JP2006165057A - Manufacturing method of semiconductor module - Google Patents

Manufacturing method of semiconductor module Download PDF

Info

Publication number
JP2006165057A
JP2006165057A JP2004350225A JP2004350225A JP2006165057A JP 2006165057 A JP2006165057 A JP 2006165057A JP 2004350225 A JP2004350225 A JP 2004350225A JP 2004350225 A JP2004350225 A JP 2004350225A JP 2006165057 A JP2006165057 A JP 2006165057A
Authority
JP
Japan
Prior art keywords
adhesive sheet
electronic component
semiconductor module
wiring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350225A
Other languages
Japanese (ja)
Inventor
Masayuki Hodono
将行 程野
Kazuyuki Miki
和幸 三木
Koji Noro
弘司 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004350225A priority Critical patent/JP2006165057A/en
Publication of JP2006165057A publication Critical patent/JP2006165057A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of semiconductor module that can obtain high electrical connection reliability and having high material efficiency. <P>SOLUTION: The manufacturing method of semiconductor module comprises the steps of (1) bonding electronic components to a bonding sheet, (2) sealing electronic components bonded to the bonding sheet, (3) boring holes to the bonding sheet to expose the connecting terminals of the electronic components, and (4) forming the wires by connecting the exposed connecting terminals with conductive ink. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体モジュールの製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor module.

半導体装置を用いた各種機器を一層小型化、軽量化、薄型化すると共に、高性能化を図るため、ICチップを含む半導体チップや各種電子部品の高密度実装が進められている。その有力な手段の1つとして平面上に複数の半導体チップを同一パッケージ内に有するMCM(Multi Chip Module)などの半導体モジュールが種々提案されている(例えば、特許文献1参照)。このような半導体モジュールは、例えば、高密度実装化によるコンパクト性と高速アクセス性を活かし、ノートPCや携帯電話用のメモリーチップなどへの利用が期待される。また、S-RAM(スタティックラム)、フラッシュメモリ、マイクロコンピュータなどの半導体チップを1個にパッケージングしたチップ状電子部品としての利用も期待できる。   In order to further reduce the size, weight, and thickness of various devices using semiconductor devices, and to improve performance, high-density mounting of semiconductor chips including IC chips and various electronic components has been promoted. As one of the effective means, various semiconductor modules such as MCM (Multi Chip Module) having a plurality of semiconductor chips on a plane in the same package have been proposed (for example, refer to Patent Document 1). Such semiconductor modules are expected to be used for memory chips for notebook PCs and mobile phones, for example, taking advantage of compactness and high-speed accessibility due to high-density mounting. In addition, it can be expected to be used as a chip-like electronic component in which semiconductor chips such as S-RAM (static ram), flash memory, and microcomputer are packaged into one.

半導体モジュールを製造する際には、半導体チップや抵抗、コンデンサー、ダイオードを樹脂で封止し、それぞれの電子部品を導体パターンで接続する必要があるが、従来の電着法やワイヤーボンディングよりも簡単に配線を形成する方法として、導電性インクで配線を形成することが知られている。例えば、インクジェット法で導電性インクをパターニングして配線を形成する方法を用いれば、様々な電気接続用配線パターンを容易に形成することができる(例えば、特許文献2参照)。   When manufacturing semiconductor modules, it is necessary to seal the semiconductor chip, resistors, capacitors, and diodes with resin and connect each electronic component with a conductor pattern, but it is easier than conventional electrodeposition or wire bonding As a method for forming a wiring, it is known to form a wiring with a conductive ink. For example, if a method of forming a wiring by patterning a conductive ink by an ink jet method is used, various wiring patterns for electrical connection can be easily formed (see, for example, Patent Document 2).

しかし、図1に示すような従来の半導体モジュールの製造方法では、複数の半導体チップや抵抗、コンデンサー、ダイオード等の電子部品1を接着シート2で仮固定(図1の工程(1))する際、半導体チップや電子部品の周囲への粘着剤3の盛り上がり4が生じる(図1の工程(2))という欠陥が生じる。そのまま樹脂充填(図1の工程(3))されると、粘着剤3の盛り上がり4の形状が封止樹脂5に転写され、電子部品の周囲に10〜20μm程度の溝6が形成されてしまう(図1の工程(4))。その後、導電性インクで配線7を形成(図1の工程(5))する際、現状のインクジェットによる配線厚さはサブミクロンから十数ミクロンであるので、この溝は、導電性インクによる配線の断線を誘発する可能性がある。そこで、このような溝を形成しないよう製造方法を工夫した半導体モジュールが報告されている(例えば、特許文献3参照)。
特開2003-124431号公報 特開2004-165310号公報 特開2004-55729号公報
However, in the conventional method of manufacturing a semiconductor module as shown in FIG. 1, a plurality of semiconductor chips, resistors, capacitors, diodes and other electronic components 1 are temporarily fixed with an adhesive sheet 2 (step (1) in FIG. 1). As a result, the adhesive 4 swells around the semiconductor chip or the electronic component (step (2) in FIG. 1) occurs. When the resin is filled as it is (step (3) in FIG. 1), the shape of the bulge 4 of the adhesive 3 is transferred to the sealing resin 5 and a groove 6 of about 10 to 20 μm is formed around the electronic component. (Step (4) in FIG. 1). Thereafter, when the wiring 7 is formed with the conductive ink (step (5) in FIG. 1), since the current wiring thickness by the ink jet is from submicron to tens of microns, this groove is formed by the wiring of the conductive ink. There is a possibility of causing disconnection. Therefore, a semiconductor module in which a manufacturing method is devised so as not to form such a groove has been reported (for example, see Patent Document 3).
JP 2003-124431 A JP 2004-165310 A JP 2004-55729 A

しかし、電子部品の周囲の溝が形成されないように工夫した半導体モジュールの製造方法は、工程が複雑であり、また半導体モジュールの構成部品として必要のない材料を多く使用しなければならないことより材料効率が悪い。   However, the semiconductor module manufacturing method devised so that the grooves around the electronic component are not formed is complicated in process, and more material is required than the unnecessary material as a component of the semiconductor module. Is bad.

従って、本発明の目的は、高い電気接続信頼性が得られ、かつ材料効率のよい半導体モジュールの製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor module that can obtain high electrical connection reliability and has high material efficiency.

本発明は、
〔1〕(1)接着シートに電子部品を接着する工程、
(2)該接着シートに接着された電子部品を樹脂により封止する工程、
(3)接着シートに穿孔し、該電子部品の接続端子を露出する工程、および
(4)露出した接続端子間を導電性インクで接続して配線を形成する工程
を含む、半導体モジュールの製造方法、ならびに
〔2〕〔1〕記載の方法により製造された半導体モジュール

に関する。
The present invention
[1] (1) A step of bonding an electronic component to an adhesive sheet,
(2) a step of sealing an electronic component bonded to the adhesive sheet with a resin;
(3) A method for manufacturing a semiconductor module, comprising: a step of perforating an adhesive sheet to expose a connection terminal of the electronic component; and (4) a step of forming a wiring by connecting the exposed connection terminals with a conductive ink. And a semiconductor module manufactured by the method described in [2] [1]

About.

本発明により、高い電気接続信頼性が得られ、かつ材料効率のよい半導体モジュールの製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a semiconductor module that can obtain high electrical connection reliability and has high material efficiency.

本発明の半導体モジュールの製造方法は、
(1)接着シートに電子部品を接着する工程、
(2)該接着シートに接着された電子部品を樹脂により封止する工程、
(3)接着シートに穿孔し、該電子部品の接続端子を露出する工程、および
(4)露出した接続端子間を導電性インクで接続して配線を形成する工程
を含むことを一つの特徴とする。
The method for manufacturing a semiconductor module of the present invention includes:
(1) a step of bonding an electronic component to an adhesive sheet;
(2) a step of sealing an electronic component bonded to the adhesive sheet with a resin;
(3) including a step of perforating an adhesive sheet to expose the connection terminals of the electronic component, and (4) a step of forming a wiring by connecting the exposed connection terminals with a conductive ink. To do.

本発明の製造方法において、接着シートがそのまま半導体モジュールの一部となるため、従来のように接着シートを廃棄する必要はなく、半導体モジュールの製造における材料効率を高めることができる。また、接着シートが半導体モジュールの一部となることにより、電子部品を接着した際にその壁面に接着シート成分が盛り上がってしまった場合でも、配線形成面に溝は生じず、配線の断線を誘発する可能性が非常に低いという効果が奏される。   In the manufacturing method of the present invention, since the adhesive sheet becomes a part of the semiconductor module as it is, it is not necessary to discard the adhesive sheet as in the prior art, and the material efficiency in manufacturing the semiconductor module can be improved. In addition, since the adhesive sheet becomes a part of the semiconductor module, even if the adhesive sheet component rises on the wall surface when an electronic component is bonded, a groove is not formed on the wiring forming surface, which leads to disconnection of the wiring. There is an effect that the possibility of doing so is very low.

以下、図2および図3を参照しつつ本発明の半導体モジュールの製造方法の一態様を説明する。   Hereinafter, an embodiment of the semiconductor module manufacturing method of the present invention will be described with reference to FIGS.

図2の工程(1)において、接着シート2に、電子部品1の接続端子8が接着シート2側になるように電子部品1と金属枠9が接着されている。   2, the electronic component 1 and the metal frame 9 are bonded to the adhesive sheet 2 so that the connection terminals 8 of the electronic component 1 are on the adhesive sheet 2 side.

接着シート2は、微小な凹凸を有する面に貼り付けて、加熱によって凹凸面に密着することができるように、常温で粘着性を有し、また200℃以下で加熱により軟化する特性を有することが好ましい。さらに、接着シート2は、後工程においてこの接着シート2上に導電性インクにより配線を形成する観点から、配線形成時の200〜300℃の加熱に耐え得るだけの耐熱性を有していることが好ましい。このような特性を有する接着シートを使用することにより、電子部品の周辺に生じた溝を首尾よく埋めることができ、その結果、配線形成面には溝が生じず、配線の断線を誘発する可能性が非常に低いという効果が奏される。   Adhesive sheet 2 has adhesive properties at room temperature and can be softened by heating at 200 ° C. or lower so that it can be attached to a surface with minute irregularities and adhered to the irregular surface by heating. Is preferred. Furthermore, the adhesive sheet 2 has heat resistance sufficient to withstand heating at 200 to 300 ° C. during wiring formation from the viewpoint of forming wiring with conductive ink on the adhesive sheet 2 in a subsequent process. Is preferred. By using an adhesive sheet with such characteristics, it is possible to successfully fill in the grooves formed around the electronic components, and as a result, no grooves are formed on the wiring forming surface, which can induce disconnection of the wiring. The effect is very low.

接着シート2を構成する材料は、上記特性を有する材料であれば特に限定されないが、電気接続用途の観点から、エポキシ樹脂、ポリイミド樹脂、ポリエチレンテレフタレート、液晶ポリマーなどが好ましく、後述の工程(3)における穿孔性および接続端子の視認性の観点から、エポキシ樹脂がより好ましく、半硬化状のエポキシ樹脂を用いることがさらに好ましい。接着シート2を構成する材料の物性は、加熱後のクラックなどの欠陥の発生を防止する観点から、工程(2)で使用する封止用樹脂5と著しく乖離しない物性(線膨張係数、弾性率、ガラス転移温度、熱伝導度等)を有することが好ましい。接着シート2は、後述の工程(3)における穿孔を行いやすくする観点から、透明であることが好ましい。本発明において透明とは、電子部品の接続端子が目視できる程度の有色透明も包含する。   Although the material which comprises the adhesive sheet 2 will not be specifically limited if it is a material which has the said characteristic, From a viewpoint of an electrical connection use, an epoxy resin, a polyimide resin, a polyethylene terephthalate, a liquid crystal polymer, etc. are preferable, and the below-mentioned process (3) From the viewpoint of the perforation property and the visibility of the connection terminal, an epoxy resin is more preferable, and a semi-cured epoxy resin is more preferably used. The physical properties of the material constituting the adhesive sheet 2 are those that do not significantly deviate from the sealing resin 5 used in step (2) (linear expansion coefficient, elastic modulus) from the viewpoint of preventing the occurrence of defects such as cracks after heating. , Glass transition temperature, thermal conductivity, etc.). The adhesive sheet 2 is preferably transparent from the viewpoint of facilitating perforation in the later-described step (3). In the present invention, the term “transparent” includes colored transparency that allows the connection terminals of electronic components to be visually observed.

接着シート2は、例えば、前記材料を溶媒中に溶解させた溶液をキャスティング、スピンコート、ロールコーティングなどの方法により、適切な厚さに製膜し、さらに、硬化反応を進行させず、溶解の除去が可能な程度の温度で乾燥させて得られる。接着シートの厚さは、接着シートに貼り付けられる電子部品の接続端子の凹凸形状が接着シートの表面形状に影響を与えない程度に厚く、工程(3)での穿孔に過度の力を必要としない程度に薄いことが好ましい。具体的な厚さは、電子部品の接続端子の凹凸形状のスケールに依存するので一概にはいえないが、10〜20μmが好ましい。   The adhesive sheet 2 is formed by, for example, forming a solution in which the above-described material is dissolved in a solvent into a suitable thickness by a method such as casting, spin coating, roll coating, and the like. It is obtained by drying at a temperature at which removal is possible. The thickness of the adhesive sheet is so thick that the uneven shape of the connection terminal of the electronic component attached to the adhesive sheet does not affect the surface shape of the adhesive sheet, and an excessive force is required for perforation in the step (3). It is preferable that the thickness is not so thin. The specific thickness depends on the uneven shape scale of the connection terminal of the electronic component and cannot be generally specified, but is preferably 10 to 20 μm.

電子部品1としては、半導体チップ、抵抗、コンデンサー、ダイオードなどが挙げられる。   Examples of the electronic component 1 include a semiconductor chip, a resistor, a capacitor, and a diode.

金属枠9は、次の工程(2)における封止に使用する樹脂を充填し易くする観点などから使用されるので、その材料は特に限定されず、特に必要ない場合は金属枠9を用いなくてもよい。   Since the metal frame 9 is used from the viewpoint of easily filling the resin used for sealing in the next step (2), the material is not particularly limited, and the metal frame 9 is not used unless particularly necessary. May be.

接着シートへの電子部品の接着方法としては、配線パターンに適した所定の配置で接着シート上に接着できれば特に限定されない。   The method for adhering the electronic component to the adhesive sheet is not particularly limited as long as the electronic component can be adhered on the adhesive sheet in a predetermined arrangement suitable for the wiring pattern.

次に、図2の工程(2)において、封止樹脂5により電子部品1を封止している。   Next, in the step (2) of FIG. 2, the electronic component 1 is sealed with the sealing resin 5.

封止樹脂5としては、電子部品の封止が可能な樹脂であれば特に限定されないが、エポキシ樹脂が好ましく、液状エポキシ樹脂がさらに好ましい。封止樹脂の物性は、加熱後のクラックなどの欠陥の発生を防止する観点から、工程(1)で使用する接着シートを構成する樹脂と著しく乖離しない物性(線膨張係数、弾性率、ガラス転移温度、熱伝導度等)を有することが好ましい。封止樹脂による電子部品の封止は、例えば、金属枠9内に封止樹脂を充填し、加熱またはUV照射によって樹脂の硬化を行うことにより実行される。あるいは、封止樹脂シートを使用する場合は、金属枠9を使用する必要はなく、電子部品1上に封止樹脂シートを直接ラミネートし、加熱またはUV照射によって樹脂の硬化を行うことにより封止される。   The sealing resin 5 is not particularly limited as long as it is a resin capable of sealing an electronic component, but is preferably an epoxy resin, and more preferably a liquid epoxy resin. The physical properties of the sealing resin are those that do not significantly deviate from the resin constituting the adhesive sheet used in step (1) from the viewpoint of preventing occurrence of defects such as cracks after heating (linear expansion coefficient, elastic modulus, glass transition). Temperature, thermal conductivity, and the like). The electronic component is sealed with the sealing resin, for example, by filling the metal frame 9 with the sealing resin and curing the resin by heating or UV irradiation. Alternatively, when a sealing resin sheet is used, it is not necessary to use the metal frame 9 and sealing is performed by laminating the sealing resin sheet directly on the electronic component 1 and curing the resin by heating or UV irradiation. Is done.

次に、図2の工程(3)において、接着シート2に穿孔して開口部10を設けて電子部品1の接続端子8を露出している。   Next, in the step (3) of FIG. 2, the adhesive sheet 2 is perforated to provide an opening 10 to expose the connection terminals 8 of the electronic component 1.

穿孔手段としては、封止された電子部品1の接続端子8を露出できる手段であれば特に限定されないが、フレキシブル回路基板製造工程でビア形成に使用されるようなレーザー加工装置、一般的な金属ドリル、薬液による溶解などが挙げられる。レーザー加工装置を使用する場合、使用されるレーザーとしては、接着シートの材質、物性(光進入長、光透過率、熱伝導度、粘性等)などに左右されるため、一概にはいえないが、炭酸ガスレーザー、UVレーザー、エキシマーレーザーなどが好ましい。開口部10の垂直断面形状は、配線形成性および電気接続信頼性の観点から、接続端子側に向けて徐々に幅が小さくなっているすり鉢のような形状であることが好ましい。また、開口部10にはデスミア処理が施されていることが好ましい。開口部10の水平断面形状は円形となっていることが好ましい。サイズは、接続端子のサイズにより異なるので一概にはいえず、接続端子8が露出されるようなサイズであればよい。   The punching means is not particularly limited as long as it can expose the connection terminals 8 of the sealed electronic component 1, but a laser processing apparatus used for forming a via in a flexible circuit board manufacturing process, a general metal Examples include a drill and a chemical solution. When using laser processing equipment, the laser used depends on the material and physical properties of the adhesive sheet (light penetration length, light transmittance, thermal conductivity, viscosity, etc.). Carbon dioxide laser, UV laser, excimer laser and the like are preferable. The vertical cross-sectional shape of the opening 10 is preferably a mortar-like shape whose width gradually decreases toward the connection terminal from the viewpoint of wiring formability and electrical connection reliability. The opening 10 is preferably subjected to desmear treatment. The horizontal cross-sectional shape of the opening 10 is preferably circular. Since the size differs depending on the size of the connection terminal, it cannot be generally specified, and any size that allows the connection terminal 8 to be exposed may be used.

次に、図2の工程(4)において、導電性インクを用いて接続端子8間の配線7を形成している。   Next, in step (4) of FIG. 2, the wiring 7 between the connection terminals 8 is formed using conductive ink.

導電性インクに含有される導電性粒子としては、導電性を有する金属粒子、金属酸化物、これらと樹脂もしくは分散剤との複合物など、導電性を有するものであれば特に限定されない。導電性を有する金属粒子としては、金、銀、銅、アルミニウム、鉄、ニッケル、イリジウム、タングステンなどが挙げられ、導電性を有する金属酸化物としては、前記金属粒子の酸化物が挙げられる。導電性粒子の粒子径はサブミクロンオーダー以下であることが好ましい。何故なら粒子径が小さいほど、配線が薄細であっても、配線の中に電気接続信頼性を確保するに十分な数の導電性粒子を含むことができるからである。また導電性粒子の粒子径は、塗布装置のノズル径以下であることも必要な条件となる。従って、導電性粒子の粒子径は、好ましくは1〜500nmである。このような粒子径の導電性粒子を使用することにより、数μmの配線幅・配線厚さであっても十分な粒子数を含み、導電抵抗値や電気接続信頼性の点で良質な配線を形成することができる。   The conductive particles contained in the conductive ink are not particularly limited as long as they have conductivity, such as conductive metal particles, metal oxides, and a composite of these and a resin or dispersant. Examples of the conductive metal particles include gold, silver, copper, aluminum, iron, nickel, iridium, and tungsten. Examples of the conductive metal oxide include oxides of the metal particles. The particle diameter of the conductive particles is preferably less than the submicron order. This is because, as the particle diameter is smaller, even if the wiring is thin, a sufficient number of conductive particles can be included in the wiring to ensure electrical connection reliability. Moreover, it is a necessary condition that the particle diameter of the conductive particles is equal to or smaller than the nozzle diameter of the coating apparatus. Therefore, the particle diameter of the conductive particles is preferably 1 to 500 nm. By using conductive particles with such a particle size, even with a wiring width and wiring thickness of several μm, a sufficient number of particles can be included, and high-quality wiring can be achieved in terms of conductive resistance and electrical connection reliability. Can be formed.

導電性インクに含有される樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂などが挙げられ、分散剤としては、アルコール、アルキルアミン、カルボン酸アミド、アミノカルボン酸などが挙げられる。また導電性インクの調製に使用される溶媒としては、主鎖の炭素数が6〜20程度の非極性炭化水素、水、炭素数が15以下のアルコール系溶媒、またはその混合物が挙げられる。   Examples of the resin contained in the conductive ink include phenol resin, epoxy resin, and polyimide resin, and examples of the dispersant include alcohol, alkylamine, carboxylic acid amide, and aminocarboxylic acid. Examples of the solvent used for preparing the conductive ink include nonpolar hydrocarbons having a main chain having about 6 to 20 carbon atoms, water, alcohol solvents having 15 or less carbon atoms, or mixtures thereof.

導電性インクの性状は、接着シート上に配線を描くことができればペースト状でも液状でもよい。   The property of the conductive ink may be paste or liquid as long as the wiring can be drawn on the adhesive sheet.

次に、導電性インクを用いた配線形成方法について説明する。前述の導電性インクを接着シート上にパターン塗布し、特定の温度下で乾燥させることで配線7を形成することが出来る。前記塗布方法としては、インクジェット法、ディスペンサー、スクリーン印刷、凹版や凸版を利用したオフセット印刷等が挙げられ、配線パターンの自由度の観点から、インクジェット法が好ましい。乾燥温度、乾燥時間は用いる導電性インクの性質により異なるので一概にはいえないが、本発明のような半導体モジュールを作製する際は、使用する材料(エポキシ樹脂、ポリイミド、液晶ポリマーなど)の耐熱性を考慮して250℃以下で1時間程度の乾燥が好ましい。   Next, a wiring forming method using conductive ink will be described. The wiring 7 can be formed by applying the above-described conductive ink in a pattern on an adhesive sheet and drying it at a specific temperature. Examples of the coating method include inkjet method, dispenser, screen printing, offset printing using intaglio and letterpress, and the inkjet method is preferable from the viewpoint of the degree of freedom of the wiring pattern. Although the drying temperature and drying time vary depending on the properties of the conductive ink used, it cannot be generally stated, but when manufacturing a semiconductor module such as the present invention, the heat resistance of the materials used (epoxy resin, polyimide, liquid crystal polymer, etc.) Considering the properties, drying at 250 ° C. or lower for about 1 hour is preferable.

以上のようにして半導体モジュールが作製されるが、さらに前記工程(4)で形成した配線7を保護するための保護層11を形成してもよい。   Although the semiconductor module is manufactured as described above, a protective layer 11 for protecting the wiring 7 formed in the step (4) may be further formed.

図2の(5)では、工程(4)で形成された配線7の上に保護層11が形成されている。   In FIG. 2 (5), the protective layer 11 is formed on the wiring 7 formed in the step (4).

保護層11としては、接着シートと同じものを使用してもよいし、カバーレイフィルム(例えばポリイミドフィルム)などを使用してもよい。また液状エポキシ樹脂、液状ポリイミド樹脂などの液状絶縁性樹脂を、インクジェット、スピンコーターなどの塗布手段によって配線7を保護する必要のある箇所にのみ塗布して保護層を形成してもよい。保護層11には、半導体モジュールの接続端子を作製するために、レーザー加工装置などの穿孔装置で穿孔してもよい。   As the protective layer 11, the same material as the adhesive sheet may be used, or a coverlay film (for example, a polyimide film) may be used. Further, a protective layer may be formed by applying a liquid insulating resin such as a liquid epoxy resin or a liquid polyimide resin only to a portion where the wiring 7 needs to be protected by an application means such as an inkjet or a spin coater. The protective layer 11 may be perforated with a perforating apparatus such as a laser processing apparatus in order to produce a connection terminal of the semiconductor module.

その後、金属枠9を外し、必要に応じて所定サイズに裁断して半導体モジュールが製造される。   Thereafter, the metal frame 9 is removed, and the semiconductor module is manufactured by cutting into a predetermined size as necessary.

以上の方法により、製造中の材料効率がよく、電気接続信頼性の高い半導体モジュールが製造される。   By the above method, a semiconductor module with high material efficiency during manufacture and high electrical connection reliability is manufactured.

以下、本発明を実施例によりさらに詳細に記載し説明するが、この実施例は本発明を単に開示するものであり、何ら限定することを意味するものではない。   Hereinafter, the present invention will be described and explained in more detail by way of examples, but these examples merely disclose the present invention and are not meant to be limiting in any way.

実施例1 半導体モジュールの作製
以下のようにして半導体モジュールを作製した。
Example 1 Production of Semiconductor Module A semiconductor module was produced as follows.

(1)20×20mmの金属枠30個に接着シート(半硬化エポキシ接着シート、日東電工(株)製AS-X5)を圧力0.15MPaにて、40℃に加温しながら気泡が混入しないように10mm/secの速度にてラミネートし、金属枠と接着シートを接着した。 (1) Adhesive sheet (semi-cured epoxy adhesive sheet, AS-X5 manufactured by Nitto Denko Co., Ltd.) is heated to 40 ° C at 30 ° 20 × 20mm metal frame at a pressure of 0.15MPa. Was laminated at a speed of 10 mm / sec, and the metal frame and the adhesive sheet were bonded.

(2)接着シート上の金属枠の内側に、金属枠1個当たり、ICチップ3個、抵抗4個、コンデンサー2個およびダイオード1個を、後工程で描く配線パターンに適した所定の配置で接着シート上に接着した。この時、各電子部品の接続端子が接着シートと接するように、各電子部品を接着シートに接着した。 (2) Inside the metal frame on the adhesive sheet, 3 IC chips, 4 resistors, 2 capacitors, and 1 diode per metal frame are arranged according to the wiring pattern drawn in the subsequent process. Bonded onto the adhesive sheet. At this time, each electronic component was bonded to the adhesive sheet so that the connection terminal of each electronic component was in contact with the adhesive sheet.

(3)金属枠内に液状エポキシ樹脂(ナミックス社製)を充填し、130℃で十分に液状エポキシ樹脂を硬化させて電子部品の封止を行った。その後、170℃×5時間にて接着シートを硬化させた。 (3) A liquid epoxy resin (manufactured by NAMICS) was filled into the metal frame, and the liquid epoxy resin was sufficiently cured at 130 ° C. to seal the electronic component. Thereafter, the adhesive sheet was cured at 170 ° C. for 5 hours.

(4)接着シート面より、埋め込まれた電子部品の接続端子を露出させるため、炭酸ガスレーザーにて開口部(接続端子側:φ50μm、配線形成側:φ150μmのすり鉢状)を形成した。 (4) In order to expose the connection terminal of the embedded electronic component from the adhesive sheet surface, an opening (connection terminal side: φ50 μm, wiring formation side: φ150 μm mortar shape) was formed with a carbon dioxide laser.

(5)開口部をデスミア処理した後、インクジェット法により導電性インク(ハリマ化成(株)製 NPS-Jナノペースト)を開口部と接着シート上に塗布することで配線幅80μm、厚さ3μmの配線を描画した。10〜30分間風乾した後、230℃の乾燥炉で60分間の加熱処理を行い、配線を形成した。この時、電子部品の接続端子間で導通テストを行った結果、全ての配線間で断線は生じていないことを確認した。 (5) After desmearing the opening, a conductive ink (NPS-J nano paste made by Harima Kasei Co., Ltd.) is applied onto the opening and the adhesive sheet by an ink jet method, so that the wiring width is 80 μm and the thickness is 3 μm. Draw wiring. After air-drying for 10 to 30 minutes, a heat treatment for 60 minutes was performed in a 230 ° C. drying furnace to form wiring. At this time, as a result of conducting a continuity test between the connection terminals of the electronic component, it was confirmed that no disconnection occurred between all the wirings.

(6)配線を形成した接着シート上に同じ接着シートを1枚接着し、170℃×5時間にて接着シートを硬化させ、配線が露出しないよう保護層を形成した。次に(5)で形成した配線の内、半導体モジュールの接続端子となる部分に炭酸ガスレーザーで穿孔し、接続端子を確保した。 (6) One adhesive sheet was adhered on the adhesive sheet on which the wiring was formed, and the adhesive sheet was cured at 170 ° C. for 5 hours to form a protective layer so that the wiring was not exposed. Next, in the wiring formed in (5), a portion serving as a connection terminal of the semiconductor module was punched with a carbon dioxide laser to secure the connection terminal.

(7)金属枠を接着シートから外し、その後半導体モジュールを所定のサイズに合わせて裁断した。 (7) The metal frame was removed from the adhesive sheet, and then the semiconductor module was cut to a predetermined size.

得られた個々の半導体モジュールの接続端子間で導通テストを行った結果、すべての配線間で断線は生じておらず、正常に動作していることを確認した。   As a result of conducting a continuity test between the connection terminals of the obtained individual semiconductor modules, it was confirmed that no disconnection occurred between all the wirings, and the semiconductor modules were operating normally.

比較例1 半導体モジュールの作製
(1)エポキシ接着シートの代わりにシリコン粘着テープ(日東電工(株)製 TRM-3651X-15)を用いた他は実施例1の(1)および(2)と同様にして、ICチップ、抵抗、コンデンサーおよびダイオードの接着(仮留め)を行った。
Comparative Example 1 Production of Semiconductor Module (1) Same as (1) and (2) of Example 1 except that silicon adhesive tape (TRM-3651X-15 manufactured by Nitto Denko Corporation) was used instead of the epoxy adhesive sheet Then, the IC chip, resistor, capacitor and diode were bonded (temporarily fixed).

(2)実施例1の(3)と同様に、電子部品の封止を行った。その後、サンプルの1つを取り出して断面を切断し、光学顕微鏡でシリコン粘着テープと電子部品の界面の観察を行った結果、シリコン粘着テープのアクリル粘着剤が電子部品の側壁に盛り上がっており、その盛り上がりの形状に沿って封止樹脂が充填されていることを確認した。 (2) The electronic component was sealed in the same manner as (3) of Example 1. Thereafter, one of the samples was taken out, the cross section was cut, and the interface between the silicon adhesive tape and the electronic component was observed with an optical microscope. As a result, the acrylic adhesive of the silicon adhesive tape was raised on the side wall of the electronic component. It was confirmed that the sealing resin was filled along the raised shape.

(3)金属枠からシリコン粘着テープを剥離した。その後、封止樹脂に埋め込まれた電子部品を観察したところ、一部の電子部品の周囲に10〜20μmの溝が生じていた。この溝は(2)で観察した粘着剤の盛り上がりの形状と一致し、粘着剤の盛り上がり現象が封止樹脂の充填の形状に影響を与えていることが確認された。 (3) The silicon adhesive tape was peeled from the metal frame. Thereafter, when the electronic component embedded in the sealing resin was observed, a 10 to 20 μm groove was formed around some of the electronic components. This groove coincides with the shape of the pressure-sensitive adhesive observed in (2), and it was confirmed that the pressure-sensitive adhesive bulge phenomenon has an influence on the shape of the sealing resin filling.

(4)(3)でシリコン粘着テープを剥離した面にインクジェット法により導電性インク(ハリマ化成(株)製 NPS-Jナノペースト)を塗布することで配線幅80μm、厚さ3μmの配線を描画した。10〜30分間風乾した後、230℃の乾燥炉で60分間の加熱処理を行い、配線を形成した。 (4) A conductive ink (NPS-J nano paste made by Harima Chemical Co., Ltd.) is applied to the surface from which the silicon adhesive tape has been peeled off in (3) by drawing an ink with a wiring width of 80μm and a thickness of 3μm. did. After air-drying for 10 to 30 minutes, a heat treatment for 60 minutes was performed in a 230 ° C. drying furnace to form wiring.

(5)金属枠を取り外し、次いで、半導体モジュールを所定のサイズに合わせて裁断した。 (5) The metal frame was removed, and then the semiconductor module was cut to a predetermined size.

得られた半導体モジュールの電子部品の接続端子間で導通テストを行った結果、溝部分で断線が生じ、電気接続信頼性に劣ることを確認した。   As a result of conducting a continuity test between the connection terminals of the electronic components of the obtained semiconductor module, it was confirmed that a disconnection occurred in the groove portion and the electrical connection reliability was poor.

本発明の製造方法は、MCMなどの半導体モジュールの製造に利用することができる。   The manufacturing method of the present invention can be used for manufacturing a semiconductor module such as MCM.

従来の半導体モジュールの製造方法の工程概略図を示す。The process schematic of the manufacturing method of the conventional semiconductor module is shown. 本発明の半導体モジュールの製造方法の工程概略図を示す。The process schematic of the manufacturing method of the semiconductor module of this invention is shown. 本発明の半導体モジュールの製造方法の工程概略図を示す。The process schematic of the manufacturing method of the semiconductor module of this invention is shown.

符号の説明Explanation of symbols

1 電子部品
2 接着シート
3 粘着剤
4 盛り上がり
5 封止樹脂
6 溝
7 配線
8 接続端子
9 金属枠
10 開口部
11 保護層
1 Electronic Component 2 Adhesive Sheet 3 Adhesive 4 Swell 5 Sealing Resin 6 Groove 7 Wiring 8 Connection Terminal 9 Metal Frame 10 Opening 11 Protective Layer

Claims (5)

(1)接着シートに電子部品を接着する工程、
(2)該接着シートに接着された電子部品を樹脂により封止する工程、
(3)接着シートに穿孔し、該電子部品の接続端子を露出する工程、および
(4)露出した接続端子間を導電性インクで接続して配線を形成する工程
を含む、半導体モジュールの製造方法。
(1) a step of bonding an electronic component to an adhesive sheet;
(2) a step of sealing an electronic component bonded to the adhesive sheet with a resin;
(3) A method for manufacturing a semiconductor module, comprising: a step of perforating an adhesive sheet to expose a connection terminal of the electronic component; and (4) a step of forming a wiring by connecting the exposed connection terminals with a conductive ink. .
電子部品が半導体チップ、抵抗、コンデンサーおよびダイオードからなる群より選択される少なくとも1種である、請求項1記載の方法。   The method according to claim 1, wherein the electronic component is at least one selected from the group consisting of a semiconductor chip, a resistor, a capacitor, and a diode. 接着シートが透明である、請求項1または2記載の方法。   The method according to claim 1 or 2, wherein the adhesive sheet is transparent. 接着シートの材料がエポキシ樹脂である、請求項1〜3いずれか記載の方法。   The method according to claim 1, wherein the material of the adhesive sheet is an epoxy resin. 請求項1〜4いずれか記載の方法により製造された半導体モジュール。
A semiconductor module manufactured by the method according to claim 1.
JP2004350225A 2004-12-02 2004-12-02 Manufacturing method of semiconductor module Pending JP2006165057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350225A JP2006165057A (en) 2004-12-02 2004-12-02 Manufacturing method of semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350225A JP2006165057A (en) 2004-12-02 2004-12-02 Manufacturing method of semiconductor module

Publications (1)

Publication Number Publication Date
JP2006165057A true JP2006165057A (en) 2006-06-22

Family

ID=36666753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350225A Pending JP2006165057A (en) 2004-12-02 2004-12-02 Manufacturing method of semiconductor module

Country Status (1)

Country Link
JP (1) JP2006165057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120143A (en) * 2015-04-14 2017-10-30 오므론 가부시키가이샤 Circuit structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120143A (en) * 2015-04-14 2017-10-30 오므론 가부시키가이샤 Circuit structure
CN107431046A (en) * 2015-04-14 2017-12-01 欧姆龙株式会社 Circuit structure
EP3285287A4 (en) * 2015-04-14 2018-12-26 Omron Corporation Circuit structure
US10334733B2 (en) 2015-04-14 2019-06-25 Omron Corporation Circuit structure
TWI677266B (en) * 2015-04-14 2019-11-11 日商歐姆龍股份有限公司 Circuit structure and production method thereof
KR102062065B1 (en) 2015-04-14 2020-01-03 오므론 가부시키가이샤 Circuit structure
CN107431046B (en) * 2015-04-14 2020-04-14 欧姆龙株式会社 Circuit structure

Similar Documents

Publication Publication Date Title
KR100670751B1 (en) Semiconductor device, semiconductor wafer, semiconductor module and manufacturing method of semiconductor device
CN101189717B (en) Printed wiring board with built-in semiconductor element and method for manufacturing same
KR101194713B1 (en) Module, wiring board and module manufacturing method
JPWO2007126090A1 (en) CIRCUIT BOARD, ELECTRONIC DEVICE DEVICE, AND CIRCUIT BOARD MANUFACTURING METHOD
EP2600701B1 (en) Flexible printed circuit board and method of manufacturing thereof
US9706652B2 (en) Printed circuit board and method for manufacturing same
JP2007123506A (en) Method for manufacturing circuit module
JP5945262B2 (en) Printed wiring board and manufacturing method thereof
JP2013089943A (en) Printed circuit board
JP2006165058A (en) Manufacturing method of semiconductor module
JP2006165057A (en) Manufacturing method of semiconductor module
CN102655715A (en) Flexible printed circuit board (PCB) and manufacturing method thereof
KR102570727B1 (en) Printed circuit board and package substrate
JP2002246745A (en) Three-dimensional mounting package and its manufacturing method, and adhesive therefor
KR101219929B1 (en) The printed circuit board and the method for manufacturing the same
JP4605176B2 (en) Semiconductor mounting substrate, semiconductor package manufacturing method, and semiconductor package
JP3981314B2 (en) Manufacturing method of multilayer wiring board
JP2009111332A (en) Method for manufacturing printed circuit board
JP4605177B2 (en) Semiconductor mounting substrate
JP3836002B2 (en) Manufacturing method and manufacturing apparatus for film carrier tape for electronic component mounting
JP4974421B2 (en) Manufacturing method of multilayer wiring board
JP2008084949A (en) Method for manufacturing semiconductor package
KR101148745B1 (en) Method for manufacturing semiconductor package substrate
JP2006245070A (en) Circuit apparatus
JP4641783B2 (en) Display device