるように多数 個を連結した後、ナット5で締結している。At this time, the connecting method is as follows: a stay bolt 4 and a spacer 2 are sandwiched between the O-ring 3 and the inner peripheral edge surface 2b of the spacer 2, and the electrode plates 1 are closely attached to both surfaces thereof. The nut 5 is fastened after repeating the order in which a large number of pieces are connected so as to have a constant length.

【0022】 それがためには金属板体の電極板1を添付図面の図2ないし図5に図示したよ うに直四角形(または多角形)で形成してその中心部を偏心されるように設定し た後、正四角形の中心から対角線方向の四ケ所を設定して四つのボルト孔1aを 形成し、そのボルト孔1aが穿孔された中心軸の上側と下側にはガス流通長孔1 bと電解液流通長孔1cを夫々水平と垂直で形成し、前記スペーサ2は製作性及 び断熱性の優れた適切な材質(特に合成樹脂が良い)で形成し、図5に図示した とおりに図形(または多角形)のガスケット(gasket)形で形成してその 外側の四方に電極板1のボルト孔1aと一致するボルトハウジング孔2aを形成 、オーリング3はゴム材等で形状は円形(もしくは多角形)で形成する。To this end, the metal plate electrode plate 1 is formed in a rectangular shape (or polygonal shape) as shown in FIGS. 2 to 5 of the accompanying drawings, and its center is set to be eccentric. After that, four bolt holes 1a are formed by setting four diagonal positions from the center of the regular square, and the gas flow long holes 1b are formed on the upper and lower sides of the central axis where the bolt holes 1a are drilled. And the electrolytic solution flow hole 1c are formed horizontally and vertically respectively, and the spacer 2 is formed of an appropriate material excellent in manufacturability and heat insulation (especially synthetic resin is good), and as shown in FIG. It is formed in a figure (or polygonal) gasket shape, and bolt housing holes 2a corresponding to the bolt holes 1a of the electrode plate 1 are formed on the outer four sides thereof. The O-ring 3 is made of rubber or the like and has a circular shape ( Or polygon).

【0023】 一方、前記の電極板1とスペーサ2の両側には電解槽仕上板6が形成されるが 、この時、電解槽仕上板6は、図4ないし図5に示した如く多角形状(特に正四 角形状)で形成する。しかし、その中心の対角線上の角にボルト孔6aを穿孔す ると同時に水平の中心の両側に電流連結ボルト6bを形成するとともに、また中 心の垂直両側には貫通孔を形成した後、二つのガス連結ニップル6cと電解液連 結ニップル6dとを上下に夫々溶接して電解液が電解液充填室7の内部に充填さ れながら生成されたガスは充填室7の外部へ排出されるように構成されたもので ある。On the other hand, the electrolytic cell finishing plate 6 is formed on both sides of the electrode plate 1 and the spacer 2. At this time, the electrolytic cell finishing plate 6 has a polygonal shape as shown in FIGS. 4 to 5. In particular, it is formed in a regular square shape. However, after forming bolt holes 6a at diagonal corners of the center and simultaneously forming current connecting bolts 6b on both sides of the horizontal center, and also forming through holes on both vertical sides of the center, two holes are formed. One gas connection nipple 6c and one electrolyte connection nipple 6d are welded up and down to fill the inside of the electrolyte solution filling chamber 7 with the electrolyte solution so that the generated gas is discharged to the outside of the filling chamber 7. It is composed of.

【0024】 この時、結合される電極板1とスペーサ2はその内周縁面2bにオーリング3 を挿入してステイボルト4で垂直連結し、その内部に一定空間の電解液充填室7 が形成されるが、その電解液充填室7が形成される外部両側には前記の電解槽仕 上板6が結合される。At this time, the electrode plate 1 and the spacer 2 to be combined are inserted into the inner peripheral surface 2b of the O-ring 3 and vertically connected by the stay bolts 4, and the electrolyte filling chamber 7 having a constant space is formed therein. The electrolytic cell finishing plate 6 is connected to both outer sides where the electrolytic solution filling chamber 7 is formed.

