JP2006167623A - Ultra-finely pulverizing device of fluidized material - Google Patents

Ultra-finely pulverizing device of fluidized material Download PDF

Info

Publication number
JP2006167623A
JP2006167623A JP2004364545A JP2004364545A JP2006167623A JP 2006167623 A JP2006167623 A JP 2006167623A JP 2004364545 A JP2004364545 A JP 2004364545A JP 2004364545 A JP2004364545 A JP 2004364545A JP 2006167623 A JP2006167623 A JP 2006167623A
Authority
JP
Japan
Prior art keywords
fluid
ultrafine
ultra
disks
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004364545A
Other languages
Japanese (ja)
Other versions
JP4726478B2 (en
Inventor
Hidemasa Kobayashi
秀匡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miike Inc
Original Assignee
Miike Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miike Inc filed Critical Miike Inc
Priority to JP2004364545A priority Critical patent/JP4726478B2/en
Publication of JP2006167623A publication Critical patent/JP2006167623A/en
Application granted granted Critical
Publication of JP4726478B2 publication Critical patent/JP4726478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/22Disintegrating by mills having rotary beater elements ; Hammer mills with intermeshing pins ; Pin Disk Mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously and efficiently ultra-finely pulverizing a fluid material to be treated in a short time down to a desired size of a micron order when necessary. <P>SOLUTION: An ultra-finely pulverizing device 1 is provided with a pair of disks 11, 12 separately installed opposite to each other so as to form an ultra-finely pulverizing chamber 5 between the two and relatively rotating around a common center axis x, a motor M1 driving the disk 12 at a relative rotating speed of 500-1,000 rpm through one of supporting shafts 11A, 12A attached to the outer side of the circular disks along the center axis, a supply part 13 supplying a fluid W to be treated into the ultra-finely pulverizing chamber through the other of the supporting shafts, protruding parts 11C, 12C protruding from the inner surfaces of the disks in the state of avoiding collision with each other during rotation and a discharging part 15 discharging an ultra-finely pulverized product from the ultra-finely pulverizing chamber after the fluid clusters and floating matters of the fluid to be treated introduced into the ultra-finely pulverizing chamber are ultra-finely pulverized down to the desired size by agitation of the protruding parts caused by relative rotation of the disks. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種有機物などの固形状の被処理物を含んだ被処理流体を、高速回転駆動される一対の円盤の突起による撹拌によりミクロンのレベルまで超微細化する流動物の超微細化装置に関する。   The present invention relates to an ultrafine apparatus for a fluid that ultrafinely refines a fluid to be treated, which includes a solid object to be treated, such as various organic substances, to a micron level by stirring with a pair of disk protrusions that are driven to rotate at high speed. About.

食品加工や畜産、一般家庭からの廃棄物には多量の有機物を含み、しかも有機物系廃棄物は、微細な固形物でありながら液状ないしはスラリー(流動物)状になっているものが多く、例えば、豆腐製造の副生成物の「おから」や、酒粕や醤油粕や油粕、畜産農家や牧場から排出される家畜の糞尿、家庭やレストランやホテルなどからの生ゴミや賞味期限食品などがあり、これらは、肥料に再生利用されるものもあるが、大部分は焼却処分されているのが現状である。   Food processing, livestock, and household waste contain a large amount of organic matter, and organic waste is often in the form of a liquid or slurry (fluid) in spite of being a fine solid. , "Okara", a by-product of tofu production, sake lees, soy sauce lees, oil lees, livestock manure discharged from livestock farmers and ranches, raw garbage from households, restaurants, hotels, etc. Some of these are recycled as fertilizers, but most are currently incinerated.

これらの流動廃棄物は、種々の形態の成分を含んでおり、これらを例えば肥料として利用するには、乾燥した粉末や顆粒やペレットなどの状態に加工するのが好ましいが、このためには、細かく粉砕ないし微細化する必要がある。上記のような廃棄物には、野菜の葉軸や根茎、畜糞中の藁などの相対的に長い繊維物や、硬い骨質などを含み、更に油脂や志望などの脂質も含んでいるために、乾燥を容易にして造粒するために、それらを粉砕して微細化する必要がある。しかも、これらの廃棄物は、通常多量の水分を含んでいるので、その処理には液体中に含まれたままで微細化されることが要求される。   These fluid wastes contain various forms of components, and in order to use them as, for example, fertilizers, it is preferable to process them into dry powders, granules, pellets, etc. It is necessary to finely pulverize or refine. The wastes such as the above contain relatively long fibers such as vegetable stems and rhizomes, straw in livestock excrement, hard bones, etc., and also contain fats such as fats and oils. In order to granulate with easy drying, it is necessary to pulverize and refine them. Moreover, since these wastes usually contain a large amount of water, the waste is required to be refined while being contained in the liquid.

有機物の微細化のためにキャビテーションを利用した先行技術がある(特許文献1参照)。特許文献1には、箱状の容器内の一端側に容器内部に向けて水噴射ノズルを配置し、空気を水ジェット中に巻き込ませて積極的にキャビテーション泡を発生させ、反対側端部の開口部から排出する構成であって、キャビテーション流によって有機物の細胞の破壊や気液分離などを行うもであった。   There is a prior art using cavitation for miniaturization of organic substances (see Patent Document 1). In Patent Document 1, a water injection nozzle is arranged on one end side of a box-shaped container toward the inside of the container, and air is entrained in the water jet to actively generate cavitation bubbles, The structure is configured to discharge from the opening, and the destruction of cells of organic substances and gas-liquid separation are performed by cavitation flow.

キャビテーションを利用した別の技術では、特許文献2が示すように、池などの水域の水中に、高圧水噴射ノズルとその対向側に凹面を有するターゲット板とを配置して、ノズルとターゲットとの間でキャビテーションを伴った高速水ジェットを自己循環的に発生させ、キャビテーション流によって水中の有機物の分解や細菌の細胞膜の破壊を行って、貯水などを長時間かけて浄化しようとするものであった。
特開平11−319819 特開2001−017988
In another technique using cavitation, as shown in Patent Document 2, a high-pressure water injection nozzle and a target plate having a concave surface on the opposite side are disposed in water in a water area such as a pond, and A high-speed water jet accompanied by cavitation was generated in a self-circulating manner, and the cavitation flow decomposed organic matter in the water and destroyed the cell membrane of bacteria to purify stored water over a long period of time. .
JP-A-11-319819 JP2001-017988

水噴出装置からの高速水流中では、キャビテーションと呼ばれる空洞化現象が発生し、細菌細胞に対して強力に剪断や引っ張りや圧縮などの大きな力が作用して細胞を破壊して微細化することができる。このキャビテーションの破壊能力は、さらには細胞や、これによって構成される組織や繊維をも破壊して、上記のような廃棄物の微細化のために利用できることは考えられる。   Cavitation phenomenon called cavitation occurs in the high-speed water flow from the water jetting device, and strong force such as shearing, pulling, and compression acts on bacterial cells, and the cells can be destroyed and refined. it can. It is conceivable that this cavitation destruction ability can be used for further minimizing waste as described above by destroying cells, tissues and fibers formed thereby.

上記の特許文献の技術は、高速水流の破壊力によって細菌細胞などの比較的柔軟な微細な有機物を破壊するが、高速水流中での瞬間的な破壊であって持続性が無く、廃棄物中に含まれる組織や繊維物や硬質部を含む比較的大きな塊状物に対しては破壊効率が低いために実用性が無かった。特に、繊維や塊状物に対してジェット流を効率良く当てることができなかった。また、動物組織の脂肪分を含む廃棄物の処理にあたっては、脂肪分が分離して水中で懸濁してフィルターなどに沈着して装置を詰まらせることが多く、連続的に効率的に運転する上で問題であった。   The technology of the above-mentioned patent document destroys relatively flexible fine organic matter such as bacterial cells by the destructive force of the high-speed water stream, but it is instantaneous destruction in the high-speed water stream and has no sustainability. Since the fracture efficiency is low, the structure, fibers, and relatively large blocks including hard portions contained in the material have no practicality. In particular, it was not possible to efficiently apply a jet flow to fibers and lumps. In addition, when processing waste containing fat from animal tissues, the fat is often separated and suspended in water and deposited on a filter to clog the device. It was a problem.

また、容器内での粉砕や微細化の処理では、容器内にキャビテーション領域を作って連続的に運転するので、容器を構成する金属材に対してキャビテーションの浸食作用や大きな繰り返しの衝撃が加わり、繰り返しによる疲労破壊にも注意を払う必要があった。   Also, in the processing of crushing and miniaturization in the container, since the cavitation region is created in the container and continuously operated, the cavitation erosion action and large repeated impact are applied to the metal material constituting the container, It was necessary to pay attention to repeated fatigue failure.

本発明は、上記問題に鑑み、動物性有機物を含む広範囲の種類の固形物や水などの被処理物に対して連続的に且つ効率的に短時間で、ミクロンのレベルまで所望の粒度に必要に応じて超微細化でき、また必要に応じて超微細化を繰り返すこともでき、構造が簡単で耐久性の大きな装置を提供することを目的としている。   In view of the above problems, the present invention requires a desired particle size to a micron level continuously and efficiently for a wide variety of solid materials including animal organic materials and water to be processed. It is an object to provide a device with a simple structure and high durability, which can be made ultrafine according to the requirements and can be repeated as necessary.

本発明は、間に超微細化室を形成するように互いに向かい合って隔設され、共通の中心軸線周りで相対回転する一対の円盤と、
該各円盤の中心軸線に沿って円盤の外側に取り付けられた支持軸と、
該支持軸の少なくともの一方を介して、前記円盤を500から1000rpmの相対回転速度で回転駆動する回転駆動手段と、
前記支持軸の少なくともの一方を介して前記超微細化室内に被処理流体を供給する被処理流体の供給手段と、
前記円盤の向かい合った各内面に、相対回転中に互いに当らないように突出された突起と、
前記超微細化室内に導入された被処理流体の流体クラスター及び/又はその浮遊物が、前記円盤の相対回転による前記突起を介した撹拌によりミクロンのレベルまで必要な粒度に超微細化された後で超微細化室から排出する排出手段と、から構成されていることを特徴とする流動物の超微細化装置である。
The present invention includes a pair of disks that are spaced apart from each other so as to form a hyperfine chamber therebetween and that rotate relative to each other about a common central axis.
A support shaft attached to the outside of the disk along the central axis of each disk;
Rotation driving means for rotating the disk at a relative rotation speed of 500 to 1000 rpm via at least one of the support shafts;
A fluid supply means for supplying a fluid to be processed into the ultrafine chamber through at least one of the support shafts;
Protrusions protruding so as not to hit each other during relative rotation on the inner surfaces facing each other of the disk,
After the fluid cluster of the fluid to be treated and / or its floating substance introduced into the ultrafine chamber is ultrafinened to the required particle size down to the micron level by agitation through the protrusions by relative rotation of the disk And a discharge means for discharging from the ultrafine chamber, and a fluid ultrafine device.

更に、前記円盤間の超微細化室からの流体漏れをシールするシール手段を有したり、前記被処理流体の供給手段に空気を気泡として導入する手段を有することができる。   Furthermore, it can have a sealing means for sealing fluid leakage from the ultrafine chamber between the disks, or a means for introducing air into the supply fluid supply means as bubbles.

前記円盤の一方が固定され、周縁に周壁を有し、前記円盤の他方が、前記一方の円盤の周壁に近接して支持軸を介して回転駆動される超微細化装置において、前記排出手段は、固定された円盤の周壁に形成された排出ダクトから構成される。   In the ultra-miniaturization apparatus in which one of the disks is fixed and has a peripheral wall at the periphery, and the other of the disks is driven to rotate through a support shaft in the vicinity of the peripheral wall of the one disk, the discharge means is The exhaust duct is formed on the peripheral wall of the fixed disk.

前記一対の円盤は、それら各々の支持軸を介して回転駆動される超微細化装置において、前記排出手段は、前記一対の円盤を被う固定ケーシングの周壁に形成された排出ダクトから構成される。   In the ultra-miniaturization apparatus in which the pair of disks are rotationally driven through their respective support shafts, the discharge means is configured by a discharge duct formed on a peripheral wall of a fixed casing that covers the pair of disks. .

前記突起は、円形、楕円形、矩形又は多角形の横断面を有したピンで構成され、また前記ピンは、その周面に平坦面又は凹凸を有することができる。   The protrusion may include a pin having a circular, elliptical, rectangular, or polygonal cross section, and the pin may have a flat surface or unevenness on a circumferential surface thereof.

前記排出ダクトは、被処理流体の超微細化室内での滞留時間を調節する弁を有することができ、また前記被処理流体は、水に浮遊するフレーク状及び/又は粒子状の有機物系廃棄物を含んでいるものとすることができる。   The discharge duct may have a valve that adjusts a residence time of the fluid to be treated in the ultrafine chamber, and the fluid to be treated is flaky and / or particulate organic waste that floats in water. Can be included.

前記供給手段は、水に浮遊するフレーク状及び/又は粒子状の有機物系廃棄物の流動性被処理流体を収容した槽から被処理流体を吸入して前記超微細化室に供給するものであり、また前記排出手段は超微細化処理をした処理済み流体を前記槽に戻し、該槽には発酵菌と光合成菌が供給される。   The supply means sucks a fluid to be treated from a tank containing a fluid fluid to be treated of flaky and / or particulate organic waste suspended in water and supplies the fluid to the ultrafine chamber. In addition, the discharge means returns the processed fluid which has been subjected to ultrafine processing to the tank, and fermented bacteria and photosynthetic bacteria are supplied to the tank.

本発明の効果として、間に超微細化室を形成するように互いに向かい合って隔設され、共通の中心軸線周りで相対回転する一対の円盤は、その中心軸線に沿って円盤の外側に取り付けられた支持軸の少なくともの一方を介して500から1000rpmの相対回転速度で回転駆動手段によって回転駆動され、前記支持軸の少なくともの一方を介して前記超微細化室内に供給手段によって供給された被処理流体を前記円盤の向かい合った各内面から相対回転中に互いに当らないように突出された突起によって強力に撹拌し、被処理流体の流体クラスター及び/又はその浮遊物を、前記円盤の相対回転による前記突起を介した撹拌により剪断作用(8m/秒以上の高速度で移動する突起の側面に付着した流体と表面近くの層流との間に起きる)と衝撃作用(8m/秒以上の高速度で移動する突起に被処理流体が当って起きる)と溶解空気によるキャビテーション作用(8m/秒以上の高速度で移動する突起の後面で生じる剥離流の真空部に起きる)が誘発される。これらによってミクロンのレベルまで必要な粒度に短時間で超微細化し、その後に超微細化室から排出手段を介して排出するものであり、動物性有機物を含む広範囲の種類の浮遊固形物や水などの被処理物に対して連続的に且つ効率的に短時間で、ミクロンのレベルまでの所望の粒度に微細化できる、また排出手段の排出量を制限することで必要に応じて超微細化を繰り返すこともでき、また作動も円盤の単純な回転運動だけで構造が比較的簡単で耐久性の大きな装置とすることができる。浮遊固形物がミクロンのレベルまで、例えば半径1mmの球状の被処理物が半径0.1ミクロンに超微細化されると、単位重量当りの表面積(比表面積)はほぼ1万倍にも成り、その超微細化後に発酵菌などの処理微生物や薬品によって処理すると格段に拡大した表面積に対して極めて効率的に処理作用を受けることになる。   As an effect of the present invention, a pair of disks that are spaced from each other so as to form an ultrafine chamber between them and that rotate relative to each other around a common central axis are attached to the outside of the disk along the central axis. The object to be processed is rotated by the rotation driving means at a relative rotational speed of 500 to 1000 rpm through at least one of the support shafts and is supplied by the supply means into the ultrafine chamber through at least one of the support shafts. The fluid is vigorously agitated by protrusions that protrude from each facing inner surface of the disk so that they do not collide with each other during relative rotation, and the fluid cluster of the fluid to be treated and / or its suspended matter is caused by the relative rotation of the disk. A shearing action by agitation through the protrusion (occurs between the fluid adhering to the side of the protrusion moving at a high speed of 8 m / sec or more and the laminar flow near the surface) The vacuum part of the separation flow generated on the rear surface of the protrusion (moving at a high speed of 8 m / second or more) and the cavitation action by dissolved air (occurs when the processed fluid hits the protrusion moving at a high speed of 8 m / second or higher) Will occur). By these, ultrafine to the required particle size to micron level in a short time, and then discharged from the ultrafine chamber through the discharge means, such as a wide variety of floating solids including animal organic matter and water Can be refined to a desired particle size down to the micron level continuously and efficiently in a short time, and ultra-miniaturization can be performed as needed by limiting the discharge amount of the discharge means It can be repeated, and the operation can be made a relatively durable and highly durable device only by a simple rotational movement of the disk. When suspended solids are micronized, for example, when a spherical workpiece with a radius of 1 mm is made ultrafine to a radius of 0.1 micron, the surface area (specific surface area) per unit weight is almost 10,000 times, If it is processed with a treatment microorganism such as a fermentative bacterium or a chemical after the ultra-miniaturization, the surface area that has been remarkably expanded will be treated extremely efficiently.

更に、前記円盤間の超微細化室からの流体漏れをシールするシール手段を有することで、超微細化室からの被処理流体の漏れを最小限度に抑えることができる。また前記被処理流体の供給手段に空気を気泡として導入する手段を有することで、被処理流体中への空気混入率を高めてキャビテーション作用や、後処理の曝気処理などの効果を高めることができる。   Furthermore, by having a sealing means for sealing fluid leakage from the ultrafine chamber between the disks, leakage of the fluid to be processed from the ultrafine chamber can be minimized. Further, by providing means for introducing air as bubbles to the supply fluid supply means, it is possible to increase the air mixing rate in the fluid to be processed, thereby enhancing the effects of cavitation action, post-treatment aeration process, and the like. .

前記円盤の一方が固定され、周縁に周壁を有し、前記円盤の他方が、前記一方の円盤の周壁に近接して支持軸を介して回転駆動される超微細化装置において、前記排出手段は、固定された円盤の周壁に形成された排出ダクトから構成されると、一方の円盤はその支持軸を省いて固定部に搭載され、他方の円盤の回転駆動だけで被処理流体の撹拌を行うことになり、回転駆動手段が一台だけでよく、排出手段のダクトを一方の円盤の周壁に統合できて装置の構造を簡単にできる。   In the ultra-miniaturization apparatus in which one of the disks is fixed and has a peripheral wall at the periphery, and the other of the disks is driven to rotate through a support shaft in the vicinity of the peripheral wall of the one disk, the discharge means is When it is composed of a discharge duct formed on the peripheral wall of the fixed disk, one disk is mounted on the fixed part with its support shaft omitted, and the fluid to be treated is stirred only by the rotational drive of the other disk In other words, only one rotation driving means is required, and the duct of the discharging means can be integrated with the peripheral wall of one disk, thereby simplifying the structure of the apparatus.

前記一対の円盤は、それら各々の支持軸を介して回転駆動される超微細化装置において、前記排出手段は、前記一対の円盤を被う固定ケーシングの周壁に形成された排出ダクトから構成されると、回転駆動手段及び支持軸が二つに増える可能性があり、更に別の固定ケーシングが必要になって装置の構造が複雑になるが、シール手段を周速度に小さい支持軸に対して構成できる。   In the ultra-miniaturization apparatus in which the pair of disks are rotationally driven through their respective support shafts, the discharge means is configured by a discharge duct formed on a peripheral wall of a fixed casing that covers the pair of disks. In addition, there is a possibility that the rotational drive means and the support shaft are increased to two, and the structure of the device is complicated because a separate fixed casing is required. it can.

前記突起は、円形又は楕円形の横断面を有したピンで構成されると、同形状のピンを長い棒から切断することで安価に製造でき、また交換ピンも安価に用意できる。円形、楕円形の横断面のピンの場合は、剪断作用を主眼にでき、矩形多角形の場合は衝撃作用を主眼にでき、それらを混在させて両作用を享受できるようにも構成される。前記ピンは、その周面に平坦面又は凹凸を有することができ、周面の変化部によって被処理流体の撹拌中の剪断作用や衝撃作用やキャビテーション作用を高めることができる。   When the protrusion is composed of a pin having a circular or elliptical cross section, it can be manufactured at low cost by cutting the same shape pin from a long rod, and an exchange pin can be prepared at low cost. In the case of a pin having a circular or elliptical cross section, the shearing action can be focused on, and in the case of a rectangular polygon, the impacting action can be focused, and both can be enjoyed by mixing them. The pin can have a flat surface or irregularities on its peripheral surface, and a shearing action, an impact action, and a cavitation action during stirring of the fluid to be treated can be enhanced by a change portion of the peripheral face.

前記排出ダクトは、被処理流体の超微細化室内での滞留時間を調節する弁を有すると、弁を絞って排出量を減らすことで被処理流体の超微細化室内での滞留時間を長くして超微細化作用を被処理流体に繰り返し与えることができる。また前記被処理流体は、水に浮遊有機物系廃棄物を含んでいるものとすると、超微細化処理後に発酵菌を加えるなどすることで極めて短時間で有機物系廃棄物を水と炭酸ガスに分解処理できる。   If the discharge duct has a valve that adjusts the residence time of the fluid to be processed in the ultrafine chamber, the discharge time is reduced by reducing the valve to increase the residence time of the fluid to be processed in the ultrafine chamber. Thus, it is possible to repeatedly apply the ultrafine action to the fluid to be processed. In addition, if the fluid to be treated contains floating organic waste in water, the organic waste is decomposed into water and carbon dioxide in a very short time by adding fermentation bacteria after ultrafine processing. It can be processed.

前記供給手段は、水に浮遊するフレーク状及び/又は粒子状の有機物系廃棄物の流動性被処理流体を収容した槽から被処理流体を吸入して前記超微細化室に供給し、また前記排出手段は超微細化処理をした処理済み流体を前記槽に戻し、該槽には発酵菌と光合成菌が供給されるように構成すると、例えば半径1mmの球状の有機物系廃棄物が半径0.1ミクロンに超微細化されると単位重量当りの表面積(比表面積)はほぼ1万倍にも成り、添加された発酵菌や光合成菌などの処理微生物によって極めて効率的に水と炭酸ガスへの分解処理作用を受けることになる。発酵菌と共生関係を取る光合成菌は、発酵菌と互いに必要とする物質を供給しあって発酵菌の培養を早めてくれる他に、光合成菌は腐敗菌が発生させる悪臭物質を栄養源として摂取してくれ、発酵菌の増殖力を高める。即ち、光合成菌は、アミノ酸やミネラルやビタミン等の優れた栄養分に富んでいて菌体自身が有機肥料としても有用であるが、腐敗汚泥に会うと硫酸還元菌が発生させる硫化水素を栄養源として積極的に摂取するばかりでなく、有毒アミンであるプトレシンやカタベリン、また発癌催奇性のジメチルニトロサミンも好んで基質として摂取して分解除去する。更に、光合成菌は、緑農地に還元すると作物の根が嫌う有害物質を分解除去し、根の呼吸や栄養代謝系を守り、窒素固定も行って作物の増収をもたらす働きをするばかりでなく、上述のように栄養分に富んでいて土壌中の放線菌が好んで基質として使用することから放線菌の増殖も促進する。増殖された放線菌は、植物病原性の糸状菌を食い殺して更に増殖し、植物病原性の糸状菌による連作障害を防除する働きをする。   The supply means sucks a fluid to be treated from a tank containing a fluid fluid to be treated of flaky and / or particulate organic waste floating in water, and supplies the fluid to the ultrafine chamber. The discharge means returns the treated fluid which has been subjected to ultrafine processing to the tank, and is configured so that fermenting bacteria and photosynthetic bacteria are supplied to the tank. For example, a spherical organic waste having a radius of 1 mm has a radius of 0. When micronized to 1 micron, the surface area per unit weight (specific surface area) is almost 10,000 times larger, and it is very efficiently converted into water and carbon dioxide by treated microorganisms such as added fermentation bacteria and photosynthetic bacteria. It will be subject to decomposition treatment. The photosynthetic bacteria that live in symbiotic relationship with the fermenting bacteria supply the necessary substances with the fermenting bacteria to speed up the culture of the fermenting bacteria, and the photosynthetic bacteria ingest malodorous substances generated by spoilage bacteria And increase the growth of fermenting bacteria. In other words, photosynthetic bacteria are rich in excellent nutrients such as amino acids, minerals and vitamins, and the cells themselves are useful as organic fertilizers, but when they encounter septic sludge, they use hydrogen sulfide generated by sulfate-reducing bacteria as a nutrient source. In addition to active intake, the toxic amines putrescine and cataverine, as well as carcinogenic teratogenic dimethylnitrosamine, are preferably taken as substrates and decomposed and removed. Furthermore, photosynthetic bacteria not only work to reduce the harmful substances that crop roots dislike when they are reduced to green farmland, protect root respiration and nutrient metabolism, and also perform nitrogen fixation to increase crop yield. As described above, it is rich in nutrients and is preferably used as a substrate by actinomycetes in the soil, so that the growth of actinomycetes is also promoted. The propagated actinomycetes kill and kill the phytopathogenic filamentous fungi, and act to control continuous cropping damage caused by the phytopathogenic filamentous fungi.

次に、本発明の代表的な実施形態の流動物の超微細化装置を図面によって説明する。
図1と図2において、本発明の代表的な実施形態の流動物の超微細化装置1は、下水や食品加工場からの廃水などの有機物や汚泥を固形被処理物として含んだ被処理流体Wが処理槽から水中ポンプによって供給され、固形被処理物と水のクラスターを超微細化し、超微細化された処理済み流体WAを酵菌が添加される処理槽に戻すものであり、間に超微細化室5を形成するように互いに平行に向かい合って隔設され、共通の水平な中心軸線xの周りで相対回転するように互いに向かい合った一対の円盤11、12と、それらの中心軸線xに沿って円盤11、21の外側に取り付けられた支持軸11A、12Aと、それら支持軸の一方12Aを介して500から1000rpmの相対回転速度でシアーピン継手12Bを介して可変速度で回転駆動するインバータモータM1と、前記支持軸の他方の固定支持軸11Aの内部通路11Bを介して超微細化室5内にポンプによって送られてくる被処理流体を供給する供給部13と、該供給部に設けられ、被処理流体Wの高速流によってベンチュリー管路のスロート部14Aで導管14Bから空気を気泡として被処理流体Wに導入するエゼクタ14と、超微細化室5の内部に供給された被処理流体Wを撹拌するように円盤11、12の向かい合った各内面から相対回転中に互いに当らないように突出された複数の突起11C、12Cと、それら突起による強力な撹拌によって、被処理流体Wの流体クラスターと浮遊有機物をその撹拌によりミクロンのレベルまでの必要な粒度に短時間で微細化し、その後に超微細化室5から排出する排出部15と、相対回転する円盤11、12間からの被処理流体の漏れを防ぐシール部16とから構成されている。
Next, a fluid ultrafine device according to a representative embodiment of the present invention will be described with reference to the drawings.
1 and 2, a fluid ultrafine device 1 according to a representative embodiment of the present invention includes a fluid to be treated containing organic matter and sludge such as sewage and waste water from a food processing plant as a solid matter to be treated. W is supplied from the treatment tank by a submersible pump, and the solid workpiece and the water cluster are made ultrafine, and the ultrafine treated fluid WA is returned to the treatment tank to which the fermentation bacteria are added. A pair of disks 11, 12 that are spaced parallel to each other so as to form the ultrafine chamber 5 and face each other so as to rotate relative to each other about a common horizontal central axis x, and their central axes x The support shafts 11A and 12A are attached to the outside of the disks 11 and 21 along the shafts 12 and the rotary drive at a variable speed through the shear pin joint 12B at a relative rotational speed of 500 to 1000 rpm through one of the support shafts 12A. An inverter motor M1 that supplies the fluid to be processed that is pumped into the ultrafine chamber 5 via the internal passage 11B of the other fixed support shaft 11A of the support shaft, and the supply portion And an ejector 14 that introduces air from the conduit 14B as bubbles to the processing fluid W at the throat portion 14A of the venturi conduit by the high-speed flow of the processing fluid W, and the processing target supplied to the inside of the ultrafine chamber 5 A plurality of protrusions 11C and 12C projecting from the respective inner surfaces facing each other of the disks 11 and 12 so as to agitate the processing fluid W so as not to contact each other during the relative rotation, and strong agitation by these protrusions, thereby providing a target fluid W The fluid cluster and the floating organic matter are refined in a short time to the required particle size down to the micron level by stirring, and then discharged from the ultrafine chamber 5 When, and a seal portion 16 for preventing leakage of the fluid to be treated from between disk 11 and 12 rotate relative to each other.

供給部13は、被処理流体の処理槽の水中ポンプと固定支持軸11Aの内部通路11Bと本装置1のポンプ部とから構成されており、一旦水中ポンプで超微細化室5に被処理流体Wが供給されると本装置1の運転に伴って超微細化室5内でのポンプ作用(円盤や突起から受ける遠心力を利用したポンプ部)によって連続的に被処理流体Wが処理槽から吸引される(運転開始時は導管14Bは、その弁によって閉じられており、運転が安定してから開放される)。排出部15の排出ダクト15Aは、固定円盤11の周囲壁11Dの一部分に一体的に形成されている。排出ダクト15Aには処理済み流体の排出量を制御する弁V1が設けられており、弁V1を絞ることで超微細化室5内での被処理流体Wに対する超微細化の時間を長くとることができ、超微細化を促進できる。シール部16は、回転円盤12の周囲面の細かな凹凸と固定円盤11の周囲壁11Dの縁部の細かな凹凸凹とからなるラビリンス構造で構成される。更にシール性能を高めるために、固定円盤11の周囲壁11Dを延長して回転支持軸12Aに接近させて、ラビリンス構造を追加してもよい。固定円盤11の周囲壁11Dの内面に凹凸11Eや刻目を設けて剪断作用と衝撃作用とキャビテーション作用を高めるようにしている。   The supply unit 13 is composed of a submerged pump of the processing tank for the fluid to be processed, an internal passage 11B of the fixed support shaft 11A, and a pump unit of the apparatus 1. The fluid to be processed is once transferred to the ultrafine chamber 5 by the submersible pump. When W is supplied, the fluid W to be processed is continuously discharged from the processing tank by the pumping action in the ultra-miniaturization chamber 5 (pump unit using centrifugal force received from a disk or a projection) as the apparatus 1 is operated. Suction is performed (at the start of operation, the conduit 14B is closed by its valve and is opened after the operation is stabilized). The discharge duct 15 </ b> A of the discharge unit 15 is formed integrally with a part of the peripheral wall 11 </ b> D of the fixed disk 11. The discharge duct 15A is provided with a valve V1 for controlling the discharge amount of the processed fluid, and the valve V1 is throttled to increase the time for the ultrafine processing of the fluid W to be processed in the ultrafine processing chamber 5. And can promote ultra-miniaturization. The seal portion 16 is configured with a labyrinth structure including fine irregularities on the peripheral surface of the rotating disk 12 and fine irregularities on the edge of the peripheral wall 11D of the fixed disk 11. In order to further improve the sealing performance, the labyrinth structure may be added by extending the peripheral wall 11D of the fixed disk 11 to approach the rotation support shaft 12A. Concavities and convexities 11E and notches are provided on the inner surface of the peripheral wall 11D of the fixed disk 11 to enhance the shearing action, impact action, and cavitation action.

突起11C、12Cは、円盤12の回転中に対向したもの同士が当らないように、太さと長さ、及び交互の同心円に沿った位置が決めされているピン(図2で、ハッチング線入りが固定円盤11のピンとハッチング線入無しが回転円盤12のピン)から構成されている。対向した突起11C、12Cの間隔は、円盤12の回転速度に応じて決められる。ピン11C、12Cとしては、図4に示されている円形や楕円形の横断面を有したものが製造コスト上好ましいが、図5に示されているように側面に当る部分に平面や凹凸を形成したものも特にキャビテーション作用を強めるために使用される。更に、突起の横断面は、剪断作用を主眼にした円形や楕円形の他に、衝撃作用を主眼にした矩形や多角形にもでき、また円形や楕円形と矩形や多角形を混在させることもでき、剪断作用と衝撃作用の両方を享受するようにもできる。また、回転方向に矩形や多角形の辺を直交させて衝撃作用を最大に強化したり、矩形や多角形の角を回転方向に合わせて剪断作用と衝撃作用の両方を享受するようにもできる。   The protrusions 11C and 12C are pins whose thicknesses and lengths and positions along alternate concentric circles are determined so that the opposed ones do not come into contact with each other during the rotation of the disk 12 (in FIG. The pin of the fixed disk 11 and the absence of the hatching line are composed of the pin of the rotating disk 12). The interval between the opposed protrusions 11C and 12C is determined according to the rotational speed of the disk 12. As the pins 11C and 12C, those having a circular or elliptical cross section shown in FIG. 4 are preferable in terms of manufacturing cost. However, as shown in FIG. The formed one is also used to strengthen the cavitation action. Furthermore, the cross section of the protrusion can be a rectangle or a polygon with a focus on the impact action in addition to a circle or an ellipse with a focus on the shearing action. It is also possible to enjoy both shearing action and impact action. In addition, it is possible to maximize the impact effect by making the sides of the rectangle or polygon orthogonal to the rotation direction, or to enjoy both the shear effect and the impact effect by matching the corner of the rectangle or polygon to the rotation direction. .

このように構成された流動物の超微細化装置1によれば、円盤12がモータM1によって500から1000rpmの高速度で回転駆動されて突起11C、12Cによって強力に撹拌されることで、動物性有機物を含む広範囲の種類の浮遊固形物や水などの被処理物に対して連続的に且つ効率的に、ミクロンのレベルまで所望の粒度に必要に応じて超微細化を繰り返すことができると共に、作動が回転だけなので構造が比較的簡単で耐久性の大きな装置を提供できる。浮遊固形物がミクロンのレベルまで、例えば半径1mmの球状の被処理物が半径0.1ミクロンに超微細化されると、単位重量当りの表面積(比表面積)はほぼ1万倍にも成り、その超微細化後に発酵菌などの処理微生物や薬品によって処理すると格段に拡大した表面積に対して極めて効率的に処理作用を受けることになる。   According to the fluidized ultrafine device 1 configured as described above, the disk 12 is rotationally driven by the motor M1 at a high speed of 500 to 1000 rpm and is vigorously stirred by the protrusions 11C and 12C. Along with a wide variety of suspended solids including organic matter and water and other objects to be treated, it can be continuously and efficiently repeated to the desired particle size up to the micron level, and repeated ultra-miniaturization as necessary. Since the operation is only rotation, a device having a relatively simple structure and high durability can be provided. When suspended solids are micronized, for example, when a spherical workpiece with a radius of 1 mm is made ultrafine to a radius of 0.1 micron, the surface area (specific surface area) per unit weight is almost 10,000 times, If it is processed with a treatment microorganism such as a fermentative bacterium or a chemical after the ultra-miniaturization, the surface area that has been remarkably expanded will be treated extremely efficiently.

図3に示すように本発明の別の実施形態の流動物の超微細化装置2は、代表実施形態と違う構成として両方の円盤21、22をダクト25A付きの固定ケーシング25(排出手段の主要部を構成している)の内部において支持軸21A、22Aを介して互いに反対方向にインバータモータM2、M3で回転駆動するようにしており、各円盤21、22の回転速度を低く抑えても大きな相対速度を得ることができる点で有利である。固定ケーシング25と回転支持軸21A、22Aとの間のシール部26は、前記実施形態よりも回転速度を下げることで更に有利になっており、周速度の小さい支持軸21A、22Aに対して設けられる。突起のピン11C、12Cの配列や構成は、前記実施形態のものと同じにできる。しかし、両実施形態において、円盤の回転バランスを損なわず、対向したもの同士が当らない限り、ピン11C、12Cを同心円に沿って配列したり、等間隔に配列するは必要が無い。被処理流体Wの超微細化室5への供給は、処理槽内の水中ポンプによって回転継ぎ手23Aを介して被処理流体Wを一方の回転支持軸21Aの内部通路21Bに供給することで実施され、代表実施形態と同様にベンチュリー部で導管から空気を気泡として被処理流体Wに導入するエゼクタ24が内部通路21Bに設けられている。代表実施形態と同じく被処理流体Wの供給部23には、被処理流体Wの高速流によってベンチュリー管路のスロート部24Aで導管24Bから空気を気泡として被処理流体Wに導入するエゼクタ24が設けられている。   As shown in FIG. 3, a fluid ultrafine device 2 according to another embodiment of the present invention has a structure different from the representative embodiment in which both disks 21 and 22 are fixed to a fixed casing 25 with a duct 25A (the main part of the discharge means). Are driven by inverter motors M2 and M3 in opposite directions to each other via support shafts 21A and 22A. Even if the rotational speeds of the disks 21 and 22 are kept low, they are large. This is advantageous in that a relative speed can be obtained. The seal portion 26 between the fixed casing 25 and the rotation support shafts 21A and 22A is further advantageous by lowering the rotation speed than the above embodiment, and is provided for the support shafts 21A and 22A having a low peripheral speed. It is done. The arrangement and configuration of the protruding pins 11C and 12C can be the same as those in the above-described embodiment. However, in both embodiments, it is not necessary to arrange the pins 11C and 12C along concentric circles or at equal intervals as long as the opposing ones do not hit each other without impairing the rotational balance of the disks. Supply of the processed fluid W to the ultrafine chamber 5 is performed by supplying the processed fluid W to the internal passage 21 </ b> B of one rotary support shaft 21 </ b> A through the rotary joint 23 </ b> A by the submersible pump in the processing tank. Similarly to the representative embodiment, an ejector 24 that introduces air from the conduit as air bubbles to the fluid W to be processed is provided in the internal passage 21B in the venturi section. Similarly to the representative embodiment, the supply portion 23 of the fluid to be processed W is provided with an ejector 24 that introduces air from the conduit 24B as bubbles to the fluid to be processed W at the throat portion 24A of the venturi conduit by the high-speed flow of the fluid to be processed W. It has been.

かくして、本流動物の超微細化装置1、2によって、例えば半径が1mmの球状有機物の比表面積が0.00120m2 /gにすぎなかったものが、半径が0.0001mmの球状に微細化されているとすると、上述のように比表面積は12.0m2 /gと1万倍にも成り、従って処理槽において添加された発酵菌は、1万倍の数が表面に付着することができて、有機物の消却や、発酵菌の大量培養を効率的に行うことができる。ラクトバチルス菌などの発酵菌種は、有機物の処理現場や発酵菌の培養現場で採取されたものが、その現場での気候風土で生存してきたもので好ましく、細菌生存圏にできるだけ余計な摩擦をもたらさないようにして存分に効力を発揮できる丈夫な発酵菌を得ることができる。また処理槽などには、共生関係を取る光合成菌が添加され、互いに必要とする物質を供給しあって培養を早めてくれるほか、液肥等に利用すると光合成菌は腐敗菌が発生させる悪臭物質を栄養源として摂取してくれ、次に説明するように発酵菌が増殖力を高める。即ち、光合成菌は、アミノ酸やミネラルやビタミン等の優れた栄養分に富んでいて菌体自身が有機肥料としても有用であるが、腐敗汚泥に会うと硫酸還元菌が発生させる硫化水素を栄養源として積極的に摂取するばかりでなく、有毒アミンであるプトレシンやカタベリン、また発癌催奇性のジメチルニトロサミンも好んで基質として摂取して分解除去する。更に、光合成菌は、緑農地に還元すると作物の根が嫌う有害物質を分解除去し、根の呼吸や栄養代謝系を守り、窒素固定も行って作物の増収をもたらす働きをするばかりでなく、上述のように栄養分に富んでいて土壌中の放線菌が好んで基質として使用することから放線菌の増殖も促進する。増殖された放線菌は、植物病原性の糸状菌を食い殺して更に増殖し、植物病原性の糸状菌による連作障害を防除する働きをする。 Thus, by the ultrafine apparatus 1 and 2 of the present fluid, for example, a spherical organic substance having a radius of 1 mm has a specific surface area of only 0.00120 m 2 / g and is refined into a sphere having a radius of 0.0001 mm. If this is the case, the specific surface area is 12.0 m 2 / g, which is 10,000 times as described above. Therefore, 10,000 times the number of fermentation bacteria added in the treatment tank can adhere to the surface. In addition, it is possible to efficiently sterilize organic matter and mass culture fermented bacteria. Fermented bacterial species such as Lactobacillus are those collected at the site of processing organic matter and culture of fermented bacteria, and are preferably those that have survived in the climate of the site. It is possible to obtain a strong fermentative bacterium that can fully exert its effect without causing any effect. In addition, photosynthetic bacteria that have a symbiotic relationship are added to treatment tanks, etc., supplying necessary substances to accelerate culture, and when used for liquid fertilizer, photosynthetic bacteria contain malodorous substances that spoilage bacteria generate. Take it as a source of nutrients, and fermented bacteria increase the growth potential as explained below. In other words, photosynthetic bacteria are rich in excellent nutrients such as amino acids, minerals and vitamins, and the cells themselves are useful as organic fertilizers, but when they encounter septic sludge, they use hydrogen sulfide generated by sulfate-reducing bacteria as a nutrient source. In addition to active intake, the toxic amines putrescine and cataverine, as well as carcinogenic teratogenic dimethylnitrosamine, are preferably taken as substrates and decomposed and removed. Furthermore, photosynthetic bacteria not only work to reduce the harmful substances that crop roots dislike when they are reduced to green farmland, protect root respiration and nutrient metabolism, and also perform nitrogen fixation to increase crop yield. As described above, it is rich in nutrients and is preferably used as a substrate by actinomycetes in the soil, so that the growth of actinomycetes is also promoted. The propagated actinomycetes kill and kill the phytopathogenic filamentous fungi, and act to control continuous cropping damage caused by the phytopathogenic filamentous fungi.

本発明の活用例として下水道施設の無い山岳や僻地で収集される糞尿を本超微細化装置で超微細化してから、大量に培養した発酵菌を光合成菌と共に投入すると、トイレの浄化にも利用できる。また、下水や食品加工場、畜産関係の排水に含まれる有機物の消却や液肥化、余剰汚泥の消却にも応用できる。   As an example of use of the present invention, if manure collected in mountains and remote areas without sewerage facilities is made ultrafine by using this ultrafine device, a large amount of fermented bacteria are introduced together with photosynthetic bacteria, which is also used for toilet purification. it can. It can also be applied to the elimination of organic matter contained in sewage, food processing plants and livestock-related wastewater, liquid fertilization, and excess sludge.

本発明の代表的な実施形態に係る流動物の超微細化装置を概略示した部分切り欠き立面図。1 is a partially cutaway elevation view schematically showing a fluid ultrafine device according to a representative embodiment of the present invention. FIG. 図1におけるII−II線に沿った断面図。Sectional drawing along the II-II line | wire in FIG. 本発明の別の実施形態に係る流動物の超微細化装置を概略示した部分切り欠き立面図。FIG. 6 is a partially cutaway elevation view schematically showing a fluid ultrafine device according to another embodiment of the present invention. 突起のピンの横断面を示しており、(a)は円形横断面図、(b)は楕円形横断面。The cross section of the pin of a projection is shown, (a) is a circular cross section and (b) is an elliptical cross section. 突起のピンの別の実施形態に係る横断面を示しており、(a)は変円形横断面図、(b)は変楕円形横断面。The cross section which concerns on another embodiment of the pin of a processus | protrusion is shown, (a) is a variable circular cross-sectional view, (b) is a variable elliptical cross section.

符号の説明Explanation of symbols

1 代表実施形態の超微細化装置
2 代表実施形態の超微細化装置
5 超微細化室
11 固定円盤
12 回転円盤
11A 固定支持軸
12A 回転支持軸
11C 突起(ピン)
12C 突起(ピン)
13 供給手段
14 空気導入手段
15 排出手段
15A 排出ダクト
16 シール手段
21 回転円盤
22 回転円盤
21A 回転支持軸
22A 回転支持軸
23A 供給手段(回転継ぎ手)
25 排出手段(固定ケーシング)
25A 排出ダクト
26 シール手段
M1 回転駆動手段
M2 回転駆動手段
M3 回転駆動手段
V1 弁
x 中心軸線


DESCRIPTION OF SYMBOLS 1 Super miniaturization apparatus of representative embodiment 2 Ultra miniaturization apparatus of representative embodiment 5 Ultra miniaturization chamber 11 Fixed disk 12 Rotating disk 11A Fixed support shaft 12A Rotation support shaft 11C Protrusion (pin)
12C Protrusion (pin)
13 Supply means 14 Air introduction means 15 Discharge means 15A Discharge duct 16 Sealing means 21 Rotating disk 22 Rotating disk 21A Rotating support shaft 22A Rotating support shaft 23A Supply means (rotating joint)
25 Discharge means (fixed casing)
25A Discharge duct 26 Sealing means M1 Rotation drive means M2 Rotation drive means M3 Rotation drive means V1 Valve x Center axis


Claims (10)

間に超微細化室を形成するように互いに向かい合って隔設され、共通の中心軸線周りで相対回転する一対の円盤と、
該各円盤の中心軸線に沿って円盤の外側に取り付けられた支持軸と、
該支持軸の少なくともの一方を介して、前記円盤を500から1000rpmの相対回転速度で回転駆動する回転駆動手段と、
前記支持軸の少なくともの一方を介して前記超微細化室内に被処理流体を供給する被処理流体の供給手段と、
前記円盤の向かい合った各内面に、相対回転中に互いに当らないように突出された突起と、
前記超微細化室内に導入された被処理流体の流体クラスター及び/又はその浮遊物が、前記円盤の相対回転による前記突起を介した撹拌によりミクロンのレベルまで必要な粒度に超微細化された後で超微細化室から排出する排出手段と、から構成されていることを特徴とする流動物の超微細化装置。
A pair of disks that are spaced apart from each other to form a hyperfine chamber therebetween and that rotate relative to each other about a common central axis;
A support shaft attached to the outside of the disk along the central axis of each disk;
Rotation driving means for rotating the disk at a relative rotation speed of 500 to 1000 rpm via at least one of the support shafts;
A fluid supply means for supplying a fluid to be processed into the ultrafine chamber through at least one of the support shafts;
Protrusions protruding so as not to hit each other during relative rotation on the inner surfaces facing each other of the disk,
After the fluid cluster of the fluid to be treated and / or its suspended substance introduced into the ultrafine chamber is ultrafinened to the required particle size down to the micron level by stirring through the protrusions by relative rotation of the disk And a discharge means for discharging from the ultrafine chamber, and a fluid ultrafine device.
更に、前記円盤間の超微細化室からの流体漏れをシールするシール手段を有している請求項1記載の装置。   2. The apparatus according to claim 1, further comprising sealing means for sealing fluid leakage from the ultrafine chamber between the disks. 更に、前記被処理流体の供給手段に空気を気泡として導入する手段を有している請求項1記載の装置。   The apparatus according to claim 1, further comprising means for introducing air into the supply fluid supply means as bubbles. 前記円盤の一方が固定され、周縁に周壁を有し、前記円盤の他方が、前記一方の円盤の周壁に近接して支持軸を介して回転駆動される超微細化装置において、前記排出手段は、固定された円盤の周壁に形成された排出ダクトから構成されている請求項1記載の装置。   In the ultra-miniaturization apparatus in which one of the disks is fixed and has a peripheral wall at the periphery, and the other of the disks is driven to rotate through a support shaft in the vicinity of the peripheral wall of the one disk, the discharge means is The apparatus according to claim 1, wherein the apparatus comprises a discharge duct formed on a peripheral wall of a fixed disk. 前記一対の円盤は、それら各々の支持軸を介して回転駆動される超微細化装置において、前記排出手段は、前記一対の円盤を被う固定ケーシングの周壁に形成された排出ダクトから構成されている請求項1記載の装置。   In the ultra-miniaturization apparatus in which the pair of disks are rotationally driven via their respective support shafts, the discharge means is configured by a discharge duct formed on a peripheral wall of a fixed casing that covers the pair of disks. The apparatus of claim 1. 前記突起は、円形、楕円形、矩形又は多角形の横断面を有したピンで構成されている請求項1記載の装置。   The apparatus of claim 1, wherein the protrusion comprises a pin having a circular, elliptical, rectangular or polygonal cross section. 前記ピンは、その周面に平坦面又は凹凸を有している請求項6記載の装置。   The device according to claim 6, wherein the pin has a flat surface or irregularities on a peripheral surface thereof. 前記排出ダクトは、被処理流体の超微細化室内での滞留時間を調節する弁を有している請求項4又は5記載の装置。   6. The apparatus according to claim 4, wherein the discharge duct has a valve for adjusting a residence time of the fluid to be treated in the ultrafine chamber. 前記被処理流体は、水に浮遊するフレーク状及び/又は粒子状の有機物系廃棄物を含んでいるものである請求項1又は8記載の装置。   9. The apparatus according to claim 1, wherein the fluid to be treated contains flaky and / or particulate organic wastes floating in water. 前記供給手段は、水に浮遊するフレーク状及び/又は粒子状の有機物系廃棄物の流動性被処理流体を収容した槽から被処理流体を吸入して前記超微細化室に供給するものであり、また前記排出手段は超微細化処理をした処理済み流体を前記槽に戻し、該槽には発酵菌と光合成菌が供給される請求項1記載の装置。
The supply means sucks a fluid to be treated from a tank containing a fluid fluid to be treated of flaky and / or particulate organic waste suspended in water and supplies the fluid to the ultrafine chamber. The apparatus according to claim 1, wherein the discharge means returns the processed fluid subjected to the ultrafine processing to the tank, and fermented bacteria and photosynthetic bacteria are supplied to the tank.
JP2004364545A 2004-12-16 2004-12-16 Fluidized ultra-fine equipment Expired - Fee Related JP4726478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364545A JP4726478B2 (en) 2004-12-16 2004-12-16 Fluidized ultra-fine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364545A JP4726478B2 (en) 2004-12-16 2004-12-16 Fluidized ultra-fine equipment

Publications (2)

Publication Number Publication Date
JP2006167623A true JP2006167623A (en) 2006-06-29
JP4726478B2 JP4726478B2 (en) 2011-07-20

Family

ID=36668925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364545A Expired - Fee Related JP4726478B2 (en) 2004-12-16 2004-12-16 Fluidized ultra-fine equipment

Country Status (1)

Country Link
JP (1) JP4726478B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167622A (en) * 2004-12-16 2006-06-29 Miike Iron Works Co Ltd Method and device for decomposing organic substance with microorganism
JP2011504133A (en) * 2007-10-10 2011-02-03 インドゥストリアス セントリ,ソシエダ アノニマ デ カピタル バリアブレ Method and apparatus for separation, purification, interaction promotion and combustion improvement
WO2011127493A1 (en) * 2010-04-14 2011-10-20 Effective Energy Technologies Gmbh Process and device for wet crushing of hard substances
US9546351B2 (en) 2010-04-12 2017-01-17 Industrias Centli, S.A. De C.V. Method and system for processing biomass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895554A (en) * 1981-12-01 1983-06-07 森野 重孝 Sludge crusher
JPS62225592A (en) * 1986-03-27 1987-10-03 Res Assoc Residual Oil Process<Rarop> Production of solid pitch aqueous slurry by two-stage pulverization
JPH03186358A (en) * 1989-12-14 1991-08-14 Kansai Jiyari Kk Method for grinding wallastonite
JPH09122515A (en) * 1995-11-02 1997-05-13 Daido Steel Co Ltd Cage mill
JPH11319819A (en) * 1997-11-07 1999-11-24 Katsuya Sanekata Froth box for denaturing liquid quality and method for denaturing liquid quality
JP2001017988A (en) * 1999-07-06 2001-01-23 Babcock Hitachi Kk Water jet reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895554A (en) * 1981-12-01 1983-06-07 森野 重孝 Sludge crusher
JPS62225592A (en) * 1986-03-27 1987-10-03 Res Assoc Residual Oil Process<Rarop> Production of solid pitch aqueous slurry by two-stage pulverization
JPH03186358A (en) * 1989-12-14 1991-08-14 Kansai Jiyari Kk Method for grinding wallastonite
JPH09122515A (en) * 1995-11-02 1997-05-13 Daido Steel Co Ltd Cage mill
JPH11319819A (en) * 1997-11-07 1999-11-24 Katsuya Sanekata Froth box for denaturing liquid quality and method for denaturing liquid quality
JP2001017988A (en) * 1999-07-06 2001-01-23 Babcock Hitachi Kk Water jet reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167622A (en) * 2004-12-16 2006-06-29 Miike Iron Works Co Ltd Method and device for decomposing organic substance with microorganism
JP4585302B2 (en) * 2004-12-16 2010-11-24 株式会社御池鐵工所 Method and apparatus for decomposing organic matter by microorganisms
JP2011504133A (en) * 2007-10-10 2011-02-03 インドゥストリアス セントリ,ソシエダ アノニマ デ カピタル バリアブレ Method and apparatus for separation, purification, interaction promotion and combustion improvement
KR101610414B1 (en) 2007-10-10 2016-04-07 인더스트리아스 센틀리 에스.에이., 데 씨.브이. Method and apparatus for separating, purifying, promoting interaction and enhancing combustion
US9546351B2 (en) 2010-04-12 2017-01-17 Industrias Centli, S.A. De C.V. Method and system for processing biomass
WO2011127493A1 (en) * 2010-04-14 2011-10-20 Effective Energy Technologies Gmbh Process and device for wet crushing of hard substances
EA020154B1 (en) * 2010-04-14 2014-09-30 Эффектив Энерджи Текнолоджиз Гмбх Process and device for wet crushing of hard substances

Also Published As

Publication number Publication date
JP4726478B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US7585665B2 (en) Apparatus for ultrafinely shattering organic granular substances
US7279104B2 (en) Waste treatment method
US20050284810A1 (en) Waste stream digestion method
KR101165675B1 (en) Apparatus for sprinkling microorganism medicine having agitation tank
WO2017203712A1 (en) Cell wall/cell membrane disruption device and method for using device
JP4249163B2 (en) Fermentation bacteria culture equipment using organic matter
JP4726478B2 (en) Fluidized ultra-fine equipment
JP4585302B2 (en) Method and apparatus for decomposing organic matter by microorganisms
KR101173309B1 (en) Fining apparatus of organic particle
JP4402626B2 (en) Sewage treatment equipment
JP3854269B2 (en) Sewage treatment equipment
JP3866244B2 (en) Fermentation bacteria culture plant using organic matter
JP4515825B2 (en) Fermentation treatment method for organic waste and its treatment equipment
KR101839398B1 (en) Food waste discomposition processing system using a microorganism
JP3833678B2 (en) Continuous miniaturization equipment
JP4018648B2 (en) Feed production method and production plant
JP4536396B2 (en) Water bottom and / or water sludge treatment facility
KR102597100B1 (en) Extinction device for decomposing domestic animal carcass and processing method thereof
KR102282032B1 (en) a device for cultivating microorganism
JP3579667B2 (en) Organic waste treatment equipment
KR102137057B1 (en) Waste water treatment method for Waste water resource-treatment apparatus equipped with microorganism supply module
KR200307201Y1 (en) The apparatus of activated native - microbe
JP2005334779A (en) Equipment for treating oil cake
CN211936700U (en) Mixing stirring device for biological fertilizer
JP3750299B2 (en) Processing tank and raw garbage fermentation processing apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees