JP2004055897A - Multilayer wiring substrate, base material therefor and its manufacturing method - Google Patents

Multilayer wiring substrate, base material therefor and its manufacturing method Download PDF

Info

Publication number
JP2004055897A
JP2004055897A JP2002212569A JP2002212569A JP2004055897A JP 2004055897 A JP2004055897 A JP 2004055897A JP 2002212569 A JP2002212569 A JP 2002212569A JP 2002212569 A JP2002212569 A JP 2002212569A JP 2004055897 A JP2004055897 A JP 2004055897A
Authority
JP
Japan
Prior art keywords
conductive layer
hole
hole diameter
base material
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002212569A
Other languages
Japanese (ja)
Other versions
JP4008298B2 (en
Inventor
Shoji Ito
伊藤 彰二
Munekimi Mizutani
水谷 宗幹
Masahiro Okamoto
岡本 誠裕
Anan Ponpanpaanii
ポンパンパーニー・アナン
Satoru Nakao
中尾 知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002212569A priority Critical patent/JP4008298B2/en
Publication of JP2004055897A publication Critical patent/JP2004055897A/en
Application granted granted Critical
Publication of JP4008298B2 publication Critical patent/JP4008298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thin multilayer wiring substrate without damaging contact reliability between a conductive resin composition and a conductive circuit part and without deteriorating smoothness of the substrate. <P>SOLUTION: In the base material for the multilayer wiring substrate, a conductive layer 12 forming a wiring pattern is provided to one surface of an insulating resin layer 11, and a bonding layer 13 for interlaminar bonding is provided to the other surface thereof. A through hole 14 passing through the conductive layer 12, the insulating resin layer 11 and the bonding layer 13 is filled with conductive resin composition 15 for obtaining interlayer conduction. A hole diameter Db of an outer surface side of the conductive layer 12 is smaller than a hole diameter Da of the conductive layer 12 in a border between the conductive layer 12 and the insulating resin layer 11 of the through hole 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、多層配線基板(多層プリント配線板)、多層配線基板用基材およびその製造方法に関し、特に、フリップチップ実装などの高密度実装が可能な多層のフレキシブルプリント配線板等の多層配線基板、多層配線基板用基材およびその製造方法に関するものである。
【0002】
【従来の技術】
ポリイミド樹脂は、高耐熱性、電気絶縁性、高屈曲性を有した樹脂であり、フレキシブルプリント配線板(FPC)など、プリント配線板の絶縁層材料として利用されている。ポリイミド樹脂を絶縁層材料として応用したものの一つとして、ポリイミドフィルムを絶縁層材料として使用したフレキシブルプリント配線板(FPC)を多層積層し、一括穴あけされたスルーホールによって層間導通を得る多層FPCがある。
【0003】
しかし、スルーホールによる多層FPCでは、層間接続位置の制約のために、配線設計の自由度が低く、スルーホール上にチップを実装することができないため、実装密度を高くすることに限界があり、近年のより一層の高密度実装化の要求に対応できなくなっている。
【0004】
このことに対処すべく、層間接続をスルーホールによらずにIVH(Interstitial Via Hole)によって行い、ビア・オン・ビアが可能な樹脂多層プリント配線板、例えば、松下電器産業社のALIVH(Any Layer Interstitial Via Hole)基板や、ポリイミドによるFPCをスルーホールを使用せずにビルドアップ方式で多層に積層するソニーケミカル社のポリイミド複合多層ビルドアップ集積回路基板(MOSAIC)が開発されている。
【0005】
また、ポリイミドフィルムを絶縁層としてそれの片面に銅箔による導電層を貼り付けられている汎用の銅張樹脂基材を出発基材として、簡便な工程によりIVH構造の多層FPCを得る構造と製法が本願出願人と同一の出願人による特願2001−85224号で提案されている。
【0006】
特願2001−85224号で提案されている多層配線基板用基材では、絶縁層の一方の面に銅箔を設けた銅張樹脂基材に貫通孔(バイアホール)を穴あけした後、導電性樹脂組成物(樹脂系の導電性ペースト)を銅箔側からスクリーン印刷法等による印刷法によって充填することで、図13に示されているようなIVH部分を形成している。なお、図13において、101は絶縁層を、102は銅箔部を、104は貫通孔を、105は貫通孔104に充填された導電性樹脂組成物を各々示している。
【0007】
そして、スクリーン印刷時のマスクの開口部の口径をIVH径より大きくすることにより、印刷時の位置合わせ精度にある程度の余裕ができ、また銅箔部102上に導電性樹脂組成物105によるマスク開口部口径相当の大きさのヘッド状部105Aが形成され、貫通孔104に充填された導電性樹脂組成物105と銅箔部102との接触面積を大きくすることができ、貫通孔104に充填された導電性樹脂組成物105の貫通孔104よりの抜け落ちも防止できる。
【0008】
【発明が解決しようとする課題】
しかしながら、ヘッド状部105Aは印刷用マスクの厚さ等により基材表面よりも数10μm程度の厚さをもって突出するため、多層配線基板の表面平滑性を確保するためには、銅箔部102上のヘッド状部105Aの全体を層間接着剤の層内に埋め込むに十分な接着層の厚さが必要になり、接着層の厚さが厚くなることによって多層配線基板の厚膜化を招くことになる。これに対し、接着層を厚くしない場合には、多層配線基板の表面平滑性の低下を招くことになる。
【0009】
導電性樹脂組成物が完全に硬化する以前に、多層積層を行うことで、導電性樹脂組成物と他層の銅箔との接触が密接に行われるようにすることが考えられるが、しかし、この場合には、図14に示されているように、導電性樹脂組成物105の銅箔部102より上の部分(ヘッド状部105A)が、多層積層時の積層圧Pによって押しつぶれ、圧潰状態で広がってしまい、基板表面上から見たヘッド状部105Aの大きさを均一化することが困難であるばかりか、他配線部102’までヘッド状部105Aの導電性樹脂組成物が広がってしまい、回路の短絡を招く虞れがある。
【0010】
この発明は、上述の如き問題点を解消するためになされたもので、導電性樹組成物と導電回路部の接触信頼性を損なうことなく、しかも基板の平滑性を低下させることなく薄い多層配線基板を得ることができる多層配線基板用基材およびその製造方法および多層配線基板を提供することを目的としている。
【0011】
【課題を解決するための手段】
上述の目的を達成するために、この発明による多層配線基板用基材は、絶縁性基材の片面に配線パターンをなす銅箔等による導電層を設けられ、前記絶縁性基材と前記導電層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さい。
【0012】
この多層配線基板用基材によれば、貫通孔の孔径が、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbのほうが小さいから、導電層部分の貫通孔の内壁面が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層外表面側が先細となるテーパ状の貫通孔になり、貫通孔内壁面の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔に充填された導電性樹脂組成物と導電層との導通接触が、増大された貫通孔内壁面(側周面)で確実に取られ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放される。
【0013】
また、この発明による多層配線基板用基材は、孔径Da>孔径Dbを前提として、前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、さらには、孔径Da、Db、Dcの相互の大小関係を、孔径Da>孔径Dc>孔径Dbとすることができる。
【0014】
また、この発明による多層配線基板用基材は、孔径Da>孔径Dbを前提として、前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きいものにすることもできる。
【0015】
また、この発明による多層配線基板用基材は、絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられ、前記導電層と前記絶縁性基材と前記接着層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さい。
【0016】
この多層配線基板用基材でも、貫通孔の孔径が、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbのほうが小さいから、導電層部分の貫通孔の内壁面が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層外表面側が先細となるテーパ状の貫通孔になり、貫通孔内壁面の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔に充填された導電性樹脂組成物と導電層との導通接触が、増大された貫通孔内壁面(側周面)で確実に取られ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放される。
【0017】
また、絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられた多層配線基板用基材でも、孔径Da>孔径Dbを前提として、前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、さらには、孔径Da、Db、Dcの相互の大小関係を、孔径Da>孔径Dc>孔径Dbとしたり、あるいは、前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きいものにすることができる。
【0018】
この発明による多層配線基板用基材では、絶縁性基材をポリイミド等の可撓性樹脂フィルムにより構成し、可撓性樹脂フィルムの一方の面に銅箔による導電層を貼り付けられている汎用の銅張樹脂基材を出発基材とすることができる。また、接着層は熱可塑性ポリイミドにより構成することができる。
【0019】
この発明による多層配線基板は、上述の発明による多層配線基板用基材を複数枚、重ねて接合したものである。
【0020】
また、上述の目的を達成するために、この発明による多層配線基板用基材の製造方法は、絶縁性基材の片面に配線パターンをなす導電層を設けられたものに、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbが小さい貫通孔を穿孔する穿孔工程、あるいは、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きい貫通孔を穿孔する穿孔工程、あるいは、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、しかも、前記孔径Da>前記孔径Dc>前記孔径Dbである貫通孔を穿孔する穿孔工程、あるいは、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きい貫通孔を穿孔する穿孔工程と、導電性樹脂組成物を前記貫通孔に充填する充填工程とを有する。
【0021】
また、上述の目的を達成するために、この発明による多層配線基板用基材の製造方法は、絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられたものに、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbが小さい貫通孔を穿孔する穿孔工程、あるいは、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きい貫通孔を穿孔する穿孔工程、あるいは、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、しかも、前記孔径Da>前記孔径Dc>前記孔径Dbである貫通孔を穿孔する穿孔工程、あるいは前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きい貫通孔を穿孔する穿孔工程と、導電性樹脂組成物を前記貫通孔に充填する充填工程とを有する。
【0022】
この発明による多層配線基板用基材の製造方法における前記穿孔工程は、絶縁性基材、あるいは、接着層と絶縁性基材とに所定の孔径の穴あけを行う第1穴あけ工程と、穴あけされた絶縁性基材、あるいは、接着層・絶縁性基材の側から等方性を有するエッチングによって導電層に穴あけを行う第2穴あけ工程とを含んでおり、第2穴あけ工程は、回路形成のための導電層のエッチングと同工程で行うことができる。
【0023】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施形態を詳細に説明する。
【0024】
(実施形態1)
図1はこの発明による一実施形態に係わる多層配線基板用基材の基本構成を示している。
【0025】
図1に示されている多層配線基板用基材は、絶縁性基材をなす絶縁樹脂層11の一方の面に配線パターンをなす銅箔等による導電層12を、他方の面に層間接着のための接着層13を各々設けられ、接着層13と絶縁樹脂層11と導電層12とを貫通する貫通孔14を穿設されている。貫通孔14には導電性樹脂組成物15が充填され、IVH(バイアホール)を形成している。
【0026】
導電性樹脂組成物15は、導電機能を有する金属粉末を樹脂バインダに混入したものを溶剤を含む粘性媒体に混ぜてペースト状にした導電性ペーストであり、接着層13の側よりスクイジング等によって貫通孔14に満遍なく穴埋め充填される。
【0027】
FPCでは、絶縁樹脂層11は、全芳香族ポリイミド(API)等によるポリイミドフィルムやポリエステルフィルム等の可撓性を有する樹脂フィルムで構成され、絶縁樹脂層11と導電層12と接着層13との3層構造は、汎用の片面銅箔付きポリイミド基材(銅張樹脂基材)を出発基材として、ポリイミド部(絶縁樹脂層11)の銅箔(導電層12)とは反対側の面に接着層13としてポリイミド系接着材を貼付したもので構成できる。
【0028】
ポリイミド系接着材による接着層13は、熱可塑性ポリイミド(TPI)あるいは熱可塑性ポリイミドに熱硬化機能を付与したフィルムの貼り付けにより形成することができる。熱可塑性ポリイミドの場合、基板の耐熱性を考慮し、ガラス転移点の高いものを使用するのが好ましい。
【0029】
貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、すなわち、Da>Dbで、しかも、貫通孔14の導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daがこの境界部における絶縁樹脂層11の部分の孔径Dcより大きい、すなわち、Da>Dcに形成されている。更に、導電層12の外表面側の孔径Dbは前記境界部における絶縁樹脂層11の部分の孔径Dcより更に小さく、Da>Dc>Dbになっている。この貫通孔14の孔内全域に導電性樹脂組成物15が充填されている。
【0030】
これにより、貫通孔14のうち、導電層12を貫通する部分(孔)14A(図5(e)参照)の内壁面16が縦断面で見て曲面あるいは傾斜面で、貫通孔14は、導電層部分14Aにおいて、導電層外表面側が先細となるテーパ状、換言すれば、すり鉢状をなしている。
【0031】
貫通孔14の穿孔は、第1穴あけ工程として、絶縁樹脂層11および接着層13にレーザ加工あるいは異方性エッチングによって所定孔径(導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dc)による略ストレートな孔14B(図5(c)参照)をあけ、第1穴あけ工程完了後に、第2穴あけ工程として、穴あけされた接着層・絶縁樹脂層の側(図1にて上側)から、すなわち、孔14Bより等方性を有するエッチングによって導電層12に、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さい孔14Aをあける。
【0032】
導電層12を貫通する部分14Aの貫通孔14の内壁面形状は、等方性エッチングにおける縦方向進行速度と横方向進行速度との速度比等により決まり、エッチャントの選定により、全体が一つの曲率による湾曲面(球面)、異なる複数の曲率による湾曲面が滑らかに連続した曲面、その他、回転楕円面、回転放物線面、あるいは直線状の傾斜面等、任意のものにできる。
【0033】
この多層配線基板用基材では、貫通孔14の導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さいから、導電層12部分の貫通孔14の内壁面16が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層12部分の貫通孔14は導電層外表面側が先細となるテーパ状になり、貫通孔内壁面16の面積が同一径によるストレートな貫通孔である場合に比して大きくなる。
【0034】
これにより、貫通孔14に充填された導電性樹脂組成物15と導電層12との導通接触が、増大された貫通孔内壁面(側周面)16で、所要の接触面積をもって信頼性高く行われ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放される。
【0035】
図2はこの発明による多層配線基板の一つの実施形態を示している。この多層配線基板は、図1に示されている構造の多層配線基板用基材を、1層目の基材10Aと2層目の基材10Bとして、2枚重ね合わせ、1層目の基材10Aの接着層13によって1層目の基材10Aと2層目の基材10Bとを互いに接着接合してなる。2層目の基材10Bの接着層13上には表面部の配線パターンをなす銅箔による導電層17が形成されている。
【0036】
導電性樹脂組成物15を充填された各貫通孔14はIVHをなし、各貫通孔14の導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Da(図1参照)より導電層12の外表面側の孔径Db(図1参照)が小さく、導電層12部分の貫通孔14の内壁面16が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層12部分の貫通孔14が導電層外表面側が先細となるテーパ状であるから、貫通孔内壁面16の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔14に充填された導電性樹脂組成物15と導電層12との導通接触が、増大された貫通孔内壁面16で取られ、従来のものように、導電性樹脂組成物の導電層より上の部分(ヘッド状部)を設けなくても、導電性樹脂組成物15と導電層12との接触面積を確保でき、基板の平滑性を低下させることなく、薄い多層配線基板を得ることができる。
【0037】
この発明による多層配線基板用基材は、図3に示されているように、絶縁性基材をなす絶縁樹脂層21を、熱可塑性ポリイミド(TPI)あるいは熱可塑性ポリイミドに熱硬化機能を付与したものなど、絶縁樹脂層自体が層間接着のための接着性を有するもので構成することができる。この場合には、絶縁樹脂層21の一方の面に配線パターンをなす銅箔等による導電層22を設け、他方の面の積層する接着層を省略できる。
【0038】
この多層配線基板用基材では、絶縁樹脂層21と導電層22とを貫通する貫通孔24を穿設され、その貫通孔24に導電性樹脂組成物25が充填されてIVH(バイアホール)が形成される。
【0039】
貫通孔24は、導電層22と絶縁樹脂層21との境界部における導電層12部分の孔径Daより導電層22の外表面側の孔径Dbが小さく、すなわち、Da>Dbで、しかも、貫通孔24の導電層22と絶縁樹脂層21との境界部における導電層12部分の孔径Daがこの境界部における絶縁樹脂層21の部分の孔径Dcより大きい、すなわち、Da>Dcに形成されている。更に、導電層22の外表面側の孔径Dbは前記境界部における絶縁樹脂層21の部分の孔径Dcより更に小さく、Da>Dc>Dbになっている。この貫通孔24の孔内全域に導電性樹脂組成物15が充填されている。
【0040】
これにより、貫通孔24のうち、導電層22を貫通する部分の内壁面26が縦断面で見て曲面あるいは傾斜面で、貫通孔24は、導電層22部分において、導電層外表面側が先細となるテーパ状、換言すれば、すり鉢状をなしている。
【0041】
貫通孔24の穿孔は、第1穴あけ工程として、絶縁樹脂層21にレーザ加工あるいは異方性エッチングによって所定孔径(導電層22と絶縁樹脂層21との境界部における絶縁樹脂層21部分の孔径Dc)による略ストレートな孔をあけ、第1穴あけ工程完了後に、第2穴あけ工程として、穴あけされた絶縁樹脂層21の側(図3にて上側)から、すなわち、絶縁樹脂層21にあけられた孔より等方性を有するエッチングによって導電層22に、導電層22と絶縁樹脂層21との境界部における導電層12部分の孔径Daより導電層22の外表面側の孔径Dbが小さい孔をあける。
【0042】
この場合も、導電層22を貫通する部分の貫通孔24の内壁面形状は、等方性エッチングにおける縦方向進行速度と横方向進行速度との速度比等により決まり、液状エッチャントの選定により、全体が一つの曲率による湾曲面(球面)、異なる複数の曲率による湾曲面が滑らかに連続した曲面、その他、回転楕円面、回転放物線面、あるいは直線状の傾斜面等、任意のものにできる。
【0043】
この多層配線基板用基材でも、貫通孔24の導電層22と絶縁樹脂層21との境界部における導電層12部分の孔径Daより導電層22の外表面側の孔径Dbが小さいから、導電層12部分の貫通孔24の内壁面26が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層22部分の貫通孔24は導電層外表面側が先細となるテーパ状になり、貫通孔内壁面26の面積が同一径によるストレートな貫通孔である場合に比して大きくなる。
【0044】
これにより、貫通孔24に充填された導電性樹脂組成物25と導電層22との導通接触が、増大された貫通孔内壁面(側周面)26で、所要の接触面積をもって信頼性高く行われ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放される。
【0045】
図4はこの発明による多層配線基板の他の実施の形態を示している。この多層配線基板は、図3に示されている構造の多層配線基板用基材を、1層目の基材20Aと2層目の基材20Bとして、2枚重ね合わせ、1層目の基材20Aの接着性を有する絶縁樹脂層21によって1層目の基材20Aと2層目の基材20Bとを互いに接着接合してなる。2層目の基材20Bの絶縁樹脂層21上には表面部の配線パターンをなす銅箔による導電層27が形成されている。
【0046】
この多層配線基板でも、導電性樹脂組成物25を充填された各貫通孔24はIVHをなし、各貫通孔24の導電層22と絶縁樹脂層21との境界部における導電層22部分の孔径Da(図3参照)より導電層22の外表面側の孔径Db(図3参照)が小さく、導電層22部分の貫通孔24の内壁面26が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層22部分の貫通孔24が導電層外表面側が先細となるテーパ状であるから、貫通孔内壁面26の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔24に充填された導電性樹脂組成物25と導電層22との導通接触が、増大された貫通孔内壁面26で取られ、従来のものように、導電性樹脂組成物の導電層より上の部分(ヘッド状部)を設けなくても、導電性樹脂組成物25と導電層22との接触面積を確保でき、基板の平滑性を低下させることなく、薄い多層配線基板を得ることができる。
【0047】
つぎに、図1に示されている多層配線基板用基材の製造方法、およびその多層配線基板用基材による多層配線基板の製造方法の一実施形態を図5、図6を参照して詳細に説明する。
【0048】
まず、図5(a)、(b)に示されているように、絶縁樹脂層(ポリイミドフィルム)11の片面に銅箔による導電層12を設けられた基材の絶縁樹脂層11側に、熱可塑性ポリイミドあるいは熱可塑性ポリイミドに熱硬化機能を付与したフィルムを貼り付けて接着層13を形成し、接着層13側にPETによるマスキングテープ18を貼り付ける。
【0049】
つぎに、第1穴あけ工程として、図5(c)に示されているように、マスキングテープ18の側からレーザ光照射を行い、マスキングテープ18を貫通して導電層12を除いた部分、すなわち接着層13と絶縁樹脂層11とに、導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径がDcとなるIVHのための略ストレートな孔14Bをあける。
【0050】
つぎに、図5(d)に示されているように、導電層12の表面に回路形成のためのエッチングレジスト19を形成し、図5(e)に示されているように、エッチングレジスト19をマスクとして導電層12側からエッチャントを侵蝕させて導電層12に回路形成のためのエッチングを施すと同時に、第2穴あけ工程として、接着層13、絶縁樹脂層11にあけられている孔14Bの側からもエッチャントを侵蝕させ、貫通孔形成のための等方性エッチングを導電層12に施し、導電層12にIVHのための孔14Aをあける。
【0051】
導電層12が銅箔の場合、導電層12に行う等方性エッチングは、塩化第2鉄を主成分とした水溶液や塩化第2銅を主成分としたエッチャントを用いて行うことができる。
【0052】
等方性エッチングの場合、サイドエッチングによって導電層12部分の貫通孔14(孔14A)の内壁面16は、図5(e)に示されているように、縦断面で見て曲面(近円弧面)あるいは傾斜面になり、導電層12部分の貫通孔14はアンダカットを含んで導電層外表面側が先細となるテーパ状になる。
【0053】
エッチングが完了すれば、図5(f)に示されているように、エッチングレジスト19を除去し、IVHのための貫通孔14が完成する。この場合、貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、しかも、貫通孔14の導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daがこの境界部における絶縁樹脂層11部分の孔径Dcより大きいものになる。
【0054】
貫通孔14の穿孔が完了すれば、図5(g)に示されているように、スクリーン印刷で使用するようなスキージプレート51を使用してマスキングテープ18側から導電性樹脂組成物(導電ペースト)15をスクイジング(印刷法)によって貫通孔14に穴埋め充填する。図5(h)は、導電性樹脂組成物15の穴埋め充填完了状態を示している。
【0055】
導電性樹脂組成物15は、後の工程における加熱に対する酸化を避けるため、銀ペーストを使用した。この時、粘度を300dPa・sのものを使用したところ、銅箔部(導電層12)の孔14Aから導電ペーストが抜け落ちることなく的確に穴埋め充填することができた。なお、導電性樹脂組成物15としては、銀ペースト以外に、銅フィラーやカーボン混合物による導電性ペーストを使用することも可能である。
【0056】
基材にはPETによるマスキングテープ18が貼り付けられているから、メタルマスクやスクリーンマスクを介さず、スキージプレート51を基材に直接接触させて穴埋めを行うことができるが、メタルマスクやスクリーンマスクを介して穴埋めを行うこともでき、導電性樹脂組成物15の無駄を削減できる。
【0057】
貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、IVH(貫通孔14)断面の導電層12部分の形状が近円弧状であるため、銅箔部(導電層12)と導電性樹脂組成物15との密着が導電層12部分の貫通孔14の内壁面(側周面)16で十分に行われる。
【0058】
導電層12部分の貫通孔14の孔径は、導電性樹脂組成物15との接触抵抗からの要求に加えて、導電性樹脂組成物15の粘度やチキソ性といった諸特性に応じ、気泡の残留と導電性樹脂組成物15の脱落を回避できるように選択することになり、30〜50μm程度になる。
【0059】
導電性樹脂組成物15の充填が完了すれば、図5(i)に示されているように、メマスキングテープ18を外して1枚の基材10Aを完成する。
【0060】
この基材10Aを1層目の基材とし、図5(a)〜(i)に示されているこれまでと同様の製法で作製した基材10Bと、銅箔による導電層17を各々適当な位置合わせ法によって位置合わせしつつ積層加熱圧着(ラミネーション)することで、図6(a)、(b)に示されているように、多層化が達成される。
【0061】
ラミネーションの際、基板を真空下に曝しながら加熱圧着することで、導電層12による回路パターンの凹凸に対する接着層13の追従性を高くすることができる。また、導電性樹脂組成物15が柔らかい状態で積層を行い、導電性樹脂組成物15と他層の銅箔との接触を密接にすることができる。
【0062】
最後に、図6(c)に示されているように、最外層の導電層17をエッチングによって回路形成することで、多層配線板として完成を見る。
【0063】
なお、図3に示されている多層配線基板用基材、およびその多層配線基板用基材による多層配線基板も、上述した製造方法と同等の製造方法によって製造することができる。
【0064】
(実施形態2)
図7(a)、(b)はこの発明による他の実施形態に係わる多層配線基板用基材の基本構成を示している。なお、図7(a)、(b)において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。
【0065】
図7(a)、(b)に示されている多層配線基板用基材は、図1に示されているものと同様に、絶縁性基材をなす絶縁樹脂層11の一方の面に配線パターンをなす銅箔等による導電層12を、他方の面に層間接着のための接着層13を各々設けられ、接着層13と絶縁樹脂層11と導電層12とを貫通する貫通孔14を穿設されている。貫通孔14には導電性樹脂組成物15が充填され、IVH(バイアホール)を形成している。
【0066】
この実施の形態でも、FPCでは、絶縁樹脂層11は、全芳香族ポリイミド(API)等によるポリイミドフィルムやポリエステルフィルム等の可撓性を有する樹脂フィルムで構成でき、絶縁樹脂層11と導電層12と接着層13との3層構造は、汎用の片面銅箔付きポリイミド基材(銅張樹脂基材)を出発基材として、ポリイミド部(絶縁樹脂層11)の銅箔(導電層12)とは反対側の面に接着層13としてポリイミド系接着材を貼付したもので構成できる。
【0067】
また、導電性樹脂組成物15は、導電機能を有する金属粉末を樹脂バインダに混入したものを溶剤を含む粘性媒体に混ぜてペースト状にした導電性ペーストであってよく、接着層13の側よりスクイジング等によって貫通孔14に満遍なく穴埋め充填される。
【0068】
ここで、図7(a)に示す実施形態では、貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、すなわち、Da>Dbで、しかも、導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dcが、この境界部における導電層12部分の孔径Daに等しいか、これより少し大きい、すなわち、Dc≧Daに形成され、孔内全域に導電性樹脂組成物15を充填されている。
【0069】
これにより、貫通孔14のうち、導電層12を貫通する部分(孔)14A(図5(e)参照)の内壁面16が縦断面で見て曲面あるいは傾斜面で、貫通孔14は、導電層部分14Aにおいて、導電層外表面側が先細となるテーパ状、換言すれば、すり鉢状をなしている。
【0070】
貫通孔14の穿孔は、第1穴あけ工程として、絶縁樹脂層11および接着層13にレーザ加工あるいは異方性エッチングによって所定孔径による略ストレートな孔14B(図11(c)参照)をあけ、第1穴あけ工程完了後に、第2穴あけ工程として、穴あけされた接着層・絶縁樹脂層の側(図7にて上側)から、すなわち、孔14Bより等方性を有するエッチングによって導電層12に、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さい孔14Aをあけ、この後に、第3穴あけ工程として、絶縁樹脂層11および接着層13の孔14Bを、導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dcがこの境界部における導電層12部分の孔径Daに等しいか、これより少し大きい孔14C(図11(g)参照)に拡大する。
【0071】
この場合も、導電層12を貫通する部分14Aの貫通孔14の内壁面形状は、等方性エッチングにおける縦方向進行速度と横方向進行速度との速度比等により決まり、エッチャントの選定により、全体が一つの曲率による湾曲面(球面)、異なる複数の曲率による湾曲面が滑らかに連続した曲面、その他、回転楕円面、回転放物線面、あるいは直線状の傾斜面等、任意のものにできる。
【0072】
この多層配線基板用基材では、貫通孔14の導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さいから、導電層12部分の貫通孔14の内壁面16が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層12部分の貫通孔14は導電層外表面側が先細となるテーパ状になり、貫通孔内壁面16の面積が同一径によるストレートな貫通孔である場合に比して大きくなる。
【0073】
これにより、貫通孔14に充填された導電性樹脂組成物15と導電層12との導通接触が、増大された貫通孔内壁面(側周面)16で、所要の接触面積をもって信頼性高く行われ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放される。
【0074】
しかも、貫通孔14の導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dcが、この境界部における導電層12部分の孔径Daに等しいか、あるいはこれより少し大きいことにより、接着層13の側から貫通孔14内に行われる導電性樹脂組成物15の充填において、それの充填流れに対して淀み領域になるアンダカット領域がなく、貫通孔14内に気泡が残留することがなく、導電層12部分の貫通孔14の内壁面16における導電性樹脂組成物15と導電層12との導通接触が所要の面積をもって確実に行われるようになる。
【0075】
図7(b)は、図7(a)に示した実施形態の変形例である。ここで、図7(b)に示す変形例では、貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、すなわち、Da>Dbで、しかも、導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dcが、この境界部における導電層12部分の孔径Daより大きい、すなわち、Dc>Daに形成され、孔内全域に導電性樹脂組成物15を充填されている。
【0076】
すなわち、この図7(b)に示した変形例によれば、図7(a)に示した実施形態の効果に加え、導電性樹脂組成物15と導電層12との接触面積が図7(b)のEで示す部分だけ拡大するので、より接続性が向上する効果がある。
【0077】
図8はこの発明による多層配線基板の他の実施形態を示している。この多層配線基板は、図7に示されている構造の多層配線基板用基材を、1層目の基材10Aと2層目の基材10Bとして、2枚重ね合わせ、1層目の基材10Aの接着層13によって1層目の基材10Aと2層目の基材10Bとを互いに接着接合してなる。2層目の基材10Bの接着層13上には表面部の配線パターンをなす銅箔による導電層17が形成されている。
【0078】
導電性樹脂組成物15を充填された各貫通孔14はIVHをなし、各貫通孔14の導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Da(図7参照)より導電層12の外表面側の孔径Db(図7参照)が小さく、導電層12部分の貫通孔14の内壁面16が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層12部分の貫通孔14が導電層外表面側が先細となるテーパ状であるから、貫通孔内壁面16の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔14に充填された導電性樹脂組成物15と導電層12との導通接触が、増大された貫通孔内壁面16で取られ、従来のものように、導電性樹脂組成物の導電層より上の部分(ヘッド状部)を設けなくても、導電性樹脂組成物15と導電層12との接触面積を確保でき、基板の平滑性を低下させることなく、薄い多層配線基板を得ることができる。
【0079】
しかも、貫通孔14の導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dc(図7参照)が、この境界部における導電層12部分の孔径Daに等しいか、あるいはこれより少し大きいことにより、
接着層13の側から貫通孔14内に行われる導電性樹脂組成物15の充填において、それの充填流れに対して淀み領域になるアンダカット領域がなく、貫通孔14内に気泡が残留することがなく、導電層12部分の貫通孔14の内壁面16における導電性樹脂組成物15と導電層12との導通接触が所要の面積をもって確実に行われるようになる。
【0080】
この実施の形態においても、多層配線基板用基材は、図9に示されているように、絶縁性基材をなす絶縁樹脂層21を、熱可塑性ポリイミド(TPI)あるいは熱可塑性ポリイミドに熱硬化機能を付与したものなど、絶縁樹脂層自体が層間接着のための接着性を有するもので構成することができる。この場合には、絶縁樹脂層21の一方の面に配線パターンをなす銅箔等による導電層22を設け、他方の面の積層する接着層を省略できる。
【0081】
この多層配線基板用基材では、絶縁樹脂層21と導電層22とを貫通する貫通孔24を穿設され、その貫通孔24に導電性樹脂組成物25が充填されてIVH(バイアホール)が形成される。
【0082】
貫通孔24は、導電層22と絶縁樹脂層21との境界部における導電層12部分の孔径Daより導電層22の外表面側の孔径Dbが小さく、すなわち、Da>Dbで、しかも、導電層22と絶縁樹脂層21との境界部における絶縁樹脂層21部分の孔径Dcが、この境界部における導電層12部分の孔径Daに等しいか、これより少し大きい、すなわち、Dc≧Daに形成され、孔内全域に導電性樹脂組成物15を充填されている。
【0083】
これにより、貫通孔24のうち、導電層22を貫通する部分の内壁面26が縦断面で見て曲面あるいは傾斜面で、貫通孔24は、導電層22部分において、導電層外表面側が先細となるテーパ状、換言すれば、すり鉢状をなしている。
【0084】
貫通孔24の穿孔は、第1穴あけ工程として、絶縁樹脂層21にレーザ加工あるいは異方性エッチングによって所定孔径による略ストレートな孔をあけ、第1穴あけ工程完了後に、第2穴あけ工程として、穴あけされた絶縁樹脂層21の側(図9にて上側)から、すなわち、絶縁樹脂層21にあけられた孔より等方性を有するエッチングによって導電層22に、導電層22と絶縁樹脂層21との境界部における導電層22部分の孔径Daより導電層22の外表面側の孔径Dbが小さい孔をあけ、この後に、第3穴あけ工程として、絶縁樹脂層21の孔24Bを、貫通孔24の導電層22と絶縁樹脂層21との境界部における絶縁樹脂層21の孔径Dcが、この境界部における導電層12部分の孔径Daに等しいか、これより少し大きい孔に拡大する。
【0085】
この場合も、導電層22を貫通する部分の貫通孔24の内壁面形状は、等方性エッチングにおける縦方向進行速度と横方向進行速度との速度比等により決まり、液状エッチャントの選定により、全体が一つの曲率による湾曲面(球面)、異なる複数の曲率による湾曲面が滑らかに連続した曲面、その他、回転楕円面、回転放物線面、あるいは直線状の傾斜面等、任意のものにできる。
【0086】
この多層配線基板用基材でも、貫通孔24の導電層22と絶縁樹脂層21との境界部における導電層22部分の孔径Daより導電層22の外表面側の孔径Dbが小さいから、導電層22部分の貫通孔24の内壁面26が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層22部分の貫通孔24は導電層外表面側が先細となるテーパ状になり、貫通孔内壁面26の面積が同一径によるストレートな貫通孔である場合に比して大きくなる。
【0087】
これにより、貫通孔24に充填された導電性樹脂組成物25と導電層22との導通接触が、増大された貫通孔内壁面(側周面)26で、所要の接触面積をもって信頼性高く行われ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放される。
【0088】
しかも、通孔24の導電層22と絶縁樹脂層21との境界部における絶縁樹脂層21部分の孔径Dcが、この境界部における導電層12部分の孔径Daに等しいか、これより少し大きいことにより、絶縁樹脂層21の側から貫通孔24内に行われる導電性樹脂組成物25の充填において、それの充填流れに対して淀み領域になるアンダカット領域がなく、貫通孔24内に気泡が残留することがなく、導電層22部分の貫通孔24の内壁面26における導電性樹脂組成物25と導電層22との導通接触が所要の面積をもって確実に行われるようになる。
【0089】
図10はこの発明による多層配線基板の他の実施形態を示している。この多層配線基板は、図9に示されている構造の多層配線基板用基材を、1層目の基材20Aと2層目の基材20Bとして、2枚重ね合わせ、1層目の基材20Aの接着性を有する絶縁樹脂層21によって1層目の基材20Aと2層目の基材20Bとを互いに接着接合してなる。2層目の基材20Bの絶縁樹脂層21上には表面部の配線パターンをなす銅箔による導電層27が形成されている。
【0090】
この多層配線基板でも、導電性樹脂組成物25を充填された各貫通孔24はIVHをなし、各貫通孔24の導電層22と絶縁樹脂層21との境界部における導電層22部分の孔径Da(図9参照)より導電層22の外表面側の孔径Db(図9参照)が小さく、導電層22部分の貫通孔24の内壁面26が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層22部分の貫通孔24が導電層外表面側が先細となるテーパ状であるから、貫通孔内壁面26の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔24に充填された導電性樹脂組成物25と導電層22との導通接触が、増大された貫通孔内壁面26で取られ、従来のものように、導電性樹脂組成物の導電層より上の部分(ヘッド状部)を設けなくても、導電性樹脂組成物25と導電層22との接触面積を確保でき、基板の平滑性を低下させることなく、薄い多層配線基板を得ることができる。
【0091】
しかも、貫通孔24の導電層22と絶縁樹脂層21との境界部における絶縁樹脂層21部分の孔径Dc(図9参照)が、この境界部における導電層22部分の孔径Daに等しいか、これより少し大きいことにより、絶縁樹脂層21の側から貫通孔24内に行われる導電性樹脂組成物25の充填において、それの充填流れに対して淀み領域になるアンダカット領域がなく、貫通孔24内に気泡が残留することがなく、導電層22部分の貫通孔24の内壁面26における導電性樹脂組成物25と導電層22との導通接触が所要の面積をもって確実に行われるようになる。
【0092】
つぎに、図7に示されている多層配線基板用基材の製造方法、およびその多層配線基板用基材による多層配線基板の製造方法の一実施形態を図11、図12を参照して詳細に説明する。
【0093】
まず、図11(a)、(b)に示されているように、絶縁樹脂層(ポリイミドフィルム)11の片面に銅箔による導電層12を設けられた基材の絶縁樹脂層11側に、熱可塑性ポリイミドあるいは熱可塑性ポリイミドに熱硬化機能を付与したフィルムを貼り付けて接着層13を形成し、接着層13側にPETによるマスキングテープ18を貼り付ける。
【0094】
つぎに、第1穴あけ工程として、図11(c)に示されているように、マスキングテープ18の側からレーザ光照射を行い、マスキングテープ18を貫通して導電層12を除いた部分、すなわち接着層13と絶縁樹脂層11とに、所定孔径によるIVHのための略ストレートな孔14Bをあける。
【0095】
つぎに、図11(d)に示されているように、導電層12の表面に回路形成のためのエッチングレジスト19を形成し、図11(e)に示されているように、エッチングレジスト19をマスクとして導電層12側からエッチャントを侵蝕させて導電層12に回路形成のためのエッチングを施すと同時に、第2穴あけ工程として、接着層13、絶縁樹脂層11にあけられている孔14Bの側からもエッチャントを侵蝕させ、貫通孔形成のための等方性エッチングを導電層12に施し、導電層12にIVHのための孔14Aをあける。
【0096】
導電層12が銅箔の場合、導電層12に行う等方性エッチングは、塩化第2鉄を主成分とした水溶液や塩化第2銅を主成分としたエッチャントを用いて行うことができる。
【0097】
等方性エッチングの場合、サイドエッチングによって導電層12部分の貫通孔14(孔14A)の内壁面16は、図11(e)に示されているように、縦断面で見て曲面(近円弧面)あるいは傾斜面になり、導電層12部分の貫通孔14はアンダカットを含んで導電層外表面側が先細となるテーパ状になる。
【0098】
エッチングが完了すれば、図11(f)に示されているように、エッチングレジスト19を除去し、その後に、図11(g)に示されているように、第3穴あけ工程として、接着層13、絶縁樹脂層11にあけられている孔14Bの孔径を、レーザ加工によって、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daとほぼ等しい孔径Dcに拡大し、IVHのための貫通孔14が完成する。この場合、貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、しかも、導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dcが、この境界部における導電層12部分の孔径Daにほぼ等しいものになる。
【0099】
貫通孔14の穿孔が完了すれば、図11(h)に示されているように、スクリーン印刷で使用するようなスキージプレート51を使用してマスキングテープ18側から導電性樹脂組成物(導電ペースト)15をスクイジング(印刷法)によって貫通孔14に穴埋め充填する。図11(i)は、導電性樹脂組成物15の穴埋め充填完了状態を示している。
【0100】
貫通孔14は、導電層12と絶縁樹脂層11との境界部における導電層12部分の孔径Daより導電層12の外表面側の孔径Dbが小さく、IVH(貫通孔14)断面の導電層12部分の形状が近円弧状であるため、銅箔部(導電層12)と導電性樹脂組成物15との密着が導電層12部分の貫通孔14の内壁面(側周面)16で十分に行われる。しかも、貫通孔14の導電層12と絶縁樹脂層11との境界部における絶縁樹脂層11部分の孔径Dcが、この境界部における導電層12部分の孔径Daにほぼ等しいことにより、接着層13の側から貫通孔14内に行われる導電性樹脂組成物15の充填において、それの充填流れに対して淀み領域になるアンダカット領域がなく、貫通孔14内に有害な気泡が残留することがない。
【0101】
導電性樹脂組成物15の充填が完了すれば、図11(j)に示されているように、メマスキングテープ18を外して1枚の基材10Aを完成する。
【0102】
この基材10Aを1層目の基材とし、図11(a)〜(j)に示されているこれまでと同様の製法で作製した基材10Bと、銅箔による導電層17を各々適当な位置合わせ法によって位置合わせしつつ積層加熱圧着(ラミネーション)することで、図12(a)、(b)に示されているように、多層化が達成される。
【0103】
ラミネーションの際、基板を真空下に曝しながら加熱圧着することで、導電層12による回路パターンの凹凸に対する接着層13の追従性を高くすることができる。また、導電性樹脂組成物15が柔らかい状態で積層を行い、導電性樹脂組成物15と他層の銅箔との接触を密接にすることができる。
【0104】
最後に、図12(c)に示されているように、最外層の導電層17をエッチングによって回路形成することで、多層配線板として完成を見る。
【0105】
なお、図9に示されている多層配線基板用基材、およびその多層配線基板用基材による多層配線基板も、上述した製造方法と同等の製造方法によって製造することができる。
【0106】
(その他の実施形態)
上述の実施形態では、いずれも、フレキシブルプリント配線板について述べたが、この発明はこれに限られることはなく、絶縁性基材がエポキシ樹脂系やプリプレグ等によるリジットタイプのプリント配線板にも同様に適用できる。
【0107】
【発明の効果】
以上の説明から理解される如く、この発明による多層配線基板、多層配線基板用基材およびその製造方法によれば、貫通孔の孔径が、導電層と絶縁性基材との境界部における導電層部分の孔径Daより導電層の外表面側の孔径Dbのほうが小さく、導電層部分の貫通孔の内壁面が縦断面で見て曲面(近円弧面)あるいは傾斜面で、導電層外表面側が先細となるテーパ状の貫通孔になるから、貫通孔内壁面の面積が同一径によるストレートな貫通孔である場合に比して大きくなり、貫通孔に充填された導電性樹脂組成物と導電層との導通接触が、増大された貫通孔内壁面(側周面)で確実に取られ、導電性樹脂組成物の導電層より上の部分(ヘッド状部)と導電層との接触面積確保から派生する諸問題から解放され、導電性樹脂組成物と導電層との導通が高い信頼性をもって安定して行われるようになる。
【図面の簡単な説明】
【図1】この発明の実施形態1に係わる多層配線基板用基材の基本構成を示す断面図である。
【図2】この発明の実施形態1に係わる多層配線基板を示す断面図である。
【図3】この発明の実施形態1に係わる多層配線基板用基材の他の基本構成を示す断面図である。
【図4】この発明の実施形態1に係わる多層配線基板を示す断面図である。
【図5】(a)〜(i)はこの発明の実施形態1に係わる多層配線基板用基材の製造方法の一実施形態を示す工程図である。
【図6】(a)〜(c)はこの発明の実施形態1に係わる多層配線基板の製造方法の一実施形態を示す工程図である。
【図7】(a)はこの発明の実施形態2に係わる多層配線基板用基材の基本構成を示す断面図であり、(b)はその変形例である。
【図8】この発明の実施形態2に係わる多層配線基板を示す断面図である。
【図9】この発明の実施形態2に係わる多層配線基板用基材の他の基本構成を示す断面図である。
【図10】この発明の実施形態2に係わる多層配線基板を示す断面図である。
【図11】(a)〜(j)はこの発明の実施形態2に係わる多層配線基板用基材の製造方法の一実施形態を示す工程図である。
【図12】(a)〜(c)はこの発明の実施形態2に係わる多層配線基板の製造方法の一実施形態を示す工程図である。
【図13】従来の多層配線基板用基材のIVH構造を示す断面図である。
【図14】従来の多層配線基板用基材のIVH構造における不具合を示す断面図である。
【符号の説明】
10A 1層目の基材
10B 2層目の基材
11 絶縁樹脂層
12 導電層
13 接着層
14 貫通孔
15 導電性樹脂組成物
16 内壁面
17 導電層
20A 1層目の基材
20B 2層目の基材
21 絶縁樹脂層
22 導電層
24 貫通孔
25 導電性樹脂組成物
26 内壁面
27 導電層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer wiring board (multilayer printed wiring board), a base material for the multilayer wiring board, and a method for manufacturing the same, and more particularly, to a multilayer wiring board such as a multilayer flexible printed wiring board capable of high-density mounting such as flip-chip mounting. And a method for manufacturing the same.
[0002]
[Prior art]
Polyimide resin is a resin having high heat resistance, electrical insulation, and high flexibility, and is used as an insulating layer material of a printed wiring board such as a flexible printed wiring board (FPC). One of the applications of a polyimide resin as an insulating layer material is a multilayer FPC in which a flexible printed wiring board (FPC) using a polyimide film as an insulating layer material is multilayer-stacked, and interlayer conduction is provided by through holes that are collectively drilled. .
[0003]
However, in a multilayer FPC using through holes, the degree of freedom in wiring design is low due to restrictions on interlayer connection positions, and it is not possible to mount a chip on the through holes. In recent years, it has become impossible to meet the demand for higher density mounting.
[0004]
In order to cope with this, interlayer connection is performed by IVH (Interstitial Via Hole) without using through holes, and a resin multilayer printed wiring board capable of via-on-via, for example, ALIVH (Any Layer) of Matsushita Electric Industrial Co., Ltd. An Interstitial Via Hole) substrate and a polyimide composite multilayer build-up integrated circuit board (MOSAIC) manufactured by Sony Chemical Co., Ltd., in which FPCs made of polyimide are stacked in multiple layers by a build-up method without using through holes, have been developed.
[0005]
In addition, using a general-purpose copper-clad resin base material having a polyimide film as an insulating layer and a conductive layer made of copper foil adhered to one side thereof as a starting base material, a structure and manufacturing method for obtaining a multilayer FPC having an IVH structure by a simple process. Has been proposed in Japanese Patent Application No. 2001-85224 filed by the same applicant as the present applicant.
[0006]
In the base material for a multilayer wiring board proposed in Japanese Patent Application No. 2001-85224, a through-hole (via hole) is formed in a copper-clad resin base material having a copper foil provided on one surface of an insulating layer, and then a conductive material is formed. By filling the resin composition (resin-based conductive paste) from the copper foil side by a printing method such as a screen printing method, an IVH portion as shown in FIG. 13 is formed. 13, reference numeral 101 denotes an insulating layer, 102 denotes a copper foil portion, 104 denotes a through hole, and 105 denotes a conductive resin composition filled in the through hole 104.
[0007]
By making the diameter of the opening of the mask at the time of screen printing larger than the IVH diameter, a certain margin can be given to the alignment accuracy at the time of printing, and the mask opening of the conductive resin composition 105 on the copper foil portion 102 can be provided. A head-shaped part 105A having a size equivalent to the diameter of the part is formed, and the contact area between the conductive resin composition 105 filled in the through hole 104 and the copper foil part 102 can be increased. Also, the conductive resin composition 105 can be prevented from falling out of the through hole 104.
[0008]
[Problems to be solved by the invention]
However, since the head-shaped portion 105A projects with a thickness of about several tens of μm from the surface of the base material due to the thickness of the printing mask or the like, the surface of the copper foil portion 102 is required to secure the surface smoothness of the multilayer wiring board. A sufficient thickness of the adhesive layer is required to embed the entire head-shaped portion 105A in the layer of the interlayer adhesive, and the increase in the thickness of the adhesive layer causes an increase in the thickness of the multilayer wiring board. Become. On the other hand, if the thickness of the adhesive layer is not increased, the surface smoothness of the multilayer wiring board will be reduced.
[0009]
Before the conductive resin composition is completely cured, by performing multilayer lamination, it is conceivable that the conductive resin composition and the copper foil of the other layer are brought into close contact with each other, however, In this case, as shown in FIG. 14, the portion (head-like portion 105A) of the conductive resin composition 105 above the copper foil portion 102 is crushed and crushed by the lamination pressure P during multilayer lamination. In this state, the size of the head-like portion 105A as viewed from the substrate surface is not only uniform, but also the conductive resin composition of the head-like portion 105A spreads to other wiring portions 102 '. This may cause a short circuit in the circuit.
[0010]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has been made in consideration of the above-described problems, and has been made in view of the thin multilayer wiring without deteriorating the contact reliability between the conductive tree composition and the conductive circuit portion and without reducing the smoothness of the substrate. It is an object of the present invention to provide a substrate for a multilayer wiring board from which a substrate can be obtained, a method for manufacturing the same, and a multilayer wiring board.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a multilayer wiring board base material according to the present invention is provided with a conductive layer such as a copper foil forming a wiring pattern on one surface of an insulating base material, and the insulating base material and the conductive layer A multi-layer wiring board base material filled with a conductive resin composition for obtaining interlayer conduction in a through-hole penetrating through the through-hole, wherein at a boundary portion between the conductive layer and the insulating base material of the through-hole, The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion.
[0012]
According to the base material for a multilayer wiring board, the hole diameter of the through hole is smaller at the boundary between the conductive layer and the insulating base material at the outer surface side of the conductive layer than at the boundary diameter Da of the conductive layer portion. The inner wall surface of the through hole in the conductive layer portion is a curved surface (near circular arc surface) or an inclined surface when viewed in a longitudinal section, and the outer surface side of the conductive layer becomes a tapered through hole that tapers. The conductive contact between the conductive resin composition and the conductive layer filled in the through hole is increased as compared with the case of the straight through hole having the same diameter, and the increased inner wall surface (side peripheral surface) of the through hole. It is reliably taken and is free from various problems derived from securing a contact area between the conductive layer and the portion of the conductive resin composition above the conductive layer (head-shaped portion).
[0013]
Further, in the base material for a multilayer wiring board according to the present invention, the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole is defined by the assumption that the hole diameter Da> the hole diameter Db. The hole diameter Dc of the insulating substrate portion in the portion may be larger than the hole diameter Dc, and the size relationship between the hole diameters Da, Db, and Dc may be as follows: hole diameter Da> hole diameter Dc> hole diameter Db.
[0014]
Further, the base material for a multilayer wiring board according to the present invention has a hole diameter Dc of a portion of the insulating base material at a boundary portion between the conductive layer and the insulating base material of the through hole, assuming that a hole size Da> a hole size Db. The diameter may be equal to or larger than the hole diameter Da of the conductive layer portion at the boundary.
[0015]
Further, the base material for a multilayer wiring board according to the present invention is provided with a conductive layer forming a wiring pattern on one surface of an insulating base material and an adhesive layer for interlayer bonding on the other surface. A multi-layer wiring board base material filled with a conductive resin composition for obtaining interlayer conduction in a through hole penetrating an insulating base material and the adhesive layer, wherein the conductive layer and the insulating property of the through hole are filled. The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary with the base material.
[0016]
Also in this substrate for a multilayer wiring board, since the hole diameter of the through hole is smaller at the boundary between the conductive layer and the insulating substrate, the hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion. The inner wall surface of the through hole in the layer portion is a curved surface (near circular arc surface) or an inclined surface when viewed in a longitudinal section, and the outer surface side of the conductive layer is a tapered through hole having a tapered shape. And the conductive contact between the conductive resin composition filled in the through-hole and the conductive layer is ensured by the increased inner wall surface (side peripheral surface) of the through-hole. It is removed from the problems arising from securing the contact area between the portion (head-like portion) of the conductive resin composition above the conductive layer and the conductive layer.
[0017]
Further, even in a base material for a multilayer wiring board in which a conductive layer forming a wiring pattern is provided on one surface of an insulating base material and an adhesive layer for interlayer bonding is provided on the other surface, it is assumed that a hole diameter Da> a hole diameter Db. The hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base of the through hole is larger than the hole diameter Dc of the insulating base portion at the boundary, and further, the hole diameters Da and Db , Dc, the diameter of the hole is greater than the diameter of the hole Da> the diameter of the hole Dc> the diameter of the hole Db, or the hole diameter Dc of the insulating substrate portion at the boundary between the conductive layer and the insulating substrate of the through hole is The diameter may be equal to or larger than the hole diameter Da of the conductive layer portion at the boundary.
[0018]
In the base material for a multilayer wiring board according to the present invention, the insulating base material is made of a flexible resin film such as polyimide, and a conductive layer made of copper foil is attached to one surface of the flexible resin film. Can be used as a starting substrate. Further, the adhesive layer can be made of thermoplastic polyimide.
[0019]
A multilayer wiring board according to the present invention is obtained by laminating and joining a plurality of base materials for a multilayer wiring board according to the above-described invention.
[0020]
In order to achieve the above-mentioned object, a method of manufacturing a substrate for a multilayer wiring board according to the present invention comprises the steps of: providing a conductive layer forming a wiring pattern on one surface of an insulating substrate; A perforation step of perforating a through hole having a smaller diameter Db on the outer surface side of the conductive layer than a diameter Da of the conductive layer portion at the boundary with the base material, or the conductive layer at the boundary between the conductive layer and the insulating base material; The through hole having a smaller hole diameter Db on the outer surface side of the conductive layer than the hole diameter Da of the layer portion, and a hole diameter Da of the conductive layer portion at the boundary larger than the hole diameter Dc of the insulating base portion at the boundary. A hole diameter step Db on the outer surface side of the conductive layer is smaller than a hole diameter Da of the conductive layer portion at a boundary portion between the conductive layer and the insulating base material, and the conductive layer at the boundary portion. Layer The hole diameter Da is larger than the hole diameter Dc of the insulating base material portion at the boundary portion, and the hole diameter Da> the hole diameter Dc> the hole diameter Db. The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary portion with the insulating base material, and the hole diameter Dc of the insulating substrate portion at the boundary portion is smaller than the hole diameter Da at the boundary portion. The method includes a perforation step of perforating a through hole equal to or larger than the hole diameter Da of the conductive layer portion, and a filling step of filling the through hole with a conductive resin composition.
[0021]
Further, in order to achieve the above-mentioned object, a method for manufacturing a substrate for a multilayer wiring board according to the present invention includes the steps of: forming a conductive layer forming a wiring pattern on one surface of an insulating substrate; A step of piercing a through-hole having a smaller diameter Db on the outer surface side of the conductive layer than the diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material, or The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material, and the hole diameter Da of the conductive layer portion at the boundary is smaller than the boundary diameter. The hole diameter of the insulating substrate portion in step (a), or the outer surface of the conductive layer from the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating substrate. Side hole diameter Db is small In addition, a hole diameter Da of the conductive layer portion at the boundary portion is larger than a hole diameter Dc of the insulating base portion portion at the boundary portion, and further, a through-hole in which the hole diameter Da> the hole diameter Dc> the hole diameter Db is pierced. A hole diameter Db on the outer surface side of the conductive layer is smaller than a hole diameter Da of the conductive layer portion at a boundary portion between the conductive layer and the insulating base material, and the insulating group at the boundary portion. A hole diameter Dc of the material portion is equal to or larger than a hole diameter Da of the conductive layer portion at the boundary portion; and a filling step of filling the through hole with a conductive resin composition is provided. .
[0022]
In the method for manufacturing a substrate for a multilayer wiring board according to the present invention, the perforating step includes a first perforating step of perforating an insulating substrate or an adhesive layer and the insulating substrate with a predetermined hole diameter, and perforating. A second perforating step of perforating the conductive layer by isotropic etching from the side of the insulating base material or the adhesive layer or the insulating base material, and the second perforating step is performed for forming a circuit. Can be performed in the same step as the etching of the conductive layer.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0024]
(Embodiment 1)
FIG. 1 shows a basic structure of a base material for a multilayer wiring board according to an embodiment of the present invention.
[0025]
The base material for a multilayer wiring board shown in FIG. 1 has a conductive layer 12 made of a copper foil or the like forming a wiring pattern on one surface of an insulating resin layer 11 forming an insulating base material, and an interlayer bonding film formed on the other surface. And a through hole 14 penetrating through the adhesive layer 13, the insulating resin layer 11, and the conductive layer 12. The through hole 14 is filled with the conductive resin composition 15 to form an IVH (via hole).
[0026]
The conductive resin composition 15 is a conductive paste obtained by mixing a metal powder having a conductive function into a resin binder and mixing it with a viscous medium containing a solvent to form a paste, and penetrates from the side of the adhesive layer 13 by squeezing or the like. The holes 14 are evenly filled.
[0027]
In the FPC, the insulating resin layer 11 is made of a flexible resin film such as a polyimide film made of wholly aromatic polyimide (API) or a polyester film, and is formed of the insulating resin layer 11, the conductive layer 12, and the adhesive layer 13. The three-layer structure is based on a general-purpose single-sided copper-foiled polyimide base material (copper-clad resin base material) as a starting base material, and is provided on the surface of the polyimide portion (insulating resin layer 11) opposite to the copper foil (conductive layer 12). The adhesive layer 13 may be formed by attaching a polyimide adhesive.
[0028]
The adhesive layer 13 made of a polyimide-based adhesive can be formed by attaching thermoplastic polyimide (TPI) or a film obtained by adding a thermosetting function to thermoplastic polyimide. In the case of thermoplastic polyimide, it is preferable to use one having a high glass transition point in consideration of the heat resistance of the substrate.
[0029]
The through hole 14 has a smaller hole diameter Db on the outer surface side of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11, that is, Da> Db. The hole diameter Da of the portion of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11 is larger than the hole diameter Dc of the portion of the insulating resin layer 11 at the boundary, that is, Da> Dc. Further, the hole diameter Db on the outer surface side of the conductive layer 12 is smaller than the hole diameter Dc of the portion of the insulating resin layer 11 at the boundary, and Da>Dc> Db. The entire area of the through hole 14 is filled with the conductive resin composition 15.
[0030]
As a result, the inner wall surface 16 of the portion (hole) 14A (see FIG. 5E) of the through hole 14 that penetrates the conductive layer 12 is a curved or inclined surface when viewed in a longitudinal section, and the through hole 14 The layer portion 14A has a tapered shape in which the outer surface side of the conductive layer is tapered, in other words, a mortar shape.
[0031]
The perforation of the through hole 14 is performed by a laser processing or an anisotropic etching on the insulating resin layer 11 and the adhesive layer 13 as a first drilling step (the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11). A substantially straight hole 14B (see FIG. 5C) is formed by the hole diameter Dc of the portion, and after the completion of the first hole forming step, a second hole forming step is performed on the side of the holed adhesive layer / insulating resin layer (FIG. 1). From the upper side), that is, to the conductive layer 12 by etching having isotropic properties from the hole 14B, the outer surface side of the conductive layer 12 from the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. A hole 14A having a small hole diameter Db is formed.
[0032]
The shape of the inner wall surface of the through-hole 14 of the portion 14A penetrating the conductive layer 12 is determined by the speed ratio between the vertical traveling speed and the horizontal traveling speed in isotropic etching, and the whole is one curvature by selecting the etchant. Curved surface (spherical surface), a curved surface smoothly curved with a plurality of different curvatures, a spheroidal surface, a paraboloid of revolution, or a linear inclined surface.
[0033]
In the base material for a multilayer wiring board, since the hole diameter Db on the outer surface side of the conductive layer 12 is smaller than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11 in the through hole 14, the conductive layer The inner wall surface 16 of the through hole 14 in the 12 portion has a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section, and the through hole 14 in the conductive layer 12 portion has a tapered shape in which the outer surface side of the conductive layer is tapered. The area of the hole inner wall surface 16 is larger than that in the case of a straight through hole having the same diameter.
[0034]
As a result, conductive contact between the conductive resin composition 15 filled in the through hole 14 and the conductive layer 12 is performed with a required contact area with high reliability on the increased inner wall surface (side peripheral surface) 16 of the through hole. Thus, the present invention is free from various problems derived from securing a contact area between the conductive resin composition and a portion (head-like portion) above the conductive layer and the conductive layer.
[0035]
FIG. 2 shows one embodiment of a multilayer wiring board according to the present invention. In this multilayer wiring board, two sheets of the multilayer wiring board base material having the structure shown in FIG. 1 are superimposed as a first layer base material 10A and a second layer base material 10B. The first-layer base material 10A and the second-layer base material 10B are bonded and bonded to each other by the adhesive layer 13 of the material 10A. On the adhesive layer 13 of the second-layer substrate 10B, a conductive layer 17 made of copper foil forming a wiring pattern on the surface is formed.
[0036]
Each through-hole 14 filled with the conductive resin composition 15 forms an IVH, and is obtained from the hole diameter Da (see FIG. 1) of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11 of each through-hole 14. The hole diameter Db (see FIG. 1) on the outer surface side of the conductive layer 12 is small, and the inner wall surface 16 of the through hole 14 in the conductive layer 12 has a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section. Since the through hole 14 of the portion is tapered such that the outer surface side of the conductive layer is tapered, the area of the inner wall surface 16 of the through hole is larger than that of a straight through hole having the same diameter, and the through hole 14 is filled. The conductive contact between the conductive resin composition 15 and the conductive layer 12 is established at the increased inner wall surface 16 of the through hole, and the portion (head) above the conductive layer of the conductive resin composition as in the conventional case is formed. ), The conductive resin composition 15 and Can ensure contact area between the conductive layer 12 without lowering the smoothness of the substrate, it is possible to obtain a thin multi-layer wiring board.
[0037]
As shown in FIG. 3, in the base material for a multilayer wiring board according to the present invention, the insulating resin layer 21 constituting the insulating base material is obtained by adding a thermosetting function to thermoplastic polyimide (TPI) or thermoplastic polyimide. For example, the insulating resin layer itself may have an adhesive property for interlayer adhesion. In this case, a conductive layer 22 made of copper foil or the like forming a wiring pattern is provided on one surface of the insulating resin layer 21, and the laminated adhesive layer on the other surface can be omitted.
[0038]
In the base material for a multilayer wiring board, a through hole 24 penetrating the insulating resin layer 21 and the conductive layer 22 is formed, and the through hole 24 is filled with the conductive resin composition 25 to form an IVH (via hole). It is formed.
[0039]
In the through hole 24, the hole diameter Db on the outer surface side of the conductive layer 22 is smaller than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 22 and the insulating resin layer 21, that is, Da> Db. The hole diameter Da of the portion of the conductive layer 12 at the boundary between the conductive layer 22 and the insulating resin layer 21 is larger than the hole diameter Dc of the portion of the insulating resin layer 21 at the boundary, that is, Da> Dc. Further, the hole diameter Db on the outer surface side of the conductive layer 22 is even smaller than the hole diameter Dc of the portion of the insulating resin layer 21 at the boundary, and Da>Dc> Db. The entire area of the through hole 24 is filled with the conductive resin composition 15.
[0040]
As a result, the inner wall surface 26 of the portion of the through hole 24 that penetrates the conductive layer 22 is a curved surface or an inclined surface when viewed in a longitudinal section, and the through hole 24 is formed such that the outer surface of the conductive layer in the conductive layer 22 is tapered. It has a tapered shape, in other words, a mortar shape.
[0041]
Drilling of the through-hole 24 is performed by a laser processing or anisotropic etching on the insulating resin layer 21 as a first hole forming step (a hole diameter Dc of the insulating resin layer 21 at the boundary between the conductive layer 22 and the insulating resin layer 21). ), And after completion of the first drilling step, a second drilling step is performed from the side of the drilled insulating resin layer 21 (upper side in FIG. 3), that is, the insulating resin layer 21 is drilled. A hole having a smaller diameter Db on the outer surface side of the conductive layer 22 than the hole diameter Da of the portion of the conductive layer 12 at the boundary between the conductive layer 22 and the insulating resin layer 21 is formed in the conductive layer 22 by etching having isotropic properties. .
[0042]
Also in this case, the shape of the inner wall surface of the through hole 24 at the portion penetrating the conductive layer 22 is determined by the speed ratio between the vertical traveling speed and the horizontal traveling speed in isotropic etching and the like, and the entire liquid crystal etchant is selected. Can be any surface, such as a curved surface (spherical surface) with one curvature, a curved surface with smoothly continuous curved surfaces with a plurality of different curvatures, a spheroidal surface, a paraboloid of revolution, or a linear inclined surface.
[0043]
Also in this substrate for a multilayer wiring board, the hole diameter Db on the outer surface side of the conductive layer 22 is smaller than the hole diameter Da of the portion of the conductive layer 12 at the boundary between the conductive layer 22 and the insulating resin layer 21 of the through hole 24. The inner wall surface 26 of the through-hole 24 in the 12 portion has a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section, and the through-hole 24 in the conductive layer 22 portion has a tapered shape in which the outer surface side of the conductive layer is tapered. The area of the inner wall surface 26 is larger than that of a straight through hole having the same diameter.
[0044]
Thereby, the conductive contact between the conductive resin composition 25 filled in the through hole 24 and the conductive layer 22 can be performed with a required contact area with high reliability on the increased inner wall surface (side peripheral surface) 26 of the through hole. Thus, the present invention is free from various problems derived from securing a contact area between the conductive resin composition and a portion (head-shaped portion) above the conductive layer and the conductive layer.
[0045]
FIG. 4 shows another embodiment of the multilayer wiring board according to the present invention. In this multilayer wiring board, two sheets of the multilayer wiring board base material having the structure shown in FIG. 3 are superimposed on each other as a first layer base material 20A and a second layer base material 20B. The base material 20A of the first layer and the base material 20B of the second layer are bonded to each other by the insulating resin layer 21 having the adhesive property of the material 20A. On the insulating resin layer 21 of the second-layer base material 20B, a conductive layer 27 made of copper foil forming a wiring pattern on the surface is formed.
[0046]
Also in this multilayer wiring board, each through hole 24 filled with the conductive resin composition 25 forms an IVH, and the hole diameter Da of the conductive layer 22 at the boundary between the conductive layer 22 and the insulating resin layer 21 of each through hole 24. The hole diameter Db (see FIG. 3) on the outer surface side of the conductive layer 22 is smaller than that of the conductive layer 22 (see FIG. 3). In the surface, the through hole 24 of the conductive layer 22 is tapered such that the outer surface side of the conductive layer is tapered, so that the area of the inner wall surface 26 of the through hole is larger than that of a straight through hole having the same diameter. The conductive contact between the conductive resin composition 25 filled in the through hole 24 and the conductive layer 22 is made at the increased inner wall surface 26 of the through hole, and the conductive layer of the conductive resin composition is formed as in the prior art. Even without the upper part (head-shaped part), Can ensure contact area with the conductive resin composition 25 and conductive layer 22 without lowering the smoothness of the substrate, it is possible to obtain a thin multi-layer wiring board.
[0047]
Next, an embodiment of a method for manufacturing the base material for a multilayer wiring board shown in FIG. 1 and a method for manufacturing a multilayer wiring board using the base material for a multilayer wiring board will be described in detail with reference to FIGS. Will be described.
[0048]
First, as shown in FIGS. 5A and 5B, on the insulating resin layer 11 side of a base material provided with a conductive layer 12 made of copper foil on one surface of an insulating resin layer (polyimide film) 11, The adhesive layer 13 is formed by attaching a thermoplastic polyimide or a film having a thermosetting function to the thermoplastic polyimide, and a masking tape 18 made of PET is attached to the adhesive layer 13 side.
[0049]
Next, as a first drilling step, as shown in FIG. 5C, laser light irradiation is performed from the masking tape 18 side, and the portion excluding the conductive layer 12 through the masking tape 18, that is, In the adhesive layer 13 and the insulating resin layer 11, a substantially straight hole 14B for the IVH in which the hole diameter of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 is Dc is formed.
[0050]
Next, as shown in FIG. 5D, an etching resist 19 for forming a circuit is formed on the surface of the conductive layer 12, and as shown in FIG. Is used as a mask to etch the etchant from the conductive layer 12 side to etch the conductive layer 12 for forming a circuit. At the same time, as a second drilling step, the adhesive layer 13 and the hole 14B formed in the insulating resin layer 11 are removed. The etchant is also eroded from the side, and isotropic etching is performed on the conductive layer 12 to form a through hole, and a hole 14A for IVH is formed in the conductive layer 12.
[0051]
When the conductive layer 12 is a copper foil, the isotropic etching performed on the conductive layer 12 can be performed using an aqueous solution mainly containing ferric chloride or an etchant mainly containing cupric chloride.
[0052]
In the case of isotropic etching, the inner wall surface 16 of the through-hole 14 (hole 14A) in the conductive layer 12 is formed by a side etching so as to have a curved surface (near arc) as viewed in a longitudinal section, as shown in FIG. Surface) or an inclined surface, and the through hole 14 in the conductive layer 12 has a tapered shape including an undercut and the outer surface side of the conductive layer is tapered.
[0053]
When the etching is completed, as shown in FIG. 5F, the etching resist 19 is removed, and the through hole 14 for IVH is completed. In this case, the through hole 14 has a smaller hole diameter Db on the outer surface side of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. The hole diameter Da of the conductive layer 12 at the boundary between the insulating resin layer 11 and the insulating resin layer 11 is larger than the hole diameter Dc of the insulating resin layer 11 at the boundary.
[0054]
When the perforation of the through hole 14 is completed, as shown in FIG. 5 (g), the conductive resin composition (conductive paste) is applied from the masking tape 18 side using a squeegee plate 51 used for screen printing. ) 15 is filled in the through holes 14 by squeezing (printing method). FIG. 5H shows a state where the filling of the conductive resin composition 15 is completed.
[0055]
The conductive resin composition 15 used a silver paste in order to avoid oxidation due to heating in a later step. At this time, when a material having a viscosity of 300 dPa · s was used, the conductive paste could be filled accurately without dropping out of the conductive paste from the holes 14A of the copper foil portion (conductive layer 12). In addition, as the conductive resin composition 15, in addition to the silver paste, a conductive paste made of a copper filler or a carbon mixture may be used.
[0056]
Since the masking tape 18 made of PET is adhered to the base material, the squeegee plate 51 can be directly contacted with the base material without using a metal mask or a screen mask to fill the hole. Can be filled through the process, and waste of the conductive resin composition 15 can be reduced.
[0057]
The through-hole 14 has a smaller hole diameter Db on the outer surface side of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. Since the shape of the portion is a near arc shape, the adhesion between the copper foil portion (conductive layer 12) and the conductive resin composition 15 is sufficiently ensured by the inner wall surface (side peripheral surface) 16 of the through hole 14 in the conductive layer 12 portion. Done.
[0058]
The diameter of the through-holes 14 in the conductive layer 12 portion is determined by the properties of the conductive resin composition 15 such as viscosity and thixotropy, in addition to the requirement from the contact resistance with the conductive resin composition 15. The selection is made so that the conductive resin composition 15 can be prevented from falling off, and is about 30 to 50 μm.
[0059]
When the filling of the conductive resin composition 15 is completed, as shown in FIG. 5 (i), the masking tape 18 is removed to complete one base material 10A.
[0060]
This base material 10A is used as a first-layer base material, and a base material 10B manufactured by the same manufacturing method as shown in FIGS. 5A to 5I and a conductive layer 17 made of copper foil are appropriately used. As shown in FIGS. 6 (a) and 6 (b), multi-layering is achieved by performing lamination thermocompression bonding (lamination) while performing positioning by a simple positioning method.
[0061]
At the time of lamination, the adhesion of the adhesive layer 13 to the unevenness of the circuit pattern by the conductive layer 12 can be improved by subjecting the substrate to thermal compression while exposing it to a vacuum. In addition, lamination is performed in a state where the conductive resin composition 15 is soft, so that the conductive resin composition 15 can be in close contact with the copper foil of another layer.
[0062]
Finally, as shown in FIG. 6 (c), a circuit is formed by etching the outermost conductive layer 17, thereby completing the multilayer wiring board.
[0063]
In addition, the base material for a multilayer wiring board shown in FIG. 3 and the multilayer wiring board using the base material for a multilayer wiring board can also be manufactured by the same manufacturing method as the above-described manufacturing method.
[0064]
(Embodiment 2)
7A and 7B show a basic structure of a base material for a multilayer wiring board according to another embodiment of the present invention. In FIGS. 7A and 7B, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
[0065]
The base material for a multilayer wiring board shown in FIGS. 7A and 7B is similar to the base material shown in FIG. 1 in that a wiring is provided on one surface of an insulating resin layer 11 forming an insulating base material. A conductive layer 12 made of copper foil or the like forming a pattern and an adhesive layer 13 for interlayer bonding are provided on the other surface, and a through hole 14 penetrating the adhesive layer 13, the insulating resin layer 11, and the conductive layer 12 is formed. Is established. The through hole 14 is filled with the conductive resin composition 15 to form an IVH (via hole).
[0066]
Also in this embodiment, in the FPC, the insulating resin layer 11 can be formed of a flexible resin film such as a polyimide film made of wholly aromatic polyimide (API) or a polyester film. The three-layer structure of the adhesive layer 13 and the general-purpose one-sided copper foil-containing polyimide base material (copper-clad resin base material) is used as a starting base material, with the copper foil (conductive layer 12) of the polyimide part (insulating resin layer 11). Can be constituted by attaching a polyimide-based adhesive as an adhesive layer 13 to the opposite surface.
[0067]
Further, the conductive resin composition 15 may be a conductive paste obtained by mixing a metal powder having a conductive function into a resin binder into a viscous medium containing a solvent to form a paste, and from the side of the adhesive layer 13. The through holes 14 are evenly filled and filled by squeezing or the like.
[0068]
Here, in the embodiment shown in FIG. 7A, the through-hole 14 has a hole diameter Db closer to the outer surface of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. Is smaller, that is, Da> Db, and the hole diameter Dc of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 is equal to the hole diameter Da of the conductive layer 12 at the boundary, or The conductive resin composition 15 is formed slightly larger than this, that is, Dc ≧ Da, and the entire area of the hole is filled with the conductive resin composition 15.
[0069]
As a result, the inner wall surface 16 of the portion (hole) 14A (see FIG. 5E) of the through hole 14 that penetrates the conductive layer 12 is a curved or inclined surface when viewed in a longitudinal section, and the through hole 14 The layer portion 14A has a tapered shape in which the outer surface side of the conductive layer is tapered, in other words, a mortar shape.
[0070]
As a first drilling step, a substantially straight hole 14B (see FIG. 11 (c)) having a predetermined hole diameter is formed in the insulating resin layer 11 and the adhesive layer 13 by laser processing or anisotropic etching. After the completion of one hole forming step, as a second hole forming step, the conductive layer 12 is electrically connected to the conductive layer 12 from the side of the holed adhesive layer / insulating resin layer (upper side in FIG. 7), that is, by etching having isotropic properties from the hole 14B. A hole 14A having a smaller hole diameter Db on the outer surface side of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the layer 12 and the insulating resin layer 11 is formed. And the hole diameter Dc of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 is the hole diameter Dc of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. Equal to, expanding it to little more than a large hole 14C (see FIG. 11 (g)) to.
[0071]
Also in this case, the shape of the inner wall surface of the through hole 14 of the portion 14A penetrating the conductive layer 12 is determined by the speed ratio between the vertical traveling speed and the horizontal traveling speed in isotropic etching, and the like. Can be an arbitrary surface such as a curved surface (spherical surface) having one curvature, a curved surface having smoothly continuous curved surfaces having a plurality of different curvatures, a spheroidal surface, a paraboloid of revolution, or a linear inclined surface.
[0072]
In the base material for a multilayer wiring board, since the hole diameter Db on the outer surface side of the conductive layer 12 is smaller than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11 in the through hole 14, the conductive layer The inner wall surface 16 of the through hole 14 in the 12 portion has a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section, and the through hole 14 in the conductive layer 12 portion has a tapered shape in which the outer surface side of the conductive layer is tapered. The area of the hole inner wall surface 16 is larger than that in the case of a straight through hole having the same diameter.
[0073]
As a result, conductive contact between the conductive resin composition 15 filled in the through hole 14 and the conductive layer 12 is performed with a required contact area with high reliability on the increased inner wall surface (side peripheral surface) 16 of the through hole. Thus, the present invention is free from various problems derived from securing a contact area between the conductive resin composition and a portion (head-like portion) above the conductive layer and the conductive layer.
[0074]
Moreover, the hole diameter Dc of the portion of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 of the through hole 14 is equal to or slightly larger than the hole diameter Da of the portion of the conductive layer 12 at this boundary. As a result, when the conductive resin composition 15 is filled into the through hole 14 from the side of the adhesive layer 13, there is no undercut region that becomes a stagnation region with respect to the filling flow, and bubbles remain in the through hole 14. Therefore, the conductive contact between the conductive resin composition 15 and the conductive layer 12 on the inner wall surface 16 of the through hole 14 in the conductive layer 12 can be reliably performed with a required area.
[0075]
FIG. 7B is a modification of the embodiment shown in FIG. Here, in the modified example shown in FIG. 7B, the through hole 14 has a hole diameter Db closer to the outer surface of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. Is smaller, that is, Da> Db, and the hole diameter Dc of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 is larger than the hole diameter Da of the conductive layer 12 at the boundary. , Dc> Da, and the entire area inside the hole is filled with the conductive resin composition 15.
[0076]
That is, according to the modification shown in FIG. 7B, in addition to the effect of the embodiment shown in FIG. 7A, the contact area between the conductive resin composition 15 and the conductive layer 12 is reduced as shown in FIG. Since only the portion indicated by E in b) is enlarged, there is an effect that the connectivity is further improved.
[0077]
FIG. 8 shows another embodiment of the multilayer wiring board according to the present invention. In this multilayer wiring board, two sheets of the multilayer wiring board base material having the structure shown in FIG. 7 are overlapped with each other as a first layer base material 10A and a second layer base material 10B. The first-layer base material 10A and the second-layer base material 10B are bonded and bonded to each other by the adhesive layer 13 of the material 10A. On the adhesive layer 13 of the second-layer substrate 10B, a conductive layer 17 made of copper foil forming a wiring pattern on the surface is formed.
[0078]
Each through-hole 14 filled with the conductive resin composition 15 forms an IVH, and is determined from the hole diameter Da (see FIG. 7) of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11 in each through-hole 14. The hole diameter Db (see FIG. 7) on the outer surface side of the conductive layer 12 is small, and the inner wall surface 16 of the through hole 14 in the conductive layer 12 has a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section. Since the through hole 14 of the portion is tapered such that the outer surface side of the conductive layer is tapered, the area of the inner wall surface 16 of the through hole is larger than that of a straight through hole having the same diameter, and the through hole 14 is filled. The conductive contact between the conductive resin composition 15 and the conductive layer 12 is established at the increased inner wall surface 16 of the through hole, and the portion (head) above the conductive layer of the conductive resin composition as in the conventional case is formed. ), The conductive resin composition 15 and Can ensure contact area between the conductive layer 12 without lowering the smoothness of the substrate, it is possible to obtain a thin multi-layer wiring board.
[0079]
Moreover, the hole diameter Dc of the portion of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 of the through hole 14 (see FIG. 7) is equal to the hole diameter Da of the portion of the conductive layer 12 at this boundary, or By being slightly larger,
When the conductive resin composition 15 is filled into the through hole 14 from the side of the adhesive layer 13, there is no undercut region that becomes a stagnation region with respect to the filling flow, and bubbles remain in the through hole 14. Therefore, conductive contact between the conductive resin composition 15 and the conductive layer 12 on the inner wall surface 16 of the through hole 14 in the conductive layer 12 can be reliably performed with a required area.
[0080]
Also in this embodiment, as shown in FIG. 9, the base material for a multilayer wiring board is obtained by converting the insulating resin layer 21 forming the insulating base material into thermoplastic polyimide (TPI) or thermoplastic polyimide. The insulating resin layer itself may have an adhesive property for interlayer adhesion, such as one having a function. In this case, a conductive layer 22 made of copper foil or the like forming a wiring pattern is provided on one surface of the insulating resin layer 21, and the laminated adhesive layer on the other surface can be omitted.
[0081]
In the base material for a multilayer wiring board, a through hole 24 penetrating the insulating resin layer 21 and the conductive layer 22 is formed, and the through hole 24 is filled with the conductive resin composition 25 to form an IVH (via hole). It is formed.
[0082]
In the through hole 24, the hole diameter Db on the outer surface side of the conductive layer 22 is smaller than the hole diameter Da of the portion of the conductive layer 12 at the boundary between the conductive layer 22 and the insulating resin layer 21, that is, Da> Db. The hole diameter Dc of the insulating resin layer 21 at the boundary between the insulating resin layer 21 and the insulating resin layer 21 is equal to or slightly larger than the hole diameter Da of the conductive layer 12 at the boundary, that is, Dc ≧ Da. The whole area inside the hole is filled with the conductive resin composition 15.
[0083]
As a result, the inner wall surface 26 of the portion of the through hole 24 that penetrates the conductive layer 22 is a curved surface or an inclined surface when viewed in a longitudinal section, and the through hole 24 is formed such that the outer surface of the conductive layer in the conductive layer 22 is tapered. It has a tapered shape, in other words, a mortar shape.
[0084]
The perforation of the through hole 24 is performed by forming a substantially straight hole with a predetermined hole diameter in the insulating resin layer 21 by laser processing or anisotropic etching as a first hole making step, and after the completion of the first hole making step, making a second hole making step. From the side of the insulating resin layer 21 (the upper side in FIG. 9), that is, the conductive layer 22 and the insulating resin layer 21 are formed on the conductive layer 22 by etching having isotropic properties from the holes formed in the insulating resin layer 21. Then, a hole having a smaller hole diameter Db on the outer surface side of the conductive layer 22 than the hole diameter Da of the conductive layer 22 at the boundary portion is formed. Then, as a third hole forming step, the hole 24B of the insulating resin layer 21 is The hole diameter Dc of the insulating resin layer 21 at the boundary between the conductive layer 22 and the insulating resin layer 21 is equal to or slightly larger than the hole diameter Da of the conductive layer 12 at this boundary. To.
[0085]
Also in this case, the shape of the inner wall surface of the through hole 24 at the portion penetrating the conductive layer 22 is determined by the speed ratio between the vertical traveling speed and the horizontal traveling speed in isotropic etching and the like, and the entire liquid crystal etchant is selected. Can be any surface, such as a curved surface (spherical surface) with one curvature, a curved surface with smoothly continuous curved surfaces with a plurality of different curvatures, a spheroidal surface, a paraboloid of revolution, or a linear inclined surface.
[0086]
Also in this multilayer wiring board base material, since the hole diameter Db on the outer surface side of the conductive layer 22 is smaller than the hole diameter Da of the conductive layer 22 at the boundary between the conductive layer 22 and the insulating resin layer 21 of the through hole 24, the conductive layer The inner wall surface 26 of the through hole 24 in the portion 22 has a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section, and the through hole 24 in the conductive layer 22 portion has a tapered shape in which the outer surface side of the conductive layer is tapered. The area of the inner wall surface 26 is larger than that of a straight through hole having the same diameter.
[0087]
Thereby, the conductive contact between the conductive resin composition 25 filled in the through hole 24 and the conductive layer 22 can be performed with a required contact area with high reliability on the increased inner wall surface (side peripheral surface) 26 of the through hole. Thus, the present invention is free from various problems derived from securing a contact area between the conductive resin composition and a portion (head-shaped portion) above the conductive layer and the conductive layer.
[0088]
Moreover, the hole diameter Dc of the portion of the insulating resin layer 21 at the boundary between the conductive layer 22 and the insulating resin layer 21 of the through hole 24 is equal to or slightly larger than the hole diameter Da of the portion of the conductive layer 12 at this boundary. In filling the conductive resin composition 25 into the through hole 24 from the side of the insulating resin layer 21, there is no undercut region which becomes a stagnation region with respect to the filling flow, and bubbles remain in the through hole 24. Therefore, the conductive contact between the conductive resin composition 25 and the conductive layer 22 on the inner wall surface 26 of the through hole 24 in the conductive layer 22 can be reliably performed with a required area.
[0089]
FIG. 10 shows another embodiment of the multilayer wiring board according to the present invention. In this multilayer wiring board, two sheets of the multilayer wiring board base material having the structure shown in FIG. 9 are superimposed on each other as a first layer base material 20A and a second layer base material 20B. The base material 20A of the first layer and the base material 20B of the second layer are bonded to each other by the insulating resin layer 21 having the adhesive property of the material 20A. On the insulating resin layer 21 of the second-layer base material 20B, a conductive layer 27 made of copper foil forming a wiring pattern on the surface is formed.
[0090]
Also in this multilayer wiring board, each through hole 24 filled with the conductive resin composition 25 forms an IVH, and the hole diameter Da of the conductive layer 22 at the boundary between the conductive layer 22 and the insulating resin layer 21 of each through hole 24. The hole diameter Db (see FIG. 9) on the outer surface side of the conductive layer 22 is smaller than that of the conductive layer 22 (see FIG. 9). In the surface, the through hole 24 of the conductive layer 22 is tapered such that the outer surface side of the conductive layer is tapered, so that the area of the inner wall surface 26 of the through hole is larger than that of a straight through hole having the same diameter. The conductive contact between the conductive resin composition 25 filled in the through hole 24 and the conductive layer 22 is made at the increased inner wall surface 26 of the through hole, and the conductive layer of the conductive resin composition is formed as in the prior art. Even without the upper part (head-shaped part), Can ensure contact area with the conductive resin composition 25 and conductive layer 22 without lowering the smoothness of the substrate, it is possible to obtain a thin multi-layer wiring board.
[0091]
Moreover, the hole diameter Dc of the portion of the insulating resin layer 21 at the boundary between the conductive layer 22 and the insulating resin layer 21 of the through hole 24 (see FIG. 9) is equal to or smaller than the hole diameter Da of the portion of the conductive layer 22 at this boundary. When the conductive resin composition 25 is filled into the through hole 24 from the side of the insulating resin layer 21, there is no undercut region which becomes a stagnation region with respect to the filling flow, and the through hole 24 No bubbles remain inside the conductive layer 22, and the conductive contact between the conductive resin composition 25 and the conductive layer 22 on the inner wall surface 26 of the through hole 24 in the conductive layer 22 portion is reliably performed with a required area.
[0092]
Next, an embodiment of a method for manufacturing a base material for a multilayer wiring board shown in FIG. 7 and a method for manufacturing a multilayer wiring board using the base material for a multilayer wiring board will be described in detail with reference to FIGS. Will be described.
[0093]
First, as shown in FIGS. 11A and 11B, on the insulating resin layer 11 side of a base material provided with a conductive layer 12 made of copper foil on one surface of an insulating resin layer (polyimide film) 11, The adhesive layer 13 is formed by attaching a thermoplastic polyimide or a film having a thermosetting function to the thermoplastic polyimide, and a masking tape 18 made of PET is attached to the adhesive layer 13 side.
[0094]
Next, as a first drilling step, as shown in FIG. 11C, laser light irradiation is performed from the side of the masking tape 18 to penetrate the masking tape 18 and remove the conductive layer 12, that is, a portion. A substantially straight hole 14B for IVH having a predetermined hole diameter is formed in the adhesive layer 13 and the insulating resin layer 11.
[0095]
Next, as shown in FIG. 11D, an etching resist 19 for forming a circuit is formed on the surface of the conductive layer 12, and as shown in FIG. Is used as a mask to etch the etchant from the conductive layer 12 side to etch the conductive layer 12 for forming a circuit. At the same time, as a second drilling step, the adhesive layer 13 and the hole 14B formed in the insulating resin layer 11 are removed. The etchant is also eroded from the side, and isotropic etching for forming a through hole is performed on the conductive layer 12, and a hole 14 </ b> A for IVH is formed in the conductive layer 12.
[0096]
When the conductive layer 12 is a copper foil, the isotropic etching performed on the conductive layer 12 can be performed using an aqueous solution mainly containing ferric chloride or an etchant mainly containing cupric chloride.
[0097]
In the case of isotropic etching, the inner wall surface 16 of the through-hole 14 (hole 14A) in the conductive layer 12 by side etching has a curved surface (near arc) as viewed in a longitudinal section, as shown in FIG. Surface) or an inclined surface, and the through hole 14 in the conductive layer 12 has a tapered shape including an undercut and the outer surface side of the conductive layer is tapered.
[0098]
When the etching is completed, the etching resist 19 is removed as shown in FIG. 11F, and thereafter, as shown in FIG. 13, the hole diameter of the hole 14B formed in the insulating resin layer 11 is enlarged by laser processing to a hole diameter Dc substantially equal to the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11, The through hole 14 for IVH is completed. In this case, the through-hole 14 has a smaller hole diameter Db on the outer surface side of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. The hole diameter Dc of the insulating resin layer 11 at the boundary with the layer 11 is substantially equal to the hole diameter Da of the conductive layer 12 at the boundary.
[0099]
When the perforation of the through hole 14 is completed, as shown in FIG. 11H, the conductive resin composition (conductive paste) is applied from the masking tape 18 side using a squeegee plate 51 used for screen printing. ) 15 is filled in the through holes 14 by squeezing (printing method). FIG. 11 (i) shows a state where the filling of the conductive resin composition 15 is completed.
[0100]
The through-hole 14 has a smaller hole diameter Db on the outer surface side of the conductive layer 12 than the hole diameter Da of the conductive layer 12 at the boundary between the conductive layer 12 and the insulating resin layer 11. Since the shape of the portion is a near arc shape, the adhesion between the copper foil portion (conductive layer 12) and the conductive resin composition 15 is sufficiently ensured by the inner wall surface (side peripheral surface) 16 of the through hole 14 in the conductive layer 12 portion. Done. Moreover, since the hole diameter Dc of the insulating resin layer 11 at the boundary between the conductive layer 12 and the insulating resin layer 11 of the through hole 14 is substantially equal to the hole diameter Da of the conductive layer 12 at the boundary, the bonding layer 13 When the conductive resin composition 15 is filled into the through hole 14 from the side, there is no undercut region that becomes a stagnation region with respect to the filling flow, and no harmful bubbles remain in the through hole 14. .
[0101]
When the filling of the conductive resin composition 15 is completed, as shown in FIG. 11 (j), the masking tape 18 is removed to complete one base material 10A.
[0102]
The base material 10A was used as a first layer base material, and a base material 10B manufactured by the same manufacturing method as shown in FIGS. 11A to 11J and a conductive layer 17 made of copper foil were appropriately used. By performing lamination thermocompression bonding (lamination) while performing alignment by a simple alignment method, multilayering is achieved as shown in FIGS. 12 (a) and 12 (b).
[0103]
At the time of lamination, the adhesion of the adhesive layer 13 to the unevenness of the circuit pattern by the conductive layer 12 can be improved by subjecting the substrate to thermal compression while exposing it to a vacuum. In addition, lamination is performed in a state where the conductive resin composition 15 is soft, so that the conductive resin composition 15 can be in close contact with the copper foil of another layer.
[0104]
Finally, as shown in FIG. 12 (c), the outermost conductive layer 17 is formed into a circuit by etching to see the completion as a multilayer wiring board.
[0105]
It should be noted that the multilayer wiring board base material shown in FIG. 9 and the multilayer wiring board using the multilayer wiring board base material can also be manufactured by the same manufacturing method as the above-described manufacturing method.
[0106]
(Other embodiments)
In each of the above embodiments, a flexible printed wiring board has been described, but the present invention is not limited to this, and the same applies to a rigid type printed wiring board made of an epoxy resin or a prepreg. Applicable to
[0107]
【The invention's effect】
As can be understood from the above description, according to the multilayer wiring board, the multilayer wiring board base material and the method of manufacturing the same according to the present invention, the diameter of the through-holes is reduced by the conductive layer at the boundary between the conductive layer and the insulating base material. The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the portion, the inner wall surface of the through hole in the conductive layer portion is a curved surface (near arc surface) or an inclined surface when viewed in a longitudinal section, and the outer surface side of the conductive layer is tapered. Since it becomes a tapered through hole, the area of the inner wall surface of the through hole becomes larger than in the case of a straight through hole with the same diameter, and the conductive resin composition and the conductive layer filled in the through hole Conductive contact is reliably taken on the increased inner wall surface (side peripheral surface) of the through hole, and is derived from securing a contact area between the conductive layer of the conductive resin composition above the conductive layer (head-shaped portion) and the conductive layer. Free from various problems, the conductive resin composition and the conductive layer It becomes to be performed stably with a conduction reliable.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a basic configuration of a base material for a multilayer wiring board according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view showing a multilayer wiring board according to Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view showing another basic configuration of the base material for a multilayer wiring board according to Embodiment 1 of the present invention.
FIG. 4 is a sectional view showing a multilayer wiring board according to Embodiment 1 of the present invention;
FIGS. 5A to 5I are process diagrams showing one embodiment of a method for manufacturing a substrate for a multilayer wiring board according to Embodiment 1 of the present invention.
FIGS. 6A to 6C are process diagrams showing one embodiment of a method for manufacturing a multilayer wiring board according to the first embodiment of the present invention.
FIG. 7A is a cross-sectional view showing a basic structure of a base material for a multilayer wiring board according to Embodiment 2 of the present invention, and FIG. 7B is a modified example thereof.
FIG. 8 is a sectional view showing a multilayer wiring board according to Embodiment 2 of the present invention;
FIG. 9 is a cross-sectional view showing another basic configuration of the base material for a multilayer wiring board according to Embodiment 2 of the present invention.
FIG. 10 is a sectional view showing a multilayer wiring board according to Embodiment 2 of the present invention.
FIGS. 11A to 11J are process diagrams showing one embodiment of a method for manufacturing a substrate for a multilayer wiring board according to Embodiment 2 of the present invention.
12 (a) to 12 (c) are process diagrams showing one embodiment of a method for manufacturing a multilayer wiring board according to Embodiment 2 of the present invention.
FIG. 13 is a cross-sectional view showing an IVH structure of a conventional base material for a multilayer wiring board.
FIG. 14 is a cross-sectional view showing a defect in an IVH structure of a conventional base material for a multilayer wiring board.
[Explanation of symbols]
10A First layer base material
10B 2nd layer base material
11 Insulating resin layer
12 conductive layer
13 Adhesive layer
14 Through hole
15 conductive resin composition
16 Inner wall
17 Conductive layer
20A First layer substrate
20B 2nd layer base material
21 Insulating resin layer
22 conductive layer
24 Through hole
25 conductive resin composition
26 Inner wall
27 Conductive layer

Claims (23)

絶縁性基材の片面に配線パターンをなす導電層を設けられ、前記絶縁性基材と前記導電層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さいことを特徴とする多層配線基板用基材。
A multilayer wiring board provided with a conductive layer forming a wiring pattern on one surface of an insulating base material and filled with a conductive resin composition for obtaining interlayer conduction in a through hole penetrating the insulating base material and the conductive layer A base material for
A substrate for a multilayer wiring board, wherein a hole diameter Db on an outer surface side of the conductive layer is smaller than a hole diameter Da of a portion of the conductive layer at a boundary portion between the conductive layer and the insulating base in the through hole.
絶縁性基材の片面に配線パターンをなす導電層を設けられ、前記絶縁性基材と前記導電層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、
且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きいことを特徴とする多層配線基板用基材。
A multilayer wiring board provided with a conductive layer forming a wiring pattern on one surface of an insulating base material and filled with a conductive resin composition for obtaining interlayer conduction in a through hole penetrating the insulating base material and the conductive layer A base material for
The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole,
And a hole diameter Da of the conductive layer portion at the boundary portion is larger than a hole diameter Dc of the insulating base portion portion at the boundary portion.
絶縁性基材の片面に配線パターンをなす導電層を設けられ、前記絶縁性基材と前記導電層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、
且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、しかも、前記孔径Da>前記孔径Dc>前記孔径Dbであることを特徴とする多層配線基板用基材。
A multilayer wiring board provided with a conductive layer forming a wiring pattern on one surface of an insulating base material and filled with a conductive resin composition for obtaining interlayer conduction in a through hole penetrating the insulating base material and the conductive layer A base material for
The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole,
Further, the hole diameter Da of the conductive layer portion at the boundary portion is larger than the hole diameter Dc of the insulating base portion portion at the boundary portion, and the hole diameter Da> the hole diameter Dc> the hole diameter Db. Substrate for multilayer wiring board.
絶縁性基材の片面に配線パターンをなす導電層を設けられ、前記絶縁性基材と前記導電層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、
且つ、前記境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きいことを特徴とする多層配線基板用基材。
A multilayer wiring board provided with a conductive layer forming a wiring pattern on one surface of an insulating base material and filled with a conductive resin composition for obtaining interlayer conduction in a through hole penetrating the insulating base material and the conductive layer A base material for
The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole,
And a hole diameter Dc of the insulating substrate portion at the boundary portion is equal to or larger than a hole diameter Da of the conductive layer portion at the boundary portion.
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられ、前記導電層と前記絶縁性基材と前記接着層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さいことを特徴とする多層配線基板用基材。
A conductive layer forming a wiring pattern is provided on one surface of an insulating base material, and an adhesive layer for interlayer bonding is provided on the other surface, and a through hole penetrating the conductive layer, the insulating base material, and the adhesive layer. A substrate for a multilayer wiring board filled with a conductive resin composition for obtaining interlayer conduction,
A substrate for a multilayer wiring board, wherein a hole diameter Db on an outer surface side of the conductive layer is smaller than a hole diameter Da of a portion of the conductive layer at a boundary portion between the conductive layer and the insulating base in the through hole.
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられ、前記導電層と前記絶縁性基材と前記接着層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、
且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きいことを特徴とする多層配線基板用基材。
A conductive layer forming a wiring pattern is provided on one surface of an insulating base material, and an adhesive layer for interlayer bonding is provided on the other surface, and a through hole penetrating the conductive layer, the insulating base material, and the adhesive layer. A substrate for a multilayer wiring board filled with a conductive resin composition for obtaining interlayer conduction,
The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole,
And a hole diameter Da of the conductive layer portion at the boundary portion is larger than a hole diameter Dc of the insulating base portion portion at the boundary portion.
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられ、前記導電層と前記絶縁性基材と前記接着層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、
且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、しかも、前記孔径Da>前記孔径Dc>前記孔径Dbであることを特徴とする多層配線基板用基材。
A conductive layer forming a wiring pattern is provided on one surface of an insulating base material, and an adhesive layer for interlayer bonding is provided on the other surface, and a through hole penetrating the conductive layer, the insulating base material, and the adhesive layer. A substrate for a multilayer wiring board filled with a conductive resin composition for obtaining interlayer conduction,
The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole,
Further, the hole diameter Da of the conductive layer portion at the boundary portion is larger than the hole diameter Dc of the insulating base portion portion at the boundary portion, and the hole diameter Da> the hole diameter Dc> the hole diameter Db. Substrate for multilayer wiring board.
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられ、前記導電層と前記絶縁性基材と前記接着層を貫通する貫通孔に層間導通を得るための導電性樹脂組成物を充填された多層配線基板用基材であって、
前記貫通孔の前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、
且つ、前記境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きいことを特徴とする多層配線基板用基材。
A conductive layer forming a wiring pattern is provided on one surface of an insulating base material, and an adhesive layer for interlayer bonding is provided on the other surface, and a through hole penetrating the conductive layer, the insulating base material, and the adhesive layer. A substrate for a multilayer wiring board filled with a conductive resin composition for obtaining interlayer conduction,
The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material of the through hole,
And a hole diameter Dc of the insulating substrate portion at the boundary portion is equal to or larger than a hole diameter Da of the conductive layer portion at the boundary portion.
前記絶縁性基材はポリイミド等の可撓性樹脂フィルムであることを特徴とする請求項1〜8の何れか1項記載の多層配線基板用基材。The substrate for a multilayer wiring board according to any one of claims 1 to 8, wherein the insulating substrate is a flexible resin film such as polyimide. 接着層は熱可塑性ポリイミドにより構成されていることを特徴とする請求項5〜8の何れか1項記載の多層配線基板用基材。The base material for a multilayer wiring board according to any one of claims 5 to 8, wherein the adhesive layer is made of thermoplastic polyimide. 前記貫通孔の前記導電層部分の内壁面が縦断面で見て曲面あるいは傾斜面で、前記貫通孔は前記導電層部分において導電層外表面側が先細となるテーパ状をなしていることを特徴とする請求項1〜10の何れか1項記載の多層配線基板用基材。An inner wall surface of the conductive layer portion of the through hole has a curved surface or an inclined surface as viewed in a longitudinal section, and the through hole has a tapered shape in which the outer surface side of the conductive layer in the conductive layer portion is tapered. The base material for a multilayer wiring board according to any one of claims 1 to 10. 請求項1〜11の何れか1項記載の多層配線基板用基材を複数枚、重ねて接合してなる多層配線基板。A multilayer wiring board comprising a plurality of the multilayer wiring board substrates according to any one of claims 1 to 11, which are stacked and joined. 絶縁性基材の片面に配線パターンをなす導電層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さい貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
The one provided with a conductive layer forming a wiring pattern on one surface of the insulating base material, the outer surface side of the conductive layer from the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material A piercing step of piercing a through hole having a small hole diameter Db;
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
絶縁性基材の片面に配線パターンをなす導電層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きい貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
The one provided with a conductive layer forming a wiring pattern on one surface of the insulating base material, the outer surface side of the conductive layer from the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material A hole diameter Db is small, and a hole diameter Da of the conductive layer portion at the boundary portion is a hole diameter larger than the hole diameter Dc of the insulating substrate portion at the boundary portion;
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
絶縁性基材の片面に配線パターンをなす導電層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、しかも、前記孔径Da>前記孔径Dc>前記孔径Dbである貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
The one provided with a conductive layer forming a wiring pattern on one surface of the insulating base material, the outer surface side of the conductive layer from the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material The hole diameter Db is small, and the hole diameter Da of the conductive layer portion at the boundary is larger than the hole diameter Dc of the insulating base material portion at the boundary, and the hole diameter Da> the hole diameter Dc> the hole diameter Db. A drilling step of drilling a through hole,
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
絶縁性基材の片面に配線パターンをなす導電層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きい貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
The one provided with a conductive layer forming a wiring pattern on one surface of the insulating base material, the outer surface side of the conductive layer from the hole diameter Da of the conductive layer portion at the boundary between the conductive layer and the insulating base material A hole diameter Db is small, and a hole diameter Dc of the insulating base portion at the boundary portion is equal to or larger than a hole diameter Da of the conductive layer portion at the boundary portion;
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
前記穿孔工程は、絶縁性基材に所定の孔径の穴あけを行う第1穴あけ工程と、穴あけされた絶縁性基材の側から等方性を有するエッチングによって導電層に穴あけを行う第2穴あけ工程とを含んでいることを特徴とする請求項13〜16の何れか1項記載の多層配線基板用基材の製造方法。The perforating step includes a first perforating step of perforating the insulating base material having a predetermined hole diameter, and a second perforating step of perforating the conductive layer by isotropic etching from the perforated insulating base material side. The method for producing a base material for a multilayer wiring board according to any one of claims 13 to 16, comprising: 絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さい貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
A conductive layer that forms a wiring pattern on one surface of an insulating base material, and an adhesive layer for interlayer bonding provided on the other surface, at the boundary between the conductive layer and the insulating base material. A perforation step of perforating a through hole having a smaller diameter Db on the outer surface side of the conductive layer than the diameter Da of the conductive layer portion;
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられたものに、導電層と絶縁性基材との境界部における前記導電層部分の孔径Daより導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きい貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
A conductive layer forming a wiring pattern is provided on one surface of an insulating base material, and an adhesive layer for interlayer bonding is provided on the other surface, and the conductive layer at a boundary between the conductive layer and the insulating base material is provided. The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the portion, and the hole diameter Da of the conductive layer portion at the boundary is larger than the hole diameter Dc of the insulating base portion at the boundary. Perforating process,
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記導電層部分の孔径Daが前記境界部における前記絶縁性基材部分の孔径Dcより大きく、しかも、前記孔径Da>前記孔径Dc>前記孔径Dbである貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
A conductive layer that forms a wiring pattern on one surface of an insulating base material, and an adhesive layer for interlayer bonding provided on the other surface, at the boundary between the conductive layer and the insulating base material. The hole diameter Db on the outer surface side of the conductive layer is smaller than the hole diameter Da of the conductive layer portion, and the hole diameter Da of the conductive layer portion at the boundary portion is larger than the hole diameter Dc of the insulating base portion portion at the boundary portion, And a perforation step of perforating a through-hole having the hole diameter Da> the hole diameter Dc> the hole diameter Db;
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
絶縁性基材の一方の面に配線パターンをなす導電層を、他方の面に層間接着のための接着層を設けられたものに、前記導電層と前記絶縁性基材との境界部における前記導電層部分の孔径Daより前記導電層の外表面側の孔径Dbが小さく、且つ、前記境界部における前記絶縁性基材部分の孔径Dcが前記境界部における前記導電層部分の孔径Daに等しいかあるいはそれより大きい貫通孔を穿孔する穿孔工程と、
導電性樹脂組成物を前記貫通孔に充填する充填工程と、
を有する多層配線基板用基材の製造方法。
A conductive layer that forms a wiring pattern on one surface of an insulating base material, and an adhesive layer for interlayer bonding provided on the other surface, at the boundary between the conductive layer and the insulating base material. Is the hole diameter Db on the outer surface side of the conductive layer smaller than the hole diameter Da of the conductive layer portion, and is the hole diameter Dc of the insulating base portion portion at the boundary portion equal to the hole diameter Da of the conductive layer portion at the boundary portion? Or a drilling step of drilling a larger through hole,
A filling step of filling the through-hole with a conductive resin composition,
A method for producing a substrate for a multilayer wiring board, comprising:
前記穿孔工程は、接着層と絶縁性基材とに所定の孔径の穴あけを行う第1穴あけ工程と、穴あけされた接着層・絶縁性基材の側から等方性を有するエッチングによって導電層に穴あけを行う第2穴あけ工程とを含んでいることを特徴とする請求項18〜21の何れか1項記載の多層配用基材の製造方法。The perforating step includes a first perforating step of perforating the adhesive layer and the insulating base material with a predetermined hole diameter, and an isotropic etching from the side of the perforated adhesive layer / insulating base material to the conductive layer. 22. The method for producing a multilayer distribution base material according to any one of claims 18 to 21, further comprising a second perforating step of perforating. 前記第2穴あけ工程は、回路形成のための導電層のエッチングと同工程で行うことを特徴とする請求項17または22記載の多層配線基板用基材の製造方法。23. The method according to claim 17, wherein the second drilling step is performed in the same step as the etching of the conductive layer for forming a circuit.
JP2002212569A 2002-07-22 2002-07-22 Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof Expired - Fee Related JP4008298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212569A JP4008298B2 (en) 2002-07-22 2002-07-22 Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212569A JP4008298B2 (en) 2002-07-22 2002-07-22 Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004055897A true JP2004055897A (en) 2004-02-19
JP4008298B2 JP4008298B2 (en) 2007-11-14

Family

ID=31935468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212569A Expired - Fee Related JP4008298B2 (en) 2002-07-22 2002-07-22 Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4008298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250581A (en) * 2006-03-13 2007-09-27 Fujitsu Ltd Multilayer wiring board and production method therefor
JP2007250996A (en) * 2006-03-17 2007-09-27 Kyocera Corp Wiring board, electronic device equipped with wiring board, and probe card
WO2009017051A1 (en) * 2007-07-27 2009-02-05 Zeon Corporation Composite for multilayer circuit board
JP2014086605A (en) * 2012-10-25 2014-05-12 Ngk Spark Plug Co Ltd Wiring board and method of manufacturing the same
KR20190038016A (en) * 2017-09-29 2019-04-08 삼성전기주식회사 Coil component and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250581A (en) * 2006-03-13 2007-09-27 Fujitsu Ltd Multilayer wiring board and production method therefor
JP2007250996A (en) * 2006-03-17 2007-09-27 Kyocera Corp Wiring board, electronic device equipped with wiring board, and probe card
WO2009017051A1 (en) * 2007-07-27 2009-02-05 Zeon Corporation Composite for multilayer circuit board
JP5353698B2 (en) * 2007-07-27 2013-11-27 日本ゼオン株式会社 Method for producing composite for multilayer circuit board
JP2014086605A (en) * 2012-10-25 2014-05-12 Ngk Spark Plug Co Ltd Wiring board and method of manufacturing the same
KR20190038016A (en) * 2017-09-29 2019-04-08 삼성전기주식회사 Coil component and method for manufacturing the same
US11315718B2 (en) * 2017-09-29 2022-04-26 Samsung Electro-Mechanics Co., Ltd. Coil component and method for manufacturing the same
KR102450597B1 (en) * 2017-09-29 2022-10-07 삼성전기주식회사 Coil component and method for manufacturing the same

Also Published As

Publication number Publication date
JP4008298B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
WO2003071843A1 (en) Multilayer wiring board, base for multilayer wiring board, printed wiring board, and its manufacturing method
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP3996521B2 (en) Manufacturing method of substrate for multilayer wiring board
JPH1013028A (en) Single-sides circuit board for multilayered printed wiring board and multilayered printed wiring board and its manufacture
JP4008298B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JP2004311720A (en) Multilayer wiring board, base material therefor and its manufacturing method
JP4012022B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JP3866121B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JP4121339B2 (en) Manufacturing method of multilayer wiring board
JP3645780B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JP2005340279A (en) Multilayer wiring board and its manufacturing method
JP4121354B2 (en) Wiring substrate base material and method for producing multilayer wiring substrate base material
JP3934479B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JP2002353619A (en) Multilayer wiring board and base material for multilayer interconnection, and method of manufacturing the same
JP2004134467A (en) Multilayered wiring board, material for it, and method of manufacturing it
JP2004031803A (en) Multilayer wiring board and substrate for multilayer wiring board
JP2004193278A (en) Multilayer wiring board, and blank board for it, and its manufacturing method
JP2004221192A (en) Multilayer substrate, base material therefor and its manufacturing method
JP2008198733A (en) Multilayer interconnection board and manufacturing method thereof
JP2004253774A (en) Multilayer printed wiring board provided with recess for embedding electronic component, and its manufacturing method
JP2004103716A (en) Multilayer wiring board, its basic material and its producing process
JP2004335921A (en) Multilayer wiring board, substrate for multilayer wiring board, and method for manufacturing these
JP3996526B2 (en) SUBSTRATE FOR MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND MULTILAYER WIRING BOARD
JP2004363325A (en) Multilayer wiring board and its manufacturing method
JP2006147748A (en) Multilayered printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees