JP2006165058A - Manufacturing method of semiconductor module - Google Patents

Manufacturing method of semiconductor module Download PDF

Info

Publication number
JP2006165058A
JP2006165058A JP2004350228A JP2004350228A JP2006165058A JP 2006165058 A JP2006165058 A JP 2006165058A JP 2004350228 A JP2004350228 A JP 2004350228A JP 2004350228 A JP2004350228 A JP 2004350228A JP 2006165058 A JP2006165058 A JP 2006165058A
Authority
JP
Japan
Prior art keywords
electronic component
semiconductor module
thermoplastic resin
wiring
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350228A
Other languages
Japanese (ja)
Inventor
Masayuki Hodono
将行 程野
Kazuyuki Miki
和幸 三木
Koji Noro
弘司 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004350228A priority Critical patent/JP2006165058A/en
Publication of JP2006165058A publication Critical patent/JP2006165058A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of semiconductor module that does not have complicated processes for manufacturing semiconductor module having high electrical connection reliability. <P>SOLUTION: The manufacturing method of semiconductor module comprises the steps of (1) bonding electronic components to a bonding sheet, (2) sealing the electronic components to the bonding sheet using resin, (3) peeling the bonding sheet, (4) attaching the thermoplastic resin sheet to the part where the bonding sheet is peeled in the step (3), (5) boring holes to the thermoplastic resin sheet to expose the connecting terminals of the electronic components, and (6) forming the wires by connecting the connecting terminals with conductive ink. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体モジュールの製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor module.

半導体装置を用いた各種機器を一層小型化、軽量化、薄型化すると共に、高性能化を図るため、ICチップを含む半導体チップや各種電子部品の高密度実装が進められている。その有力な手段の1つとして平面上に複数の半導体チップを同一パッケージ内に有するMCM(Multi Chip Module)などの半導体モジュールが種々提案されている(例えば、特許文献1参照)。このような半導体モジュールは、例えば、高密度実装化によるコンパクト性と高速アクセス性を活かし、ノートPCや携帯電話用のメモリーチップなどへの利用が期待される。また、S-RAM(スタティックラム)、フラッシュメモリ、マイクロコンピュータなどの半導体チップを1個にパッケージングしたチップ状電子部品としての利用も期待できる。   In order to further reduce the size, weight, and thickness of various devices using semiconductor devices, and to improve performance, high-density mounting of semiconductor chips including IC chips and various electronic components has been promoted. As one of the effective means, various semiconductor modules such as MCM (Multi Chip Module) having a plurality of semiconductor chips on a plane in the same package have been proposed (for example, refer to Patent Document 1). Such semiconductor modules are expected to be used for memory chips for notebook PCs and mobile phones, for example, taking advantage of compactness and high-speed accessibility due to high-density mounting. In addition, it can be expected to be used as a chip-like electronic component in which semiconductor chips such as S-RAM (static ram), flash memory, and microcomputer are packaged into one.

半導体モジュールを製造する際には、半導体チップや抵抗、コンデンサー、ダイオードを樹脂で封止し、それぞれの電子部品を導体パターンで接続する必要があるが、従来の電着法やワイヤーボンディングよりも簡単に配線を形成する方法として、導電性インクで配線を形成することが知られている。例えば、インクジェット法で導電性インクをパターニングして配線を形成する方法を用いれば、様々な電気接続用配線パターンを容易に形成することができる(例えば、特許文献2参照)。   When manufacturing semiconductor modules, it is necessary to seal the semiconductor chip, resistors, capacitors, and diodes with resin and connect each electronic component with a conductor pattern, but it is easier than conventional electrodeposition or wire bonding As a method for forming a wiring, it is known to form a wiring with a conductive ink. For example, if a method of forming a wiring by patterning a conductive ink by an ink jet method is used, various wiring patterns for electrical connection can be easily formed (see, for example, Patent Document 2).

しかし、図1に示すような従来の半導体モジュールの製造方法では、複数の半導体チップや抵抗、コンデンサー、ダイオード等の電子部品1を粘着シート2で仮固定(図1の工程(1))する際、半導体チップや電子部品の周囲への粘着剤3の盛り上がり4が生じる(図1の工程(2))という欠陥が生じる。そのまま樹脂充填(図1の工程(3))されると、粘着剤3の盛り上がり4の形状が封止樹脂5に転写され、電子部品の周囲に10〜20μm程度の溝6が形成されてしまう(図1の工程(4))。その後、導電性インクで配線7を形成(図1の工程(5))する際、現状のインクジェットによる配線厚さはサブミクロンから十数ミクロンであるので、この溝は、導電性インクによる配線の断線を誘発する可能性がある。そこで、このような溝を形成しないよう製造方法を工夫した半導体モジュールが報告されている(例えば、特許文献3参照)。
特開2003-124431号公報 特開2004-165310号公報 特開2004-55729号公報
However, in the conventional method for manufacturing a semiconductor module as shown in FIG. 1, a plurality of semiconductor chips, resistors, capacitors, diodes and other electronic components 1 are temporarily fixed with an adhesive sheet 2 (step (1) in FIG. 1). As a result, a swell 4 of the adhesive 3 around the semiconductor chip or the electronic component occurs (step (2) in FIG. 1). When the resin is filled as it is (step (3) in FIG. 1), the shape of the bulge 4 of the adhesive 3 is transferred to the sealing resin 5 and a groove 6 of about 10 to 20 μm is formed around the electronic component. (Step (4) in FIG. 1). Thereafter, when the wiring 7 is formed with the conductive ink (step (5) in FIG. 1), since the current wiring thickness by the ink jet is from submicron to tens of microns, this groove is formed by the wiring of the conductive ink. There is a possibility of causing disconnection. Therefore, a semiconductor module in which a manufacturing method is devised so as not to form such a groove has been reported (for example, see Patent Document 3).
JP 2003-124431 A JP 2004-165310 A JP 2004-55729 A

