JP2006167622A - Method and device for decomposing organic substance with microorganism - Google Patents

Method and device for decomposing organic substance with microorganism Download PDF

Info

Publication number
JP2006167622A
JP2006167622A JP2004364541A JP2004364541A JP2006167622A JP 2006167622 A JP2006167622 A JP 2006167622A JP 2004364541 A JP2004364541 A JP 2004364541A JP 2004364541 A JP2004364541 A JP 2004364541A JP 2006167622 A JP2006167622 A JP 2006167622A
Authority
JP
Japan
Prior art keywords
container
sawdust
microorganisms
fluid
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004364541A
Other languages
Japanese (ja)
Other versions
JP4585302B2 (en
Inventor
Hidemasa Kobayashi
秀匡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miike Inc
Original Assignee
Miike Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miike Inc filed Critical Miike Inc
Priority to JP2004364541A priority Critical patent/JP4585302B2/en
Publication of JP2006167622A publication Critical patent/JP2006167622A/en
Application granted granted Critical
Publication of JP4585302B2 publication Critical patent/JP4585302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decompose a large amount of organic substances with microorganisms in a short time by dispersively supplying the organic substances finely pulverized up to a micron level to phytochips and/or sawdust, namely a moving bacteria bed. <P>SOLUTION: A device 1 for decomposing the organic substances with microorganisms is provided with an ultra-finely pulverizing device 10 mechanically ultra-finely pulverizing the organic substances floating on a water flow up to a micron level by a shear action of a high speed water flow W1 of preferably 8 m/s or higher, by an impact action of a part of changing flow direction and/or by a cavitation action of air in the water flow, a device 1C moving in a vessel the phytochips C as the bacteria bed where a lot of microorganisms such as zymogens live, and a spray water pipe 1D dispersively supplying in the vessel the water flow containing the ultra-finely pulverized organic substances to the hytochips C. The ultra-finely pulverized organic substances in the water flow dispersively supplied in the vessel are decomposed by the microorganisms while the hytochips are moving in the vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、食品残渣や汚泥などの有機物を超微細化して発酵菌などの微生物の菌床としての移動する植物性チップ及び/又はオガコに分散供給することで分解処理する有機物の微生物による分解処理方法と分解処理装置に関する。   The present invention is a method for decomposing organic matter such as food residue and sludge by micronizing and decomposing it by dispersing and supplying it to a moving plant chip and / or sawdust as a microbial bed of microorganisms such as fermentation bacteria. The present invention relates to a method and a decomposition processing apparatus.

食品加工や畜産、一般家庭からの廃棄物には多量の有機物を含み、しかも有機物系廃棄物は、微細な固形物でありながら液状ないしはスラリー(流動物)状になっているものが多い。例えば、豆腐製造の副生成物の「おから」や、酒粕や醤油粕や油粕、畜産農家や牧場から排出される家畜の糞尿、家庭やレストランやホテルなどからの生ゴミや賞味期限食品、廃水処理装置の汚泥などがあり、これらは、肥料に再生利用されるものもあるが、大部分は焼却処分されているのが現状である。   Food processing, livestock, and household waste contain a large amount of organic matter, and organic waste is often in the form of a liquid or slurry (fluid) while being a fine solid. For example, “Okara”, a by-product of tofu production, sake lees, soy sauce lees, oil lees, livestock manure discharged from livestock farmers and ranches, food wastes and shelf-life foods from households, restaurants, hotels, etc. There are sludge etc. of processing equipment, and some of these are recycled as fertilizer, but most are currently incinerated.

これらの流動廃棄物は、種々の形態の成分を含んでおり、これらを例えば肥料として利用するには、乾燥した粉末や顆粒やペレットなどの状態に加工するのが好ましいが、このためには、細かく粉砕ないし微細化する必要がある。上記のような廃棄物には、野菜の葉軸や根茎、畜糞中の藁などの相対的に長い繊維物や、硬い骨質などを含み、更に油脂や志望などの脂質も含んでいるために、乾燥を容易にして造粒するために、それらを粉砕して微細化する必要がある。しかも、これらの廃棄物は、通常多量の水分を含んでいるので、その処理には液体中に含まれたままで微細化され、微生物によって分解処理されることが要求される。   These fluid wastes contain various forms of components, and in order to use them as, for example, fertilizers, it is preferable to process them into dry powders, granules, pellets, etc. It is necessary to finely pulverize or refine. The wastes such as the above contain relatively long fibers such as vegetable stems and rhizomes, straw in livestock excrement, hard bones, etc., and also contain fats such as fats and oils. In order to granulate with easy drying, it is necessary to pulverize and refine them. In addition, since these wastes usually contain a large amount of moisture, the waste is required to be refined while being contained in the liquid and decomposed by microorganisms.

有機物を微生物によって分解処理する先行技術がある(特許文献1参照)。特許文献1には、処理容器内に収容された植物性チップに常温発酵菌群とそれらの一次栄養源が混入され、糞尿などの一次栄養源によって発酵菌群を増殖すると共に撹拌装置によって植物性チップ同士を擦り合わせて無数の傷を生じさせて、それら傷によって発酵菌群による分解処理を早めるようにした植物性チップの分解装置とその分解方法とが開示されている。
特開平8−132009号公報
There is a prior art in which organic substances are decomposed by microorganisms (see Patent Document 1). In Patent Document 1, a room-temperature fermenting fungus group and their primary nutrient source are mixed in a plant chip housed in a processing container, and the fermenting fungus group is propagated by a primary nutrient source such as manure and planted by a stirrer. A plant chip decomposing apparatus and a decomposing method thereof have been disclosed in which chips are rubbed together to generate innumerable scratches and the decomposition process by the fermenting bacteria group is accelerated by the scratches.
JP-A-8-132009

その微生物による分解処理は、パルプ工業界から排出されるセルロースやリグニンを分解処理するために、植物性チップの表面同士を擦り合わせて作った無数の傷から大量の常温発酵菌群を内部へと進入させて迅速に分解処理するものであるが、分解処理過程では無数の発酵菌群が生息する菌床でしかなく、超微細な微生物にとって依然として比表面積が(m2 /g)小さくて分解処理には時間の掛かるものであった。そこで、本願発明者は、そのような植物性チップは、無数の発酵菌群が生息する菌床として利用して、超微細化で大きな比表面積とした有機物を短時間で急速分解処理することを検討するに至った。   In order to decompose cellulose and lignin discharged from the pulp industry, the decomposition process by microorganisms is used to break down a large number of cold-fermenting bacteria from countless scratches made by rubbing the surfaces of plant chips. Although it is allowed to enter and rapidly decompose, the decomposition process is only a microbial bed inhabited by countless fermenting bacteria, and the specific surface area is still small (m2 / g) for ultrafine microorganisms. Was time consuming. Therefore, the inventor of the present application uses such a plant chip as a fungus bed inhabited by countless fermenting bacteria, and rapidly decomposes organic matter having a large specific surface area by ultrafine refinement in a short time. It came to consider.

本願発明の目的は、有機物をミクロンレベルまで超微細化して比表面積を大幅に大きくして、菌床としての植物性チップ及び/又はオガコに混入することで発酵菌などの微生物によって大量の有機物を短時間で急速分解処理することができる有機物の微生物による分解処理方法と分解処理装置を提供するものである。   The object of the present invention is to reduce the organic matter to a micron level, greatly increase the specific surface area, and mix a large amount of organic matter with microorganisms such as fermenting bacteria by mixing it with plant chips and / or sawdust as a fungus bed. The present invention provides a decomposition treatment method and a decomposition treatment apparatus for organic substances that can be rapidly decomposed in a short time.

本発明に係る有機物の微生物による分解処理方法は、
食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する工程と、
大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを容器内で移動させる工程と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する工程と、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理する工程とを有していることを特徴としている。
The method for decomposing organic matter by microorganisms according to the present invention,
Organic substances such as food residues and sludge are suspended in the water stream, and preferably mechanically by a shearing action by a high-speed water flow of 8 m / second or more, an impact action at a flow direction changing portion, and / or a cavitation action by air in the water stream. The process of ultra-miniaturization down to the micron level,
A step of moving plant chips and / or sawdust as a fungus bed inhabited by a large amount of microorganisms such as fermenting bacteria in a container;
A step of dispersing and supplying a water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container;
And a step of decomposing the ultrafine organic matter in the water stream dispersedly supplied in the container with microorganisms during the movement of the plant chips and / or sawdust in the container.

前記移動工程は、前記容器の一方側の供給部から他方側の排出部へ植物性チップ及び/又はオガコを比較的ゆっくりと移動させる低速移動と、排出部から供給部へ比較的速く移動させる高速移動とを含んだ循環移動を行うことができる。
更に、本発明に係る有機物の微生物による分解処理方法は、大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを前記容器内に補給する工程を有することができる。
The moving step includes a low-speed movement for moving the vegetable chip and / or saw bite relatively slowly from the supply part on one side of the container to the discharge part on the other side, and a high speed for relatively fast movement from the discharge part to the supply part. Circular movement including movement can be performed.
Furthermore, the organic substance decomposition treatment method according to the present invention may include a step of supplying plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermenting bacteria live in the container.

本発明の第一実施例に係る有機物の微生物による分解処理装置は、
食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する超微細化手段と、
上部で大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、下部に排出部とを有した竪形容器と、
前記容器内において前記植物性チップ及び/又はオガコを供給部から排出部へ移動させる手段と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する散水管とを有しており、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理することを特徴としている。
The organic substance decomposition treatment apparatus according to the first embodiment of the present invention,
Organic substances such as food residues and sludge are suspended in the water stream, and preferably mechanically by a shearing action by a high-speed water flow of 8 m / second or more, an impact action at a flow direction changing portion, and / or a cavitation action by air in the water stream. Ultra-miniaturization means to ultra-fine to micron level,
A bowl-shaped container having a supply part for supplying plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria live in the upper part, and a discharge part in the lower part;
Means for moving the vegetable chip and / or sawdust from the supply section to the discharge section in the container;
A water pipe that distributes and supplies the water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container,
The ultrafine organic matter in the water stream dispersedly supplied in the container is decomposed by microorganisms during the movement of the plant chip and / or sawdust in the container.

本発明の第一実施例に係る有機物の微生物による分解処理装置は、更に、前記容器の前記排出部から容器の横外側へ植物性チップ及び/又はオガコを搬送する横コンベヤと、該横コンベヤから供給された植物性チップ及び/又はオガコを前記容器の供給部に持ち揚げる竪コンベヤとを有した循環移動手段を有することができる。
前記横コンベヤは、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを前記容器内に補給する補給口を有することができる。
The apparatus for decomposing organic matter by microorganisms according to the first embodiment of the present invention further includes a horizontal conveyor for conveying plant chips and / or sawdust from the discharge part of the container to the lateral outer side of the container, and the horizontal conveyor. Circulating and moving means may be provided having a plant conveyor and / or a straw conveyor that lifts the supplied saw chips to the supply section of the container.
The horizontal conveyor can have a replenishment port for replenishing the container with plant chips and / or sawdust as a fungus bed where microorganisms such as fermenting bacteria live.

本発明の第二実施例に係る有機物の微生物による分解処理装置は、
食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する超微細化手段と、
一方端部で大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、他方端部に排出部とを有した横長容器と、
前記容器内において前記植物性チップ及び/又はオガコを、送り抵抗が大きく、戻り抵抗が小さい往復動部材によって供給部から排出部へ移動させる手段と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する散水管とを有しており、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理することを特徴としている。
The apparatus for decomposing organic matter by microorganisms according to the second embodiment of the present invention,
Organic substances such as food residues and sludge are suspended in the water stream, and preferably mechanically by a shearing action by a high-speed water flow of 8 m / second or more, an impact action at a flow direction changing portion, and / or a cavitation action by air in the water stream. Ultra-miniaturization means to ultra-fine to micron level,
A horizontally long container having a supply part for supplying plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria live on one end, and a discharge part on the other end,
Means for moving the vegetable chip and / or saw bite in the container from the supply unit to the discharge unit by a reciprocating member having a large feeding resistance and a small return resistance;
A water pipe that distributes and supplies the water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container,
The ultrafine organic matter in the water stream dispersedly supplied in the container is decomposed by microorganisms during the movement of the plant chip and / or sawdust in the container.

本発明の第二実施例に係る有機物の微生物による分解処理装置は、更に、前記容器の前記排出部から前記容器の前記供給部へ植物性チップ及び/又はオガコを搬送するコンベヤから成る循環移動手段を有することができる。
前記供給部は、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコが補給される。
The apparatus for decomposing organic matter by microorganisms according to the second embodiment of the present invention further comprises a circulating transfer means comprising a conveyor for transferring plant chips and / or sawdust from the discharge part of the container to the supply part of the container. Can have.
The supply unit is supplemented with plant chips and / or sawdust as a fungus bed inhabited by microorganisms such as fermentation bacteria.

本発明の第三実施例に係る有機物の微生物による分解処理装置は、
食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する超微細化手段と、
一方端部で大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、他方端部に排出部とを有し、少なくとも2対の支持ローラによって回転可能に支持された横長円筒容器と、
該横長円筒容器を回転駆動する回転駆動手段と、
該回転駆動手段による回転方向に対して前記容器内において前記植物性チップ及び/又はオガコを供給部から排出部へ移動させるように前記容器の内面に取り付けられた螺旋部材と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する散水管とを有しており、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理することを特徴としている。
An organic matter decomposition treatment apparatus according to a third embodiment of the present invention,
Organic substances such as food residues and sludge are suspended in the water stream, and preferably mechanically by a shearing action by a high-speed water flow of 8 m / second or more, an impact action at a flow direction changing portion, and / or a cavitation action by air in the water stream. Ultra-miniaturization means to ultra-fine to micron level,
It has a supply part that supplies plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria inhabit at one end, and a discharge part at the other end, and is provided by at least two pairs of support rollers A horizontally long cylindrical container rotatably supported;
A rotation driving means for rotating the horizontally long cylindrical container;
A helical member attached to the inner surface of the container so as to move the vegetable chip and / or sawdust from the supply part to the discharge part in the container with respect to the rotation direction by the rotation driving means;
A water pipe that distributes and supplies the water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container,
The ultrafine organic matter in the water stream dispersedly supplied in the container is decomposed by microorganisms during the movement of the plant chip and / or sawdust in the container.

本発明の第三実施例に係る有機物の微生物による分解処理装置は、更に、前記容器の前記排出部から前記容器の前記供給部へ植物性チップ及び/又はオガコを搬送するコンベヤから成る循環移動手段を有することができる。
前記供給部は、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコが補給される。
The apparatus for decomposing organic matter by microorganisms according to the third embodiment of the present invention further comprises a circulating transfer means comprising a conveyor for transferring plant chips and / or sawdust from the discharge part of the container to the supply part of the container. Can have.
The supply unit is supplemented with plant chips and / or sawdust as a fungus bed inhabited by microorganisms such as fermentation bacteria.

前記超微細化装置は、間に超微細化室を形成するように互いに向かい合って隔設され、共通の中心軸線周りで相対回転する一対の円盤と、
該各円盤の中心軸線に沿って円盤の外側に取り付けられた支持軸と、
該支持軸の少なくともの一方を介して、前記円盤を500から1000rpmの相対回転速度で回転駆動する回転駆動手段と、
前記支持軸の少なくともの一方を介して前記超微細化室内に被処理流体を供給する被処理流体の供給手段と、
前記円盤の向かい合った各内面に、相対回転中に互いに当らないように突出された突起と、
前記超微細化室内に導入された被処理流体の流体クラスター及び/又はその浮遊物が、前記円盤の相対回転による前記突起を介した撹拌で誘発される剪断作用と衝撃作用と溶解空気によるキャビテーション作用によってミクロンのレベルまで必要な粒度に超微細化された後で超微細化室から排出する排出手段と、
前記円盤間の超微細化室からの流体漏れをシールするシール手段と、
前記被処理流体の供給手段に空気を気泡として導入する手段と、から構成されていることを特徴としている。
The ultrafine device includes a pair of disks that are spaced apart from each other so as to form a ultrafine chamber therebetween and that rotate relative to each other about a common central axis.
A support shaft attached to the outside of the disk along the central axis of each disk;
Rotation driving means for rotating the disk at a relative rotation speed of 500 to 1000 rpm via at least one of the support shafts;
A fluid supply means for supplying a fluid to be processed into the ultrafine chamber through at least one of the support shafts;
Protrusions projecting so as not to hit each other during relative rotation on the inner surfaces facing each other of the disk,
The fluid cluster of the fluid to be treated and / or its suspended substance introduced into the ultrafine chamber are shearing action, impact action and cavitation action caused by dissolved air induced by agitation through the protrusion by relative rotation of the disk. Discharge means for discharging from the ultrafine chamber after ultrafine to the required particle size by the micron level,
Sealing means for sealing fluid leakage from the ultrafine chamber between the disks;
And a means for introducing air into the treatment fluid supply means as bubbles.

前記超微細化装置は、立面視で略逆U字形状に中央上部で互いに連通状態で結合し、湾曲上部と有底の垂直下部とから成り、中央上部に余剰流体を排出する排出管が接続されている略逆J字形状の複数の外筒体と、
各外筒体の垂直下部の内部において間に環状空間を形成するように垂直下部の底に固定された有底の垂直内筒体と、
前記複数の外筒体のいずれかの環状空間に固形状の被処理物を含んだ高速流体を供給して好ましくは8m/秒以上の平面視で時計方向か、又は反時計方向の高速旋回流を発生する第一高圧ポンプ及び配管と、
高速流体が供給される外筒体の内筒体の底部から、該内筒体の開放上縁を越えて底に落下し流入してくる流体を吸引して、前記いずれか以外の外筒体の環状空間に被処理物を含んだ高速流体を供給して好ましくは8m/秒以上の平面視で反時計方向か、又は時計方向の高速旋回流を発生する第二高圧ポンプ及び配管と、
前記いずれか以外の外筒体の内筒体の底部から、該内筒体の開放上縁を越えて底に落下し流入してくる流体を排出する配管と、
該流体排出配管に設けられた排出量調節手段と、
前記第一高圧ポンプからの配管と、前記第二高圧ポンプまでの配管と、前記排出の配管とに各々配置された開閉弁と、
前記第一高圧ポンプからの配管に設けられ、高速流体に空気を混入するエゼクターと、から構成されており、
前記高速流体が含有している被処理物は、前記環状空間における高速旋回流が発生する剪断作用と前記内筒体の底への流体の落下による衝撃力によってミクロンのレベルまで超微細化される。
The ultra-miniaturization device has a substantially inverted U-shape in an elevational view and is connected in communication with each other at the center upper part, and includes a curved upper part and a bottomed vertical lower part, and a discharge pipe for discharging excess fluid at the center upper part. A plurality of substantially inverted J-shaped outer cylinders connected;
A bottomed vertical inner cylinder fixed to the bottom of the vertical lower portion so as to form an annular space in the vertical lower portion of each outer cylindrical body;
A high-speed fluid containing a solid workpiece is supplied to any annular space of the plurality of outer cylinders, and preferably a high-speed swirling flow in a clockwise direction or a counterclockwise direction in a plan view of 8 m / second or more A first high-pressure pump and piping for generating
From the bottom of the inner cylinder of the outer cylinder to which the high-speed fluid is supplied, the fluid that falls and flows into the bottom over the open upper edge of the inner cylinder is sucked, and the outer cylinder other than any of the above A second high-pressure pump and a pipe for supplying a high-speed fluid containing an object to be treated in an annular space to generate a high-speed swirling flow in a counterclockwise direction or a clockwise direction, preferably in a plan view of 8 m / second or more;
From the bottom of the inner cylinder of the outer cylinder other than any of the above, a pipe for discharging the fluid that falls to the bottom over the open upper edge of the inner cylinder and flows in,
Discharge amount adjusting means provided in the fluid discharge pipe;
On-off valves respectively disposed on the pipe from the first high-pressure pump, the pipe to the second high-pressure pump, and the discharge pipe,
An ejector that is provided in the pipe from the first high-pressure pump and mixes air into the high-speed fluid;
The object to be processed contained in the high-speed fluid is micronized to a micron level by the shearing action generated by the high-speed swirling flow in the annular space and the impact force caused by the fluid falling to the bottom of the inner cylinder. .

前記超微細化手段は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に内部円筒壁を隔設し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成することで、円筒状外壁と内部円筒壁とで形成した環状流路と内部円筒壁の内部とを前記隙間を介して連通しており、また高圧ポンプによって貯留槽から前記内部円筒壁の内部に有機物を含有した第一高速度水流が供給され、次いで該内部円筒壁の内部から高圧ポンプによって吸引されて高速度で吐出されて形成される有機物を含有した第二高速度水流が第二水導入部において前記環状流路に供給されて、次いで前記内部円筒壁の上端からその内部に急激に落下されてケーシング底壁に激突させるようにしており、前記環状流路と前記内部円筒壁の内部に渡って形成した循環流路において水流中の有機物を破壊し、有機物を超微細化した処理水を前記環状流路から一部分抜いて前記貯留槽に供給される構造を有することができる。   In the ultra-fine means, the outer wall of the casing is formed in a cylindrical shape, and the inner cylindrical wall is separated so as to be concentric inside the casing or eccentric enough to form a flow path without contacting the cylindrical walls. And connecting the inner cylindrical wall with the casing bottom wall and forming a gap with respect to the casing ceiling wall, thereby connecting the annular flow path formed by the cylindrical outer wall and the inner cylindrical wall and the inside of the inner cylindrical wall to each other. The first high-speed water stream containing organic matter is supplied from the storage tank to the inside of the inner cylindrical wall by the high-pressure pump and then sucked by the high-pressure pump from the inside of the inner cylindrical wall. A second high-speed water stream containing organic matter discharged and formed at a high speed is supplied to the annular flow path at the second water introduction part, and then suddenly falls into the inside from the upper end of the inner cylindrical wall. Casing bottom wall In the circulation channel formed across the annular channel and the inner cylindrical wall, the organic matter in the water flow is destroyed and a part of the treated water obtained by ultra-fine organic matter is introduced from the annular channel. It can have a structure which is pulled out and supplied to the storage tank.

本発明の効果として、本発明に係る有機物の微生物による分解処理方法では、食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する工程によって、水流中の浮遊有機物がミクロンレベルの粒子に超微細化されることになる。このレベルまで有機物粒子が超微細化されると大幅に単位表面積が大きくなり、移動している発酵菌などの菌床の植物性チップ及び/又はオガコに散水管を介して分散供給すると、周囲から極めて多数の発酵菌が付着して、短時間で大量の有機物粒子を摂取し、増殖し、その発酵過程で炭酸ガスと熱等に効率的に分解消費される。因みに、半径が1mmの球状有機物の比表面積が0.00120m2 /gにすぎなかったものが、半径が0.0001mmの球状に微細化されているとすると、比表面積は12.0m2 /gと1万倍にも成り、従って1万倍の数の発酵菌が表面に付着することができて、発酵菌を効率的に極めて大量に培養でき、且つ短時間で大量の有機物粒子を分解処理できる。 As an effect of the present invention, in the method for decomposing organic matter by microorganisms according to the present invention, organic matter such as food residue and sludge is suspended in a water flow, preferably a shearing action by a high-speed water flow of 8 m / sec or more, a flow direction changing portion. The suspended organic matter in the water stream is micronized to micron level particles by the process of mechanically micronizing to micron level by the impact action in the water and / or the cavitation action by the air in the water stream. When the organic particles are made ultrafine to this level, the unit surface area is greatly increased, and when dispersedly supplied to the plant chips and / or sawdust of the moving bed such as fermenting bacteria through the water sprinkler, from the surroundings A very large number of fermenting bacteria adhere to it, ingest a large amount of organic matter particles in a short time, grow, and are efficiently decomposed and consumed by carbon dioxide and heat in the fermentation process. Incidentally, if the specific surface area of the spherical organic substance having a radius of 1 mm is only 0.00120 m 2 / g, but the microsphere is refined into a sphere having a radius of 0.0001 mm, the specific surface area is 12.0 m 2 / g. As many as 10,000 times as many fermenting bacteria can adhere to the surface, and the fermentation bacteria can be cultured in an extremely large amount efficiently, and a large amount of organic particles can be decomposed in a short time. it can.

前記移動工程が、前記容器の一方側の供給部から他方側の排出部へ植物性チップ及び/又はオガコを比較的ゆっくりと移動させる低速移動と、排出部から供給部へ比較的速く移動させる高速移動とを含んだ循環移動を行うと、移動経路を長く取ることができ、大量の有機物の微生物分解処理を促進でき、また菌床の植物性チップ及び/又はオガコを繰り返し有効活用できる。
更に、本発明に係る有機物の微生物による分解処理方法では、大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを前記容器内に補給することで、植物性チップ及び/又はオガコ自身も微生物分解によって処理することができる。
The moving step is a low-speed movement for moving the vegetable chip and / or saw bite relatively slowly from the supply part on one side of the container to the discharge part on the other side, and a high speed for moving relatively quickly from the discharge part to the supply part. When the circulation movement including the movement is performed, the movement path can be made longer, the microbial decomposition treatment of a large amount of organic matter can be promoted, and the plant chips and / or sawdust in the fungus bed can be repeatedly and effectively utilized.
Furthermore, in the method for decomposing organic matter by microorganisms according to the present invention, the plant chip and / or sawdust as a fungus bed inhabited by a large amount of microorganisms such as fermentation bacteria are replenished in the container, The sawdust itself can also be treated by microbial degradation.

本発明の第一実施例に係る有機物の微生物による分解処理装置では、超微細化手段によって食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用により機械的にミクロンレベルまで超微細化し、大幅に単位表面積が大きくできる。超微細化された有機物を含む水流を散水管を介して竪形容器内で上部の供給部から下部の排出部へ移動する発酵菌などの菌床の植物性チップ及び/又はオガコに散水管を介して分散供給すると、周囲から極めて多数の発酵菌が付着して、短時間で大量の有機物粒子を摂取し、増殖し、その発酵過程で炭酸ガスと熱等に効率的に分解消費される。因みに、半径が1mmの球状有機物の比表面積が0.00120m2 /gにすぎなかったものが、半径が0.0001mmの球状に微細化されているとすると、比表面積は12.0m2 /gと1万倍にも成り、従って1万倍の数の発酵菌が表面に付着することができて、発酵菌を効率的に極めて大量に培養でき、且つ短時間で大量の有機物粒子を分解処理できる。また竪形容器を採用することで、占有面積を小さくでき、植物性チップやオガコの移動を重力で行うことで移動を省いたり簡素化でき、また超微細化された有機物を含む水流を複数段の散水管を介して行うことができる。 In the apparatus for decomposing organic matter by microorganisms according to the first embodiment of the present invention, organic matter such as food residue and sludge is suspended in the water flow by the ultrafine means, and preferably a shearing action by high-speed water flow of 8 m / second or more, By the impact action at the flow direction changing portion and / or the cavitation action by the air in the water flow, the unit surface area can be greatly increased by mechanically miniaturizing to the micron level. A sprinkler tube is attached to a plant chip and / or sawdust of a fungus bed that moves a water stream containing ultrafine organic matter through a sprinkler tube from a top supply section to a bottom discharge section in a vertical container. When dispersed and supplied, an extremely large number of fermenting bacteria adhere from the surroundings, and a large amount of organic particles are ingested and propagated in a short time, and are efficiently decomposed and consumed by carbon dioxide gas and heat in the fermentation process. Incidentally, if the specific surface area of the spherical organic substance having a radius of 1 mm is only 0.00120 m 2 / g, but the microsphere is refined into a sphere having a radius of 0.0001 mm, the specific surface area is 12.0 m 2 / g. As many as 10,000 times as many fermenting bacteria can adhere to the surface, and the fermentation bacteria can be cultured in an extremely large amount efficiently, and a large amount of organic particles can be decomposed in a short time. it can. In addition, by adopting a bowl-shaped container, the occupied area can be reduced, and the movement of plant chips and sawdust can be omitted or simplified by gravity, and multiple stages of water flow containing ultrafine organic matter can be made. This can be done through a sprinkler tube.

本発明の第一実施例に係る有機物の微生物による分解処理装置では、更に、前記容器の前記排出部から容器の横外側へ植物性チップ及び/又はオガコを搬送する横コンベヤと、該横コンベヤから供給された植物性チップ及び/又はオガコを前記容器の供給部に持ち揚げる竪コンベヤとを有した循環移動手段を設けると、移動経路を長く取ることができ、大量の有機物の微生物分解処理を促進でき、また菌床の植物性チップ及び/又はオガコを繰り返し有効活用できる。
前記横コンベヤは、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを前記容器内に補給する補給口を設けると、植物性チップ及び/又はオガコ自身も微生物分解によって処理することができる。
In the decomposition apparatus for microorganisms of organic matter according to the first embodiment of the present invention, further, a horizontal conveyor for conveying plant chips and / or sawdust from the discharge part of the container to the lateral outer side of the container, and from the horizontal conveyor Providing a circulation movement means with a basket conveyor that lifts the supplied plant chips and / or sawdust to the supply section of the container can lengthen the movement path and promote the microbial decomposition treatment of a large amount of organic matter In addition, the plant chips and / or sawdust in the fungus bed can be effectively used repeatedly.
When the horizontal conveyor is provided with a replenishment port for replenishing the plant chips and / or sawdust as a fungus bed where microorganisms such as fermentation bacteria live, the plant chips and / or sawdust themselves are also treated by microbial decomposition. can do.

本発明の第二実施例に係る有機物の微生物による分解処理装置では、超微細化手段によって食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化し、大幅に単位表面積が大きくできる。一方端部に大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、他方端部に排出部とを有した横長容器内において、前記植物性チップ及び/又はオガコを、送り抵抗が大きく、戻り抵抗が小さい往復動部材によって供給部から排出部へ移動させ、散水管を介して前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給することで、周囲から極めて多数の発酵菌が付着して、短時間で大量の有機物粒子を摂取し、増殖し、その発酵過程で炭酸ガスと熱等に効率的に分解消費される。因みに、半径が1mmの球状有機物の比表面積が0.00120m2 /gにすぎなかったものが、半径が0.0001mmの球状に微細化されているとすると、比表面積は12.0m2 /gと1万倍にも成り、従って1万倍の数の発酵菌が表面に付着することができて、発酵菌を効率的に極めて大量に培養でき、且つ短時間で大量の有機物粒子を分解処理できる。また横長容器内に往復動部材を採用することで、植物性チップ/オガコの移動や撹拌を容易に制御できるようになる。 In the organic microorganism decomposition treatment apparatus according to the second embodiment of the present invention, the organic matter such as food residue and sludge is suspended in the water flow by the ultrafine means, and preferably the shearing action by the high-speed water flow of 8 m / second or more, By the impact action at the flow direction changing portion and / or the cavitation action by the air in the water flow, the unit surface area can be greatly increased by mechanically miniaturizing to the micron level. In a horizontally long container having a supply part for supplying plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria inhabit one end and a discharge part at the other end, the plant The chip and / or saw bite is moved from the supply unit to the discharge unit by a reciprocating member having a large feeding resistance and a small return resistance, and the water flow containing the ultrafine organic matter is passed through the water spray pipe in the container. By dispersing and supplying plant chips and / or sawdust, a large number of fermenting bacteria adhere from the surroundings, ingest and grow a large amount of organic particles in a short time, and in the fermentation process, carbon dioxide and heat etc. Efficiently decomposed and consumed. Incidentally, if the specific surface area of the spherical organic substance having a radius of 1 mm is only 0.00120 m 2 / g, but the microsphere is refined into a sphere having a radius of 0.0001 mm, the specific surface area is 12.0 m 2 / g. As many as 10,000 times as many fermenting bacteria can adhere to the surface, and the fermentation bacteria can be cultured in an extremely large amount efficiently, and a large amount of organic particles can be decomposed in a short time. it can. In addition, by adopting a reciprocating member in the horizontally long container, it is possible to easily control the movement and agitation of the plant chip / sawdust.

本発明の第二実施例に係る有機物の微生物による分解処理装置では、更に、前記容器の前記排出部から前記容器の前記供給部へ植物性チップ及び/又はオガコを搬送するコンベヤから成る循環移動手段を設けると、移動経路を長く取ることができ、大量の有機物の微生物分解処理を促進でき、また菌床の植物性チップ及び/又はオガコを繰り返し有効活用できる。
前記供給部は、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコが補給されると、植物性チップ及び/又はオガコ自身も微生物分解によって処理できる。
In the apparatus for decomposing organic matter by microorganisms according to the second embodiment of the present invention, the apparatus further comprises a conveyor for transferring plant chips and / or sawdust from the discharge part of the container to the supply part of the container. By providing a long movement path, it is possible to promote the microbial decomposition treatment of a large amount of organic matter, and it is possible to effectively utilize plant chips and / or sawdust in the fungus bed repeatedly.
When the plant chip and / or sawdust as a fungus bed where microorganisms such as fermenting microorganisms inhabit are supplied, the plant chip and / or sawfish itself can be treated by microbial decomposition.

本発明の第三実施例に係る有機物の微生物による分解処理装置では、超微細化手段によって食品残渣や汚泥などの有機物を水流に浮遊させて、好ましくは8m/秒以上の高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化し、大幅に単位表面積が大きくできる。一方端部に大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、他方端部に排出部とを有し、少なくとも2対の支持ローラによって回転可能に支持された横長容器内において、回転駆動手段による回転方向に対して前記植物性チップ及び/又はオガコを供給部から排出部へ移動させるように前記容器の内面に取り付けられた螺旋部材によって天地返しに近い大きな撹拌を行うことができ、そこに散水管を介して前記超微細化された有機物を含む水流を分散供給することで、周囲から極めて多数の発酵菌が付着して、短時間で大量の有機物粒子を摂取し、増殖し、その発酵過程で炭酸ガスと熱等に効率的に分解消費される。因みに、半径が1mmの球状有機物の比表面積が0.00120m2 /gにすぎなかったものが、半径が0.0001mmの球状に微細化されているとすると、比表面積は12.0m2 /gと1万倍にも成り、従って1万倍の数の発酵菌が表面に付着することができて、発酵菌を効率的に極めて大量に培養でき、且つ短時間で大量の有機物粒子を分解処理できる。また回転可能な横長容器を採用することで、螺旋部材の螺旋ピッチや幅、連続性や分断状態を変えることで、植物性チップ/オガコの移動や撹拌を制御できるようになる。 In the organic microorganism decomposition treatment apparatus according to the third embodiment of the present invention, the organic substance such as food residue and sludge is suspended in the water flow by the ultrafine means, and preferably a shearing action by a high-speed water flow of 8 m / second or more, The unit surface area can be greatly increased by mechanically refining to the micron level by the impact action at the flow direction changing portion and / or the cavitation action by the air in the water flow. It has a supply part for supplying plant chips and / or sawdust as a fungus bed where a large amount of microorganisms such as fermenting bacteria inhabit one end, and a discharge part at the other end, and at least two pairs of support rollers By a spiral member attached to the inner surface of the container so as to move the vegetable chip and / or saw bite from the supply unit to the discharge unit in a rotation-supported horizontally long container with respect to the rotation direction by the rotation driving means. A large agitation close to the top and bottom can be performed, and by supplying a water stream containing the above-mentioned ultrafine organic matter through a sprinkling tube, a large number of fermentation bacteria adhere from the surroundings, Ingests a large amount of organic particles, grows, and is efficiently decomposed and consumed by carbon dioxide and heat during the fermentation process. Incidentally, if the specific surface area of the spherical organic substance having a radius of 1 mm is only 0.00120 m 2 / g, but the microsphere is refined into a sphere having a radius of 0.0001 mm, the specific surface area is 12.0 m 2 / g. As many as 10,000 times as many fermenting bacteria can adhere to the surface, and the fermentation bacteria can be cultured in an extremely large amount efficiently, and a large amount of organic particles can be decomposed in a short time. it can. In addition, by adopting a rotatable horizontally long container, it is possible to control the movement and stirring of the plant chip / spot by changing the helical pitch, width, continuity, and divided state of the helical member.

本発明の第三実施例に係る有機物の微生物による分解処理装置は、更に、前記容器の前記排出部から前記容器の前記供給部へ植物性チップ及び/又はオガコを搬送するコンベヤから成る循環移動手段を設けると、移動経路を長く取ることができ、大量の有機物の微生物分解処理を促進でき、また菌床の植物性チップ及び/又はオガコを繰り返し有効活用できる。
前記供給部は、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコが補給されると、植物性チップ及び/又はオガコ自身も微生物分解によって処理できる。
The apparatus for decomposing organic matter by microorganisms according to the third embodiment of the present invention further comprises a circulating transfer means comprising a conveyor for transferring plant chips and / or sawdust from the discharge part of the container to the supply part of the container. By providing a long movement path, it is possible to promote the microbial decomposition treatment of a large amount of organic matter, and it is possible to effectively utilize plant chips and / or sawdust in the fungus bed repeatedly.
When the plant chip and / or sawdust as a fungus bed where microorganisms such as fermenting microorganisms inhabit are supplied, the plant chip and / or sawfish itself can be treated by microbial decomposition.

第一例の超微細化装置では、間に超微細化室を形成するように互いに向かい合って隔設され、共通の中心軸線周りで相対回転する一対の円盤は、その中心軸線に沿って円盤の外側に取り付けられた支持軸の少なくともの一方を介して500から1000rpmの相対回転速度で回転駆動手段によって回転駆動され、前記支持軸の少なくともの一方を介して前記超微細化室内に供給手段によって供給された被処理流体を前記円盤の向かい合った各内面から相対回転中に互いに当らないように突出された突起によって強力に撹拌し、被処理流体の流体クラスター及び/又はその浮遊物を、前記円盤の相対回転による前記突起を介した撹拌で誘発される剪断作用(好ましくは8m/秒以上の高速度で移動する突起の側面に付着した流体と表面近くの層流との間に起きる)と衝撃作用(好ましくは8m/秒以上の高速度で移動する突起に被処理流体が当って起きる)と溶解空気によるキャビテーション作用(好ましくは8m/秒以上の高速度で移動する突起の後面で生じる剥離流の真空部に起きる)によってミクロンのレベルまで必要な粒度に短時間で超微細化し、その後に超微細化室から排出手段を介して排出するものであり、動物性有機物を含む広範囲の種類の浮遊固形物や水などの被処理物に対して連続的に且つ効率的に短時間で、ミクロンのレベルまでの所望の粒度に微細化できる、また排出手段の排出量を制限することで必要に応じて超微細化を繰り返すこともでき、また作動も円盤の単純な回転運動だけで構造が比較的簡単で耐久性の大きな装置とすることができる。浮遊固形物がミクロンのレベルまで、例えば半径1mmの球状の被処理物が半径0.1ミクロンに超微細化されると、単位重量当りの表面積(比表面積)はほぼ1万倍にも成り、その超微細化後に発酵菌などの処理微生物や薬品によって処理すると格段に拡大した表面積に対して極めて効率的に処理作用を受けることになる。前記円盤間の超微細化室からの流体漏れをシールするシール手段によって、超微細化室からの被処理流体の漏れを最小限度に抑えることができる。また前記被処理流体の供給手段に空気を気泡として導入する手段を有することで、被処理流体中への空気混入率を高めてキャビテーション作用や、後処理の曝気処理などの効果を高めることができる。   In the ultrafine device of the first example, a pair of disks that are spaced apart from each other so as to form a hyperfine chamber therebetween and relatively rotate around a common central axis, the disk of the disk along the central axis. Rotation is driven by rotation drive means at a relative rotational speed of 500 to 1000 rpm through at least one of the support shafts attached to the outside, and is supplied by the supply means into the ultrafine chamber through at least one of the support shafts. The treated fluids are vigorously stirred by protrusions that protrude from the opposing inner surfaces of the disk so as not to collide with each other during relative rotation, and the fluid clusters of the fluid to be treated and / or their floats are Shear action induced by agitation through the protrusions by relative rotation (preferably near the surface with the fluid adhering to the side of the protrusion moving at a high speed of 8 m / sec or higher) And a cavitation action (preferably at a high speed of 8 m / second or more) by dissolved air and an impact action (preferably occurs when the fluid to be treated hits a protrusion moving at a high speed of 8 m / second or more) Animal that is ultra-fine in a short time to the required particle size to the micron level by the separation flow generated on the rear surface of the moving projection) and then discharged from the ultra-fine chamber through the discharge means. For a wide variety of suspended solids and water-containing materials including organic substances that can be continuously and efficiently refined to a desired particle size down to the micron level in a short time. By limiting the amount, it is possible to repeat ultra-miniaturization as necessary, and the operation can be a relatively simple structure with high durability only by a simple rotational movement of the disk. When suspended solids are micronized, for example, when a spherical workpiece with a radius of 1 mm is made ultrafine to a radius of 0.1 micron, the surface area (specific surface area) per unit weight is almost 10,000 times, If it is processed with a treatment microorganism such as a fermentative bacterium or a chemical after the ultra-miniaturization, the surface area that has been remarkably expanded will be treated extremely efficiently. By the sealing means for sealing the fluid leakage from the ultrafine chamber between the disks, the leakage of the fluid to be processed from the ultrafine chamber can be minimized. Further, by providing means for introducing air as bubbles to the supply fluid supply means, it is possible to increase the air mixing rate in the fluid to be processed, thereby enhancing the effects of cavitation action, post-treatment aeration process, and the like. .

第二例の超微細化装置では、二連式の逆U字状態の構造に構成されているために、前記高速流体が含有している有機物が、環状空間における高速旋回流が発生する剪断作用と内筒体の底への流体の落下による衝撃力によって高速流で搬送されながら連続的に且つ効率的にミクロンのレベルまで超微細化される。例えば半径1mmの球状の被処理物が半径0.1ミクロンに超微細化されると、単位重量当りの表面積(比表面積)はほぼ1万倍にも成り、発酵菌などの処理微生物や薬品によって極めて効率的に処理作用を受けることになる。また、前記いずれか以外の外筒体の内筒体の底部からの流体排出配管に設けられた排出量調節手段によってその流体排出量を絞ると外筒体同士が略逆U字形状に中央上部で互いに連通状態で結合しているために、前記いずれかの外筒体側に高速旋回しながら旋回方向で干渉しないように旋回方向が反転して流入し、被処理物は所望の粒度まで繰り返し超微細化の作用を受ける。被処理物は、外筒体の内面に付着した流体層とそれに近接した高速旋回流層との間での剪断作用を受けたり、また内筒体の底への落下激突によって超微細化されるために、単純に肉厚を厚くすることで構造が簡単で耐久性の大きな装置にすることができる。第一高圧ポンプからの配管と、第二高圧ポンプまでの配管と、前記排出の配管とには、各々開閉弁が配置され、第一高圧ポンプからの配管の開閉弁によって流体の供給量を調節できると共に、装置の緊急時に流体供給を止めることができる。また第二高圧ポンプまでの配管の開閉弁によって供給流体に対応して上記いずれかの環状空間において最適な高速旋回流が形成されるように上記いずれかの内筒体からの吸引量を調節できる。また排出の配管の開閉弁によって流体排出量を絞ると上記いずれか以外の外筒体から前記いずれかの外筒体へ流体を高速旋回させながら戻すことができ、また前記いずれかの外筒体及び内筒体と前記いずれか以外の外筒体及び内筒体による超微細化作用で所定の超微細化が達成された場合は、第一高圧ポンプからの供給量よりも多く排出できる状態に排出の配管の開閉弁を設定できる。   In the ultrafine device of the second example, since the structure is a double inverted U-shaped structure, the organic matter contained in the high-speed fluid causes a shearing action that generates a high-speed swirling flow in the annular space. While being transported in a high-speed flow by the impact force of the fluid falling to the bottom of the inner cylinder, it is continuously and efficiently made ultrafine to the micron level. For example, when a spherical workpiece with a radius of 1 mm is made ultrafine to a radius of 0.1 micron, the surface area per unit weight (specific surface area) is almost 10,000 times larger, and depending on the processing microorganisms and chemicals such as fermentation bacteria It will be treated very efficiently. In addition, when the fluid discharge amount is reduced by the discharge amount adjusting means provided in the fluid discharge pipe from the bottom of the inner cylinder of the outer cylinder other than any one of the above, the outer cylinders are formed in a substantially inverted U shape in the center upper part. In this case, the swiveling direction is reversed so as not to interfere with the swiveling direction while turning at a high speed to any one of the outer cylinders, and the workpiece is repeatedly super-extended to a desired particle size. Subject to miniaturization. The workpiece is subjected to a shearing action between the fluid layer adhering to the inner surface of the outer cylindrical body and the high-speed swirling flow layer adjacent to the fluid layer, and is ultrafine-sized by a drop collision to the bottom of the inner cylindrical body Therefore, by simply increasing the wall thickness, it is possible to provide a device with a simple structure and high durability. On-off valves are arranged on the piping from the first high-pressure pump, the piping to the second high-pressure pump, and the discharge piping, respectively, and the fluid supply amount is adjusted by the on-off valves of the piping from the first high-pressure pump. In addition, the fluid supply can be stopped in the event of an emergency of the device. Also, the suction amount from any one of the inner cylinders can be adjusted so that an optimum high-speed swirling flow is formed in any one of the annular spaces corresponding to the supply fluid by the on-off valve of the pipe to the second high-pressure pump. . Further, when the fluid discharge amount is reduced by the opening / closing valve of the discharge pipe, the fluid can be returned from any one of the outer cylinders other than the above to the any one of the outer cylinders while being swung at a high speed. And when the predetermined ultrafine size is achieved by the ultrafine size action by the inner cylindrical body and any other outer cylindrical body and inner cylindrical body, it is possible to discharge more than the supply amount from the first high-pressure pump. It is possible to set an open / close valve for the discharge pipe.

第三例の超微細化装置は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に内部円筒壁を隔設すると、壁と内部円筒壁との間に環状流路が形成され、そこに供給される好ましくは8m/秒以上の高速度水流は流れ方向が常に変化して強力な遠心力を発生させて、外側壁面に強く当って大きな圧縮力と壁面の層流間に剪断力を生じさせ、同時に内側壁面からの層流剥離によってキャビテーションを生じさせて、水クラスターと汚泥の超微細化、即ち汚泥の細菌死骸や有機物の細胞膜の破壊と細胞質の超微細化を促進できる。円形環状流路では水流の流速の維持が比較的容易である。また内部円筒壁をケーシング底壁に結合し且つケーシング天井壁に対して隙間を形成することで、円筒状外壁と内部円筒壁とで形成した環状流路と内部円筒壁の内部とを上記隙間を介して連通し、高速度の水流が環状流路から、また同時に高圧ポンプから供給されてくる水流が内部円筒壁の内部に落下して、ケーシング底壁に激突して衝撃力によって水のクラスターと気泡の超微細化を促進する。また高圧ポンプによって内部円筒壁の内部から水を吸引するので、その内部に落下する水流の上記衝撃力をより強いものにできる。高圧ポンプによって吸引されて高速度で吐出されて形成される第二高速度水流が前記環状流路に供給されることで、環状流路と内部円筒壁の内部に渡って循環流路を形成することになり、循環中に繰り返し水のクラスターの超微細化と水流中の汚泥細菌死骸の細胞膜の破壊と内部の細胞質の超微細化を行うことができる。超微細化された汚泥の細菌死骸を含有した処理水は環状流路から一部分抜いて槽に供給される。   The third embodiment of the ultra-miniaturization apparatus is such that the outer wall of the casing is formed into a cylindrical shape, and the inner cylinder is formed so as to be concentric inside the casing or eccentric so as to form a flow path without contacting the cylindrical walls. When the walls are separated, an annular flow path is formed between the wall and the inner cylindrical wall, and the high-speed water flow preferably supplied at 8 m / sec or more constantly changes the flow direction and generates strong centrifugal force. To generate a shear force between the large compressive force and the laminar flow of the wall surface by strongly hitting the outer wall surface, and at the same time, cause cavitation by laminar flow separation from the inner wall surface, thereby making the water cluster and sludge ultrafine, In other words, it is possible to promote the destruction of sludge bacterial dead bodies and organic cell membranes and ultra-fine cytoplasm. In the circular annular channel, it is relatively easy to maintain the water flow velocity. Further, by connecting the inner cylindrical wall to the casing bottom wall and forming a gap with respect to the casing ceiling wall, the gap between the annular channel formed by the cylindrical outer wall and the inner cylindrical wall and the inside of the inner cylindrical wall is reduced. The high-speed water flow from the annular channel and at the same time, the water flow supplied from the high-pressure pump falls into the inner cylindrical wall and collides with the bottom wall of the casing to form a cluster of water by impact force. Promotes ultra-fine bubbles. Further, since water is sucked from the inside of the inner cylindrical wall by the high pressure pump, the impact force of the water flow falling into the inside can be made stronger. A second high-speed water flow sucked by a high-pressure pump and discharged at a high speed is supplied to the annular flow path, thereby forming a circulation flow path across the annular flow path and the inner cylindrical wall. Therefore, it is possible to repeatedly refine the water cluster during circulation, destroy the cell membrane of sludge bacterial dead bodies in the water stream, and refine the internal cytoplasm. A part of the treated water containing the dead bacteria bacteria of the ultrafine sludge is extracted from the annular channel and supplied to the tank.

次に、本発明の有機物の微生物による分解処理方法を実現する実施形態に係る有機物の微生物による分解処理装置を図面によって説明する。
図1と図2において、本発明の第一実施形態の有機物の微生物による分解処理装置1は、食品残渣や汚泥などの有機物を水流に浮遊させて貯留する貯留槽5から水中高圧ポンプ1Pによって好ましくは8m/秒以上の、好ましくは約20m/秒の高速水流W1による剪断作用、流れ方向変更部での衝撃作用及び水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する後述の超微細化装置10、20、30と、上部で大量の発酵菌などの微生物が生息する菌床としての植物性チップCを供給する供給部11bと、逆円錐状底部の中央に排出部12bとを有した竪形円筒容器1Bと、該容器内において前記植物性チップ及び/又はオガコを供給部11bから排出部12bへ自重で移動させ、ブリッジ現象を防止して排出を促進する底部スクリューコンベヤ1C(周囲方向に90度間隔で4組)と、超微細化された有機物を含む水流W3を前記容器内で前記植物性チップ及び/又はオガコに分散供給する上段と中段の散水管1Dと、これら散水管を支持すると共にそれらに超微細化された有機物を含む水流W3を供給する回転中央中空軸1Eと、前記容器の前記排出部から容器の横外側へ植物性チップCを搬送する横コンベヤ11fと、該横コンベヤから供給された植物性チップCを前記容器の前記供給部に持ち揚げる竪コンベヤ12fとを有した循環移動装置1Fとを有している。
Next, a decomposition treatment apparatus for organic matter microorganisms according to an embodiment for realizing the organic matter decomposition treatment method of the present invention will be described with reference to the drawings.
In FIG. 1 and FIG. 2, the organic matter decomposition treatment apparatus 1 according to the first embodiment of the present invention is preferably used by a submersible high-pressure pump 1P from a storage tank 5 that stores organic substances such as food residues and sludge suspended in a water stream. Is reduced to a micron level mechanically by the shearing action by the high-speed water flow W1 of 8 m / second or more, preferably about 20 m / second, the impact action at the flow direction changing portion, and the cavitation action by the air in the water stream. Ultrafine devices 10, 20, 30, a supply unit 11 b for supplying a plant chip C as a fungus bed where microorganisms such as a large amount of fermentation bacteria inhabit the upper part, and a discharge unit 12 b at the center of the inverted conical bottom The bowl-shaped cylindrical container 1B having the inside and the plant chip and / or sawdust are moved by their own weight from the supply part 11b to the discharge part 12b in the container to prevent the bridge phenomenon. The bottom screw conveyor 1C (four sets at intervals of 90 degrees in the circumferential direction) for promoting the discharge and the water stream W3 containing the ultrafine organic matter are dispersedly supplied to the plant chips and / or sawdust in the container. An upper and middle sprinkler pipe 1D, a rotating central hollow shaft 1E that supports these sprinkler pipes and supplies a water flow W3 containing ultrafine organic matter thereto, and from the discharge portion of the container to the lateral outer side of the container It has a circulation transfer device 1F having a horizontal conveyor 11f for conveying the vegetable chips C and a straw conveyor 12f for lifting the vegetable chips C supplied from the horizontal conveyor to the supply section of the container. .

中空軸1Eは、容器1Bの天井板に固定搭載されたスラスト軸受11eによって回転可能に垂下状態で支持されており、また容器1Bの天井板に固定搭載されたインバータモータ1Mによって回転速度変更可能に回転駆動され、スラスト軸受11eとモータ1Mとの間に備えた回転流体継ぎ手12eを介して前記水流W3が中空部に供給され、上段と中段の散水管1Dの間に自重で下がるが回転駆動される撹拌ならしアーム1Gを、下端に撹拌羽根1Hを各々有している。中空軸1Eは、下部で容器内面に搭載された支持棒で保持された振れ防止の軸受1Iで軸承されている。横コンベヤ11fは、一端部に新しい植物性チップC’を補給する補給口11f’を有し、中央で前記容器1Bの排出部12bに接続し、他端部で竪コンベヤ12fの下端部内に接続している。コンベヤ11f、12fの駆動モータは、回転速度変更可能なインバータモータ1Mとなっている。容器1Bの天井板に微生物分解処理中に発生する炭酸ガスを抜く弁付きパイプ13bが搭載されている。   The hollow shaft 1E is rotatably supported by a thrust bearing 11e fixedly mounted on the ceiling plate of the container 1B, and the rotation speed can be changed by an inverter motor 1M fixedly mounted on the ceiling plate of the container 1B. The water flow W3 is rotationally driven and supplied to the hollow portion through a rotating fluid joint 12e provided between the thrust bearing 11e and the motor 1M, and is driven to rotate by its own weight between the upper and middle sprinkling pipes 1D. And a stirring blade 1H at the lower end. The hollow shaft 1E is supported by a vibration-preventing bearing 1I held at a lower portion by a support rod mounted on the inner surface of the container. The horizontal conveyor 11f has a supply port 11f 'for supplying a new plant chip C' at one end, connected to the discharge part 12b of the container 1B at the center, and connected to the lower end of the straw conveyor 12f at the other end. is doing. The drive motors of the conveyors 11f and 12f are inverter motors 1M that can change the rotation speed. A valve-equipped pipe 13b for removing carbon dioxide generated during the microbial decomposition process is mounted on the ceiling plate of the container 1B.

図3と図4において、本発明の第二実施形態の有機物の微生物による分解処理装置2は、第一実施形態のものと同様な超微細化装置10、20、30と、一方端部で大量の発酵菌などの微生物が生息する菌床としての植物性チップCを供給する供給部21bと他方端部に排出部22bとを有した横長のほぼ直方体状容器2Bと、該容器内において前記植物性チップCを、送り抵抗が大きく且つ戻り抵抗が小さい横断面が直角三角形の複数列の複数個の往復動部材21c、・・・によって供給部から排出部へ移動させる往復動装置2Cと、超微細化された有機物を含む水流W3を容器内で植物性チップCの上から分散供給するように容器2Bの天井板の内面に配管された散水管2Dと、容器の排出部22bから容器の供給部21bへ植物性チップCを搬送するコンベヤから成る循環移動装置2Fを有している。   In FIG. 3 and FIG. 4, the organic substance decomposition treatment apparatus 2 according to the second embodiment of the present invention is the same as that of the first embodiment of the ultrafine refinement apparatus 10, 20, 30, and has a large amount at one end. A horizontally long and substantially rectangular parallelepiped container 2B having a supply part 21b for supplying a plant chip C as a fungus bed inhabited by microorganisms such as fermentation bacteria and a discharge part 22b at the other end, and the plant in the container A reciprocating device 2C for moving the conductive chip C from the supply unit to the discharge unit by a plurality of reciprocating members 21c,. Supply of the container from the water sprinkling pipe 2D piped on the inner surface of the ceiling plate of the container 2B so that the water stream W3 containing the refined organic matter is distributed and supplied from above the plant chip C in the container, and the discharge part 22b of the container To plant part 21b And a cyclic shift device 2F consisting conveyor for conveying the C.

往復動装置2Cは、容器外の一方側でブラケットに揺動可能に支持された油圧シリンダー22cと、その出力軸に連接された往復動棒23cに間隔をあけて固定搭載された前記往復動部材21c、・・・と、油圧発生・制御装置(図示は省略)とを有している。往復動棒23cの他方側は、容器外の他方側のブラケットにレバーを介して揺動可能に支持されている。従って、往復動部材21c、・・・は往復動中に若干上下動し、撹拌も兼務する。図示例では、往復動装置2Cは互いに逆方向に往復動する3列の往復動部材21c、・・・を有しているが、皆同方向に同時に往復動するようにしてもよいし、ランダムなタイミングで往復動するようにしてもよい。また油圧シリンダー22cは、送りをかける往動時にはゆっくりと作動し、戻る復動時には早く作動して送ったチップCの連れ戻し量を少なくするように油圧供給ポートの絞り制御が行われる。発酵菌などの微生物が生息する菌床としての新しい植物性チップC’の補給は、供給部21bで行われる。生物分解処理中に発生する炭酸ガスを抜く弁付きパイプ23bが容器2Bの天井板に搭載されている。   The reciprocating device 2C includes the reciprocating member fixedly mounted with a gap between a hydraulic cylinder 22c swingably supported by a bracket on one side outside the container and a reciprocating rod 23c connected to an output shaft thereof. 21c, and a hydraulic pressure generation / control device (not shown). The other side of the reciprocating rod 23c is swingably supported by a bracket on the other side outside the container via a lever. Therefore, the reciprocating member 21c,... Moves slightly up and down during the reciprocating motion, and also serves as agitation. In the illustrated example, the reciprocating device 2C has three rows of reciprocating members 21c that reciprocally move in opposite directions, but may be reciprocated simultaneously in the same direction or randomly. You may make it reciprocate at an appropriate timing. Further, the hydraulic cylinder 22c is operated slowly during the forward movement for feeding, and is operated early during the backward movement to perform the throttle control of the hydraulic pressure supply port so as to reduce the return amount of the tip C sent. Replenishment of a new plant chip C ′ as a fungus bed inhabited by microorganisms such as fermentation bacteria is performed by the supply unit 21b. A pipe 23b with a valve for removing carbon dioxide generated during the biodegradation process is mounted on the ceiling plate of the container 2B.

図5において、本発明の第三実施形態の有機物の微生物による分解処理装置3は、第一実施形態のものと同様な超微細化装置10、20、30と、一方端部で大量の発酵菌などの微生物が生息する菌床としての植物性チップCを供給する供給部31bを備えた固定フード34bと、他方端部に排出部32bを備えた固定フード35bとの間で、これらフード34b、35bに各々前後端部を回転可能にシール状態で差し込んで前後2対の支持ローラ36bによって回転可能に支持された横長円筒容器3Bと、該横長円筒容器を回転駆動する回転駆動装置37bと、該回転駆動装置37bによる回転方向に対して前記容器内において植物性チップCを供給部側から排出部側へ移動させるように容器内面に取り付けられた螺旋部材3Cと、超微細化された有機物を含む水流W3を容器内で植物性チップC上に分散供給する散水管3Dと、容器の排出部32bから容器の供給部31bへ植物性チップを搬送するコンベヤから成る循環移動装置3Fとを有している。   In FIG. 5, a decomposition apparatus 3 for microorganisms of organic matter according to the third embodiment of the present invention includes ultrafine devices 10, 20, and 30 similar to those of the first embodiment, and a large amount of fermentation bacteria at one end. Between the fixed hood 34b provided with a supply part 31b for supplying a plant chip C as a fungus bed inhabited by microorganisms and the fixed hood 35b provided with a discharge part 32b at the other end, 35b, a horizontally long cylindrical container 3B that is rotatably inserted into the front and rear end portions in a sealed state, and rotatably supported by two pairs of front and rear support rollers 36b, a rotational drive device 37b that rotationally drives the horizontally long cylindrical container, A spiral member 3C attached to the inner surface of the container so as to move the vegetable chip C from the supply part side to the discharge part side in the container with respect to the rotation direction by the rotation drive device 37b; A circulation transfer device 3F comprising a water spray pipe 3D for supplying and supplying a water stream W3 containing the organic matter on the plant chip C in a container and a conveyor for transporting the plant chip from the container discharge part 32b to the container supply part 31b. And have.

横長円筒容器3Bは、水平状態でも、排出部側を下げた傾斜状態でもよい。螺旋部材3Cは、一条の螺子のように連続した螺旋帯鋼材で形成されているが、複数条でもよく、また断続的でもよい。回転駆動装置37bは、容器外周に固定搭載されたリング歯車と、これに噛合するピニオンと、このピニオンを回転駆動するインバータモータM1とを有しており、回転で内部の植物性チップCの撹拌も行う。散水管3Dは、横長円筒容器3Bの長手軸線の近くにおいて前後の固定フード34b、35bに支持されており、前記処理水流W3を供給部側で多く分散供給するようにしている。新しい植物性チップC’の補給は、供給部31bで行われる。生物分解処理中に発生する炭酸ガスを抜く弁付きパイプ33bがフード35の天井板に搭載されている。   The horizontally long cylindrical container 3B may be in a horizontal state or in an inclined state in which the discharge portion side is lowered. The spiral member 3C is formed of a continuous spiral band steel material like a single screw, but may be a plurality of strips or may be intermittent. The rotation drive device 37b has a ring gear fixedly mounted on the outer periphery of the container, a pinion that meshes with the ring gear, and an inverter motor M1 that rotationally drives the pinion. Also do. The water sprinkling pipe 3D is supported by the front and rear fixed hoods 34b and 35b near the longitudinal axis of the horizontally long cylindrical container 3B, and the treated water flow W3 is distributed and supplied in a large amount on the supply unit side. The replenishment of the new plant chip C 'is performed by the supply unit 31b. A valve-equipped pipe 33 b for removing carbon dioxide generated during the biodegradation process is mounted on the ceiling plate of the hood 35.

発酵菌は、現地で採取されたラクトバチルス菌などの発酵菌種を糖蜜を含む栄養物で培養増殖したものが利用される。発酵菌としては、ラクトバチルス菌などの乳酸菌や酵母菌や酪酸菌や納豆菌が一般的に知られている。ラクトバチルス菌などの発酵菌種は、有機物の処理現場や発酵菌の培養現場で採取されたものが、その現場での気候風土で生存してきたもので好ましく、細菌生存圏にできるだけ余計な摩擦をもたらさないようにして存分に効力を発揮できる丈夫な発酵菌種を得ることができる。また培養槽には、共生関係を取る光合成菌が添加されると、互いに必要とする物質を供給しあって培養を早めてくれるほか、光合成菌は腐敗菌が発生させる悪臭物質を栄養源として摂取してくれ、次に説明するように発酵菌が増殖力を高める。即ち、光合成菌は、アミノ酸やミネラルやビタミン等の優れた栄養分に富んでいて菌体自身が有機肥料としても有用であるが、腐敗物に会うと硫酸還元菌が発生させる硫化水素を栄養源として積極的に摂取するばかりでなく、有毒アミンであるプトレシンやカタベリン、また発癌催奇性のジメチルニトロサミンも好んで基質として摂取して分解除去してくれる。   As the fermenting bacteria, fermented bacterial species such as Lactobacillus collected locally are cultured and grown with nutrients containing molasses. As fermentative bacteria, lactic acid bacteria such as Lactobacillus, yeasts, butyric acid bacteria, and natto bacteria are generally known. Fermented bacterial species such as Lactobacillus are those collected at the site of processing organic matter and culture of fermented bacteria, and are preferably those that have survived in the climate of the site. It is possible to obtain a robust fermented bacterial species that can fully exert its effect without causing any effects. In addition, when photosynthetic bacteria that have a symbiotic relationship are added to the culture tank, the necessary substances are supplied to each other to speed up the culture, and the photosynthetic bacteria ingest malodorous substances generated by spoilage bacteria as nutrients. Then, as explained below, fermenting bacteria increase the growth potential. In other words, photosynthetic bacteria are rich in excellent nutrients such as amino acids, minerals and vitamins, and the cells themselves are useful as organic fertilizers, but when they encounter septic substances, hydrogen sulfide generated by sulfate-reducing bacteria is used as a nutrient source. In addition to active intake, toxic amines such as putrescine and cataverine and carcinogenic teratogenic dimethylnitrosamine are also preferred as a substrate and decomposed and removed.

図6と図7において、第一実施例の超微細化装置10は、有機物や汚泥を固形被処理物として含んだ被処理流体W1が貯留槽5から水中ポンプ1Pによって供給され、固形被処理物と水のクラスターを超微細化し、超微細化された処理済み流体WAを貯留槽5に戻すものであり、間に超微細化室6を形成するように互いに平行に向かい合って隔設され、共通の水平な中心軸線xの周りで相対回転するように互いに向かい合った一対の円盤11、12と、それらの中心軸線xに沿って円盤11、21の外側に取り付けられた支持軸11A、12Aと、それら支持軸の一方12Aを介して500から1000rpmの相対回転速度でシアーピン継手12Bを介して可変速度で回転駆動するインバータモータM1と、前記支持軸の他方の固定支持軸11Aの内部通路11Bを介して超微細化室6内にポンプPによって送られてくる被処理流体を供給する供給部13と、該供給部に設けられ、被処理流体Wの高速流によってベンチュリー管路のスロート部14Aで導管14Bから空気を気泡として被処理流体Wに導入するエゼクタ14と、超微細化室5の内部に供給された被処理流体W1を撹拌するように円盤11、12の向かい合った各内面から相対回転中に互いに当らないように突出された複数の突起11C、12Cと、それら突起による強力な撹拌によって、被処理流体Wの流体クラスターと浮遊有機物をその撹拌で誘発される剪断作用と衝撃作用と溶解空気によるキャビテーション作用によりミクロンのレベルまでの必要な粒度に短時間で微細化し、その後に超微細化室5から排出する排出部15と、相対回転する円盤11、12間からの被処理流体の漏れを防ぐシール部16とから構成されている。   6 and 7, the ultrafine device 10 of the first embodiment is configured such that a processing fluid W1 containing organic matter or sludge as a solid processing object is supplied from a storage tank 5 by an underwater pump 1P, and the solid processing object. And water clusters are refined and the treated fluid WA that has been refined is returned to the storage tank 5, and they are spaced parallel to each other so as to form an ultrafine chamber 6 therebetween. A pair of discs 11 and 12 facing each other so as to rotate relative to each other around a horizontal central axis x, and support shafts 11A and 12A attached to the outside of the discs 11 and 21 along the central axis x, An inverter motor M1 that rotates at a variable speed via a shear pin joint 12B at a relative rotational speed of 500 to 1000 rpm via one of the support shafts 12A, and the other fixed support shaft of the support shaft A supply section 13 for supplying a fluid to be processed sent by a pump P into the ultrafine chamber 6B through the internal passage 11B of 1A, and a Venturi tube provided in the supply section by a high-speed flow of the fluid W to be processed The ejector 14 that introduces air from the conduit 14B as bubbles to the fluid to be treated W at the throat portion 14A of the passage, and the disks 11 and 12 face each other so as to agitate the fluid W1 supplied to the inside of the ultrafine chamber 5. The plurality of protrusions 11C and 12C that protrude from each inner surface during relative rotation so as not to contact each other, and the shearing induced by the stirring of the fluid cluster of the fluid W to be processed and the floating organic matter by the powerful stirring by the protrusions. It is refined in a short time to the required particle size down to the micron level by action, impact action and cavitation action by dissolved air, and then discharged from the ultrafine chamber 5 That the discharge unit 15, and a seal portion 16 for preventing leakage of the fluid to be treated from between disk 11 and 12 rotate relative to each other.

供給部13は、被処理流体の貯留槽の水中ポンプと固定支持軸11Aの内部通路11Bと本装置1のポンプ部とから構成されており、一旦水中ポンプで超微細化室6に被処理流体Wが供給されると本装置1の超微細化室6内でのポンプ作用(円盤や突起から受ける遠心力を利用したポンプ部)によって連続的に被処理流体W1が貯留槽から吸引される(運転開始時には導管14Bは、その弁によって閉じられており、運転が安定してから開放される)。排出部15の排出ダクト15Aは、固定円盤11の周囲壁11Dの一部分に一体的に形成されている。排出ダクト15Aには処理済み流体の排出量を制御する弁V1が設けられており、弁V1を絞ることで超微細化室6内での被処理流体W1に対する超微細化の時間を長くとることができ、超微細化を促進できる。シール部16は、回転円盤12の周囲面の細かな凹凸と固定円盤11の周囲壁11Dの縁部の細かな凹凸凹とからなるラビリンス構造で構成される。更にシール性能を高めるために、固定円盤11の周囲壁11Dを延長して回転支持軸12Aに接近させて、ラビリンス構造を追加してもよい。固定円盤11の周囲壁11Dの内面に凹凸11Eや刻目を設けて剪断作用と衝撃作用とキャビテーション作用を高めるようにしている。   The supply unit 13 includes a submersible pump of a storage tank for the processing target fluid, an internal passage 11B of the fixed support shaft 11A, and a pump unit of the apparatus 1. The processing target fluid is once transferred to the ultrafine chamber 6 by the submersible pump. When W is supplied, the fluid W1 to be treated is continuously sucked from the storage tank by a pumping action (a pump part using a centrifugal force received from a disk or protrusion) in the ultrafine chamber 6 of the apparatus 1 ( At the start of operation, the conduit 14B is closed by the valve and is opened after the operation is stabilized). The discharge duct 15 </ b> A of the discharge unit 15 is formed integrally with a part of the peripheral wall 11 </ b> D of the fixed disk 11. The discharge duct 15A is provided with a valve V1 for controlling the discharge amount of the processed fluid. By narrowing the valve V1, it takes a long time for the ultrafine process to be performed on the fluid W1 in the ultrafine process chamber 6. And can promote ultra-miniaturization. The seal portion 16 is configured with a labyrinth structure including fine irregularities on the peripheral surface of the rotating disk 12 and fine irregularities on the edge of the peripheral wall 11D of the fixed disk 11. In order to further improve the sealing performance, the labyrinth structure may be added by extending the peripheral wall 11D of the fixed disk 11 to approach the rotation support shaft 12A. Concavities and convexities 11E and notches are provided on the inner surface of the peripheral wall 11D of the fixed disk 11 to enhance the shearing action, impact action, and cavitation action.

突起11C、12Cは、円盤12の回転中に対向したもの同士が当らないように、太さと長さ、及び交互の同心円に沿った位置が決めされているピン(図2で、ハッチング線入りが固定円盤11のピンとハッチング線入無しが回転円盤12のピン)から構成されている。対向した突起11C、12Cの間隔は、円盤12の回転速度に応じて決められる。   The protrusions 11C and 12C are pins whose thicknesses and lengths and positions along alternate concentric circles are determined so that the opposed ones do not come into contact with each other during the rotation of the disk 12 (in FIG. The pin of the fixed disk 11 and the absence of the hatching line are composed of the pin of the rotating disk 12). The interval between the opposed protrusions 11C and 12C is determined according to the rotational speed of the disk 12.

第二実施例の2連設式超微細化装置20は、図8と図9において、被処理有機物を含んだ水流W1を貯留槽5から高圧水中ポンプ1Pによって供給され、立面視で略逆U字形状に中央上部で互いに連通状態で結合し、湾曲した上部21と有底23、26の垂直下部22、25とから成る略逆J字形状の二つの同直径の外円筒体20A、20Bと、各外円筒体20A、20Bの垂直下部22、25の内部において間に環状空間28、29を形成するように垂直下部の底23、26に同心状態で固定された有底23A、26の同直径の垂直内円筒体20C、20Dと、流体供給側の外円筒体20Aの環状空間28に被処理有機物を含んだ高速流体W1をほぼ接線方向から供給して平面視で反時計方向の好ましくは8m/秒以上の、好ましくは30から50m/秒の高速旋回流H1を発生する高圧水中ポンプから成る第一高圧ポンプ1P及び配管22’と、流体供給側の外円筒体20Aの内円筒体20Cの底部21Aから、該内円筒体20Cの開放上縁21Bを越えて底23Aに落下し流入してくる中間被処理水W1’を吸引して、流体排出側の外円筒体20Bの環状空間29に超微細化処理された有機物を含んだ高速流体W2をほぼ接線方向から供給して平面視で時計方向の好ましくは8m/秒以上の、好ましくは30から50m/秒の高速旋回流H2を発生する二系列の第二高圧ポンプ2P、2P及び配管22A、22Aと、流体排出側の外円筒体20Bの内円筒体20Dの底部26Aから、該内円筒体20Dの開放上縁27を越えて底26に落下し流入してくる処理水WAを貯留槽5へ戻す配管24と、第一高圧ポンプ1Pからの配管22’と、第二高圧ポンプ2Pまでの配管22Bと、排出配管24とに設けられた開閉弁1V、2V、3Vと、二つの外円筒体20A、20Bの結合中央上部21に接続されて余剰流体を槽5へ戻す余剰流体排出管24Aとから構成されている。   8 and 9, the double continuous ultrafine device 20 of the second embodiment is supplied with the water flow W1 containing the organic matter to be treated from the storage tank 5 by the high-pressure submersible pump 1P, and is substantially reversed in elevation. Two U-shaped outer cylinders 20A, 20B having substantially the same J-shape, each having a U-shape connected in communication with each other at the center upper portion, and comprising a curved upper portion 21 and vertical bottom portions 22, 25 with bottoms 23, 26. And bottoms 23A, 26 fixed concentrically to the bottoms 23, 26 of the vertical lower parts so as to form annular spaces 28, 29 between the vertical lower parts 22, 25 of the outer cylindrical bodies 20A, 20B. The high-speed fluid W1 containing the organic matter to be treated is supplied to the annular space 28 of the vertical inner cylinders 20C and 20D having the same diameter and the outer cylinder 20A on the fluid supply side from a substantially tangential direction, and is preferably counterclockwise in a plan view. Is 8 m / sec or more, preferably 30 From the first high-pressure pump 1P composed of a high-pressure submersible pump that generates a high-speed swirling flow H1 of 50 m / sec and the pipe 22 ', and the bottom 21A of the inner cylinder 20C of the outer cylinder 20A on the fluid supply side, the inner cylinder The intermediate treated water W1 ′ that falls and flows into the bottom 23A beyond the open upper edge 21B of 20C is sucked into the annular space 29 of the outer cylindrical body 20B on the fluid discharge side, and the organic matter that has been subjected to ultrafine processing is obtained. Two series of second high-pressure pumps 2P that supply the high-speed fluid W2 that is contained from substantially the tangential direction and generate a high-speed swirling flow H2 that is preferably 8 m / sec or more, preferably 30 to 50 m / sec in a clockwise direction in a plan view. 2P and the pipes 22A and 22A, and the process of falling from the bottom 26A of the inner cylindrical body 20D of the outer cylindrical body 20B on the fluid discharge side to the bottom 26 over the open upper edge 27 of the inner cylindrical body 20D. Water WA storage tank On-off valves 1V, 2V, 3V provided on the return pipe 24, the pipe 22 'from the first high-pressure pump 1P, the pipe 22B to the second high-pressure pump 2P, and the discharge pipe 24, and two outer cylinders It is comprised from the surplus fluid discharge pipe 24A which is connected to the joint center upper part 21 of the bodies 20A and 20B and returns surplus fluid to the tank 5.

各外円筒体20A、20Bの湾曲した上部21は、逆U字形状の一本の湾曲管で形成されている。流体供給側の内円筒体20Cは、その内部への流入を容易にするために高さを比較的低くし且つ落差を大きくするために底23Aを下げているのに対して、流体排出側の内円筒体20Dは、超微細化を繰り返す場合に流体供給側の環状空間28へ戻すために高速旋回流H2を上方へ案内するのに都合が良いように、また落差を大きくするために高さを高くしている。流体供給側の内円筒体20Cでは、その底部21Aから二台の第二ポンプ2P、2Pによって中間被処理水W1’が吸引されるので、開放上縁21Bを越えてくる中間被処理水W1’は底23Aに激しく衝突し、有機物や水クラスタの超微細化を強める。また、第一ポンプ1Pからの配管22’には、キャビテーション泡を多く発生したり、分解処理槽での好気性菌の活性化を図るために高速水流を利用して空気Aを吸引するエゼクターEが設けられている。更に、流体排出側の外円筒体20Bの内側には、その環状空間29内に突出量変更可能に突き出た複数の突出部材29Aを有しており、第二ポンプ2P、2Pによって発生された極めて高い高速旋回流H2を突出部材29Aに衝突させることでその背後に生じやすいキャビテーションや衝撃力を中間被処理水中の有機物に作用させることができる。高速旋回流H2の減速度やキャビテーション作用や衝撃力の調節は、突出部材29Aの数や突出量を変えることで行われる。流体排出側の外円筒体20Bと内円筒体20Dとは底26を共有している。   The curved upper part 21 of each outer cylindrical body 20A, 20B is formed of a single curved tube having an inverted U shape. The inner cylindrical body 20C on the fluid supply side has a relatively low height for facilitating inflow into the inside thereof, and the bottom 23A is lowered to increase the head, whereas the inner cylindrical body 20C on the fluid supply side The inner cylindrical body 20D has a height that is convenient for guiding the high-speed swirling flow H2 upward in order to return to the annular space 28 on the fluid supply side when repeated ultra-miniaturization and to increase the head. Is high. In the inner cylindrical body 20C on the fluid supply side, the intermediate treated water W1 ′ is sucked from the bottom 21A by the two second pumps 2P, 2P, so that the intermediate treated water W1 ′ exceeding the open upper edge 21B. Violently collides with the bottom 23A, strengthening the ultrafine refinement of organic matter and water clusters. Further, an ejector E that sucks air A using a high-speed water flow in order to generate a large amount of cavitation bubbles in the pipe 22 'from the first pump 1P or to activate aerobic bacteria in the decomposition treatment tank. Is provided. Furthermore, inside the outer cylindrical body 20B on the fluid discharge side, there are a plurality of projecting members 29A projecting into the annular space 29 so that the projecting amount can be changed, which is generated by the second pumps 2P and 2P. By causing the high-speed swirling flow H2 to collide with the projecting member 29A, cavitation and impact force that easily occur behind the projecting member 29A can be applied to the organic matter in the intermediate treated water. Adjustment of deceleration, cavitation action, and impact force of the high-speed swirling flow H2 is performed by changing the number of protruding members 29A and the protruding amount. The outer cylindrical body 20B and the inner cylindrical body 20D on the fluid discharge side share the bottom 26.

中間被処理水W1’中の有機物と水の超微細化は、環状空間28、29における高速旋回流H1、H2が外円筒体20A、20Bの内面に付着した水層とそれに近接した高速旋回水流層との間で発生する剪断作用とそれに付随したキャビテーション作用と、中間被処理水W1’、W2’が内円筒体20C、20Dの底23A、26に落下して発生する衝撃力と、高速旋回流H2が突出部材28への衝突とによって達成される。被処理水中の有機物の種類や超微細化度に応じて、この2連設式超微細化装置20の運転モードを選択することができる。即ち、微細化の容易な有機物や緩い超微細化度に対応して繰り返し超微細化を行う必要が無い場合は、供給量と排出量が釣り合った状態で運転すればよいし、繰り返し超微細化を行う場合は、被処理水の供給量よりも排出量が少なくなるように排出配管24に設けられた開閉弁V3を絞ることで、流体排出側の環状空間29における高速旋回流H2が高速旋回しながら、環状空間28の高速旋回流H1と旋回干渉しないように旋回方向が反転して流体供給側の環状空間28に流入し、被処理物が所望の粒度まで繰り返し超微細化の作用を受けるように運転する。その場合は、供給量は排出配管24からの排出量と余剰流体用排出管24Aからの排出量と均衡される。第一ポンプ1Pからの配管22の開閉弁1Vは、供給量の調節と危急時の供給停止に使用され、また第二ポンプ2Pまでの各配管22Bの各開閉弁2Vは、高速旋回流H2の速度調節に使用され、また排出配管24に設けられた開閉弁3Vは、上述のように繰り返し超微細化を行うか、行わないかを制御するために使用される。   The organic matter and water in the intermediate treated water W1 ′ are made ultrafine by the water layer in which the high-speed swirling flows H1 and H2 in the annular spaces 28 and 29 are attached to the inner surfaces of the outer cylindrical bodies 20A and 20B and the high-speed swirling water flow close thereto. Shearing action generated between the layers and the accompanying cavitation action, impact force generated when the intermediate treated waters W1 ′ and W2 ′ fall on the bottoms 23A and 26 of the inner cylindrical bodies 20C and 20D, and high-speed swirling The flow H2 is achieved by collision with the protruding member 28. Depending on the type of organic matter in the water to be treated and the degree of ultrafineness, the operation mode of the double continuous ultrafine refiner 20 can be selected. In other words, if there is no need to repeat ultra-miniaturization in response to organic materials that are easy to miniaturize or loose super-miniaturization, operation can be performed with the supply amount and discharge amount balanced, and repeated ultra-miniaturization , The on-off valve V3 provided in the discharge pipe 24 is throttled so that the discharge amount is smaller than the supply amount of the water to be treated, so that the high-speed swirl flow H2 in the annular space 29 on the fluid discharge side is swirled at high speed. However, the swirling direction is reversed so as not to cause swirling interference with the high-speed swirling flow H1 in the annular space 28 and flows into the annular space 28 on the fluid supply side, and the object to be processed is repeatedly subjected to ultrafine processing to a desired particle size. To drive. In this case, the supply amount is balanced with the discharge amount from the discharge pipe 24 and the discharge amount from the excess fluid discharge pipe 24A. The on-off valve 1V of the pipe 22 from the first pump 1P is used for adjusting the supply amount and stopping the supply in an emergency, and the on-off valves 2V of the pipes 22B up to the second pump 2P are used for the high-speed swirling flow H2. The on-off valve 3V used for speed adjustment and provided in the discharge pipe 24 is used for controlling whether or not ultra-miniaturization is repeatedly performed as described above.

第三実施例の二円筒式の汚泥超微細化装置30は、そのケーシング33の外壁33Aを円筒状に形成し、そのケーシング内部に同心状に内部円筒壁34を隔設し、内部円筒壁34の下端をケーシング底壁33Bに結合し且つケーシング天井壁33cに対して隙間Zを形成することで、円筒状外壁33Aと内部円筒壁34とで形成した環状流路35と内部円筒壁34の内部36とを隙間Zを介して連通している。また貯留槽5の内部の高圧水中ポンプ1Pによって供給されてくる有機物を含有した高速水流W1を第一水導入部のケーシング天井壁33Cの中央部の供給部31から内部円筒壁34の内部36に供給し、底壁33Bに水流W1’を衝突させている。次いで、本装置30は、内部円筒壁内部36の下部から第二ポンプP2’によって吸引され高速度で吐出されて形成される第二高速度水流W2’をケーシング外壁33Aの下部に設けた第二水導入部37から環状流路35にほぼ接線方向から供給し、次いで内部円筒壁34の上端の隙間Cからその内部36に急激に落下させてケーシング底壁33Bに激突させるようにしており、かくして、環状流路35と内部円筒壁内部36に渡って形成した循環流路において上述のような作用で水クラスターを超微細化すると共に水流中の汚泥と有機物を超微細化し、超微細な汚泥と有機物を含有した処理水WAをケーシング外壁33aの上部に設けた水排出部39において環状流路から一部分抜いて貯留槽5に戻す。供給部31には空気Aを流入させるエゼクターEを設けることができる。   In the two-cylinder sludge ultrafine refiner 30 of the third embodiment, the outer wall 33A of the casing 33 is formed in a cylindrical shape, and the inner cylindrical wall 34 is provided concentrically inside the casing. The lower end of the inner wall is coupled to the casing bottom wall 33B and a gap Z is formed with respect to the casing ceiling wall 33c, thereby forming an annular channel 35 formed by the cylindrical outer wall 33A and the inner cylindrical wall 34 and the inner cylindrical wall 34 inside. 36 is communicated with a gap Z. Further, the high-speed water flow W1 containing the organic matter supplied by the high-pressure submersible pump 1P inside the storage tank 5 is supplied from the supply part 31 at the center of the casing ceiling wall 33C of the first water introduction part to the inside 36 of the internal cylindrical wall 34. The water flow W1 ′ is made to collide with the bottom wall 33B. Next, the apparatus 30 is provided with a second high-speed water flow W2 ′ formed by being sucked from the lower part of the inner cylindrical wall interior 36 by the second pump P2 ′ and discharged at a high speed at the lower part of the casing outer wall 33A. The water is introduced from the water introduction part 37 to the annular flow path 35 almost in the tangential direction, and then suddenly falls into the interior 36 from the gap C at the upper end of the internal cylindrical wall 34 to collide with the casing bottom wall 33B. In the circulation flow path formed across the annular flow path 35 and the inner cylindrical wall interior 36, the water cluster is made ultrafine by the above-described action, and the sludge and the organic matter in the water flow are made ultrafine, The treated water WA containing the organic matter is partially removed from the annular flow path at the water discharge portion 39 provided on the upper portion of the casing outer wall 33a and returned to the storage tank 5. The supply unit 31 can be provided with an ejector E that allows air A to flow in.

また水流W2’を繰り返し循環流路に通す度合いは、隙間Zを大きくしたり、水排出部39における水排出量を減らしたり、汚泥含有した廃水導入量を増やすことで、またそれらを複合的に組み合わせて高めることができ、繰り返し循環する度合いを低下させる場合は、それらの逆の調節を行う。ケーシング33Aは、底壁33Bを2段に分離しているが、底壁を内部円筒壁34の下端レベルに統合できることは言うまでもない。筒壁同士が接触せずに流通横断面の余り変化の無い流路35を形成する程度に偏心状に内部円筒壁34を設けることもできる。更に、ケーシング外壁33Aや、内部円筒壁34は、平坦部等の曲率変更部を部分的に有したり、内部円筒壁34に縦長のスリットを形成することができ、当該部分での衝撃力や剪断力を高めるように構成できる。   In addition, the degree of repeatedly passing the water flow W2 ′ through the circulation flow path can be increased by increasing the gap Z, reducing the water discharge amount in the water discharge section 39, or increasing the amount of waste water containing sludge. If they can be combined and increased, and the degree of repeated circulation is reduced, the reverse adjustments are made. The casing 33A separates the bottom wall 33B in two stages, but it goes without saying that the bottom wall can be integrated with the lower end level of the internal cylindrical wall 34. It is also possible to provide the inner cylindrical wall 34 in an eccentric manner to such an extent that the flow path 35 without much change in the flow cross section is formed without contacting the cylindrical walls. Furthermore, the casing outer wall 33A and the inner cylindrical wall 34 can partially have a curvature changing portion such as a flat portion, or a vertically long slit can be formed in the inner cylindrical wall 34. It can be configured to increase the shear force.

本発明の第一実施形態の有機物の微生物による分解処理装置の一部切り欠き概略断面立面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway schematic cross-sectional elevational view of an organic matter decomposition treatment apparatus for microorganisms according to a first embodiment of the present invention. 同装置の平面図である。It is a top view of the apparatus. 本発明の第二実施形態の有機物の微生物による分解処理装置の一部切り欠き概略断面立面図である。It is a partially cutaway schematic cross-sectional elevation view of the organic matter decomposition treatment apparatus of the second embodiment of the present invention. 同装置の平面図である。It is a top view of the apparatus. 本発明の第三実施形態の有機物の微生物による分解処理装置の部分切り欠き概略立面図である。It is a partial notch schematic elevation view of the decomposition processing apparatus by the microorganisms of the organic substance of 3rd embodiment of this invention. 第一実施例に係る流動物の超微細化装置を概略示した部分切り欠き立面図である。It is the partial notch elevation which showed roughly the ultrafine refinement | purification apparatus of the fluid which concerns on a 1st Example. 図6におけるIIV−IIV線に沿った断面図である。It is sectional drawing along the IIV-IIV line | wire in FIG. 第二実施例に係る超微細化装置を示す部分切り欠き概略立面図である。It is a partial notch schematic elevation view which shows the ultra-miniaturization apparatus which concerns on a 2nd Example. 同超微細化装置の概略平面図である。It is a schematic plan view of the same ultrafine device. 第三実施例に係る超微細化装置を示す部分切り欠き概略立面図である。It is a partial notch schematic elevation view which shows the ultra-miniaturization apparatus which concerns on a 3rd Example.

符号の説明Explanation of symbols

1: 第一実施形態の有機物の微生物による分解処理装置
2: 第二実施形態の有機物の微生物による分解処理装置
3: 第三実施形態の有機物の微生物による分解処理装置
1B、2B、3B:容器
11b、21b、31b:供給部
12b、22b、32b:排出部
1C、2C、3C:移動させる手段
1D、2D、3D:散水管
1F、2F、3F:循環手段
11f:横コンベヤ
12f:竪コンベヤ
11f’、21b、31b:補給口(供給部)
10、20、30:超微細化装置
C:植物性チップ及び/又はオガコ
W1:高速水流


1: Organic substance decomposition treatment apparatus 2 of the first embodiment: Organic substance decomposition treatment apparatus 3 of the second embodiment: Organic substance decomposition treatment apparatus 1B, 2B, 3B of the third embodiment: Container 11b , 21b, 31b: supply units 12b, 22b, 32b: discharge units 1C, 2C, 3C: moving means 1D, 2D, 3D: sprinkling pipes 1F, 2F, 3F: circulation means 11f: horizontal conveyor 12f: dredge conveyor 11f ′ , 21b, 31b: Supply port (supply unit)
10, 20, 30: Ultra-miniaturization apparatus C: Plant chip and / or sawfish W1: High-speed water flow


Claims (15)

食品残渣や汚泥などの有機物を水流に浮遊させて、高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する工程と、
大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを容器内で移動させる工程と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する工程と、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理する工程とを有していることを特徴とする有機物の微生物による分解処理方法。
Organic substances such as food residues and sludge are suspended in the water stream and mechanically refined to the micron level by shearing action by high-speed water flow, impact action at the flow direction change part, and / or cavitation action by air in the water stream. Process,
A step of moving plant chips and / or sawdust as a fungus bed inhabited by a large amount of microorganisms such as fermenting bacteria in a container;
A step of dispersing and supplying a water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container;
A step of decomposing an ultrafine organic substance in the water stream dispersedly supplied in the container by a microorganism during the movement of the plant chip and / or sawdust in the container. Decomposition treatment method of microorganisms.
前記移動工程は、前記容器の一方側の供給部から他方側の排出部へ植物性チップ及び/又はオガコを比較的ゆっくりと移動させる低速移動と、排出部から供給部へ比較的速く移動させる高速移動とを含んだ循環移動を行う請求項1記載の方法。   The moving step includes a low-speed movement for moving the vegetable chip and / or saw bite relatively slowly from the supply part on one side of the container to the discharge part on the other side, and a high speed for relatively fast movement from the discharge part to the supply part. The method according to claim 1, wherein a circular movement including movement is performed. 更に、大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを前記容器内に補給する工程を有している請求項1記載の方法。   The method according to claim 1, further comprising the step of replenishing the container with plant chips and / or sawdust as a fungus bed inhabited by a large amount of microorganisms such as fermenting bacteria. 食品残渣や汚泥などの有機物を水流に浮遊させて、高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する超微細化手段と、
上部で大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、下部に排出部とを有した竪形容器と、
前記容器内において前記植物性チップ及び/又はオガコを供給部から排出部へ移動させる手段と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する散水管とを有しており、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理することを特徴とする有機物の微生物による分解処理装置。
Organic substances such as food residues and sludge are suspended in the water stream and mechanically refined to the micron level by shearing action by high-speed water flow, impact action at the flow direction change part, and / or cavitation action by air in the water stream. Ultra-miniaturization means,
A bowl-shaped container having a supply part for supplying plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria live in the upper part, and a discharge part in the lower part;
Means for moving the vegetable chip and / or sawdust from the supply section to the discharge section in the container;
A water pipe that distributes and supplies the water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container,
An apparatus for decomposing organic matter by microorganisms, wherein ultrafine organic matter in a water stream dispersedly supplied in the vessel is decomposed by microorganisms during movement of the plant chip and / or sawdust in the vessel.
更に、前記容器の前記排出部から容器の横外側へ植物性チップ及び/又はオガコを搬送する横コンベヤと、該横コンベヤから供給された植物性チップ及び/又はオガコを前記容器の供給部に持ち揚げる竪コンベヤとを有した循環移動手段を有している請求項4記載の装置。   Furthermore, a horizontal conveyor that conveys the vegetable chips and / or sawdust from the discharge part of the container to the lateral outside of the container, and the vegetable chips and / or sawdust supplied from the horizontal conveyor are held in the container supply part. 5. The apparatus according to claim 4, further comprising a circulating movement means having a frying conveyor. 前記横コンベヤは、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを前記容器内に補給する補給口を有している請求項5記載の方法。   The method according to claim 5, wherein the horizontal conveyor has a replenishment port for replenishing the container with plant chips and / or sawdust as a fungus bed where microorganisms such as fermenting bacteria live. 食品残渣や汚泥などの有機物を水流に浮遊させて、高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する超微細化手段と、
一方端部で大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、他方端部に排出部とを有した横長容器と、
前記容器内において前記植物性チップ及び/又はオガコを、送り抵抗が大きく、戻り抵抗が小さい往復動部材によって供給部から排出部へ移動させる手段と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する散水管とを有しており、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理することを特徴とする有機物の微生物による分解処理装置。
Organic substances such as food residues and sludge are suspended in the water stream and mechanically refined to the micron level by shearing action by high-speed water flow, impact action at the flow direction change part, and / or cavitation action by air in the water stream. Ultra-miniaturization means,
A horizontally long container having a supply part for supplying plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria live on one end, and a discharge part on the other end,
Means for moving the vegetable chip and / or saw bite in the container from the supply unit to the discharge unit by a reciprocating member having a large feeding resistance and a small return resistance;
A water pipe that distributes and supplies the water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container,
An apparatus for decomposing organic matter by microorganisms, wherein ultrafine organic matter in a water stream dispersedly supplied in the vessel is decomposed by microorganisms during movement of the plant chip and / or sawdust in the vessel.
更に、前記容器の前記排出部から前記容器の前記供給部へ植物性チップ及び/又はオガコを搬送するコンベヤから成る循環移動手段を有している請求項7記載の装置。   8. The apparatus according to claim 7, further comprising a circulating movement means comprising a conveyor for conveying vegetable chips and / or sawdust from the discharge part of the container to the supply part of the container. 前記供給部は、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコが補給される請求項7又は8記載の方法。   The method according to claim 7 or 8, wherein the supply unit is supplemented with plant chips and / or sawdust as a fungus bed inhabited by microorganisms such as fermentation bacteria. 食品残渣や汚泥などの有機物を水流に浮遊させて、高速水流による剪断作用、流れ方向変更部での衝撃作用、及び/又は水流中の空気によるキャビテーション作用によって機械的にミクロンレベルまで超微細化する超微細化手段と、
一方端部で大量の発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコを供給する供給部と、他方端部に排出部とを有し、少なくとも2対の支持ローラによって回転可能に支持された横長円筒容器と、
該横長円筒容器を回転駆動する回転駆動手段と、
該回転駆動手段による回転方向に対して前記容器内において前記植物性チップ及び/又はオガコを供給部から排出部へ移動させるように前記容器の内面に取り付けられた螺旋部材と、
前記超微細化された有機物を含む水流を前記容器内で前記植物性チップ及び/又はオガコに分散供給する散水管とを有しており、
前記容器内で分散供給された水流内の超微細な有機物を前記容器内における前記植物性チップ及び/又はオガコの移動中に微生物によって分解処理することを特徴とする有機物の微生物による分解処理装置。
Organic substances such as food residues and sludge are suspended in the water stream and mechanically refined to the micron level by shearing action by high-speed water flow, impact action at the flow direction change part, and / or cavitation action by air in the water stream. Ultra-miniaturization means,
It has a supply part that supplies plant chips and / or sawdust as a fungus bed where microorganisms such as a large amount of fermentation bacteria inhabit at one end, and a discharge part at the other end, and is provided by at least two pairs of support rollers A horizontally long cylindrical container rotatably supported;
A rotation driving means for rotating the horizontally long cylindrical container;
A helical member attached to the inner surface of the container so as to move the vegetable chip and / or sawdust from the supply part to the discharge part in the container with respect to the rotation direction by the rotation driving means;
A water pipe that distributes and supplies the water stream containing the ultrafine organic matter to the plant chip and / or sawfish in the container,
An apparatus for decomposing organic matter by microorganisms, wherein ultrafine organic matter in a water stream dispersedly supplied in the vessel is decomposed by microorganisms during movement of the plant chip and / or sawdust in the vessel.
更に、前記容器の前記排出部から前記容器の前記供給部へ植物性チップ及び/又はオガコを搬送するコンベヤから成る循環移動手段を有している請求項7記載の装置。   8. The apparatus according to claim 7, further comprising a circulating movement means comprising a conveyor for conveying vegetable chips and / or sawdust from the discharge part of the container to the supply part of the container. 前記供給部は、発酵菌などの微生物が生息する菌床としての植物性チップ及び/又はオガコが補給される請求項10又は11記載の装置。   The apparatus according to claim 10 or 11, wherein the supply unit is supplemented with plant chips and / or sawdust as a fungus bed inhabited by microorganisms such as fermentation bacteria. 前記超微細化装置は、間に超微細化室を形成するように互いに向かい合って隔設され、共通の中心軸線周りで相対回転する一対の円盤と、
該各円盤の中心軸線に沿って円盤の外側に取り付けられた支持軸と、
該支持軸の少なくともの一方を介して、前記円盤を500から1000rpmの相対回転速度で回転駆動する回転駆動手段と、
前記支持軸の少なくともの一方を介して前記超微細化室内に被処理流体を供給する被処理流体の供給手段と、
前記円盤の向かい合った各内面に、相対回転中に互いに当らないように突出された突起と、
前記超微細化室内に導入された被処理流体の流体クラスター及び/又はその浮遊物が、前記円盤の相対回転による前記突起を介した撹拌で誘発される剪断作用と衝撃作用と溶解空気によるキャビテーション作用によってミクロンのレベルまで必要な粒度に超微細化された後で超微細化室から排出する排出手段と、
前記円盤間の超微細化室からの流体漏れをシールするシール手段と、
前記被処理流体の供給手段に空気を気泡として導入する手段と、から構成されている請求項4、7又は10記載の装置。
The ultrafine device includes a pair of disks that are spaced apart from each other so as to form a ultrafine chamber therebetween and that rotate relative to each other about a common central axis.
A support shaft attached to the outside of the disk along the central axis of each disk;
Rotation driving means for rotating the disk at a relative rotation speed of 500 to 1000 rpm via at least one of the support shafts;
A fluid supply means for supplying a fluid to be processed into the ultrafine chamber through at least one of the support shafts;
Protrusions projecting so as not to hit each other during relative rotation on the inner surfaces facing each other of the disk,
The fluid cluster of the fluid to be treated and / or its suspended substance introduced into the ultrafine chamber are shearing action, impact action and cavitation action caused by dissolved air induced by agitation through the protrusion by relative rotation of the disk. Discharge means for discharging from the ultrafine chamber after ultrafine to the required particle size by the micron level,
Sealing means for sealing fluid leakage from the ultrafine chamber between the disks;
The apparatus according to claim 4, 7 or 10, comprising means for introducing air into the supply means of the fluid to be treated as bubbles.
前記超微細化装置は、立面視で略逆U字形状に中央上部で互いに連通状態で結合し、湾曲上部と有底の垂直下部とから成り、中央上部に余剰流体を排出する排出管が接続されている略逆J字形状の複数の外筒体と、
各外筒体の垂直下部の内部において間に環状空間を形成するように垂直下部の底に固定された有底の垂直内筒体と、
前記複数の外筒体のいずれかの環状空間に固形状の被処理物を含んだ高速流体を供給して平面視で時計方向か、又は反時計方向の高速旋回流を発生する第一高圧ポンプ及び配管と、
高速流体が供給される外筒体の内筒体の底部から、該内筒体の開放上縁を越えて底に落下し流入してくる流体を吸引して、前記いずれか以外の外筒体の環状空間に被処理物を含んだ高速流体を供給して平面視で反時計方向か、又は時計方向の高速旋回流を発生する第二高圧ポンプ及び配管と、
前記いずれか以外の外筒体の内筒体の底部から、該内筒体の開放上縁を越えて底に落下し流入してくる流体を排出する配管と、
該流体排出配管に設けられた排出量調節手段と、
前記第一高圧ポンプからの配管と、前記第二高圧ポンプまでの配管と、前記排出の配管とに各々配置された開閉弁と、
前記第一高圧ポンプからの配管に設けられ、高速流体に空気を混入するエゼクターと、から構成されており、
前記高速流体が含有している被処理物は、前記環状空間における高速旋回流が発生する剪断作用と前記内筒体の底への流体の落下による衝撃力によってミクロンのレベルまで超微細化される請求項4、7又は10記載の装置。
The ultra-miniaturization device has a substantially inverted U-shape in an elevational view and is connected in communication with each other at the center upper part, and includes a curved upper part and a bottomed vertical lower part, and a discharge pipe for discharging excess fluid at the center upper part. A plurality of substantially inverted J-shaped outer cylinders connected;
A bottomed vertical inner cylinder fixed to the bottom of the vertical lower portion so as to form an annular space in the vertical lower portion of each outer cylindrical body;
A first high-pressure pump that supplies a high-speed fluid containing a solid object to be processed to any annular space of the plurality of outer cylinders to generate a high-speed swirling flow in a clockwise direction or a counterclockwise direction in a plan view. And piping,
From the bottom of the inner cylinder of the outer cylinder to which the high-speed fluid is supplied, the fluid that falls and flows into the bottom over the open upper edge of the inner cylinder is sucked, and the outer cylinder other than any of the above A second high-pressure pump and a pipe for supplying a high-speed fluid containing a workpiece to the annular space and generating a high-speed swirling flow in a counterclockwise direction or a clockwise direction in a plan view;
From the bottom of the inner cylinder of the outer cylinder other than any of the above, a pipe for discharging the fluid that falls to the bottom over the open upper edge of the inner cylinder and flows in,
Discharge amount adjusting means provided in the fluid discharge pipe;
On-off valves respectively disposed on the pipe from the first high-pressure pump, the pipe to the second high-pressure pump, and the discharge pipe;
An ejector that is provided in the pipe from the first high-pressure pump and mixes air into the high-speed fluid;
The object to be processed contained in the high-speed fluid is micronized to a micron level by the shearing action generated by the high-speed swirling flow in the annular space and the impact force caused by the fluid falling to the bottom of the inner cylinder. Apparatus according to claim 4, 7 or 10.
前記超微細化手段は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に内部円筒壁を隔設し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成することで、円筒状外壁と内部円筒壁とで形成した環状流路と内部円筒壁の内部とを前記隙間を介して連通しており、また高圧ポンプによって貯留槽から前記内部円筒壁の内部に有機物を含有した第一高速度水流が供給され、次いで該内部円筒壁の内部から高圧ポンプによって吸引されて高速度で吐出されて形成される有機物を含有した第二高速度水流が第二水導入部において前記環状流路に供給されて、次いで前記内部円筒壁の上端からその内部に急激に落下されてケーシング底壁に激突させるようにしており、前記環状流路と前記内部円筒壁の内部に渡って形成した循環流路において水流中の有機物を破壊し、有機物を超微細化した処理水を前記環状流路から一部分抜いて前記貯留槽に供給される構造を有している請求項4、7又は10記載の装置。



In the ultra-fine means, the outer wall of the casing is formed in a cylindrical shape, and the inner cylindrical wall is separated so as to be concentric inside the casing or eccentric enough to form a flow path without contacting the cylindrical walls. And connecting the inner cylindrical wall with the casing bottom wall and forming a gap with respect to the casing ceiling wall, thereby connecting the annular flow path formed by the cylindrical outer wall and the inner cylindrical wall and the inside of the inner cylindrical wall to each other. The first high-speed water stream containing organic matter is supplied from the storage tank to the inside of the inner cylindrical wall by the high-pressure pump and then sucked by the high-pressure pump from the inside of the inner cylindrical wall. A second high-speed water stream containing organic matter discharged and formed at a high speed is supplied to the annular flow path at the second water introduction part, and then suddenly falls into the inside from the upper end of the inner cylindrical wall. Casing bottom wall In the circulation channel formed across the annular channel and the inner cylindrical wall, the organic matter in the water flow is destroyed and a part of the treated water obtained by ultra-fine organic matter is introduced from the annular channel. The apparatus according to claim 4, 7 or 10, having a structure that is pulled out and supplied to the storage tank.



JP2004364541A 2004-12-16 2004-12-16 Method and apparatus for decomposing organic matter by microorganisms Active JP4585302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364541A JP4585302B2 (en) 2004-12-16 2004-12-16 Method and apparatus for decomposing organic matter by microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364541A JP4585302B2 (en) 2004-12-16 2004-12-16 Method and apparatus for decomposing organic matter by microorganisms

Publications (2)

Publication Number Publication Date
JP2006167622A true JP2006167622A (en) 2006-06-29
JP4585302B2 JP4585302B2 (en) 2010-11-24

Family

ID=36668924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364541A Active JP4585302B2 (en) 2004-12-16 2004-12-16 Method and apparatus for decomposing organic matter by microorganisms

Country Status (1)

Country Link
JP (1) JP4585302B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039334A (en) * 2006-08-09 2008-02-21 Miike Iron Works Co Ltd Circular flash dryer with crusher
KR101632892B1 (en) * 2015-04-09 2016-06-23 주식회사 포스코 Device for preventing pipe clogging of quenching tank for wet-type process
KR102091975B1 (en) * 2019-08-23 2020-04-24 강희성 Apparatus for drying and fermenting livestock excretions
CN112359629A (en) * 2020-11-10 2021-02-12 湖北华海纤维科技股份有限公司 Poplar chemi-mechanical pulp production line for treating poplar wood chips by white rot fungi
CN114671517A (en) * 2022-04-26 2022-06-28 交大碳为工程咨询(江苏)有限公司 Membrane-free anaerobic coupling microbial fuel cell reactor and water treatment method
KR102535533B1 (en) * 2021-12-03 2023-05-26 대한민국 Apparatus for crushing organic waste
CN117602762A (en) * 2023-12-13 2024-02-27 江苏南大华兴环保科技股份公司 Advanced treatment system and method for industrial wastewater
CN117682900A (en) * 2024-02-03 2024-03-12 山东中和生物科技有限公司 Temperature and moisture control device for bio-organic fertilizer fermentation

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238256A (en) * 1993-02-18 1994-08-30 Sanyo Electric Co Ltd Garbage disposer
JPH08132009A (en) * 1994-11-10 1996-05-28 Haruo Kagawa Phytochip decomposition device and decomposition method thereof
JPH10314702A (en) * 1997-05-22 1998-12-02 Matsushita Electric Ind Co Ltd Garbage disposer
JP2001252642A (en) * 2000-03-13 2001-09-18 Fuji Yuki Kk Organic waste fermentation treating device
JP2002119949A (en) * 2000-10-16 2002-04-23 Hideyuki Shinozaki Garbage treating system and its apparatus
JP2002219376A (en) * 2001-01-26 2002-08-06 Mitsubishi Rayon Eng Co Ltd Method for crushing sludge
JP2003103189A (en) * 2001-07-27 2003-04-08 Keikosha:Kk Crusher
JP2003126877A (en) * 2001-10-22 2003-05-07 Kosuke Chiba Water treating system
JP2005161222A (en) * 2003-12-03 2005-06-23 Miike Iron Works Co Ltd Finely pulverizing apparatus for organic mater particle
JP2005169240A (en) * 2003-12-10 2005-06-30 Miike Iron Works Co Ltd Sewage treating equipment
JP2005238067A (en) * 2004-02-25 2005-09-08 Miike Iron Works Co Ltd Equipment for treating waterbottom and/or waterside sludge
JP2005334778A (en) * 2004-05-27 2005-12-08 Miike Iron Works Co Ltd Method and equipment for fermenting organic waste
JP2006051435A (en) * 2004-08-11 2006-02-23 Miike Iron Works Co Ltd Double super-pulverizing apparatus
JP2006167623A (en) * 2004-12-16 2006-06-29 Miike Iron Works Co Ltd Ultra-finely pulverizing device of fluidized material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238256A (en) * 1993-02-18 1994-08-30 Sanyo Electric Co Ltd Garbage disposer
JPH08132009A (en) * 1994-11-10 1996-05-28 Haruo Kagawa Phytochip decomposition device and decomposition method thereof
JPH10314702A (en) * 1997-05-22 1998-12-02 Matsushita Electric Ind Co Ltd Garbage disposer
JP2001252642A (en) * 2000-03-13 2001-09-18 Fuji Yuki Kk Organic waste fermentation treating device
JP2002119949A (en) * 2000-10-16 2002-04-23 Hideyuki Shinozaki Garbage treating system and its apparatus
JP2002219376A (en) * 2001-01-26 2002-08-06 Mitsubishi Rayon Eng Co Ltd Method for crushing sludge
JP2003103189A (en) * 2001-07-27 2003-04-08 Keikosha:Kk Crusher
JP2003126877A (en) * 2001-10-22 2003-05-07 Kosuke Chiba Water treating system
JP2005161222A (en) * 2003-12-03 2005-06-23 Miike Iron Works Co Ltd Finely pulverizing apparatus for organic mater particle
JP2005169240A (en) * 2003-12-10 2005-06-30 Miike Iron Works Co Ltd Sewage treating equipment
JP2005238067A (en) * 2004-02-25 2005-09-08 Miike Iron Works Co Ltd Equipment for treating waterbottom and/or waterside sludge
JP2005334778A (en) * 2004-05-27 2005-12-08 Miike Iron Works Co Ltd Method and equipment for fermenting organic waste
JP2006051435A (en) * 2004-08-11 2006-02-23 Miike Iron Works Co Ltd Double super-pulverizing apparatus
JP2006167623A (en) * 2004-12-16 2006-06-29 Miike Iron Works Co Ltd Ultra-finely pulverizing device of fluidized material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039334A (en) * 2006-08-09 2008-02-21 Miike Iron Works Co Ltd Circular flash dryer with crusher
JP4690267B2 (en) * 2006-08-09 2011-06-01 株式会社御池鐵工所 Air-flow swivel dryer with crusher
KR101632892B1 (en) * 2015-04-09 2016-06-23 주식회사 포스코 Device for preventing pipe clogging of quenching tank for wet-type process
KR102091975B1 (en) * 2019-08-23 2020-04-24 강희성 Apparatus for drying and fermenting livestock excretions
CN112359629B (en) * 2020-11-10 2022-09-13 湖北华海纤维科技股份有限公司 Poplar chemi-mechanical pulp production line for treating poplar wood chips by white rot fungi
CN112359629A (en) * 2020-11-10 2021-02-12 湖北华海纤维科技股份有限公司 Poplar chemi-mechanical pulp production line for treating poplar wood chips by white rot fungi
KR102535533B1 (en) * 2021-12-03 2023-05-26 대한민국 Apparatus for crushing organic waste
WO2023101173A1 (en) * 2021-12-03 2023-06-08 대한민국(농촌진흥청장) Apparatus for grinding organic waste
CN114671517A (en) * 2022-04-26 2022-06-28 交大碳为工程咨询(江苏)有限公司 Membrane-free anaerobic coupling microbial fuel cell reactor and water treatment method
CN114671517B (en) * 2022-04-26 2022-12-27 交大碳为工程咨询(江苏)有限公司 Membrane-free anaerobic coupling microbial fuel cell reactor and water treatment method
CN117602762A (en) * 2023-12-13 2024-02-27 江苏南大华兴环保科技股份公司 Advanced treatment system and method for industrial wastewater
CN117682900A (en) * 2024-02-03 2024-03-12 山东中和生物科技有限公司 Temperature and moisture control device for bio-organic fertilizer fermentation
CN117682900B (en) * 2024-02-03 2024-04-05 山东中和生物科技有限公司 Temperature and moisture control device for bio-organic fertilizer fermentation

Also Published As

Publication number Publication date
JP4585302B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
CN207951632U (en) A kind of abatement equipment for soil pollution
US7279104B2 (en) Waste treatment method
CN104211460B (en) A kind of quickly aerobic compost reaction unit and application thereof
JP4585302B2 (en) Method and apparatus for decomposing organic matter by microorganisms
CN102741390A (en) Anaerobic process
KR101654269B1 (en) Microbiological culture apparatus having improved air supply structure
KR101173309B1 (en) Fining apparatus of organic particle
JP4249163B2 (en) Fermentation bacteria culture equipment using organic matter
US5102104A (en) Biological conversion apparatus
JP4402626B2 (en) Sewage treatment equipment
JP4726478B2 (en) Fluidized ultra-fine equipment
CN205794518U (en) A kind of ecological balanced system of the aquatic animal density culture acting on oxygen consumption
KR101866445B1 (en) Microbubble type air cleaning apparatus
JP4358058B2 (en) Wastewater treatment equipment containing organic matter
US10889515B2 (en) Systems and methods for formation of biologically active granules and biologically active granules
JP3854269B2 (en) Sewage treatment equipment
JP2006320777A (en) Waste water treatment apparatus
JP2005205259A (en) Fermentation bacteria culture plant using organic matter
JP4536396B2 (en) Water bottom and / or water sludge treatment facility
CN105900913A (en) Ecological balance system for oxygen consuming aquatic animal density cultivation
JP3833678B2 (en) Continuous miniaturization equipment
JP2005334779A (en) Equipment for treating oil cake
JP4402564B2 (en) Sewage treatment equipment
KR200307201Y1 (en) The apparatus of activated native - microbe
KR102399165B1 (en) A system for treating carcass and livestock waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R150 Certificate of patent or registration of utility model

Ref document number: 4585302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250