【0025】 また図6は図5のS−S線断面を詳しく図示した断面図として、ステイボルト 4はボルト孔1aとスペーサ2のボルトハウジング孔2aに入られて電解槽仕上 板6の外側に出るナット5によって互に固定される。Further, FIG. 6 is a cross-sectional view showing a cross section taken along the line S--S in FIG. 5 in detail. The stay bolt 4 is inserted into the bolt hole 1a and the bolt housing hole 2a of the spacer 2 so as to be located outside the electrolytic cell finishing plate 6. It is fixed to each other by the protruding nut 5.

【0026】 そして、上記結合された電解槽Bは、図7に図示したように、電解液タンクA とガスタンクCを上下に対置されたその中間位置に装着され、この時、電解液の 水位はガスタンクCの中間部位の上限点と下限点間を維持するのでガスタンクC の上部がガスチャンバの役割をするようになる。Then, as shown in FIG. 7, the combined electrolytic cell B is mounted at an intermediate position where the electrolytic solution tank A and the gas tank C are vertically opposed to each other, and at this time, the water level of the electrolytic solution is Since the upper limit and the lower limit of the intermediate portion of the gas tank C are maintained, the upper part of the gas tank C 1 serves as a gas chamber.

【0027】 即ち、前記の電解槽Bの連結関係を綿密に調べて見れば、前記の電解槽Bは電 解槽Bの電解液ニップル6dに連結された第2電解液管路A″を通じて電解液タ ンクAに貯蔵された電解液が供給され、この電解液タンクAに貯蔵された電解液 はガスタンクCから流入され、このガスタンクCには電解槽Bのガス連結ニップ ル6cに結合されたガス流出通路B´を経て流入される水素−酸素ガスが上部に 一定量充填されるように構成され、電解槽B内に電解液が充たされた状態で水素 −酸素ガスを発生させようとする。そうすることによって流された(+)(−) 電源を電解槽の両側に位置した電流連結ボルト6bに各々連結すれば電解液充填 室7の内部で反応式H2 O→H2 +1/2 O2 の電気分解反応が起るようになる。That is, when the connection relationship of the electrolytic cell B is closely examined, the electrolytic cell B is electrolyzed through the second electrolytic solution conduit A ″ connected to the electrolytic solution nipple 6d of the electrolytic cell B. The electrolytic solution stored in the liquid tank A is supplied, the electrolytic solution stored in the electrolytic solution tank A flows in from the gas tank C, and the gas tank C is connected to the gas connection nipple 6c of the electrolytic tank B. The hydrogen-oxygen gas introduced through the gas outflow passage B ′ is configured to be filled in a fixed amount in the upper part, and the hydrogen-oxygen gas is generated in a state where the electrolytic solution is filled in the electrolytic cell B. By connecting the (+) and (-) power supplies supplied by the above to the current connecting bolts 6b located on both sides of the electrolytic cell, the reaction formula H 2 O → H 2 +1 in the electrolyte filling chamber 7 can be obtained. The electrolysis reaction of / 2 O 2 comes to occur.

【0028】 前記反応式において反応体は水であり、反応後結果として生成されるのは化学 当量比1:2で構成された酸素と水素の混合ガスである水素−酸素ガスが生成さ れる。In the above reaction formula, the reactant is water, and after the reaction, hydrogen-oxygen gas, which is a mixed gas of oxygen and hydrogen with a chemical equivalent ratio of 1: 2, is generated.

【0029】 このように電解槽B内で生成された水素−酸素ガスはガス流出通路B´を経て ガスタンクCの上側空間部に貯蔵し、ガスラインを通じて凝縮ドライヤーJを経 てフレームアレスターLを通過させるようにし、コックバルブM及びレギュレー チングバルブNの開閉作用によってトーチDのチップ(tip)から水素−酸素 ガスを漏らして、点火すれば多様な火気作業を行うことができる。The hydrogen-oxygen gas thus generated in the electrolytic cell B is stored in the upper space of the gas tank C through the gas outflow passage B ′, and passes through the gas line, the condensing dryer J, and the flame arrester L. If the hydrogen-oxygen gas is leaked from the tip of the torch D by the opening / closing action of the cock valve M and the regulating valve N and ignited, various fire work can be performed.

【0030】 この時ガス発生量は単位面積当り流れる電流の大きさと電極板1の有効面積と 関係があるので電極板1の数を加減することによってガス発生量を増減すること が可能になる。At this time, the gas generation amount is related to the magnitude of the current flowing per unit area and the effective area of the electrode plate 1. Therefore, it is possible to increase or decrease the gas generation amount by adjusting the number of the electrode plates 1.

【0031】 例えば1時間当り1200Lのガスを生産するため必要な電極板1は106個 ×3組=318個が必要で、この時必要な電源は220V,25Aであり、消耗 電力は5.5KWHが要求される。また、この考案は適切な設計変更に従ってガ ス生産量の増減ができる。For example, the number of electrode plates 1 required for producing 1200 L of gas per hour is 106 pieces × 3 sets = 318 pieces. At this time, the required power source is 220 V, 25 A, and the power consumption is 5.5 KWH. Is required. In addition, this device can increase or decrease the gas production according to appropriate design changes.

【0032】 それ故、この考案による電解槽Bを包含したガス発生機は溶接器具に限らず、 ガスヒーター,ガス焼却炉,水中燃焼ボイラー,真空揚水ポンプ及び自動車の動 力源等、多様に利用できる。Therefore, the gas generator including the electrolytic cell B according to the present invention is not limited to welding equipment, and can be used for various purposes such as a gas heater, a gas incinerator, an underwater combustion boiler, a vacuum pumping pump, and a power source for automobiles. it can.

【0033】[0033]

【考案の効果】[Effect of the invention]

前述のようなこの考案の電解槽はスペーサの厚さによって電極板と電極板の間 が一定に維持されながら内部では電気分解が起るようにセルを備え、外部に外部 の空気をその空間になめらかに通過させるようになっているので、望ましい放熱 効果を提供するので連続的な稼動による高純度・高品質の水素−酸素ガスを得る ことができる、きわめて有効な考案である。 As mentioned above, the electrolytic cell of this invention is equipped with a cell so that the space between the electrode plates can be kept constant by the thickness of the spacers while electrolysis occurs inside, and external air can smoothly flow into the space. Since it is designed to pass through, it provides the desired heat dissipation effect and is a highly effective device that can obtain high-purity and high-quality hydrogen-oxygen gas by continuous operation.

【0034】 即ち、水素−酸素ガスを多量で長時間にわたって発生させても、従来にはトー チ(torch)から水が混ぜられて流出される故に、水素−酸素ガスの質が低 下し、甚だしくはトーチの火が消えてしまうようなこととは異なり、この考案に よる電解槽の構造を利用すれば、放熱性が優れて高品質の水素−酸素ガスが生成 されるので溶接作業を安定的にしかも持続的に維持でき、トーチの火の高温によ って、溶接作業を速やかに行うことができるので、溶接作業時間が短縮させるこ とにより製品の生産性を画期的に向上させる長所がある。That is, even if a large amount of hydrogen-oxygen gas is generated for a long time, the quality of the hydrogen-oxygen gas deteriorates because water is conventionally mixed and discharged from the torch. Unlike the fact that the fire of the torch is extinguished, using the structure of the electrolytic cell according to this invention produces excellent quality heat generation of hydrogen-oxygen gas and stabilizes the welding work. It can be maintained continuously and continuously, and the high temperature of the torch allows the welding work to be carried out quickly, thus shortening the welding work time and dramatically improving the productivity of the product. There are advantages.

【0035】 また、電解槽の装着ボルトを緩めるだけで、電解槽をたやすく分解して、異常 が発生した部分を迅速で正確に修理することができ、従来には発生機の分解修理 にかかる難しい点を解決し、改良しているので使用者に対してももっと便利で有 用さを発揮することができる。Further, by simply loosening the mounting bolts of the electrolytic cell, the electrolytic cell can be easily disassembled, and the part where the abnormality has occurred can be repaired quickly and accurately. Conventionally, the disassembly and repair of the generator is required. Since it solves difficult points and improves it, it can be more convenient and useful for users.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この考案による水素−酸素ガス発生機の電解
槽構造の外観斜視図
FIG. 1 is an external perspective view of an electrolytic cell structure of a hydrogen-oxygen gas generator according to the present invention.

【図2】 この考案による水素−酸素ガス発生機の電解
槽構造の要部分解斜視図
FIG. 2 is an exploded perspective view of essential parts of an electrolytic cell structure of a hydrogen-oxygen gas generator according to the present invention.

【図3】 この考案による水素−酸素ガス発生機の電解
槽構造の一部結合断面図
FIG. 3 is a cross-sectional view of a partially coupled structure of an electrolytic cell of a hydrogen-oxygen gas generator according to the present invention.

【図4】 この考案による水素−酸素ガス発生機の電解
槽構造の一側面図
FIG. 4 is a side view of an electrolytic cell structure of a hydrogen-oxygen gas generator according to the present invention.

【図5】 前記図3のA−A線部断面図5 is a sectional view taken along line AA of FIG.

【図6】 前記図5のS−S線部詳細断面図6 is a detailed cross-sectional view taken along the line S-S of FIG.

【図7】 この考案による電解槽が装置される状態を説
明するガス発生機のブロック図
FIG. 7 is a block diagram of a gas generator for explaining a state in which the electrolytic cell according to the present invention is installed.

【符号の説明】[Explanation of symbols]

1 電極板 1a,6b ボルト孔 1b ガス流通長孔 1c 電解液流通長孔 2 スペーサ(spacer) 2a ボルトハウジング孔 2b 内周縁面 3 オーリング(O−ring) 4 ステイボルト 5 ナット 6 電解槽仕上板 6b 電流連結ボルト 6c ガス連結ニップル(nipple) 6d 電解液連結ニップル A 電解液タンク B 電解槽 C ガスタンク 7 電解液充填室 DESCRIPTION OF SYMBOLS 1 Electrode plate 1a, 6b Bolt hole 1b Gas flow long hole 1c Electrolyte flow long hole 2 Spacer (spacer) 2a Bolt housing hole 2b Inner peripheral edge surface 3 O-ring 4 Stay bolt 5 Nut 6 Electrolytic tank finishing plate 6b Current connection bolt 6c Gas connection nipple 6d Electrolyte connection nipple A Electrolyte tank B Electrolyzer C Gas tank 7 Electrolyte filling chamber

Claims (2)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 水素−酸素ガスを発生させる電解槽の構
造において、四方にボルト孔が形成され、中心の上側及
び下側にガス流通長孔と電解液流通長孔が互に垂直にな
るように形成された多数個の電極板と、前記電極板の間
に設置され外側に突出されたボルトハウジング孔が形成
された多数個のスペーサを相互交番的に結合させ、スペ
ーサの内周縁面にはオーリングでシリングして電解液充
填室を形成すると共に、前記の電極板の両側には電流連
結ボルトとガス連結ニップル及び電解液連結ニップルと
を持つ電解槽仕上板を装着して、前記電極板のボルト
孔、スペーサのボルトハウジング孔及び電解槽仕上板の
ボルト孔に挟まれたステイボルトにナットを締結して電
極板、スペーサ及び電解槽仕上板を相互結合させて構成
したことを特徴とする水素−酸素ガス発生機の電解槽構
造。
1. In a structure of an electrolytic cell for generating hydrogen-oxygen gas, bolt holes are formed in four directions, and the gas flow elongated holes and the electrolyte solution elongated holes are perpendicular to each other above and below the center. A plurality of electrode plates formed on the plate and a plurality of spacers provided between the electrode plates and having outwardly protruding bolt housing holes are alternately coupled to each other, and an O-ring is formed on the inner peripheral surface of the spacer. To form an electrolyte solution filling chamber, and on both sides of the electrode plate, an electrolytic cell finishing plate having a current connection bolt, a gas connection nipple and an electrolyte solution connection nipple is attached, and the electrode plate bolt is attached. It is characterized in that the electrode plate, the spacer and the electrolytic cell finishing plate are mutually coupled by fastening a nut to a stay bolt sandwiched between the hole, the bolt housing hole of the spacer and the bolt hole of the electrolytic cell finishing plate. Hydrogen-oxygen gas generator electrolyzer structure.
【請求項2】 請求項1において、前記電解槽の電解液
連結ニップルに連結された第2電解液管路を通じて電解
液タンクに貯蔵された電解液は第1電解液管路を通じて
ガスタンクから流入され、このガスタンクには電解槽の
ガス連結ニップルに結合されたガス流出通路を経て流入
される水素−酸素ガスが上部に一定量充たされるように
構成したことを特徴とする水素−酸素ガス発生機の電解
槽構造。
2. The electrolytic solution stored in the electrolytic solution tank through the second electrolytic solution line connected to the electrolytic solution connecting nipple of the electrolytic cell according to claim 1, is introduced from the gas tank through the first electrolytic solution line. The hydrogen-oxygen gas generator is characterized in that the gas tank is filled with a certain amount of hydrogen-oxygen gas flowing in through a gas outflow passage connected to a gas connection nipple of an electrolytic cell. Electrolytic cell structure.
JP1996011211U 1996-11-05 1996-11-05 Hydrogen-oxygen gas generator electrolyzer structure Expired - Lifetime JP3037633U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996011211U JP3037633U (en) 1996-11-05 1996-11-05 Hydrogen-oxygen gas generator electrolyzer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1996011211U JP3037633U (en) 1996-11-05 1996-11-05 Hydrogen-oxygen gas generator electrolyzer structure

Publications (1)

Publication Number Publication Date
JP3037633U true JP3037633U (en) 1997-05-20

Family

ID=43172345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1996011211U Expired - Lifetime JP3037633U (en) 1996-11-05 1996-11-05 Hydrogen-oxygen gas generator electrolyzer structure

Country Status (1)

Country Link
JP (1) JP3037633U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246984A (en) * 1998-03-05 1999-09-14 Zipangu Energy:Kk Electrolyte apparatus for water and water stove as well as production of electrode
JP2010018887A (en) * 2008-07-14 2010-01-28 Boo-Sung Hwang Apparatus of generating hydrogen-oxygen mixed gas (hydrogen/oxygen generating apparatus)
JP2013139442A (en) * 2011-12-30 2013-07-18 Giner Inc System for fluid perfusion of biological matter comprising tissue
WO2018131135A1 (en) * 2017-01-13 2018-07-19 Cdmインフラ環境株式会社 Deuterium-depleted water production apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246984A (en) * 1998-03-05 1999-09-14 Zipangu Energy:Kk Electrolyte apparatus for water and water stove as well as production of electrode
JP2010018887A (en) * 2008-07-14 2010-01-28 Boo-Sung Hwang Apparatus of generating hydrogen-oxygen mixed gas (hydrogen/oxygen generating apparatus)
JP2013139442A (en) * 2011-12-30 2013-07-18 Giner Inc System for fluid perfusion of biological matter comprising tissue
WO2018131135A1 (en) * 2017-01-13 2018-07-19 Cdmインフラ環境株式会社 Deuterium-depleted water production apparatus

Similar Documents

Publication Publication Date Title
JP3130014B2 (en) Massive Brownian gas generator including horizontal electrolytic cell
US11008661B2 (en) Portable electrolyzer and its use
AU684138B2 (en) Electrolytic apparatus
JP4571386B2 (en) Brown gas generator
JP3037633U (en) Hydrogen-oxygen gas generator electrolyzer structure
JPH11302885A (en) Combustible mixture gas generator of hydrogen and oxygen
CN100447306C (en) Automatic hydro-electrolytic hydroxide generator
KR0117445Y1 (en) Structure of electrolytic bath of oxyhydrogen gas
JP6085642B2 (en) Mixed fuel production equipment
WO2010109234A1 (en) Hydrogen fuel system
CN112410805A (en) Tubular plug-flow type sodium hypochlorite generator
KR101028804B1 (en) Apparatus for manufacturing brown gas and method for manufacturing the same
US7171111B2 (en) Method of heating water with rod shaped electrodes in a two-dimensional matrix
KR200380178Y1 (en) Brown gas generator
KR100677668B1 (en) Electrode plate for a hydrogen-oxygen mixed gas generator and electrolytic bath using the same
JP6557268B2 (en) Mixed fuel production equipment
KR100594379B1 (en) Oxygen.hydrogen gas generator
KR100424665B1 (en) great volume oxygen and hydrogen mixture gas generation equipment of variable an electrolytic cell
KR100780515B1 (en) Brown gas auto supply apparatus using an air cooling electrolyzer
KR200335853Y1 (en) A mixed gas generator of oxygen and hydrogen
CN2189611Y (en) Electrolyte self-circulation type oxygen-hydrogen generator
KR20190126423A (en) Generator and its power generation method
KR101343684B1 (en) BROWN GAS PLANT including a Line Style Electrolyzer
JP2004244679A (en) Electrolytic bath unit and electrolytic bath using the electrolytic bath unit
KR200308756Y1 (en) High Efficiency Brown Gas Generator