しかし、電子部品の周囲の溝を形成しないように工夫された半導体モジュールの製造方法は、工程が複雑である。   However, the manufacturing method of the semiconductor module devised so as not to form the groove around the electronic component is complicated.

従って、本発明の目的は、工程が複雑ではなく、かつ高い電気接続信頼性を有する半導体モジュールを製造することができる半導体モジュールの製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor module, which can manufacture a semiconductor module having a high electrical connection reliability without complicated processes.

本発明は、
〔1〕(1)粘着シートに電子部品を接着する工程、
(2)樹脂により該電子部品を封止する工程、
(3)該粘着シートを剥離する工程
(4)工程(3)で剥離した部位に熱可塑性樹脂シートを貼り付ける工程、
(5)該熱可塑性樹脂シートに穿孔し、該電子部品の接続端子を露出する工程、および
(6)導電性インクで該接続端子間を接続して配線を形成する工程
を含む、半導体モジュールの製造方法、ならびに
〔2〕〔1〕記載の方法により製造された半導体モジュール
に関する。
The present invention
[1] (1) A step of bonding an electronic component to an adhesive sheet,
(2) a step of sealing the electronic component with a resin;
(3) Step of peeling off the pressure-sensitive adhesive sheet (4) Step of attaching a thermoplastic resin sheet to the site peeled off in step (3),
(5) including a step of perforating the thermoplastic resin sheet to expose a connection terminal of the electronic component, and (6) a step of forming a wiring by connecting the connection terminals with a conductive ink. The present invention relates to a manufacturing method and a semiconductor module manufactured by the method described in [2] [1].

本発明により、単純な工程で、高い電気接続信頼性の半導体モジュールが得られる半導体モジュールの製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a semiconductor module in which a semiconductor module with high electrical connection reliability can be obtained by a simple process.

本発明の半導体モジュールの製造方法は、
(1)粘着シートに電子部品を接着する工程、
(2)樹脂により該電子部品を封止する工程、
(3)該粘着シートを剥離する工程
(4)工程(3)で剥離した部位に熱可塑性樹脂シートを貼り付ける工程、
(5)該熱可塑性樹脂シートに穿孔し、該電子部品の接続端子を露出する工程、および
(6)導電性インクで該接続端子間を接続して配線を形成する工程
を含むことを一つの特徴とする。
The method for manufacturing a semiconductor module of the present invention includes:
(1) a step of bonding an electronic component to the adhesive sheet;
(2) a step of sealing the electronic component with a resin;
(3) Step of peeling off the pressure-sensitive adhesive sheet (4) Step of attaching a thermoplastic resin sheet to the site peeled off in step (3),
(5) including perforating the thermoplastic resin sheet to expose the connection terminals of the electronic component; and (6) connecting the connection terminals with a conductive ink to form a wiring. Features.

本発明の製造方法において、電子部品を粘着シートに接着した際にその壁面に粘着剤の盛り上がりが生じ、その盛り上がりの形状が封止樹脂に転写され、電子部品の周囲に溝が形成されたとしても、その上に熱可塑性樹脂シートを貼り付けるため、配線形成面に溝は生じず、配線の断線を誘発する可能性が非常に低いという効果が奏される。   In the manufacturing method of the present invention, when the electronic component is bonded to the pressure-sensitive adhesive sheet, the wall of the pressure-sensitive adhesive swells, the shape of the bulge is transferred to the sealing resin, and a groove is formed around the electronic component. However, since the thermoplastic resin sheet is affixed thereon, no groove is formed on the wiring forming surface, and the possibility of inducing disconnection of the wiring is very low.

以下、図2および図3を参照しつつ本発明の半導体モジュールの製造方法の一態様を説明する。   Hereinafter, an embodiment of the semiconductor module manufacturing method of the present invention will be described with reference to FIGS.

図2の工程(1)において、粘着シート2に、電子部品1の接続端子8が粘着シート2側になるように電子部品1と金属枠9が接着されている。   2, the electronic component 1 and the metal frame 9 are bonded to the adhesive sheet 2 so that the connection terminals 8 of the electronic component 1 are on the adhesive sheet 2 side.

本発明に使用される粘着シート2は、粘着剤層3と基材層10を有する。粘着剤層3を構成する材料としては、シリコーン系粘着剤など当該分野で一般的に使用されている材料が挙げられる。基材層10を構成する材料としては、耐熱性を有するポリイミドなど当該分野で一般的に使用されている材料が挙げられる。粘着シート2は当該分野で公知の方法により作製してもよいし、例えば、シリコンテープなどの市販の粘着シートを使用してもよい。   The pressure-sensitive adhesive sheet 2 used in the present invention has a pressure-sensitive adhesive layer 3 and a base material layer 10. Examples of the material constituting the pressure-sensitive adhesive layer 3 include materials generally used in this field, such as a silicone-based pressure-sensitive adhesive. As a material which comprises the base material layer 10, the material generally used in the said field | areas, such as a polyimide which has heat resistance, is mentioned. The pressure-sensitive adhesive sheet 2 may be produced by a method known in the art, and for example, a commercially available pressure-sensitive adhesive sheet such as a silicon tape may be used.

電子部品1としては、半導体チップ、抵抗、コンデンサー、ダイオードなどが挙げられる。   Examples of the electronic component 1 include a semiconductor chip, a resistor, a capacitor, and a diode.

金属枠9は、次の工程(2)における封止に使用する樹脂を充填し易くする観点などから使用されるので、その材料は特に限定されず、特に必要ない場合は金属枠9を用いなくてもよい。   Since the metal frame 9 is used from the viewpoint of easily filling the resin used for sealing in the next step (2), the material is not particularly limited, and the metal frame 9 is not used unless particularly necessary. May be.

粘着シート2への電子部品1の接着方法としては、配線パターンに適した所定の配置で粘着シート上に接着できれば特に限定されない。   The method for adhering the electronic component 1 to the adhesive sheet 2 is not particularly limited as long as the electronic component 1 can be adhered on the adhesive sheet in a predetermined arrangement suitable for the wiring pattern.

次に、図2の工程(2)において、封止樹脂5により電子部品1を封止している。   Next, in the step (2) of FIG. 2, the electronic component 1 is sealed with the sealing resin 5.

封止樹脂5としては、電子部品の封止が可能な樹脂であれば特に限定されないが、エポキシ樹脂が好ましく、液状エポキシ樹脂がさらに好ましい。封止樹脂の物性は、加熱後のクラックなどの欠陥の発生を防止する観点から、工程(4)で使用する熱可塑性樹脂シートを構成する樹脂と著しく乖離しない物性(線膨張係数、弾性率、ガラス転移温度、熱伝導度等)を有することが好ましい。封止樹脂による電子部品の封止は、例えば、金属枠9内に封止樹脂を充填し、加熱またはUV照射によって樹脂の硬化を行うことにより実行される。あるいは、封止樹脂シートを使用する場合は、金属枠9を使用する必要はなく、電子部品1上に封止樹脂シートを直接ラミネートし、加熱またはUV照射によって樹脂の硬化を行うことにより封止される。   The sealing resin 5 is not particularly limited as long as it is a resin capable of sealing an electronic component, but is preferably an epoxy resin, and more preferably a liquid epoxy resin. From the viewpoint of preventing the occurrence of defects such as cracks after heating, the physical properties of the sealing resin are those that do not significantly deviate from the resin constituting the thermoplastic resin sheet used in step (4) (linear expansion coefficient, elastic modulus, Glass transition temperature, thermal conductivity, etc.). The electronic component is sealed with the sealing resin, for example, by filling the metal frame 9 with the sealing resin and curing the resin by heating or UV irradiation. Alternatively, when a sealing resin sheet is used, it is not necessary to use the metal frame 9 and sealing is performed by laminating the sealing resin sheet directly on the electronic component 1 and curing the resin by heating or UV irradiation. Is done.

次に、図2の工程(3)において、粘着シート2が電子部品1および封止樹脂5から剥離されている。   Next, in the step (3) of FIG. 2, the adhesive sheet 2 is peeled from the electronic component 1 and the sealing resin 5.

電子部品1および封止樹脂5からの粘着シート2の剥離は、特に限定されないが、ピーリング等の方法により行うことができる。   Although peeling of the adhesive sheet 2 from the electronic component 1 and the sealing resin 5 is not particularly limited, it can be performed by a method such as peeling.

次に、図3の工程(4)において、熱可塑性樹脂シート11を電子部品1および封止樹脂5上に貼り付けている。   Next, in the step (4) of FIG. 3, the thermoplastic resin sheet 11 is pasted on the electronic component 1 and the sealing resin 5.

熱可塑性樹脂シート11は、微小な凹凸を有する面に貼り付けて、加熱によって凹凸面に密着することができるように、常温で粘着性を有し、また200℃以下で加熱により軟化する特性を有することが好ましい。さらに、熱可塑性樹脂シートは、後工程においてこの熱可塑性樹脂シート上に導電性インクにより配線を形成する観点から、配線形成時の200〜300℃の加熱に耐え得るだけの耐熱性を有していることが好ましい。このような特性を有する熱可塑性シートを使用することにより、電子部品の周辺に生じた溝を首尾よく埋めることができ、その結果、配線形成面には溝が生じず、配線の断線を誘発する可能性が非常に低いという効果が奏される。   The thermoplastic resin sheet 11 has adhesive properties at room temperature and can be softened by heating at 200 ° C. or lower so that the thermoplastic resin sheet 11 can be attached to a surface having minute unevenness and can be adhered to the uneven surface by heating. It is preferable to have. Furthermore, the thermoplastic resin sheet has heat resistance sufficient to withstand heating at 200 to 300 ° C. during wiring formation from the viewpoint of forming wiring with conductive ink on the thermoplastic resin sheet in a later step. Preferably it is. By using the thermoplastic sheet having such characteristics, it is possible to successfully fill in the groove formed around the electronic component, and as a result, no groove is formed on the wiring forming surface, thereby inducing wiring disconnection. There is an effect that the possibility is very low.

熱可塑性樹脂シート11を構成する材料は、上記特性を有する材料であれば特に限定されないが、電気接続用途の観点から、エポキシ樹脂、ポリイミド樹脂、ポリエチレンテレフタレート、液晶ポリマーなどが好ましく、後述の工程(5)における穿孔性および接続端子の視認性の観点から、エポキシ樹脂がより好ましく、半硬化状のエポキシ樹脂を用いることがさらに好ましい。熱可塑性樹脂シート11を構成する材料の物性は、加熱後のクラックなどの欠陥の発生を防止する観点から、工程(2)で使用する封止用樹脂5と著しく乖離しない物性(線膨張係数、弾性率、ガラス転移温度、熱伝導度等)を有することが好ましい。熱可塑性樹脂シート11は、後述の工程(5)における穿孔を行いやすくする観点から、透明であることが好ましい。本発明において透明とは、電子部品の接続端子が目視できる程度の有色透明も包含する。   Although the material which comprises the thermoplastic resin sheet 11 will not be specifically limited if it is the material which has the said characteristic, From a viewpoint of an electrical connection use, an epoxy resin, a polyimide resin, a polyethylene terephthalate, a liquid crystal polymer etc. are preferable, and the below-mentioned process ( From the viewpoint of the perforation property and the connection terminal visibility in 5), an epoxy resin is more preferable, and a semi-cured epoxy resin is more preferably used. From the viewpoint of preventing the occurrence of defects such as cracks after heating, the physical properties of the material constituting the thermoplastic resin sheet 11 are those that do not significantly deviate from the sealing resin 5 used in step (2) (linear expansion coefficient, Preferably having an elastic modulus, a glass transition temperature, a thermal conductivity and the like. The thermoplastic resin sheet 11 is preferably transparent from the viewpoint of facilitating perforation in step (5) described later. In the present invention, the term “transparent” includes colored transparency that allows the connection terminals of electronic components to be visually observed.

熱可塑性樹脂シート11は、例えば、前記材料を溶媒中に溶解させた溶液をキャスティング、スピンコート、ロールコーティングなどの方法により、適切な厚さに製膜し、さらに、硬化反応を進行させず、溶解の除去が可能な程度の温度で乾燥させて得られる。熱可塑性樹脂シートの厚さは、電子部品の接続端子の凹凸形状が熱可塑性樹脂シートの表面形状に影響を与えない程度に厚く、工程(5)での穿孔に過度の力を必要としない程度に薄いことが好ましい。具体的な厚さは、電子部品の接続端子の凹凸形状のスケールに依存するので一概にはいえないが、10〜20μmが好ましい。   The thermoplastic resin sheet 11 is, for example, formed into a suitable thickness by a method such as casting, spin coating, roll coating, or the like obtained by dissolving the material in a solvent, and further does not proceed with the curing reaction. It is obtained by drying at a temperature at which dissolution can be removed. The thickness of the thermoplastic resin sheet is so thick that the uneven shape of the connection terminal of the electronic component does not affect the surface shape of the thermoplastic resin sheet, and does not require excessive force for perforation in the step (5). It is preferable to be thin. The specific thickness depends on the uneven shape scale of the connection terminal of the electronic component and cannot be generally specified, but is preferably 10 to 20 μm.

熱可塑性樹脂シートの電子部品1および封止樹脂5上への貼り付けは、例えば、ラミネータ等を用いて貼り付ける方法が挙げられる。   For example, a method of attaching the thermoplastic resin sheet on the electronic component 1 and the sealing resin 5 may be performed using a laminator or the like.

次に、図3の工程(5)において、熱可塑性樹脂シート11に穿孔して開口部12を設けて電子部品1の接続端子8を露出している。   Next, in step (5) of FIG. 3, the thermoplastic resin sheet 11 is perforated to provide an opening 12 to expose the connection terminals 8 of the electronic component 1.

穿孔手段としては、封止された電子部品1の接続端子8を露出できる手段であれば特に限定されないが、フレキシブル回路基板製造工程でビア形成に使用されるようなレーザー加工装置、一般的な金属ドリル、薬液による溶解などが挙げられる。レーザー加工装置を使用する場合、使用されるレーザーとしては、粘着シートの材質、物性(光進入長、光透過率、熱伝導度、粘性等)などに左右されるため、一概にはいえないが、炭酸ガスレーザー、UVレーザー、エキシマーレーザーなどが好ましい。開口部12の垂直断面形状は、配線形成性および電気接続信頼性の観点から、接続端子側に向けて徐々に幅が小さくなっているすり鉢のような形状であることが好ましい。また、開口部12にはデスミア処理が施されていることが好ましい。開口部12の水平断面形状は円形となっていることが好ましい。サイズは、接続端子のサイズにより異なるので一概にはいえず、接続端子8が露出されるようなサイズであればよい。   The punching means is not particularly limited as long as it can expose the connection terminals 8 of the sealed electronic component 1, but a laser processing apparatus used for forming a via in a flexible circuit board manufacturing process, a general metal Examples include a drill and a chemical solution. When using laser processing equipment, the laser used depends on the material and physical properties (light penetration length, light transmittance, thermal conductivity, viscosity, etc.) of the pressure-sensitive adhesive sheet. Carbon dioxide laser, UV laser, excimer laser and the like are preferable. The vertical cross-sectional shape of the opening 12 is preferably a mortar-like shape whose width gradually decreases toward the connection terminal from the viewpoint of wiring formability and electrical connection reliability. The opening 12 is preferably subjected to a desmear process. The horizontal cross-sectional shape of the opening 12 is preferably circular. Since the size differs depending on the size of the connection terminal, it cannot be generally specified, and any size that allows the connection terminal 8 to be exposed may be used.

次に、図3の工程(6)において、導電性インクを用いて接続端子8間の配線7を形成している。   Next, in step (6) of FIG. 3, the wiring 7 between the connection terminals 8 is formed using conductive ink.

導電性インクに含有される導電性粒子としては、導電性を有する金属粒子、金属酸化物、これらと樹脂もしくは分散剤との複合物など、導電性を有するものであれば特に限定されない。導電性を有する金属粒子としては、金、銀、銅、アルミニウム、鉄、ニッケル、イリジウム、タングステンなどが挙げられ、導電性を有する金属酸化物としては、前記金属粒子の酸化物が挙げられる。導電性粒子の粒子径はサブミクロンオーダー以下であることが好ましい。何故なら粒子径が小さいほど、配線が薄細であっても、配線の中に電気接続信頼性を確保するに十分な数の導電性粒子を含むことができるからである。また導電性粒子の粒子径は、塗布装置のノズル径以下であることも必要な条件となる。従って、導電性粒子の粒子径は、好ましくは1〜500nmである。このような粒子径の導電性粒子を使用することにより、数μmの配線幅・配線厚さであっても十分な粒子数を含み、導電抵抗値や電気接続信頼性の点で良質な配線を形成することができる。   The conductive particles contained in the conductive ink are not particularly limited as long as they have conductivity, such as conductive metal particles, metal oxides, and a composite of these and a resin or dispersant. Examples of the conductive metal particles include gold, silver, copper, aluminum, iron, nickel, iridium, and tungsten. Examples of the conductive metal oxide include oxides of the metal particles. The particle diameter of the conductive particles is preferably less than the submicron order. This is because, as the particle diameter is smaller, even if the wiring is thin, a sufficient number of conductive particles can be included in the wiring to ensure electrical connection reliability. Moreover, it is a necessary condition that the particle diameter of the conductive particles is equal to or smaller than the nozzle diameter of the coating apparatus. Therefore, the particle diameter of the conductive particles is preferably 1 to 500 nm. By using conductive particles with such a particle size, even with a wiring width and wiring thickness of several μm, a sufficient number of particles can be included, and high-quality wiring can be achieved in terms of conductive resistance and electrical connection reliability. Can be formed.

導電性インクに含有される樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂などが挙げられ、分散剤としては、アルコール、アルキルアミン、カルボン酸アミド、アミノカルボン酸などが挙げられる。また導電性インクの調製に使用される溶媒としては、主鎖の炭素数が6〜20程度の非極性炭化水素、水、炭素数が15以下のアルコール系溶媒、またはその混合物が挙げられる。   Examples of the resin contained in the conductive ink include phenol resin, epoxy resin, and polyimide resin, and examples of the dispersant include alcohol, alkylamine, carboxylic acid amide, and aminocarboxylic acid. Examples of the solvent used for preparing the conductive ink include nonpolar hydrocarbons having a main chain having about 6 to 20 carbon atoms, water, alcohol solvents having 15 or less carbon atoms, or mixtures thereof.

導電性インクの性状は、熱可塑性樹脂シート上に配線を描くことができればペースト状でも液状でもよい。   The property of the conductive ink may be pasty or liquid as long as the wiring can be drawn on the thermoplastic resin sheet.

次に、導電性インクを用いた配線形成方法について説明する。前述の導電性インクを熱可塑性樹脂シート上にパターン塗布し、特定の温度下で乾燥させることで配線7を形成することが出来る。前記塗布方法としては、インクジェット法、ディスペンサー、スクリーン印刷、凹版や凸版を利用したオフセット印刷等が挙げられ、配線パターンの自由度の観点から、インクジェット法が好ましい。乾燥温度、乾燥時間は用いる導電性インクの性質により異なるので一概にはいえないが、本発明のような半導体モジュールを作製する際は、使用する材料(エポキシ樹脂、ポリイミド、液晶ポリマーなど)の耐熱性を考慮して250℃以下で1時間程度の乾燥が好ましい。   Next, a wiring forming method using conductive ink will be described. The wiring 7 can be formed by applying the above-described conductive ink in a pattern on a thermoplastic resin sheet and drying it at a specific temperature. Examples of the coating method include inkjet method, dispenser, screen printing, offset printing using intaglio and letterpress, and the inkjet method is preferable from the viewpoint of the degree of freedom of the wiring pattern. Although the drying temperature and drying time vary depending on the properties of the conductive ink used, it cannot be generally stated, but when manufacturing a semiconductor module such as the present invention, the heat resistance of the materials used (epoxy resin, polyimide, liquid crystal polymer, etc.) Considering the properties, drying at 250 ° C. or lower for about 1 hour is preferable.

以上の方法により、簡単な工程で、電気接続信頼性の高い半導体モジュールが製造される。   By the above method, a semiconductor module with high electrical connection reliability is manufactured by a simple process.

以下、本発明を実施例によりさらに詳細に記載し説明するが、この実施例は本発明を単に開示するものであり、何ら限定することを意味するものではない。   Hereinafter, the present invention will be described and explained in more detail by way of examples, but these examples merely disclose the present invention and are not meant to be limiting in any way.

実施例1 半導体モジュールの作製
以下のようにして半導体モジュールを作製した。
Example 1 Production of Semiconductor Module A semiconductor module was produced as follows.

(1)20×20mmの金属枠30個を粘着シート(シリコンテープ、日東電工(株)製TRM-3651X-15)に接着し、金属枠の内側に、金属枠1個当たり、ICチップ3個、抵抗4個、コンデンサー2個およびダイオード1個を、後工程で描く配線パターンに適した所定の配置で粘着シート上に接着した。この時、各電子部品の接続端子が粘着シートと接するように、各電子部品を粘着シートに接着した。 (1) Thirty 20 x 20 mm metal frames are bonded to an adhesive sheet (silicon tape, TRM-3651X-15 manufactured by Nitto Denko Corporation), and three IC chips per metal frame inside the metal frame Then, 4 resistors, 2 capacitors, and 1 diode were adhered on the adhesive sheet in a predetermined arrangement suitable for the wiring pattern drawn in the subsequent process. At this time, each electronic component was bonded to the adhesive sheet so that the connection terminal of each electronic component was in contact with the adhesive sheet.

(2)金属枠内に液状エポキシ樹脂(ナミックス社製)を充填し、130℃で十分に液状エポキシ樹脂を硬化させて電子部品の封止を行った。 (2) A liquid epoxy resin (manufactured by NAMICS) was filled into the metal frame, and the liquid epoxy resin was sufficiently cured at 130 ° C. to seal the electronic component.

(3)その後、粘着シートを剥離した。封止樹脂に埋め込まれた電子部品を観察したところ、一部の電子部品の周囲に10〜20μmの溝が生じていた。 (3) Then, the adhesive sheet was peeled off. When the electronic component embedded in the sealing resin was observed, a 10 to 20 μm groove was formed around some of the electronic components.

(4)封止樹脂および電子部品の上に熱可塑性樹脂シート(半硬化エポキシ接着シート、日東電工(株)製AS-X5)を圧力0.15MPaにて、40℃に加温しながら気泡が混入しないように10mm/secの速度にてラミネートし、175℃×5時間にて熱可塑性樹脂シートを硬化させた。硬化後、サンプルの断面を観察したところ、熱可塑性樹脂シートは溝を埋めるように積層されていることを確認した。 (4) Bubbles are mixed while heating a thermoplastic resin sheet (semi-cured epoxy adhesive sheet, AS-X5 manufactured by Nitto Denko Corporation) at 40 ° C at a pressure of 0.15 MPa on the sealing resin and electronic parts. The thermoplastic resin sheet was cured at 175 ° C. for 5 hours. When the cross section of the sample was observed after curing, it was confirmed that the thermoplastic resin sheet was laminated so as to fill the groove.

(5)熱可塑性樹脂シート面より、埋め込まれた電子部品の接続端子を露出させるため、炭酸ガスレーザーにて開口部(接続端子側:φ50μm、配線形成側:φ150μmのすり鉢状)を形成した。 (5) In order to expose the connection terminal of the embedded electronic component from the thermoplastic resin sheet surface, an opening (connection terminal side: φ50 μm, wiring formation side: φ150 μm mortar shape) was formed with a carbon dioxide gas laser.

(6)開口部をデスミア処理した後、インクジェット法により導電性インク(ハリマ化成(株)製 NPS-Jナノペースト)を開口部と熱可塑性樹脂シート上に塗布することで配線幅80μm、厚さ3μmの配線を描画した。10〜30分間風乾した後、230℃の乾燥炉で60分間の加熱処理を行い、配線を形成した。 (6) After desmearing the opening, a conductive ink (NPS-J nanopaste manufactured by Harima Chemicals Co., Ltd.) is applied onto the opening and the thermoplastic resin sheet by an ink jet method, so that the wiring width is 80 μm and thickness. A 3 μm wiring was drawn. After air-drying for 10 to 30 minutes, a heat treatment for 60 minutes was performed in a 230 ° C. drying furnace to form wiring.

(7)金属枠を取り外し、その後半導体モジュールを所定のサイズに合わせて裁断した。 (7) The metal frame was removed, and then the semiconductor module was cut to a predetermined size.

得られた半導体モジュールの導通テストを行った結果、すべての配線間で断線は生じておらず、正常に動作していることを確認した。   As a result of conducting a continuity test of the obtained semiconductor module, it was confirmed that no disconnection occurred between all the wirings and that the semiconductor module was operating normally.

比較例1 半導体モジュールの作製
以下のようにして半導体モジュールを作製した。
Comparative Example 1 Production of Semiconductor Module A semiconductor module was produced as follows.

実施例1の(1)〜(3)と同様の工程を行った後に、(3)で粘着シートを剥離した面にインクジェット法により導電性インク(ハリマ化成(株)製 NPS-Jナノペースト)を塗布することで配線幅80μm、厚さ3μmの配線を描画した。10〜30分間風乾した後、230℃の乾燥炉で60分間の加熱処理を行い、配線を形成した。その後、金属枠を取り外し、次いで、半導体モジュールを所定のサイズに合わせて裁断した。   After performing the same steps as (1) to (3) of Example 1, conductive ink (NPS-J nano paste manufactured by Harima Kasei Co., Ltd.) was applied to the surface from which the adhesive sheet was peeled in (3) by an inkjet method. The wiring with a wiring width of 80 μm and a thickness of 3 μm was drawn. After air-drying for 10 to 30 minutes, a heat treatment for 60 minutes was performed in a 230 ° C. drying furnace to form wiring. Thereafter, the metal frame was removed, and then the semiconductor module was cut to a predetermined size.

得られた半導体モジュールの電子部品の接続端子間で導通テストを行った結果、溝部分で断線が生じ、電気接続信頼性に劣ることを確認した。   As a result of conducting a continuity test between the connection terminals of the electronic components of the obtained semiconductor module, it was confirmed that a disconnection occurred in the groove portion and the electrical connection reliability was poor.

本発明の製造方法は、MCMなどの半導体モジュールの製造に利用することができる。   The manufacturing method of the present invention can be used for manufacturing a semiconductor module such as MCM.

従来の半導体モジュールの製造方法の工程概略図を示す。The process schematic of the manufacturing method of the conventional semiconductor module is shown. 本発明の半導体モジュールの製造方法の工程概略図を示す。The process schematic of the manufacturing method of the semiconductor module of this invention is shown. 本発明の半導体モジュールの製造方法の工程概略図を示す。The process schematic of the manufacturing method of the semiconductor module of this invention is shown.

符号の説明Explanation of symbols

1 電子部品
2 粘着シート
3 粘着剤
4 盛り上がり
5 封止樹脂
6 溝
7 配線
8 接続端子
9 金属枠
10 基材層
11 熱可塑性樹脂シート
12 開口部
DESCRIPTION OF SYMBOLS 1 Electronic component 2 Adhesive sheet 3 Adhesive 4 Swelling 5 Sealing resin 6 Groove 7 Wiring 8 Connection terminal 9 Metal frame 10 Base material layer 11 Thermoplastic resin sheet 12 Opening part

Claims (5)

(1)粘着シートに電子部品を接着する工程、
(2)樹脂により該電子部品を封止する工程、
(3)該粘着シートを剥離する工程
(4)工程(3)で剥離した部位に熱可塑性樹脂シートを貼り付ける工程、
(5)該熱可塑性樹脂シートに穿孔し、該電子部品の接続端子を露出する工程、および
(6)導電性インクで該接続端子間を接続して配線を形成する工程
を含む、半導体モジュールの製造方法。
(1) a step of bonding an electronic component to the adhesive sheet;
(2) a step of sealing the electronic component with a resin;
(3) Step of peeling off the pressure-sensitive adhesive sheet (4) Step of attaching a thermoplastic resin sheet to the site peeled off in step (3),
(5) including a step of perforating the thermoplastic resin sheet to expose a connection terminal of the electronic component, and (6) a step of forming a wiring by connecting the connection terminals with a conductive ink. Production method.
電子部品が半導体チップ、抵抗、コンデンサーおよびダイオードからなる群より選択される少なくとも1種である、請求項1記載の方法。   The method according to claim 1, wherein the electronic component is at least one selected from the group consisting of a semiconductor chip, a resistor, a capacitor, and a diode. 熱可塑性樹脂シートが透明である、請求項1または2記載の方法。   The method according to claim 1 or 2, wherein the thermoplastic resin sheet is transparent. 熱可塑性樹脂シートの材料がエポキシ樹脂である、請求項1〜3いずれか記載の方法。   The method according to claim 1, wherein the material of the thermoplastic resin sheet is an epoxy resin. 請求項1〜4いずれか記載の方法により製造された半導体モジュール。
A semiconductor module manufactured by the method according to claim 1.
JP2004350228A 2004-12-02 2004-12-02 Manufacturing method of semiconductor module Pending JP2006165058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350228A JP2006165058A (en) 2004-12-02 2004-12-02 Manufacturing method of semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350228A JP2006165058A (en) 2004-12-02 2004-12-02 Manufacturing method of semiconductor module

Publications (1)

Publication Number Publication Date
JP2006165058A true JP2006165058A (en) 2006-06-22

Family

ID=36666754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350228A Pending JP2006165058A (en) 2004-12-02 2004-12-02 Manufacturing method of semiconductor module

Country Status (1)

Country Link
JP (1) JP2006165058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332165A (en) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd Manufacturing method of thin film transistor
US11380659B2 (en) 2019-09-24 2022-07-05 Nichia Corporation Method of manufacturing light-emitting device and method of manufacturing light-emitting module
US11655947B2 (en) 2020-04-08 2023-05-23 Nichia Corporation Light emitting device, light emitting module, and method of manufacturing light emitting module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332165A (en) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd Manufacturing method of thin film transistor
US11380659B2 (en) 2019-09-24 2022-07-05 Nichia Corporation Method of manufacturing light-emitting device and method of manufacturing light-emitting module
US11784170B2 (en) 2019-09-24 2023-10-10 Nichia Corporation Light-emitting device and light-emitting module with frame and covering member
US11655947B2 (en) 2020-04-08 2023-05-23 Nichia Corporation Light emitting device, light emitting module, and method of manufacturing light emitting module

Similar Documents

Publication Publication Date Title
KR100276193B1 (en) Printed circuit board, ic card and fabricating method thereof
KR101194713B1 (en) Module, wiring board and module manufacturing method
JPWO2007126090A1 (en) CIRCUIT BOARD, ELECTRONIC DEVICE DEVICE, AND CIRCUIT BOARD MANUFACTURING METHOD
US9059317B2 (en) Method of making an electronic device having a liquid crystal polymer solder mask laminated to an interconnect layer stack and related devices
KR20000029261A (en) Semiconductor device, semiconductor wafer, semiconductor module and manufacturing method of semiconductor device
US7993984B2 (en) Electronic device and manufacturing method
JP2010239022A (en) Flexible printed wiring board and semiconductor device employing the same
JP2009016377A (en) Multilayer wiring board and multilayer wiring board manufacturing method
JP2009016378A (en) Multilayer wiring board and multilayer wiring board manufacturing method
KR20130105888A (en) Method of making an electronic device having a liquid crystal polymer solder mask and related devices
JP2006165058A (en) Manufacturing method of semiconductor module
CN111863737B (en) Embedded device packaging substrate and manufacturing method thereof
JP2006165057A (en) Manufacturing method of semiconductor module
JP3833084B2 (en) Manufacturing method of film carrier tape for mounting electronic components
JP4605176B2 (en) Semiconductor mounting substrate, semiconductor package manufacturing method, and semiconductor package
JP3981314B2 (en) Manufacturing method of multilayer wiring board
TW202007536A (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
JP2009111332A (en) Method for manufacturing printed circuit board
JP2004055897A (en) Multilayer wiring substrate, base material therefor and its manufacturing method
JP4605177B2 (en) Semiconductor mounting substrate
Löher et al. Chip embedding into polymer matrices of printed wiring boards
JP2006245070A (en) Circuit apparatus
JP2008084949A (en) Method for manufacturing semiconductor package
JP2004207265A (en) Resin film sticking multilayer wiring board
KR101148745B1 (en) Method for manufacturing semiconductor package substrate