JP2006162458A - Ultrasonic-type flow measuring apparatus - Google Patents

Ultrasonic-type flow measuring apparatus Download PDF

Info

Publication number
JP2006162458A
JP2006162458A JP2004355125A JP2004355125A JP2006162458A JP 2006162458 A JP2006162458 A JP 2006162458A JP 2004355125 A JP2004355125 A JP 2004355125A JP 2004355125 A JP2004355125 A JP 2004355125A JP 2006162458 A JP2006162458 A JP 2006162458A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic sensor
wave
time
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355125A
Other languages
Japanese (ja)
Inventor
Daisuke Betsusou
大介 別荘
Kenzo Ochi
謙三 黄地
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004355125A priority Critical patent/JP2006162458A/en
Publication of JP2006162458A publication Critical patent/JP2006162458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a conventional ultrasonic flowmeter requires a reception waveform having a steep rising edge, and it is necessary to increase the number of measurements, in order to reduce variations in measurements. <P>SOLUTION: An ultrasonic type flow measuring apparatus is provided, which uses a first ultrasonic sensor 2 and a second ultrasonic sensor 3, operating at a period TS longer than a time difference ΔT (ΔT=T1-T2) with the maximum flow rate state; and a transmission means 4 giving a signal having the period TS, thereby carrying out exact measurements, regardless of the reception waveforms and increasing the number of measurement data. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波によって流体の流速およびまたは流量を測定する超音式流れ計測装置に関するものである。   The present invention relates to an ultrasonic flow measuring device that measures the flow velocity and / or flow rate of a fluid using ultrasonic waves.

従来の超音波式流れ計測装置、より具体的にいえば超音波流量計が特許文献1に記載されている。   A conventional ultrasonic flow measuring device, more specifically, an ultrasonic flow meter is described in Patent Document 1.

図8はこの特許文献1の一つの実施例として示されたもので、流路51の途中に超音波を発信する第1振動子52と受信する第2振動子53とを流れ方向に斜めに対向するように配置されている。   FIG. 8 is shown as one embodiment of this patent document 1, and the first vibrator 52 for transmitting ultrasonic waves and the second vibrator 53 for receiving are obliquely arranged in the flow direction in the flow path 51. It arrange | positions so that it may oppose.

54は第1振動子52への発信回路、55は第2振動子53で受信した信号の増幅回路で、ここで増幅された信号は基準信号と比較回路56で比較され、発信から受信までの時間、いわゆる超音波伝幡時間をタイマカウンタのような計時手段57で求めるようにしている。   54 is a transmission circuit for the first vibrator 52, 55 is an amplification circuit for the signal received by the second vibrator 53, and the amplified signal is compared with the reference signal by the comparison circuit 56, and from the transmission to the reception. The time, so-called ultrasonic propagation time, is obtained by time measuring means 57 such as a timer counter.

その超音波伝幡時間に応じて流路51の大きさや流れの状態を考慮して流量演算手段58で流量値を求め、この流量演算手段58の値によって計測間隔変更手段59が発信回路54のトリガ手段60への信号送出のタイミングを調節する。   In accordance with the ultrasonic propagation time, the flow rate calculation unit 58 obtains the flow rate value in consideration of the size of the flow path 51 and the flow state, and the measurement interval changing unit 59 determines whether the flow rate calculation unit 58 The timing of signal transmission to the trigger means 60 is adjusted.

次にその動作について述べる。トリガ手段59から発信回路54を介してバースト信号が送出され、その結果、第1振動子52で発信された超音波信号は、流れの中を伝幡して第2振動子53で受信される。そしてこの受信信号は増幅回路55と比較回路56で処理され、発信から受信までの時間を計時手段57で測定する。   Next, the operation will be described. A burst signal is transmitted from the trigger means 59 via the transmission circuit 54. As a result, the ultrasonic signal transmitted by the first vibrator 52 is transmitted through the flow and received by the second vibrator 53. . The received signal is processed by the amplifier circuit 55 and the comparison circuit 56, and the time from transmission to reception is measured by the time measuring means 57.

今、静止流体中の音速をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝幡速度は(c+v)となる。振動子52,53の間の距離をL、超音波伝幡軸と流路51の中心軸とがなす角度をφとすると、超音波が到達する時間Tは、
T=L/(c+vcosφ) (1)
となり、(1)式より
v=(L/T−c)/cosφ (2)
となり、Lとφが既知ならTを測定すれば流速vが求められる。流路51における通過面積をS、補正計数をKとすれば、流量Qは、
Q=KSv (3)
となる。
Now, assuming that the speed of sound in a static fluid is c and the speed of fluid flow is v, the propagation speed of ultrasonic waves in the forward direction of the flow is (c + v). When the distance between the transducers 52 and 53 is L, and the angle between the ultrasonic transmission axis and the central axis of the flow path 51 is φ, the time T that the ultrasonic wave reaches is:
T = L / (c + vcosφ) (1)
From the equation (1), v = (L / Tc) / cosφ (2)
If L and φ are known, the flow velocity v can be obtained by measuring T. If the passage area in the channel 51 is S and the correction count is K, the flow rate Q is
Q = KSv (3)
It becomes.

図9は前記特許文献1の他の実施例として紹介されているもので、繰り返し設定手段61で設定された回数だけ発信から受信を繰り返し手段62によって繰り返し、さらに発振と受信の切り換えを切換手段63で行なった後、同様に繰り返しを行う。   FIG. 9 is introduced as another embodiment of the above-mentioned Patent Document 1. The transmission and reception are repeated by the repetition means 62 by the number of times set by the repetition setting means 61, and switching between oscillation and reception is further switched by the switching means 63. After that, repeat in the same way.

すなわち、発振回路54によって第1振動子52から超音波が発生し、この超音波を第2振動子53で受信し、増幅回路55を介し比較回路56に到達すると繰り返し手段62で再びトリガ手段60で発信回路54をトリガする。   That is, an ultrasonic wave is generated from the first vibrator 52 by the oscillation circuit 54, and this ultrasonic wave is received by the second vibrator 53 and reaches the comparison circuit 56 via the amplifier circuit 55. To trigger the transmission circuit 54.

この繰り返しは繰り返し設定手段61で設定された回数だけ行われ、設定回数に達すると繰り返しに要した時間を計時手段57で計測する。しかる後、切換手段63により第1振動子52と第2振動子53の発信受信を逆に接続し、今度は第2振動子53から第1振動子52に向かって超音波を発信し前述と同様に到達時間を求め、この差を流量演算手段58に入力して流量値を演算する。   This repetition is performed the number of times set by the repetition setting means 61. When the set number of times is reached, the time required for the repetition is measured by the time measuring means 57. Thereafter, transmission and reception of the first vibrator 52 and the second vibrator 53 are reversely connected by the switching means 63, and this time, an ultrasonic wave is transmitted from the second vibrator 53 to the first vibrator 52, and Similarly, the arrival time is obtained, and this difference is input to the flow rate calculation means 58 to calculate the flow rate value.

静止流体中の音速をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝幡速度は(c+v)、逆方向の伝幡速度は(c−v)となる。振動子52,53間の距離をL、超音波伝幡軸と管路の中心軸とがなす角度をφ、繰り返し回数をnとすると、順方向と逆方向のそれぞれの繰り返し時間T1とT2は、
T1=n×L/(c+vcosφ) (4)
T2=n×L/(c−vcosφ) (5)
となり、これら(4)、(5)式より
v=n×L/2cosφ×(1/T1−1/T2) (6)
となり、Lとφが既知ならT1とT2を測定すれば流速vが求められる。
Assuming that the speed of sound in a static fluid is c and the speed of fluid flow is v, the propagation speed of ultrasonic waves in the forward direction of the flow is (c + v), and the propagation speed of the reverse direction is (cv). When the distance between the transducers 52 and 53 is L, the angle between the ultrasonic transmission axis and the central axis of the pipe is φ, and the number of repetitions is n, the repetition times T1 and T2 in the forward direction and the reverse direction are respectively ,
T1 = n × L / (c + v cos φ) (4)
T2 = n × L / (c−v cos φ) (5)
From these equations (4) and (5), v = n × L / 2 cos φ × (1 / T1-1 / T2) (6)
If L and φ are known, the flow velocity v can be obtained by measuring T1 and T2.

しかしながらT1とT2の差は流量が小さく、かつ繰り返し回数が小さいときには極めて微小であり、正確に計ることが困難であるので、測定回数を多く設定して誤差が比較的小さくなるようにしている。   However, the difference between T1 and T2 is very small when the flow rate is small and the number of repetitions is small, and it is difficult to measure accurately. Therefore, the number of measurements is set large so that the error is relatively small.

逆に、流量が大きくなるとT1−T2の差も大きくなるので、測定が容易になりその場合には繰り返し設定の回数を小さくしてサンプリング間隔を速くし、これによって誤差を小さくする。すなわち、流量演算手段58によって繰り返し設定手段61の回数を変更する。   On the contrary, since the difference between T1 and T2 increases as the flow rate increases, measurement becomes easy, and in this case, the number of repeated settings is reduced to increase the sampling interval, thereby reducing the error. That is, the number of repetition setting means 61 is changed by the flow rate calculation means 58.

また、別の特許文献2には、超音波を用いて高精度な超音波伝播時間の測定を短時間で、かつ、低消費電力で行う計測方法が記載されている。   Another Patent Document 2 discloses a measurement method in which ultrasonic wave propagation time is measured with high precision using ultrasonic waves in a short time and with low power consumption.

これは図10に示すように、流路壁64へ超音波信号を送信してその反射波を受信する振動子65と、この振動子65の交流受信信号を複数周期にわたって閾値と比較する比較手段66と、振動子65の送信から比較手段66による検出ごとの複数の伝播時間を計測する計時手段67と、この計時手段67の計時値の平均値より伝播時間を算出する時間演算手段68とを備えたものである。   As shown in FIG. 10, this is a transducer 65 that transmits an ultrasonic signal to the flow path wall 64 and receives the reflected wave, and a comparison means that compares the AC received signal of the transducer 65 with a threshold over a plurality of periods. 66, time measuring means 67 for measuring a plurality of propagation times for each detection by the comparison means 66 from transmission of the vibrator 65, and time calculating means 68 for calculating the propagation time from the average value of the time measured values of the time measuring means 67. It is provided.

なお、69は前記と同様の増幅回路、70切換回路、71はスタート手段72の信号を受けて動作する発信回路である。   Reference numeral 69 denotes an amplifier circuit similar to that described above, a 70 switching circuit, and 71 a transmission circuit that operates in response to a signal from the start means 72.

これによって1回の超音波送受信によって何度も比較手段66で比較を行った計測値が得られるので、その平均値を求めることによって高精度な伝播時間の測定値が短時間で得られ、低消費電力で計測を行うことができる。   As a result, a measurement value obtained by comparing with the comparison means 66 many times can be obtained by one ultrasonic transmission / reception, and by obtaining the average value, a highly accurate measurement value of the propagation time can be obtained in a short time. Measurement can be performed with power consumption.

これら特許文献1,2に記載されたものは、いずれも2つの振動子を用いて、送信と受信とを切り替え、それぞれの受信波形から求められる超音波の伝播時間から流速を求めて、流量を演算する方式である。   Those described in Patent Documents 1 and 2 both use two vibrators to switch between transmission and reception, determine the flow velocity from the propagation time of the ultrasonic wave determined from each received waveform, This is a calculation method.

振動子の受信波形は複数の周期を持つため、この方時間を受信波形のどの周期で求めるかを定め、その周期で演算するための伝播時間を求められるようにしておくことが計測精度を保証するためには必要である。   Since the received waveform of the transducer has multiple periods, it is necessary to determine which period of the received waveform this time is to be obtained and to be able to obtain the propagation time for calculation in that period to ensure measurement accuracy It is necessary for that.

もしも、流体の流れによる受信波形の変化、あるいはノイズなどが原因で定められた周期でない周期で伝播時間を検出すると大きな測定誤りとなるという課題がある。   If the propagation time is detected at a period other than the period determined due to a change in the received waveform due to fluid flow or noise, there is a problem that a large measurement error occurs.

さらに、特許文献3には超音波流量計に用いる超音波送受波器、およびその製造方法が記載されている。これは音響インピーダンスが十分に小さく超音波の放射媒体である気体に整合して高感度な超音波送受波ができるとともに、信号の立ち上がり応答性を良くできる超音波送受波器用の音響整合層に関したもので、図11に示されるような構成である。   Furthermore, Patent Document 3 describes an ultrasonic transducer used for an ultrasonic flowmeter and a method for manufacturing the same. This relates to an acoustic matching layer for an ultrasonic transmitter / receiver that has a sufficiently small acoustic impedance and can be matched to a gas, which is an ultrasonic radiation medium, and can perform highly sensitive ultrasonic transmission / reception and can improve the rise response of the signal. Therefore, the configuration is as shown in FIG.

同図は、密度が小さく音速の遅い第1の音響整合層73と、それよりも密度が高く音速の速い第2の音響整合層74を積層した音響整合部材75を用いて構成した超音波送受波器を示し、超音波の放射媒体と音響インピーダンス整合した第1の音響整合層73を放射媒体側に配置した構成によって効果が得られるものである。   The figure shows an ultrasonic wave transmission / reception constructed using an acoustic matching member 75 in which a first acoustic matching layer 73 having a low density and a slow sound speed and a second acoustic matching layer 74 having a higher density and a higher speed of sound are laminated. An effect can be obtained by a configuration in which a first acoustic matching layer 73 that shows a waver and is acoustic impedance matched with an ultrasonic radiation medium is arranged on the radiation medium side.

なお、図11において、前記音響整合部材75を頂面外壁に接着などの手段で固定した導電性ケース76は下方の開放部が端子板77で閉塞され、また頂面内壁には圧電振動子78が接着などの手段で固定されている。   In FIG. 11, the conductive case 76 in which the acoustic matching member 75 is fixed to the outer wall of the top surface by means such as adhesion is closed at the lower open portion by the terminal plate 77, and the piezoelectric vibrator 78 is formed on the inner wall of the top surface. Is fixed by means such as adhesion.

圧電振動子78の一方の電極はケース76および端子板77を介して一方の端子79に、他方の電極は端子板77に電気絶縁材80を介して取着した他方の端子81にそれぞれ接続してある。   One electrode of the piezoelectric vibrator 78 is connected to one terminal 79 via the case 76 and the terminal plate 77, and the other electrode is connected to the other terminal 81 attached to the terminal plate 77 via the electric insulating material 80. It is.

この構成にすることで、音響インピーダンスが十分に小さく超音波の放射媒体である気体に整合して高感度な超音波送受波できるとともに、信号の立ち上り応答性の良い優れた超音波送受波器が得られるものである。   With this configuration, the acoustic impedance is sufficiently small to match the gas that is the ultrasonic radiation medium, and high-sensitivity ultrasonic transmission / reception can be achieved. It is obtained.

図12は同特許文献3の超音波送受波器の音響整合層構造の違いによる超音波の受信出力波形の違いを示したもので、同図aおよびbは音響整合層が単層であり、同図cは第1の音響整合層73と第2の音響整合層74の2層構造の音響整合部材75とした超音波送受波器を用いたものである。   FIG. 12 shows the difference in the received output waveform of the ultrasonic wave due to the difference in the acoustic matching layer structure of the ultrasonic transducer of Patent Document 3, and FIGS. 12A and 12B show that the acoustic matching layer is a single layer. FIG. 6C shows an ultrasonic transducer that uses an acoustic matching member 75 having a two-layer structure of a first acoustic matching layer 73 and a second acoustic matching layer 74.

図12bのように、低密度な乾燥ゲルを音響整合層として用いることで受信出力電圧の振幅最大幅(ピークトゥピーク電圧)が、図12aの一般的に用いられているガラスバルーンをエポキシ樹脂で硬化した音響整合層(ガラスエポキシ)を用いた場合と比較して、ピークトゥピーク電圧が大きくなっており、感度が向上しているが、受信信号の立ち上りが鈍くなっている。   As shown in FIG. 12b, the amplitude maximum width (peak-to-peak voltage) of the received output voltage is reduced by using a low-density dry gel as the acoustic matching layer, and the generally used glass balloon of FIG. Compared to the case where a cured acoustic matching layer (glass epoxy) is used, the peak-to-peak voltage is increased and the sensitivity is improved, but the rise of the received signal is slow.

さらに、立ち上りにおける500kHz超音波信号の各波頭とその前後の波頭との出力値の差が小さくなっているため、到達検出レベルによる伝搬時間検知の許容幅が小さくて誤差検知を生じやすくなり検知が難しくなることが記載されている。   Furthermore, since the difference in output value between each wavefront of the 500 kHz ultrasonic signal at the rising edge and the wavefronts before and after the wavefront is small, the permissible width of the propagation time detection based on the arrival detection level is small, and error detection is likely to occur and detection is possible. It is described that it becomes difficult.

そこで、音響整合層としてシリカ乾燥ゲルを用いた超音波送受波器では、高感度になるが、立ち上り特性の向上が必要であるとして、図12cのように、シリカ乾燥ゲルと酸化ケイ素を焼成して作製したシリカ多孔体からなる音響整合部材tpすることで、ピークトゥピーク電圧が大きく感度が高くなるとともに、立ち上り特性も良好な特性が得られるようになると述べられている。   Therefore, an ultrasonic transducer using silica dry gel as the acoustic matching layer has high sensitivity, but it is necessary to improve the rising characteristics. As shown in FIG. 12c, the silica dry gel and silicon oxide are fired. It is stated that the acoustic matching member tp made of a porous silica material produced in this manner has a large peak-to-peak voltage and a high sensitivity, and a good rise characteristic can be obtained.

この理由を、超音波送受波器の振動変位周波数特性を示す図13を用いて説明している。同図aは単一音響整合層(ガラスエポキシ)を用いた場合の特性図、bは単一音響整合層(シリカ乾燥ゲル)を用いた場合の特性図、cは2層音響整合層(シリカ乾燥ゲル、シリカ多孔体)を用いた場合の特性図で、同図aと同図bは共振が2極あり、その極の周波数は約480キロヘルツと、約600キロヘルツでその差Δfは約120キロヘルツである。このように共振の極が一つか、あるいは複数でも、その周波数差が少ないと、受信波形の立ち上がりが緩やかになる。このような場合、誤差検知を生じやすくなるという課題がある。
特開平8―122117号公報(図1、図7) 特開平10−30947号公報(図1) 特開2002−018047号公報(図3、図7)
The reason for this will be described with reference to FIG. 13 showing the vibration displacement frequency characteristics of the ultrasonic transducer. The figure a is a characteristic diagram when a single acoustic matching layer (glass epoxy) is used, b is a characteristic chart when a single acoustic matching layer (silica dry gel) is used, and c is a two-layer acoustic matching layer (silica). (Dry gel, porous silica) is a characteristic diagram. In FIG. A and FIG. B, the resonance has two poles, the frequency of the pole is about 480 kilohertz, and the difference Δf is about 120 kilohertz. Kilohertz. Thus, even if there is one or more resonance poles, if the frequency difference is small, the rising of the received waveform becomes gentle. In such a case, there is a problem that error detection is likely to occur.
JP-A-8-122117 (FIGS. 1 and 7) Japanese Patent Laid-Open No. 10-30947 (FIG. 1) JP 2002-018047 A (FIGS. 3 and 7)

しかしながら、2つの超音波センサ(「従来の技術」での特許文献では超音波送受波器、あるいは振動子と表現されている)を交互に送信と受信に入れ替えて、それぞれの超音波が伝播する時間を求めて、それらの差から流速を算出し、さらに流体を通る管路(流路ともいう)の断面積を考慮して流量を求める従来の超音波流量計は、受信波形が計測精度に大きな影響を与える。このため、超音波センサの受信波形は立ち上がりが急峻であるものが要求されるという課題がある。   However, two ultrasonic sensors (represented as ultrasonic transducers or vibrators in the patent document of “Prior Art”) are alternately switched to transmission and reception, and each ultrasonic wave propagates. The conventional ultrasonic flowmeter that calculates the flow rate from the difference between these times, calculates the flow velocity from the difference, and further considers the cross-sectional area of the pipeline (also referred to as the flow path) that passes through the fluid. It has a big impact. For this reason, there is a problem that the reception waveform of the ultrasonic sensor is required to have a sharp rise.

この点について図を用いて詳しく説明する。今、計測システムを図14に示されるような流路82に第1、第2の超音波センサ83,84が斜めに対向するごとく配置され、切り替え回路85により第1の超音波センサ83に送信回路86、第2の超音波センサ84に受信回路87が接続されて気体中の超音波の伝播時間T1を測定し、次に、切り替え回路85により第1の超音波センサ83に送信回路86、第2の超音波センサ84に受信回路87が接続されて気体中の超音波の伝播時間T2を測定し、両方の時間差から流速を求めるものとする。   This point will be described in detail with reference to the drawings. Now, the measurement system is arranged in the flow path 82 as shown in FIG. 14 so that the first and second ultrasonic sensors 83 and 84 are diagonally opposed to each other, and is transmitted to the first ultrasonic sensor 83 by the switching circuit 85. The reception circuit 87 is connected to the circuit 86 and the second ultrasonic sensor 84 to measure the propagation time T1 of the ultrasonic wave in the gas, and then the transmission circuit 86 to the first ultrasonic sensor 83 by the switching circuit 85, A receiving circuit 87 is connected to the second ultrasonic sensor 84 to measure the propagation time T2 of the ultrasonic wave in the gas, and the flow velocity is obtained from the time difference between the two.

図15は超音波センサへの送信信号と、それの受信信号および時間を計測するためのクロック動作を示したタイミングチャートである。同図(a−1)、(a−2),(a−3)は第1の音波センサ83が送信側、第2の超音波センサ84が受信側の場合で、同図(b−1)、(b−2)、(b−3)は第1の超音波センサ83が受信側、第2の超音波センサ84が送信側の場合である。   FIG. 15 is a timing chart showing the transmission signal to the ultrasonic sensor, the received signal and the clock operation for measuring the time. (A-1), (a-2), and (a-3) are the cases where the first acoustic wave sensor 83 is on the transmitting side and the second ultrasonic sensor 84 is on the receiving side, and FIG. ), (B-2), and (b-3) are cases where the first ultrasonic sensor 83 is on the receiving side and the second ultrasonic sensor 84 is on the transmitting side.

図14に示した方向の流体の流れがあるために、超音波の伝播時間T1はT2よりも短くなる。受信波形の検出について図16を用いて詳細に説明する。同図は受信波形を示しており、これの検出は受信波形の第2波と第3波のピーク値のおよそ中間になるように設けられた閾値があり、この閾値を超えた信号があることで、それを受信信号とみなす。閾値は例えば基準値と第1波の中間や、第2波と第3波の中間にもうけることも可能ではあるが、閾値が低いため基準値に重畳するノイズを受信波と誤判断する確立が増えることになり望ましくない。   Since there is a fluid flow in the direction shown in FIG. 14, the ultrasonic wave propagation time T1 is shorter than T2. The detection of the received waveform will be described in detail with reference to FIG. This figure shows the received waveform, and there is a threshold value that is set to be approximately halfway between the peak values of the second and third waves of the received waveform, and there is a signal that exceeds this threshold value. Therefore, it is regarded as a received signal. The threshold value can be set, for example, between the reference value and the first wave, or between the second wave and the third wave. However, since the threshold value is low, there is a probability that noise superimposed on the reference value is erroneously determined as a received wave. It will increase, which is not desirable.

閾値を超えた波形がくると受信波形と判断し、次にこの受信波形が基準値となるポイントP1を検出ポイントとする。送信信号から検出ポイントまでをクロックをカウントして超音波の伝播時間を計測する。実際の受信ポイントはPTであるので、PTから第3波までの時間は固定値として扱い、検出ポイントP1までの時間からこの固定値を差し引いて超音波の伝播時間を求める。   When a waveform exceeding the threshold value is received, it is determined as a received waveform, and a point P1 at which the received waveform becomes a reference value is set as a detection point. The ultrasonic wave propagation time is measured by counting the clock from the transmission signal to the detection point. Since the actual reception point is PT, the time from PT to the third wave is treated as a fixed value, and the ultrasonic propagation time is obtained by subtracting this fixed value from the time to detection point P1.

このような検出方法では、図12aで示されるような立ち上がりがなだらかな波形であると、閾値を第2波と第3波の中間に設定しても、第2波と第3波の差が僅かであるので次のような課題が生じる。超音波が伝播する際に流路を構成する壁面に当たるような場合、受信波形は様々な経路で進入する超音波の合成波となるので、気体の流速により合成波の状態が変化することがある。このような波形の変化があると、設定した閾値では第2波と第3波を区別できなくなる。このため、第4波を第3波として誤検出することが生じる。一方、流路内の気体の流れの均一性は流路が扁平であるほど得られる傾向がある。   In such a detection method, when the rising edge has a gentle waveform as shown in FIG. 12a, the difference between the second wave and the third wave can be obtained even if the threshold is set between the second wave and the third wave. The following problems arise due to the small number. When the ultrasonic wave propagates and hits the wall surface that constitutes the flow path, the received waveform becomes the synthetic wave of the ultrasonic wave that enters through various paths, so the state of the synthetic wave may change depending on the gas flow velocity. . If there is such a change in waveform, the second wave and the third wave cannot be distinguished with the set threshold value. For this reason, the fourth wave is erroneously detected as the third wave. On the other hand, the uniformity of the gas flow in the channel tends to be obtained as the channel is flatter.

このため多くの流路は扁平に構成するため壁面での超音波の反射は回避できない状態にある。また、流路が扁平でなく反射がない場合でもノイズの重畳があると、第2波と第3波の差が僅かであると誤検出しやすくなる。   For this reason, since many flow paths are formed flat, reflection of ultrasonic waves on the wall surface cannot be avoided. Even if the flow path is not flat and there is no reflection, if there is noise superimposition, it is easy to erroneously detect that the difference between the second wave and the third wave is small.

図15に戻って、シングアラウンドによる計測方法について説明する。同図(a−1)において第1の超音波センサ83へ1回目の送信信号を与えると、同図(a−2)に示されるように、超音波の伝播時間T1後に第2の超音波センサ84が受信する。受信波の第2波と第3波との中間に設定された閾値により受信を検出したすぐ後の基準値と交わる点(検出ポイント)を検出する。   Returning to FIG. 15, the measuring method by sing-around will be described. When the first transmission signal is given to the first ultrasonic sensor 83 in FIG. 11A-1, the second ultrasonic wave is transmitted after the ultrasonic propagation time T1 as shown in FIG. Sensor 84 receives. A point (detection point) that intersects the reference value immediately after detection of reception is detected using a threshold value set between the second wave and the third wave of the received wave.

検出ポイントから定められた既知の時間である遅延時間TD後に、再び2回目の送信信号を第1の超音波センサ83に与える。このような動作をn回繰り返す。これをシングアラウンドの回数がn回であると呼ぶ。1回目の送信からn回後の検出ポイントまでに含まれるクロック数Nをカウントする。クロックの1周期がT(秒)とし、また、実際の受信ポイントPTから第3波までの時間は固定値THとして扱うと、全体の計測時間は式(7)のようになる。 After the delay time TD, which is a known time determined from the detection point, the second transmission signal is given to the first ultrasonic sensor 83 again. Such an operation is repeated n times. This is called that the number of times of single-around is n times. Counting the number of clocks N C contained until detection point after n times from the first transmission. If one period of the clock is T (seconds) and the time from the actual reception point PT to the third wave is treated as a fixed value TH, the total measurement time is as shown in Equation (7).

・T=T+T・・・+T+n・T+(n−1)・T (7)
従って、平均的な超音波の伝播時間TAVGは次式のようになる。
N C · T = T 1 + T 2 ... + T n + n · T H + (n−1) · T D (7)
Accordingly, the average ultrasonic wave propagation time TAVG is expressed by the following equation.

AVG=(T+T・・・+T+n・T)/n
=(N・T−n・T−(n−1)・T)/n
=N・T/n−T−(n−1)・T/n (8)
式(8)右辺第1項のT/nはカウンタの周期がシングアラウンド回数nで割られているので、見かけのうえでは周期Tのカウンタが周期T/nになっているので時間分解能が細かくなっている。このように周期Tのカウンタを使用して時間分解能をT/nにする計測手法がシングアラウンドである。
T AVG = (T 1 + T 2 ... + T n + n · T H ) / n
= (N C · T-n · T H - (n-1) · T D) / n
= N C · T / n- T H - (n-1) · T D / n (8)
T / n in the first term on the right side of Equation (8) is that the counter period is divided by the number of times of sing-around n, so the counter of period T is apparently the period T / n, so the time resolution is fine. It has become. In this way, a measuring technique that uses a counter with a period T to set the time resolution to T / n is single-around.

このようにシングアラウンド計測には時間分解能を上げる効果があるが、その他に次のような効果もあると考えられる。1回目の受信波にノイズが重畳し、検出ポイントが真の検出ポイントからずれて判断されても、2回目、3回目以降の検出ポイントが正確に検出できていれば、1回目の誤差は平均化することで影響が小さくなる。すなわちシングアラウンドには平均化の効果もある。   As described above, the sing-around measurement has an effect of increasing the time resolution, but is considered to have the following effect. Even if noise is superimposed on the first received wave and the detection point is judged to deviate from the true detection point, if the second, third, and subsequent detection points can be accurately detected, the first error is averaged. The effect is reduced by making it. That is, sing-around also has an averaging effect.

このようなシングアラウンドによる計測は受信波の第1波、第2波、第3波・・・を性格に判断することが求められる。   Such a measurement by sing-around requires that the first wave, the second wave, the third wave,.

特許文献2には平均化を高める手法が述べられているが、この方法であっても受信波の第1波、第2波、第3波・・・を正確に判断することが求められ、このためには超音波センサの受信波形が第1波、第2波、第3波・・・を見極めやすい形になっていることが求められ、超音波センサの構造を2層構造にするなど複雑なものになりやすいという課題がある。   Patent Document 2 describes a method for increasing averaging, but even with this method, it is required to accurately determine the first wave, the second wave, the third wave, etc. of the received wave, For this purpose, it is required that the received waveform of the ultrasonic sensor is easy to identify the first wave, the second wave, the third wave, etc., and the structure of the ultrasonic sensor has a two-layer structure, etc. There is a problem that it tends to be complicated.

前記従来の課題を解決するために、本発明の超音波流量計は流体の流れる流路と、前記流路に配置された少なくとも一対の超音波センサと、前記超音波センサに駆動信号を与える送信手段と、前記超音波センサからの信号を受信する受信手段と、計時手段とを備え、前記第1の超音波センサから送信した超音波を第2の超音波センサで受信し、それに要した伝播時間T1を前記計時手段で計測し、また、前記第2の超音波センサから送信した超音波を、前記第1の超音波センサで受信し、それに要した伝播時間T2を前記計時手段で計測し、最大流量での時間差ΔT(ΔT=T1-T2)よりも大きな周期TSを持つ信号を前記送信手段が発生するようにする。   In order to solve the above-described conventional problems, an ultrasonic flowmeter of the present invention includes a flow path through which a fluid flows, at least a pair of ultrasonic sensors disposed in the flow path, and a transmission that provides a drive signal to the ultrasonic sensor. Means, a receiving means for receiving a signal from the ultrasonic sensor, and a timing means, the ultrasonic wave transmitted from the first ultrasonic sensor is received by the second ultrasonic sensor, and the propagation required for it is received. The time T1 is measured by the time measuring means, the ultrasonic wave transmitted from the second ultrasonic sensor is received by the first ultrasonic sensor, and the propagation time T2 required for the time T1 is measured by the time measuring means. The transmission means generates a signal having a period TS larger than the time difference ΔT (ΔT = T1-T2) at the maximum flow rate.

これにより複数周期からなる受信波形において、第1波、第2波、第3波・・・を明確に判断して、それぞれの場合の伝播時間T1およびT2を求める必要がなく受信手段が簡略化され、また、超音波センサ構造も簡略化することができる。   As a result, it is not necessary to clearly determine the first wave, the second wave, the third wave,... In the received waveform consisting of a plurality of periods, and to obtain the propagation times T1 and T2 in each case, thereby simplifying the receiving means. In addition, the ultrasonic sensor structure can be simplified.

本発明の超音波流量計は、超音波の受信波形が急峻な立ち上がりの特性を持つものであっても、また急峻な立ち上がりの特性を持たないものであっても適確な計測ができるという効果がある。   The ultrasonic flowmeter of the present invention has the effect that accurate measurement can be performed even if the received waveform of ultrasonic waves has a steep rising characteristic or does not have a steep rising characteristic. There is.

第1の発明は、流体の通る流路と、前記流路に配置された少なくとも一対の超音波センサと、前記超音波センサに駆動信号を与える送信手段と、前記超音波センサからの信号を受信する受信手段と、計時手段とを備え、第1の超音波センサから送信した超音波を第2の超音波センサで受信し、それに要した伝播時間T1を前記計時手段で計測し、また、第2の超音波センサら送信した超音波を、前記第1の超音波センサで受信し、それに要した伝播時間T2を前記計時手段で計測し、前記送信手段は最大流量での時間差ΔT(ΔT=T1-T2)よりも大となる周期TSを持つ信号を発生することにより、複数周期を持つ受信信号であっても、その第1波、第2波、第3波・・・を明確に検出して伝播時間T1およびT2を求める必要がなくなるので、超音波の受信波形が急峻な立ち上がりの特性を持つものであっても、また急峻な立ち上がりの特性を持たないものであっても適確な計測ができるという効果がある。   In a first aspect of the present invention, a flow path through which a fluid passes, at least a pair of ultrasonic sensors arranged in the flow path, transmission means for supplying a drive signal to the ultrasonic sensor, and a signal from the ultrasonic sensor are received. Receiving means and timing means, receiving the ultrasonic wave transmitted from the first ultrasonic sensor by the second ultrasonic sensor, measuring the propagation time T1 required for the ultrasonic wave by the timing means, The ultrasonic wave transmitted from the ultrasonic sensor 2 is received by the first ultrasonic sensor, the propagation time T2 required for the ultrasonic wave is measured by the time measuring means, and the transmission means measures the time difference ΔT (ΔT = By generating a signal having a period TS larger than (T1-T2), the first wave, the second wave, the third wave, etc. are clearly detected even for a reception signal having a plurality of periods. Thus, there is no need to obtain propagation times T1 and T2. , There is an effect that the ultrasonic reception waveform can be those having a steep rise characteristic, also a suitable probability be those that do not have a steep rise characteristic measurement.

第2の発明は、超音波信号を送受信する超音波センサと、前記超音波センサの交流受信信号を複数周期に渡って基準値と比較する比較手段と、前記比較手段による検出ごとの複数の伝播時間を計測する計時手段と、前記計時手段のデータを演算する演算手段を備えることにより、複数周期からなる受信波形において、第1波、第2波、第3波・・・を明確に検出して、それぞれの場合の伝播時間を求める必要がないので簡素な受信手段や、簡素な構造の超音波センサを用いて、計測の平均化効果を向上することができる。   According to a second aspect of the present invention, there is provided an ultrasonic sensor that transmits and receives an ultrasonic signal, a comparison unit that compares an AC reception signal of the ultrasonic sensor with a reference value over a plurality of periods, and a plurality of propagations for each detection by the comparison unit. By providing time measuring means for measuring time and calculating means for calculating data of the time measuring means, the first wave, the second wave, the third wave,... Are clearly detected in the received waveform having a plurality of periods. Therefore, since it is not necessary to obtain the propagation time in each case, the measurement averaging effect can be improved by using a simple receiving means or an ultrasonic sensor having a simple structure.

第3の発明は、交互に送信と受信が入れ替わる第1、第2の超音波センサからのそれぞれの交流受信信号を複数周期に渡って基準値と比較する比較手段の検出データを、演算手段は各々の周期から時間差ΔTを求められるようにする。これにより、第1波、第2波、第3波・・・の複数周期を持つ受信信号で、第1の超音波センサでの受信信号での検出ポイントが例えば、第1波目、第2波目、第3波目で、第2の超音波センサでの受信信号での検出ポイントが例えば、第2波目、第3波目、第4波目であった場合、第1の超音波センサでの第1波目と第2の超音波センサでの第4波目を削除して、互いに相当する波どうしで時間差を求めることができる。   According to a third aspect of the present invention, there is provided a detection means for comparing the detection data of the comparison means for comparing the AC reception signals from the first and second ultrasonic sensors, whose transmission and reception are alternately switched, with a reference value over a plurality of periods. The time difference ΔT is obtained from each cycle. As a result, the detection point of the reception signal at the first ultrasonic sensor is a reception signal having a plurality of periods of the first wave, the second wave, the third wave,..., For example, the first wave, the second wave, etc. For example, when the detection points of the received signal at the second ultrasonic sensor are the second wave, the third wave, and the fourth wave at the wave 3rd and the 3rd wave, the first ultrasonic wave By removing the first wave at the sensor and the fourth wave at the second ultrasonic sensor, the time difference can be obtained between the corresponding waves.

第4の発明は主なる複数の共振周波数を持つが、それらの共振周波数が近い値か、または主なる共振周波数を一つしか持たない超音波センサを用いることで、超音波センサを構成する音響整合層を、気体との音響整合を向上できる低い音響インピーダンスのものを用いる場合、その構造を単層の簡単な構造とすることができる。   The fourth invention has a plurality of main resonance frequencies, but those resonance frequencies are close to each other, or by using an ultrasonic sensor having only one main resonance frequency, the sound constituting the ultrasonic sensor is used. When a matching layer having a low acoustic impedance that can improve acoustic matching with gas is used, the structure can be a simple structure of a single layer.

第5の発明は、流路内を伝播する超音波は、流路を構成する壁面に当たり複雑な合成波となる流路構造とすることにより、流路内の気体の流れの均一性が高められる扁平な流路を用いることができ、この場合は超音波センサAと超音波センサBのそれぞれの受信波形は異なる形を持つようになるが、超音波センサAの第1波、第2波、第3波・・・と、超音波センサBの第1波、第2波、第3波・・・とを適確に検出して、互いに相当する波どうしで時間差を求めることができる。   According to a fifth aspect of the present invention, the ultrasonic wave propagating in the flow path hits the wall surface constituting the flow path and forms a complex synthetic wave, thereby improving the uniformity of the gas flow in the flow path. A flat flow path can be used, and in this case, the reception waveforms of the ultrasonic sensor A and the ultrasonic sensor B have different shapes, but the first wave, the second wave of the ultrasonic sensor A, It is possible to accurately detect the third wave, and the first wave, the second wave, the third wave,... Of the ultrasonic sensor B, and obtain a time difference between the corresponding waves.

以下、本発明の実施の形態について図面を参照して説明する。なお、この実施の形態において本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to this embodiment.

図1は、本発明の第1の実施の形態における超音波流量計の構造を示し、気体が流れる流路1に第1の超音波センサ2と第2の超音波センサ3とが斜めに対向するごとく配置されている。   FIG. 1 shows the structure of an ultrasonic flowmeter according to the first embodiment of the present invention, in which a first ultrasonic sensor 2 and a second ultrasonic sensor 3 are diagonally opposed to a flow path 1 through which a gas flows. It is arranged as it is.

第1,第2の超音波センサ2,3には、送信手段4から送信信号が送られる。また、超音波センサの受信信号は受信手段5に伝えられる。送信と受信は切換手段7で選択される。第1の超音波センサ2が送信手段4に接続するように選択された場合は、第2の超音波センサ3は受信手段5に接続するように選択される。   A transmission signal is sent from the transmission means 4 to the first and second ultrasonic sensors 2 and 3. Further, the reception signal of the ultrasonic sensor is transmitted to the receiving means 5. Transmission and reception are selected by the switching means 7. If the first ultrasonic sensor 2 is selected to connect to the transmission means 4, the second ultrasonic sensor 3 is selected to connect to the reception means 5.

今、同図に示されるように流体の流れが左から右方向の場合、第1の超音波センサ2が送信した超音波は伝播時間T1後に第2の超音波センサ3に到達する。反対に第2の超音波センサ3が送信した超音波は伝播時間T2後に第1の超音波センサ2に到達するが、流体の流れの方向からT1<T2となる。これらの時間T1、T2は計時手段6によって計測される。演算手段8は計時手段6からのデータを基にして流速およびまたは流量を求める。   Now, as shown in the figure, when the flow of fluid is from left to right, the ultrasonic wave transmitted by the first ultrasonic sensor 2 reaches the second ultrasonic sensor 3 after the propagation time T1. On the contrary, the ultrasonic wave transmitted by the second ultrasonic sensor 3 reaches the first ultrasonic sensor 2 after the propagation time T2, but T1 <T2 from the fluid flow direction. These times T1 and T2 are measured by the time measuring means 6. The calculating means 8 obtains the flow velocity and / or flow rate based on the data from the time measuring means 6.

図2は超音波センサの送信信号と受信信号の波形を示した波形図で、第1の超音波センサ2が送信、第2の超音波センサ3が受信の場合の、第1の超音波センサ2への送信信号が同図(a−1)で表され、第2の超音波センサ3の受信信号が同図(a−2)で表されている。   FIG. 2 is a waveform diagram showing waveforms of a transmission signal and a reception signal of the ultrasonic sensor. The first ultrasonic sensor in the case where the first ultrasonic sensor 2 transmits and the second ultrasonic sensor 3 receives. The transmission signal to 2 is represented by (a-1) in the figure, and the reception signal of the second ultrasonic sensor 3 is represented by (a-2) in the figure.

反対に、第2の音波センサ3が送信、第1の超音波センサ2が受信の場合の第2の超音波センサ3への送信信号が同図(b−1)で表され、第1の超音波センサ2の受信信号が同図(b−2)で表されている。   On the other hand, the transmission signal to the second ultrasonic sensor 3 when the second ultrasonic sensor 3 transmits and the first ultrasonic sensor 2 receives is represented by (b-1) in FIG. The reception signal of the ultrasonic sensor 2 is shown in FIG.

送信信号波形は周期TSの矩形波の3波、受信波形は超音波センサの特性から複数周期を持つ正弦波となり、その周期はTSとほぼ等しくなるが、超音波センサを構成する圧電振動子の特性でわずかに異なることもある。周期TSは超音波の伝播時間の時間差ΔT(ΔT=T2−T1)よりも大きくなるようにしている。   The transmission signal waveform is three rectangular waves with a period TS, and the reception waveform is a sine wave with multiple periods due to the characteristics of the ultrasonic sensor. The period is almost the same as TS, but the piezoelectric transducer that constitutes the ultrasonic sensor The characteristics may vary slightly. The period TS is set to be larger than the time difference ΔT (ΔT = T2−T1) of the propagation time of the ultrasonic wave.

図3は超音波流量計が扱う最大流量(超音波流量計が測定すべき最大流量)と時間差ΔTの関係を示したもので、この場合の流路条件は、
1.流路断面積S 1.2×10−3 平方メートル
2.超音波センサAと超音波センサBとの距離L
約6.22×10−2メートル
3.超音波センサと流路との角度Φ 40度
4.気体の音速 450メートル毎秒
の場合についての特性である。
FIG. 3 shows the relationship between the maximum flow rate handled by the ultrasonic flowmeter (maximum flow rate to be measured by the ultrasonic flowmeter) and the time difference ΔT.
1. Channel cross-sectional area S 1.2 × 10-3 square meters Distance L between ultrasonic sensor A and ultrasonic sensor B
Approximately 6.22 x 10-2 meters 3. Angle Φ 40 degrees between ultrasonic sensor and flow path This is a characteristic for the case where the sound velocity of gas is 450 meters per second.

送信信号の周期TSはΔTよりも大きな値を選択するようにしている。例えば、最大流量1立方メートル毎時間の超音波流量計を考えた場合、その時間差ΔTは約1×10−7秒となるので、周期TSはそれより大きな値として2×10−6秒(500キロヘルツ)を選択する。 A value larger than ΔT is selected for the period TS of the transmission signal. For example, when an ultrasonic flowmeter having a maximum flow rate of 1 cubic meter per hour is considered, the time difference ΔT is about 1 × 10 −7 seconds, and therefore the period TS is set to a larger value of 2 × 10 −6 seconds (500 kHz). ) Is selected.

図4はこの超音波流量計での超音波センサの送信信号と、受信信号の波形と、超音波の伝播時間をカウントするためのクロックを示した波形図で、第1の超音波センサ2が送信、第2の超音波センサ3が受信の場合の第1の超音波センサ2への送信信号が同図(a−1)で表され、第2の超音波センサ3の受信信号が同図(a−2)で表され、クロックが同図(a−3)で表されている。反対に、第2の音波センサ3が送信、第1の超音波センサ2が受信の場合の第2の超音波センサ3への送信信号が同図(b−1)で表され、第1の超音波センサ2の受信信号が同図(b−2)で表され、クロックが同図(b−3)で表されている。   FIG. 4 is a waveform diagram showing the transmission signal of the ultrasonic sensor, the waveform of the reception signal, and the clock for counting the propagation time of the ultrasonic wave in this ultrasonic flow meter. A transmission signal to the first ultrasonic sensor 2 in the case of transmission and reception by the second ultrasonic sensor 3 is represented by (a-1) in the figure, and a reception signal of the second ultrasonic sensor 3 is represented in the figure. It is represented by (a-2) and the clock is represented by (a-3). On the other hand, the transmission signal to the second ultrasonic sensor 3 when the second ultrasonic sensor 3 transmits and the first ultrasonic sensor 2 receives is represented by (b-1) in FIG. The reception signal of the ultrasonic sensor 2 is represented by (b-2) in the figure, and the clock is represented by (b-3) in the figure.

受信手段は超音波センサの受信波形に閾値を設け、その閾値を超える受信波形を検出した時点で受信を判断し、その後、波形が基準値と交わる点を検出する。同図(a−2)では閾値を第3波が超えているので、それ以降の波形が基準値と交わる点、TA5、TA6、TA7、TA8、TA9、TA10、TA11を検出ポイントとしている。   The receiving means sets a threshold for the received waveform of the ultrasonic sensor, determines reception when a received waveform exceeding the threshold is detected, and then detects a point where the waveform crosses the reference value. In FIG. 9A-2, since the third wave exceeds the threshold value, detection points are points where the subsequent waveforms intersect with the reference value, TA5, TA6, TA7, TA8, TA9, TA10, and TA11.

同図(b−2)の波形は、同図(a−2)の波形と比べ、ピーク値が異なっている。流路1の中を伝播する超音波にはある程度の広がりがあるため、壁に反射する超音波が存在し、それらの合成波が受信波形となる。気体の流れがある場合は、合成される個々の波の状態が変化するため、同図(b−2)の波形と、同図(a−2)の波形とに差異が生じることがある。   The waveform of (b-2) in the figure is different in peak value from the waveform of (a-2) in the same figure. Since the ultrasonic wave propagating through the flow path 1 has a certain extent, there is an ultrasonic wave reflected on the wall, and a synthesized wave thereof becomes a received waveform. When there is a gas flow, the state of the individual waves to be synthesized changes, so that there may be a difference between the waveform in FIG. 2B-2 and the waveform in FIG.

このため、閾値を同じ値に設定していても、同図(b−2)の場合は、第4波で受信を判断し、検出ポイントはTB7、TB8、TB9、TB10、TB11、TB12、TB13となる。これらの検出ポイントの中で、受信波形の立下りで基準値と交わる検出ポイントのみを選ぶとTA5、TA7、TA9、TA11、およびTB7、TB9、TB11、TB13となる。   For this reason, even if the threshold value is set to the same value, in the case of (b-2) in the figure, reception is determined by the fourth wave, and detection points are TB7, TB8, TB9, TB10, TB11, TB12, TB13. It becomes. Of these detection points, if only the detection points that intersect the reference value at the fall of the received waveform are selected, TA5, TA7, TA9, TA11, and TB7, TB9, TB11, TB13 are obtained.

図5はこれらの検出ポイントについて、求められた時間を示した表である。計時手段6はこれらの時間を求め、さらに演算手段7がこれらの時間から(6)式で流速を求める必要がある。同式のT1とT2にどの検出ポイントの時間を代入すべきかを判断するために、TA5、TA7、TA9、TA11のそれぞれと、TB7、TB9、TB11、TB13のそれぞれの時間の差を求める。これらの時間差を示したのが図6である。同図はTAの5、7、9、11からTBの7,9,11,13を引いたものであるので、その値がプラスのものは意味のないデータである。   FIG. 5 is a table showing the obtained times for these detection points. The time measuring means 6 needs to obtain these times, and the computing means 7 needs to obtain the flow velocity from these times by the equation (6). In order to determine which detection point time should be substituted for T1 and T2 in the same equation, the difference in time between each of TA5, TA7, TA9, and TA11 and each of TB7, TB9, TB11, and TB13 is obtained. FIG. 6 shows these time differences. Since the figure is obtained by subtracting TBs 7, 9, 11, and 13 from TAs 5, 7, 9, and 11, data having a positive value is meaningless data.

また、信号の周期TS(送信信号と受信信号の両方)は2×10−6秒に選んでいるので、同図の値で−2×10−6秒よりも小さい値(例えば−2.11E−6=−2.11×10−6)は意味のないデータである。 Further, (both transmitted and received signals) period TS signals since Elect 2 × 10 -6 seconds, -2 × less than 10 -6 seconds value of the drawing (for example, -2.11E −6 = −2.11 × 10 −6 ) is meaningless data.

そこで残るデータは同図の下線を入れて示したデータで、これらの組合せはTA7とTB7、TA9とTB9、TA11とTB11となる。これらのデータはそれぞれ第7波、第9波、第11波での組合せになっているので妥当なデータである。同図のこれらの値はすべて、1.09E−7となっているが、実際の計測では波形の影響、ノイズの影響などでその値は微妙にばらつきのあるものとなる。   The remaining data is underlined in the figure, and these combinations are TA7 and TB7, TA9 and TB9, TA11 and TB11. Since these data are combinations of the seventh wave, the ninth wave, and the eleventh wave, they are appropriate data. These values in the figure are all 1.09E-7, but in actual measurement, the values vary slightly due to the influence of the waveform and the influence of noise.

(6)式のT1にTA7を代入し、T2にTB7を代入することで一つの音速データが求まる。同様にT1にTA9を代入し、T2にTB9を代入することで2つ目のデータがもとまり、また、T1にTA11を代入し、T2にTB11を代入することで3つ目のデータが求まる。   By substituting TA7 for T1 in equation (6) and substituting TB7 for T2, one sound velocity data can be obtained. Similarly, the second data is obtained by substituting TA9 for T1 and TB9 for T2, and the third data is obtained by substituting TA11 for T1 and TB11 for T2. .

このように超音波センサ2,3それぞれにおいて1回の送信と受信をおこなうことにより3つの流量データをえることができる。これら3つのデータの平均値を取ることで流量計測の平均化がおこなわれデータのバラツキを低減することができようになる。   In this way, three flow rate data can be obtained by performing transmission and reception once in each of the ultrasonic sensors 2 and 3. By taking the average value of these three data, the flow rate measurement is averaged and the variation in data can be reduced.

これらは検出ポイントの中で、受信波形の立下りで基準値と交わる検出ポイントのみを選んだが、受信波形の立下りで基準値と交わる検出ポイントも加えることができる。この場合、周期TSは最大流量での時間差ΔT(ΔT=T1-T2)の2倍よりも大きな値を選択する。   In these detection points, only detection points that intersect with the reference value at the falling edge of the received waveform are selected, but detection points that intersect with the reference value at the falling edge of the received waveform can also be added. In this case, a value larger than twice the time difference ΔT (ΔT = T1-T2) at the maximum flow rate is selected as the period TS.

本実施の形態によれば、図4に示されるように受信を検出する第n波が、第2の超音波センサ3で受信する場合と、第1の超音波センサ2で受信する場合とでnが異なっても正確な測定が可能になる。   According to the present embodiment, as shown in FIG. 4, when the nth wave for detecting reception is received by the second ultrasonic sensor 3 and when it is received by the first ultrasonic sensor 2. Even if n is different, accurate measurement is possible.

これにより図13(2)に示されるように、主なる共振周波数を一つしか持たない超音波センサで、その受信波形が図14(2)に示されるように立ち上がりが緩やかで、受信検出の波数があいまいになりやすい波形であっても適確に測定が行えるので超音波センサの設計自由度が広がり、その音響整合層を複合構造とする必要がなくなり、その構造を簡素化することができる。   As a result, as shown in FIG. 13 (2), an ultrasonic sensor having only one main resonance frequency has a reception waveform that rises slowly as shown in FIG. Even if the wave number tends to be ambiguous, accurate measurement can be performed, so the design freedom of the ultrasonic sensor is expanded, and the acoustic matching layer does not need to be a composite structure, and the structure can be simplified. .

また、第1の超音波センサ2と第2の超音波センサ3の受信波形が異なる形を有しても、正しい計測が行えるので、図7に示すような超音波の反射が多い流路1でも用いることができる。流路1の断面は3枚の薄板9で分割されている。   Further, since the correct measurement can be performed even if the reception waveforms of the first ultrasonic sensor 2 and the second ultrasonic sensor 3 are different, the flow path 1 having a lot of reflection of ultrasonic waves as shown in FIG. But it can also be used. The cross section of the flow path 1 is divided by three thin plates 9.

薄板9の間隔は約2ミリメートルで、4層の空間を流体が通る構造となっている。このように流体が通る空間の間隔が狭い扁平なものは、その空間での流体の速度分布が流体の広い流量領域において一様になりやすいので、広い流量領域に渡り誤差の少ない流量計を実現することができる。両端に第1,第2の超音波センサ2,3が配置される。超音波センサから放射される超音波はある程度の広がりを持つため、間隔の狭い空間では上下を構成する薄板9に超音波が当たり、その軌道が変わりながら伝播する。また流体の流れがある場合は、その影響で軌道が変化するようになる。   The interval between the thin plates 9 is about 2 millimeters, and the fluid passes through four layers of space. A flat type with a narrow space between the fluid passages in this way can easily make the fluid velocity distribution in that space uniform in a wide flow rate region, thus realizing a flow meter with little error over a wide flow rate region. can do. First and second ultrasonic sensors 2 and 3 are arranged at both ends. Since the ultrasonic wave radiated from the ultrasonic sensor has a certain extent, the ultrasonic wave hits the thin plate 9 constituting the upper and lower sides in a narrow space, and propagates while changing its trajectory. When there is a fluid flow, the trajectory changes due to the influence.

片方の超音波センサから放射された超音波は広がりながら、あるものは薄板で反射され、その軌道を変えながら進み、もう一方の超音波センサに到達する時点ではさまざまな軌道を通ってくる超音波の合成波となる。このため、第1,第2の超音波センサ2,3の受信波形を比べると、各波のピーク値が異なったものになることがあるが、本実施形態の測定方法を用いれば正確な測定を行うことができる。   Ultrasound radiated from one ultrasonic sensor spreads, some is reflected by a thin plate, advances while changing its trajectory, and ultrasonic waves that pass through various trajectories when reaching the other ultrasonic sensor This is a composite wave. For this reason, when the received waveforms of the first and second ultrasonic sensors 2 and 3 are compared, the peak value of each wave may be different. However, if the measurement method of this embodiment is used, accurate measurement is possible. It can be performed.

以上のように、本発明にかかる超音波流量計は、超音波センサの受信波形の形状によらず適確な超音波の伝播時間測定が行え、かつ、1回の受信波形から複数の伝播時間データを取得でき、平均化をすることができるので計測精度が向上させることができ、かつ、超音波の受信波形が変化しやすい扁平流路を用いることも可能であるので、広い流量領域にわたり正確な計測が要求される、天然ガスや液化石油ガスの流量を測定する業務用や家庭用の超音波式ガス流量測定装置(ガスメータ)の用途に展開できる。   As described above, the ultrasonic flowmeter according to the present invention can accurately measure the propagation time of ultrasonic waves regardless of the shape of the received waveform of the ultrasonic sensor, and can perform a plurality of propagation times from a single received waveform. Since data can be acquired and averaged, measurement accuracy can be improved, and it is possible to use a flat flow path that easily changes the received waveform of ultrasonic waves. It can be used for commercial and household ultrasonic gas flow measuring devices (gas meters) that measure the flow rate of natural gas and liquefied petroleum gas.

本発明の実施の形態における超音波流量計の構造を示す概略図Schematic which shows the structure of the ultrasonic flowmeter in embodiment of this invention 同超音波流量計の波形図Waveform diagram of the ultrasonic flowmeter 同超音波流量計の最大流量と超音波の伝播時間差ΔTとの関係を示す特性図Characteristic diagram showing the relationship between the maximum flow rate of the ultrasonic flowmeter and the propagation time difference ΔT of ultrasonic waves 同超音波流量計の波形図Waveform diagram of the ultrasonic flowmeter 同超音波流量計の検出ポイントとそれらの時間を示す図Diagram showing the detection points of the ultrasonic flowmeter and their times 同超音波流量計の検出ポイントとそれらの時間差を示す図The figure which shows the detection point of the same ultrasonic flow meter and those time differences (a)は超音波流量計の他の実施の形態を示す外観斜視図、(b)は断面図(A) is an external appearance perspective view which shows other embodiment of an ultrasonic flowmeter, (b) is sectional drawing. 従来の超音波流量計の一例を示す制御ブロック図Control block diagram showing an example of a conventional ultrasonic flowmeter 従来の超音波流量計の他の例を示す制御ブロック図Control block diagram showing another example of conventional ultrasonic flowmeter 従来の超音波流量計のさらに他の例を示す制御ブロック図Control block diagram showing still another example of conventional ultrasonic flowmeter 超音波センサの断面図Cross section of ultrasonic sensor 超音波送受波器の受信出力特性を示す図The figure which shows the reception output characteristic of the ultrasonic transducer 超音波送受波器の振動変位周波数特性を示す図Diagram showing vibration displacement frequency characteristics of ultrasonic transducer 従来の超音波流量計の構造を示す概略図Schematic showing the structure of a conventional ultrasonic flowmeter 従来の超音波流量計の波形図Waveform diagram of conventional ultrasonic flowmeter 従来の超音波流量計の受信波形図とクロックの波形図Received waveform diagram and clock waveform diagram of conventional ultrasonic flowmeter

符号の説明Explanation of symbols

1 流路
2 第1の超音波センサ
3 第2の超音波センサ
4 送信手段
5 受信手段
6 計時手段
8 演算手段
DESCRIPTION OF SYMBOLS 1 Flow path 2 1st ultrasonic sensor 3 2nd ultrasonic sensor 4 Transmission means 5 Reception means 6 Timekeeping means 8 Calculation means

Claims (5)

流体が通る流路に配置された少なくとも一対の超音波センサと、前記超音波センサに駆動信号を与える送信手段と、前記超音波センサからの信号を受信する受信手段と、計時手段とを備え、前記一方の超音波センサから送信した超音波を他方の超音波センサで受信するまでに要した伝播時間T1と、逆に、他方の超音波センサから送信した超音波を一方の超音波センサで受信するまでに要した伝播時間T2とを前記計時手段でそれぞれ計測し、最大流れ時での時間差ΔT(ΔT=T1-T2)よりも大きな周期TSを持つ信号を前記送信手段が前記超音波センサに送信するようにした超音波式流れ計測装置。 Comprising at least a pair of ultrasonic sensors arranged in a flow path through which fluid flows, a transmission means for supplying a drive signal to the ultrasonic sensor, a reception means for receiving a signal from the ultrasonic sensor, and a time measuring means, The propagation time T1 required until the ultrasonic wave transmitted from the one ultrasonic sensor is received by the other ultrasonic sensor, and conversely, the ultrasonic wave transmitted from the other ultrasonic sensor is received by the one ultrasonic sensor. The transmission time T2 required until the time is measured by the time measuring means, and the transmission means sends a signal having a period TS larger than the time difference ΔT (ΔT = T1-T2) at the maximum flow to the ultrasonic sensor. An ultrasonic flow measurement device that transmits. 超音波センサの交流受信信号波形を複数周期に渡って基準値と比較して交点を検出し、それら複数の検出ポイントの伝播時間を計時手段で計測するとともに、前記計時手段のデータを演算する演算手段を備えた請求項1記載の超音波式流れ計測装置。 An operation for detecting the intersection by comparing the AC reception signal waveform of the ultrasonic sensor with a reference value over a plurality of cycles, measuring the propagation time of the plurality of detection points with the time measuring means, and calculating the data of the time measuring means The ultrasonic flow measuring device according to claim 1, further comprising means. 交互に送信と受信が入れ替わる少なくとも一対の超音波センサの交流受信信号を複数周期に渡って基準値と比較して得られた検出ポイントの時間データをもとに演算手段は各々の周期から流速およびまたは流量を求めるようにした請求項2記載の超音波式流れ計測装置。 Based on the time data of the detection points obtained by comparing the AC reception signals of at least a pair of ultrasonic sensors alternately transmitting and receiving with a reference value over a plurality of cycles, the calculation means calculates the flow velocity and the frequency from each cycle. The ultrasonic flow measuring device according to claim 2, wherein the flow rate is obtained. 主なる複数の共振周波数を持つが、それらの共振周波数の差が120キロヘルツ未満か、または主なる共振周波数を一つしか持たない超音波センサを用いた請求項1から3のいずれか1項記載の超音波式流れ計測装置。 4. The ultrasonic sensor according to claim 1, wherein the ultrasonic sensor has a plurality of main resonance frequencies, but the difference between the resonance frequencies is less than 120 kilohertz or only one main resonance frequency. Ultrasonic flow measuring device. 流路内を伝播する超音波は、この流路を構成する壁面に当たり複雑な合成波となるように設定した請求項1から4のいずれか1項記載の超音波式流れ計測装置。 The ultrasonic flow measuring device according to any one of claims 1 to 4, wherein the ultrasonic wave propagating in the flow path is set so as to be a complex synthetic wave when hitting a wall surface constituting the flow path.
JP2004355125A 2004-12-08 2004-12-08 Ultrasonic-type flow measuring apparatus Pending JP2006162458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355125A JP2006162458A (en) 2004-12-08 2004-12-08 Ultrasonic-type flow measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355125A JP2006162458A (en) 2004-12-08 2004-12-08 Ultrasonic-type flow measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006162458A true JP2006162458A (en) 2006-06-22

Family

ID=36664646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355125A Pending JP2006162458A (en) 2004-12-08 2004-12-08 Ultrasonic-type flow measuring apparatus

Country Status (1)

Country Link
JP (1) JP2006162458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393689B1 (en) 2022-09-30 2023-12-07 ダイキン工業株式会社 Environmental condition measuring device and how to set up the environmental condition measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029038A (en) * 2002-01-28 2004-01-29 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004279224A (en) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd Supersonic flowmeter
JP2004317459A (en) * 2003-04-21 2004-11-11 Teijin Ltd Ultrasonic gas concentration flow rate measurement method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029038A (en) * 2002-01-28 2004-01-29 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004279224A (en) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd Supersonic flowmeter
JP2004317459A (en) * 2003-04-21 2004-11-11 Teijin Ltd Ultrasonic gas concentration flow rate measurement method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393689B1 (en) 2022-09-30 2023-12-07 ダイキン工業株式会社 Environmental condition measuring device and how to set up the environmental condition measuring device
WO2024070053A1 (en) * 2022-09-30 2024-04-04 ダイキン工業株式会社 Environmental state measuring device and method for setting up environmental state measuring device

Similar Documents

Publication Publication Date Title
Chen et al. Highly accurate airflow volumetric flowmeters via pMUTs arrays based on transit time
JP3045677B2 (en) Ultrasonic flow meter
JP4760115B2 (en) Fluid flow measuring device
JP2006162458A (en) Ultrasonic-type flow measuring apparatus
JP4134629B2 (en) Ultrasonic transducer and ultrasonic flowmeter using the same
JP2003014515A (en) Ultrasonic flowmeter
JP4797515B2 (en) Ultrasonic flow measuring device
JPH0894594A (en) Ultrasonic humidity sensor and ultrasonic temperature/ humidity sensor
JP3436179B2 (en) Ultrasonic flowmeter and flow measurement method
JP2005345445A (en) Ultrasonic flowmeter
JP6149250B2 (en) Ultrasonic flow meter
JP7151311B2 (en) ultrasonic flow meter
JP2000249583A (en) Ultrasonic flowmeter
JP2008185441A (en) Ultrasonic flowmeter
JP2000298045A5 (en)
JP2000298045A (en) Ultrasonic flowmeter
JPWO2005119182A1 (en) Fluid flow rate measuring method and flow rate measuring device
JP2008164329A (en) Ultrasound flowmeter
JP2002188946A (en) Ultrasonic sensor
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JPH10239126A (en) Flowmeter
JP2019028040A (en) Ultrasonic flowmeter
JP4978206B2 (en) Ultrasonic flow meter
JP2011007764A (en) Ultrasonic level meter
JP2006017639A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712