JP2004279224A - Supersonic flowmeter - Google Patents

Supersonic flowmeter Download PDF

Info

Publication number
JP2004279224A
JP2004279224A JP2003071395A JP2003071395A JP2004279224A JP 2004279224 A JP2004279224 A JP 2004279224A JP 2003071395 A JP2003071395 A JP 2003071395A JP 2003071395 A JP2003071395 A JP 2003071395A JP 2004279224 A JP2004279224 A JP 2004279224A
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement
flow path
flow
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003071395A
Other languages
Japanese (ja)
Inventor
Hajime Miyata
肇 宮田
Yukio Nagaoka
行夫 長岡
Shigeru Iwanaga
茂 岩永
Yasuhiro Umekage
康裕 梅景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003071395A priority Critical patent/JP2004279224A/en
Priority to KR1020057015558A priority patent/KR100694937B1/en
Priority to EP04714003.3A priority patent/EP1612520B1/en
Priority to CN2008101093243A priority patent/CN101294833B/en
Priority to US10/544,669 priority patent/US7237441B2/en
Priority to PCT/JP2004/002119 priority patent/WO2004074783A1/en
Publication of JP2004279224A publication Critical patent/JP2004279224A/en
Priority to US11/785,728 priority patent/US7360449B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a compact design as well as a highly accurate measurement in a supersonic flowmeter to measure such fluid flow as air, gas, and water by using supersonic wave. <P>SOLUTION: Because the supersonic wave propagation distance becomes longer in spite of the same channel width, and also the supersonic oscillators 13, 14 can be attached on the same direction side; the enhancement of the space efficiency and the measurement with better accuracy can be achieved in the following way that the multilayer measurement channel 12 is constructed by dividing the narrow side of rectangular channel 2 with dashboard 11, at least a couple of supersonic oscillators 13, 14 are installed on the same wall of this measurement channel 12, the supersonic wave is reflected at the other side, and this reflected wave is received by the other oscillator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波により気体や液体の流量や流速の計測を行う超音波流量計測装置に関するものである。
【0002】
【従来の技術】
従来この種の超音波式流量計は、図6および図7に示すように、仕切り板51により区切られた層状の流路52を有する流量測定部53と、前記流量測定部53を挟んで配置された第一の超音波振動子54および第二の超音波振動子55と、前記超音波振動子5の信号を基に流量を算出する流量演算部から構成されているものが知られている。
【0003】
ここで、56は上流側接続部、57は下流側接続部、58は上流側接続部56に接続された入口部、59は下流側接続部57に接続された出口部である。
【0004】
上記構成において、層状の流路52において二次元性流れを発生させて、精度の高い流量計測を実現しようとしていたものである(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平9−43015号公報
【0006】
【発明が解決しようとする課題】
しかしながら上記従来技術では、超音波振動子が計測流路を挟んで対向壁面に設けられているため設置スペースを大きくとる必要があった。設置スペースに制限が有る場合は、超音波振動子の取り付け角や流路の幅において充分な大きさがとれず超音波の伝搬距離も最適にできない場合もあり、測定性能を妥協して設計せざるをえない状況も想定される。
【0007】
本発明はこのような従来の課題を解決するもので、設計の自由度を高めるとともに、装置のコンパクト化を促進することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、相対向して短辺および長辺を有する矩形の流路と、この矩形の流路の短辺側を複数の仕切り板で分割して形成した計測流路と、この計測流路の同一短辺側に設けられ、超音波を対向面で反射させて前記計測流路内を伝搬させる少なくとも一対の超音波振動子と、前記超音波振動子間の超音波の伝搬時間を計測する計測制御手段と、前記計測制御手段からの信号に基づいて流量を算出する演算手段とを備えたもので、これにより、流路および超音波振動子の設計自由度が増え、同じ流路幅でも超音波伝搬距離が長くなるとともに、同一方向に超音波振動子を取り付けられるので、コンパクトな設計が可能となる。
【0009】
【発明の実施の形態】
本発明の実施の形態は、相対向して短辺および長辺を有する矩形の流路と、この矩形の流路の短辺側を複数の仕切り板で分割して形成した計測流路と、この計測流路の同一短辺側に設けられ、超音波を対向面で反射させて前記計測流路内を伝搬させる少なくとも一対の超音波振動子と、前記超音波振動子間の超音波の伝搬時間を計測する計測制御手段と、前記計測制御手段からの信号に基づいて流量を算出する演算手段とを備えたものであり、流路および超音波振動子の設計自由度を高め、同じ流路幅でも超音波伝搬距離を長くするとともに、同一方向に超音波振動子の取り付けができるようにしたことでコンパクトな設計が可能となる。
【0010】
計測流路内での超音波振動子間の超音波伝搬経路としては、V型形状、或いはW型形状が考えられる。
【0011】
計測流路の側壁面の材質として、超音波振動子取り付け側と超音波反射側とで異なるようにしておけば、例えば、超音波振動子取り付け面では超音波が反射しにくい材質とすることで、超音波振動子間で反射しないで直接送受信さられる超音波の振動を減らすことができ、ノイズの少ない安定した受信信号を得られ測定精度が向上する。
【0012】
また、超音波の反射する壁面に超音波反射部材を設けておけば、減衰が少なく、より散乱の少ない反射が可能で、受信波形が安定し、より精密な測定を可能とできる。
【0013】
計測流路内部の分割された各層が均等高さになるように仕切り板により仕切ることが好ましい。こうすれば、各層に流れる流体量が均等になるため、センサの取り付け誤差などにより超音波の伝搬路がばらついたとしても計測誤差が生じ難くなり測定精度の確保が容易となる。
【0014】
【実施例】
以下本発明の実施例について、図面を参照しながら説明をする。
【0015】
図1、2において、ガスなどの被計測流体は、導入路1から流路2に流れ、導出路3からガス消費機器へ至るようにしてある。
【0016】
前記導入路1、流路2、導出路3は全体的なコンパクト化を図るために直角状に接続されて略U字状をなしており、また少なくとも流路2は、それぞれ対向する短辺および長辺を有する矩形状に設定してある。
【0017】
先の導入路1は、入口4から流路2に至る途中に弁体5で開閉される弁座6を有するものである。
【0018】
前記弁体5は電磁装置、或いは、ステッピングモータなどからなる駆動体7に連係しており、例えばある震度以上の地震が発生した場合などに、弁座6を閉じるように駆動体7が弁体5を動作するものである。
【0019】
もちろん、駆動体7は導入路1、流路2、導出路3がなす略U字状空間内に位置し、装置のコンパクト化を阻害しないようにしている。
【0020】
導入路1と導出路3とは流路2に対してその端部から所定長さ余裕をおいた流入室8および流出室9に接続されており、したがって、導入流体は一旦迂回するようにして流路2に至り、また流路2からの流体も一旦迂回して導出路3に流動し、その出口10から流出するようになっている。
【0021】
迂回流を生じさせる理由は、通常の流れ、または逆流発生時に流体を可及的に整流して流路2に至らせるところにある。
【0022】
流路2の主要長さ部分には、その短辺側を複数の仕切り板11で分割した計測流路12が形成してある。本実施例では4層に、かつ均等に分割され、流体が二次元性流れとなって流動するようにしてある。
【0023】
そして、計測流路12の一方の短辺壁部には少なくとも一対の超音波振動子13、14が流体の流れ方向に所定間隔をおいて配置されてある。
【0024】
前記超音波振動子13、14は、一方より送信された超音波が対向壁に反射して他方に受信されるようにしてあり、つまり、超音波伝搬経路がV型形状をなすように設定してある。
【0025】
さらに述べると、計測制御手段15が超音波振動子13、14間で交互に超音波を送受信させて、流体の流れに対して順方向と逆方向の超音波伝搬時間の差を一定間隔おいて計り、伝搬時間差信号として出力するようにしている。
【0026】
計測制御手段15からの伝搬時間差信号は演算手段16に入力されて伝搬時間差信号から流量を演算するようにしている。
【0027】
先の超音波伝搬経路は、前記分割された計測流路12の主に中央の2つに設定されている。
【0028】
また計測制御手段15、演算手段16などにはリチウム電池などで構成される電源手段17が接続されている。
【0029】
もちろん、これら計測制御手段15、演算手段16、電源手段17も導入路1、流路2、導出路3がなす略U字状空間内に位置されているもので、装置のコンパクト化を推進するようにしている。
【0030】
前記超音波振動子13、14は計測流路12の短辺側路壁に形成した設置室18、19に収められており、それぞれの設置室18、19の通路側開放部には、流体流れを円滑にするための多孔材20、21が設けられているものである。多孔材20、21はスクリーン、パンチングメタルなどから構成される。
【0031】
以上のように構成された超音波流量計測装置について、以下その動作、作用を説明する。
【0032】
先ず、計測対象の流体は、外部配管を経由して導入路1の流入口4から流入する。さらに弁体5が開位置にあるため、弁座6を通り流路2の上流室8に流動する。上流室8の流体は一旦迂回する形態をとりつつ計測流路12に流れるものである。
【0033】
計測流路12は仕切り板11により分割されているところから、流体は二次元性の流れとなり、その後下流室9に流れ込んで、ここでも一旦迂回する形態をとりつつ導出路3に至り、その出口10を経由して図示しない外部機器などへ送給される。
【0034】
次に、計測流路12に設けた一対の超音波振動子14、15の一方から送信された超音波は対向壁面で反射し、他方で受信される。そして、超音波が計測通路12内を流れる過程で被計測流体の流速の影響を受けて、流れと順方向に伝搬する時は早く、流れと逆方向に伝搬する時は遅く受信される。
【0035】
この超音波の送受信による時間差を計測制御手段15で計測してその結果を演算手段16に出力する。
【0036】
演算手段16は上記計測制御手段15からの信号と、内部に記憶している計測流路の断面積と、機器固有の係数とを演算してそのときの流量を演算する。
【0037】
この計測を行う際、超音波振動子13、14から送受信される超音波は、流体が通過する部分全体を伝搬しないと正確な流量計測ができない。
【0038】
本実施例の超音波流量計測装置では、計測流路12を多層化することにより、一層当たりの流路高さを低くし、超音波が流体通過部分全体を伝搬しやすくしている。
【0039】
さらには、超音波伝搬経路に反射部を設けることで、超音波振動子13、14を同一側壁面に設けることができ、また超音波振動子が流路部を挟んで対向して取り付けるのに比較して超音波伝搬経路長さが長く取れるため、超音波振動子13、14の取り付け角度や流路幅の大きさの自由度が増し、スペース性に優れた流量計測装置とすることが可能である。
【0040】
なお、図3に示すように超音波振動子13、14の取り付け側の流路壁面を超音波吸収部材22(例えば表面に微細な多孔を有する樹脂)で構成することにより、送信側の超音波振動子より発信された超音波の成分が直接壁面及び壁面近傍を伝って反射することがなく、正規の超音波以外のものが受信されることを抑制できるものである。
【0041】
したがって、計測流路12内の伝搬路を通った反射波を主に受けるためノイズの少ない信号を受信でき、測定精度を向上させることができる。
【0042】
また、図4に示すように超音波伝搬路における超音波の反射面に音波の反射率の高い材質、例えば鏡面仕上げされた金属板からなる超音波反射部材23を設けることで、超音波の反射時における減衰や散乱が減り、超音波の伝搬を効率良く行うことが可能となり、受信波におけるノイズ成分が減りより一層精度の良い測定ができる。
【0043】
さらに、前記実施例では、超音波伝搬経路における反射を1回としたV型伝搬経路に関して説明したが、伝搬経路に関しては図5に示すように対向壁面で2回反射するW型伝搬経路でも同様の効果があり使用可能である。
【0044】
この実施例でも、超音波の反射面に超音波反射部材23を設けてもよいことは今更いうまでもないことであろう。
【0045】
また前記実施例においては、流路の仕切り板による分割を4層としているが、均等に分割するのであれば、何層でも可能である。ただし一層当たりの高さ(図1におけるA寸法)は、境界層の影響を考慮して3mm以下が効果的である。
【0046】
以上のように前記実施例においては、矩形流路の短辺方向を仕切り板により複数に分割した多層の計測流路の同一壁面側に設けた超音波振動子から送信する超音波を対向壁面で反射し、その超音波を受信することで、超音波伝搬距離を長くとれ、また同一方向に超音波振動子を取り付けられるので、計測性能の向上が図れるとともに、コンパクトな流体計測装置設計が可能となる。
【0047】
【発明の効果】
以上のように、本発明の超音波流量計測装置によれば、超音波伝搬距離が長くとれ、超音波振動子の取り付け角度や流路幅設計の自由度が増し、また同一側壁面に超音波振動子を取り付けられるので、スペース性に優れた設計が可能となる。また同一方向から超音波振動子を取り付けるため組み立て作業性も向上する。
【図面の簡単な説明】
【図1】本発明の実施例における超音波流量計測装置の縦断面図
【図2】本発明の実施例における超音波流量計測装置の横断面図
【図3】同装置の他の実施例を示す横断面図
【図4】同装置のさらに他の実施例を示す横断面図
【図5】同装置のさらに他の実施例を示す横断面図
【図6】従来の超音波式流量計の流路縦断面図
【図7】従来の超音波式流量計の流路横断面図
【符号の説明】
2 流路
11 仕切り板
12 計測流路
13、14 超音波振動子
15 計測制御手段
16 演算手段
23 超音波反射部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flow rate measuring device that measures the flow rate and flow rate of a gas or a liquid using ultrasonic waves.
[0002]
[Prior art]
Conventionally, as shown in FIGS. 6 and 7, this type of ultrasonic flow meter is provided with a flow measuring section 53 having a laminar flow path 52 separated by a partition plate 51, and the flow measuring section 53 interposed therebetween. It is known that the first ultrasonic vibrator 54 and the second ultrasonic vibrator 55 are used and a flow rate calculating unit that calculates a flow rate based on the signal of the ultrasonic vibrator 5 is known. .
[0003]
Here, 56 is an upstream connection portion, 57 is a downstream connection portion, 58 is an entrance portion connected to the upstream connection portion 56, and 59 is an exit portion connected to the downstream connection portion 57.
[0004]
In the above-described configuration, a two-dimensional flow is generated in the laminar flow path 52 to realize highly accurate flow rate measurement (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-9-43015
[Problems to be solved by the invention]
However, in the above-described conventional technology, the ultrasonic transducer is provided on the opposed wall surface with the measurement flow path interposed therebetween, so that it is necessary to increase the installation space. If the installation space is limited, it may not be possible to obtain a sufficient size for the mounting angle of the ultrasonic vibrator or the width of the flow path, and it may not be possible to optimize the ultrasonic wave propagation distance. There are also unavoidable situations.
[0007]
The present invention has been made to solve such a conventional problem, and has as its object to increase the degree of freedom of design and promote the downsizing of the device.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a rectangular flow path having a short side and a long side opposed to each other, and a measurement flow formed by dividing the short side of the rectangular flow path by a plurality of partition plates. A path, at least one pair of ultrasonic transducers provided on the same short side of the measurement flow path and reflecting ultrasonic waves on the facing surface and propagating in the measurement flow path, and an ultrasonic wave between the ultrasonic vibrators. Measurement control means for measuring the propagation time of the sound wave, and a calculation means for calculating the flow rate based on the signal from the measurement control means, whereby the degree of freedom of design of the flow path and the ultrasonic transducer is reduced Since the ultrasonic wave propagation distance becomes longer even with the same channel width and the ultrasonic transducers can be attached in the same direction, a compact design becomes possible.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment of the present invention is a rectangular flow path having a short side and a long side facing each other, a measurement flow path formed by dividing the short side of the rectangular flow path by a plurality of partition plates, At least one pair of ultrasonic transducers provided on the same short side of the measurement flow path and reflecting the ultrasonic waves on the opposing surface and propagating in the measurement flow path, and propagation of ultrasonic waves between the ultrasonic transducers Measurement control means for measuring time, and arithmetic means for calculating a flow rate based on a signal from the measurement control means, which increases the degree of freedom in designing the flow path and the ultrasonic vibrator, and provides the same flow path Even with the width, the ultrasonic wave propagation distance is lengthened and the ultrasonic vibrator can be mounted in the same direction, so that a compact design is possible.
[0010]
As the ultrasonic wave propagation path between the ultrasonic transducers in the measurement flow path, a V-shaped shape or a W-shaped shape can be considered.
[0011]
If the material of the side wall surface of the measurement flow path is different between the ultrasonic vibrator mounting side and the ultrasonic reflecting side, for example, the ultrasonic vibrator mounting surface may be made of a material that does not easily reflect ultrasonic waves. Also, the vibration of the ultrasonic wave directly transmitted and received without being reflected between the ultrasonic transducers can be reduced, and a stable received signal with less noise can be obtained, and the measurement accuracy can be improved.
[0012]
In addition, if an ultrasonic reflecting member is provided on a wall surface on which ultrasonic waves are reflected, it is possible to perform reflection with less attenuation and less scattering, stabilize a received waveform, and enable more precise measurement.
[0013]
It is preferable that the divided layers inside the measurement channel are partitioned by a partition plate so that the layers have an equal height. In this case, since the amount of fluid flowing through each layer becomes equal, even if the propagation path of the ultrasonic wave varies due to a sensor mounting error or the like, a measurement error hardly occurs, and measurement accuracy can be easily secured.
[0014]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
1 and 2, a fluid to be measured such as a gas flows from an introduction path 1 to a flow path 2 and reaches a gas consumption device from an outflow path 3.
[0016]
The introduction path 1, the flow path 2, and the lead-out path 3 are connected at right angles to each other in a substantially U-shape in order to reduce the overall size, and at least the flow path 2 has at least one of the opposite short sides and It has a rectangular shape with long sides.
[0017]
The introduction path 1 has a valve seat 6 that is opened and closed by a valve element 5 on the way from the inlet 4 to the flow path 2.
[0018]
The valve element 5 is linked to a driving element 7 composed of an electromagnetic device or a stepping motor. For example, when an earthquake of a certain seismic intensity or more occurs, the driving element 7 closes the valve seat 6. 5 operates.
[0019]
Of course, the driving body 7 is located in a substantially U-shaped space formed by the introduction path 1, the flow path 2, and the extraction path 3, so as not to hinder the compactness of the apparatus.
[0020]
The introduction path 1 and the outflow path 3 are connected to the inflow chamber 8 and the outflow chamber 9 with a predetermined length margin from the ends of the flow path 2, so that the introduced fluid is once bypassed. The fluid reaches the flow path 2, and the fluid from the flow path 2 once flows around the outlet path 3, bypassing the outlet path 10.
[0021]
The reason for generating the bypass flow is that the flow is rectified as much as possible to reach the flow path 2 when a normal flow or a backflow occurs.
[0022]
In the main length portion of the flow path 2, a measurement flow path 12 whose short side is divided by a plurality of partition plates 11 is formed. In the present embodiment, the fluid is equally divided into four layers so that the fluid flows as a two-dimensional flow.
[0023]
At least one pair of ultrasonic transducers 13 and 14 are arranged on one short side wall of the measurement flow channel 12 at predetermined intervals in the flow direction of the fluid.
[0024]
The ultrasonic vibrators 13 and 14 are configured such that ultrasonic waves transmitted from one side are reflected by the opposite wall and received by the other side, that is, the ultrasonic wave propagation path is set to form a V-shape. It is.
[0025]
More specifically, the measurement control unit 15 causes the ultrasonic transducers 13 and 14 to alternately transmit and receive ultrasonic waves, and sets the difference between the ultrasonic wave propagation time in the forward direction and the ultrasonic wave propagation time in the reverse direction to the flow of the fluid at regular intervals. It is measured and output as a propagation time difference signal.
[0026]
The propagation time difference signal from the measurement control means 15 is input to the calculation means 16 to calculate the flow rate from the propagation time difference signal.
[0027]
The above ultrasonic propagation paths are set mainly at the center two of the divided measurement flow paths 12.
[0028]
Further, a power supply means 17 composed of a lithium battery or the like is connected to the measurement control means 15, the arithmetic means 16, and the like.
[0029]
Of course, the measurement control means 15, the calculation means 16, and the power supply means 17 are also located in the substantially U-shaped space formed by the introduction path 1, the flow path 2, and the derivation path 3, thereby promoting the compactness of the apparatus. Like that.
[0030]
The ultrasonic transducers 13 and 14 are housed in installation chambers 18 and 19 formed on the short side road wall of the measurement flow channel 12. Are provided with porous materials 20 and 21 for smoothing. The porous materials 20 and 21 are made of a screen, a punching metal or the like.
[0031]
The operation and operation of the ultrasonic flow measuring device configured as described above will be described below.
[0032]
First, the fluid to be measured flows from the inflow port 4 of the introduction path 1 via the external pipe. Further, since the valve element 5 is at the open position, the fluid flows through the valve seat 6 to the upstream chamber 8 of the flow path 2. The fluid in the upstream chamber 8 flows into the measurement flow channel 12 while taking a form of once bypassing.
[0033]
Since the measurement channel 12 is divided by the partition plate 11, the fluid becomes a two-dimensional flow, then flows into the downstream chamber 9, reaches the outlet channel 3 once again in a detour form, and exits therefrom. The data is sent to an external device (not shown) via the communication device 10.
[0034]
Next, the ultrasonic wave transmitted from one of the pair of ultrasonic transducers 14 and 15 provided in the measurement channel 12 is reflected by the facing wall surface and received by the other. Then, under the influence of the flow velocity of the fluid to be measured in the course of the flow of the ultrasonic wave in the measurement passage 12, the ultrasonic wave is received early when propagating in the forward direction with the flow, and is received late when propagating in the reverse direction with the flow.
[0035]
The time difference between the transmission and reception of the ultrasonic wave is measured by the measurement control means 15 and the result is output to the calculation means 16.
[0036]
The calculation means 16 calculates the flow rate at that time by calculating the signal from the measurement control means 15, the cross-sectional area of the measurement flow path stored therein, and the coefficient unique to the device.
[0037]
When performing this measurement, accurate measurement of the flow rate of the ultrasonic waves transmitted and received from the ultrasonic transducers 13 and 14 cannot be performed unless the ultrasonic waves propagate through the entire portion through which the fluid passes.
[0038]
In the ultrasonic flow rate measuring device of the present embodiment, the measurement flow path 12 is multi-layered, so that the flow path height per layer is reduced, and the ultrasonic wave is easily transmitted through the entire fluid passage portion.
[0039]
Further, by providing the reflecting portion in the ultrasonic wave propagation path, the ultrasonic oscillators 13 and 14 can be provided on the same side wall surface. Since the length of the ultrasonic wave propagation path can be made longer, the degree of freedom in the mounting angles of the ultrasonic transducers 13 and 14 and the size of the flow path width increases, and it is possible to provide a flow measuring device with excellent space properties. It is.
[0040]
As shown in FIG. 3, by forming the wall surface of the flow path on the mounting side of the ultrasonic vibrators 13 and 14 with an ultrasonic absorbing member 22 (for example, a resin having fine pores on the surface), the ultrasonic wave on the transmitting side can be obtained. The component of the ultrasonic wave transmitted from the vibrator does not directly travel along the wall surface and the vicinity of the wall surface and is reflected, so that it is possible to suppress the reception of other than the normal ultrasonic wave.
[0041]
Therefore, since the reflected wave mainly passing through the propagation path in the measurement channel 12 is received, a signal with little noise can be received, and the measurement accuracy can be improved.
[0042]
Also, as shown in FIG. 4, by providing an ultrasonic reflecting member 23 made of a material having a high acoustic wave reflectance, for example, a mirror-finished metal plate, on the ultrasonic reflecting surface in the ultrasonic wave propagation path, the ultrasonic wave is reflected. The attenuation and scattering at the time are reduced, and the propagation of the ultrasonic wave can be performed efficiently, and the noise component in the received wave is reduced, so that more accurate measurement can be performed.
[0043]
Further, in the above-described embodiment, the description has been made with respect to the V-type propagation path in which the reflection in the ultrasonic wave propagation path is performed once. There is an effect and can be used.
[0044]
Also in this embodiment, it goes without saying that the ultrasonic reflecting member 23 may be provided on the ultrasonic reflecting surface.
[0045]
Further, in the above-described embodiment, the channel is divided into four layers by the partition plate, but any number of layers can be used as long as the channels are equally divided. However, it is effective that the height per layer (dimension A in FIG. 1) is 3 mm or less in consideration of the influence of the boundary layer.
[0046]
As described above, in the embodiment, the ultrasonic wave transmitted from the ultrasonic transducer provided on the same wall side of the multi-layer measurement flow path in which the short side direction of the rectangular flow path is divided into a plurality of parts by the partition plate is applied to the opposing wall surface. By reflecting and receiving the ultrasonic wave, the ultrasonic wave propagation distance can be extended and the ultrasonic transducer can be attached in the same direction, so that measurement performance can be improved and a compact fluid measurement device design can be designed. Become.
[0047]
【The invention's effect】
As described above, according to the ultrasonic flow rate measuring device of the present invention, the ultrasonic wave propagation distance can be increased, the degree of freedom in the mounting angle of the ultrasonic transducer and the flow path width design increases, and the ultrasonic wave Since the vibrator can be attached, a design excellent in space property can be realized. Also, since the ultrasonic vibrator is attached from the same direction, the assembling workability is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an ultrasonic flow measuring device according to an embodiment of the present invention. FIG. 2 is a transverse sectional view of an ultrasonic flow measuring device according to an embodiment of the present invention. FIG. 4 is a cross-sectional view showing still another embodiment of the apparatus. FIG. 5 is a cross-sectional view showing still another embodiment of the apparatus. FIG. 6 is a view of a conventional ultrasonic flow meter. Longitudinal cross section of flow path [Fig. 7] Cross sectional flow path of conventional ultrasonic flowmeter [Explanation of reference numerals]
2 flow path 11 partition plate 12 measurement flow paths 13 and 14 ultrasonic transducer 15 measurement control means 16 calculation means 23 ultrasonic reflection member

Claims (6)

相対向して短辺および長辺を有する矩形の流路と、この矩形の流路の短辺側を複数の仕切り板で分割して形成した計測流路と、この計測流路の同一短辺側に設けられ、超音波を対向面で反射させて前記計測流路内を伝搬させる少なくとも一対の超音波振動子と、前記超音波振動子間の超音波の伝搬時間を計測する計測制御手段と、前記計測制御手段からの信号に基づいて流量を算出する演算手段とを備えてなる超音波流量計測装置。A rectangular flow path having a short side and a long side facing each other, a measurement flow path formed by dividing the short side of the rectangular flow path by a plurality of partition plates, and the same short side of the measurement flow path Provided on the side, at least a pair of ultrasonic transducers for reflecting ultrasonic waves on the facing surface and propagating in the measurement flow path, and measurement control means for measuring the propagation time of ultrasonic waves between the ultrasonic transducers, And an arithmetic means for calculating a flow rate based on a signal from the measurement control means. 計測流路内での超音波振動子間の超音波伝搬経路がV型形状をなす請求項1記載の超音波流量計測装置。The ultrasonic flow measuring device according to claim 1, wherein an ultrasonic wave propagation path between the ultrasonic transducers in the measurement flow path has a V-shape. 計測流路内での超音波振動子間の超音波伝搬経路がW型形状をなす請求項1記載の超音波流量計測装置。The ultrasonic flow measuring device according to claim 1, wherein an ultrasonic wave propagation path between the ultrasonic transducers in the measurement flow path has a W-shape. 計測流路の側壁面の材質が超音波振動子取り付け側と超音波反射側とで異なる請求項2記載の超音波流量計測装置。3. The ultrasonic flow measuring device according to claim 2, wherein the material of the side wall surface of the measurement flow path is different between the ultrasonic vibrator mounting side and the ultrasonic reflecting side. 超音波の反射する壁面に超音波反射部材を設けた請求項1〜4のいずれか1項記載の超音波流量計測装置。The ultrasonic flow measuring device according to any one of claims 1 to 4, wherein an ultrasonic reflecting member is provided on a wall surface that reflects the ultrasonic waves. 計測流路の内部は仕切り板を介して均等高さになるように仕切られた請求項1〜5のいずれか1項記載の超音波流量計測装置。The ultrasonic flow measuring device according to any one of claims 1 to 5, wherein the inside of the measurement flow path is partitioned to have a uniform height via a partition plate.
JP2003071395A 2003-02-24 2003-03-17 Supersonic flowmeter Pending JP2004279224A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003071395A JP2004279224A (en) 2003-03-17 2003-03-17 Supersonic flowmeter
KR1020057015558A KR100694937B1 (en) 2003-02-24 2004-02-24 Ultrasonic type fluid measuring device
EP04714003.3A EP1612520B1 (en) 2003-02-24 2004-02-24 Ultrasonic type fluid measuring device
CN2008101093243A CN101294833B (en) 2003-02-24 2004-02-24 Ultrasonic fluid measurement instrument
US10/544,669 US7237441B2 (en) 2003-02-24 2004-02-24 Ultrasonic type fluid measurement device
PCT/JP2004/002119 WO2004074783A1 (en) 2003-02-24 2004-02-24 Ultrasonic type fluid measuring device
US11/785,728 US7360449B2 (en) 2003-02-24 2007-04-19 Ultrasonic fluid measurement instrument having a plurality of split channels formed by partition boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071395A JP2004279224A (en) 2003-03-17 2003-03-17 Supersonic flowmeter

Publications (1)

Publication Number Publication Date
JP2004279224A true JP2004279224A (en) 2004-10-07

Family

ID=33287842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071395A Pending JP2004279224A (en) 2003-02-24 2003-03-17 Supersonic flowmeter

Country Status (1)

Country Link
JP (1) JP2004279224A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162458A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Ultrasonic-type flow measuring apparatus
JP2008107287A (en) * 2006-10-27 2008-05-08 Ricoh Elemex Corp Ultrasonic flowmeter
JP2009014658A (en) * 2007-07-09 2009-01-22 Panasonic Corp Multilayer flow-path member for ultrasonic fluid measuring instrument and ultrasonic fluid measuring instrument
JP2009041912A (en) * 2007-08-06 2009-02-26 Tokyo Keiso Co Ltd Ultrasonic flow meter
JP2010276523A (en) * 2009-05-29 2010-12-09 Denso Corp Ultrasonic flowmeter
WO2011064906A1 (en) 2009-11-24 2011-06-03 パナソニック株式会社 Channel member and ultrasonic fluid-measuring apparatus
WO2011064905A1 (en) * 2009-11-24 2011-06-03 パナソニック株式会社 Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus
JP2014074728A (en) * 2014-01-31 2014-04-24 Panasonic Corp Ultrasonic fluid measuring structure
CN110864751A (en) * 2019-12-30 2020-03-06 郑州引领科技有限公司 Special sound channel of ultrasonic wave gas table

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162458A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Ultrasonic-type flow measuring apparatus
JP2008107287A (en) * 2006-10-27 2008-05-08 Ricoh Elemex Corp Ultrasonic flowmeter
JP2009014658A (en) * 2007-07-09 2009-01-22 Panasonic Corp Multilayer flow-path member for ultrasonic fluid measuring instrument and ultrasonic fluid measuring instrument
JP2009041912A (en) * 2007-08-06 2009-02-26 Tokyo Keiso Co Ltd Ultrasonic flow meter
JP2010276523A (en) * 2009-05-29 2010-12-09 Denso Corp Ultrasonic flowmeter
WO2011064906A1 (en) 2009-11-24 2011-06-03 パナソニック株式会社 Channel member and ultrasonic fluid-measuring apparatus
WO2011064905A1 (en) * 2009-11-24 2011-06-03 パナソニック株式会社 Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus
JP2011112377A (en) * 2009-11-24 2011-06-09 Panasonic Corp Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring device
JP2011112378A (en) * 2009-11-24 2011-06-09 Panasonic Corp Flow channel member and ultrasonic fluid measurement device
US8925390B2 (en) 2009-11-24 2015-01-06 Panasonic Corporation Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus
JP2014074728A (en) * 2014-01-31 2014-04-24 Panasonic Corp Ultrasonic fluid measuring structure
CN110864751A (en) * 2019-12-30 2020-03-06 郑州引领科技有限公司 Special sound channel of ultrasonic wave gas table

Similar Documents

Publication Publication Date Title
JP4662996B2 (en) Ultrasonic flow meter with pressure sensor
US7252015B2 (en) Ultrasonic flow meter including guide elements
US7360449B2 (en) Ultrasonic fluid measurement instrument having a plurality of split channels formed by partition boards
JP2010164558A (en) Device for measuring flow of fluid
JP4186645B2 (en) Ultrasonic flow measuring device
CN110199179B (en) Ultrasonic flowmeter and method for detecting a throughflow parameter
WO2000055581A1 (en) Ultrasonic flowmeter
WO2012164859A1 (en) Ultrasonic flow rate measurement unit and gas flowmeter using same
WO2014057673A1 (en) Flowmeter
JPWO2013051272A1 (en) Setting method of flow rate measuring device
JP2895704B2 (en) Ultrasonic flow meter
JP2004279224A (en) Supersonic flowmeter
JP4447205B2 (en) Ultrasonic flow meter
CN112543861A (en) Ultrasonic flowmeter
JP2013057613A (en) Ultrasonic flowmeter
JP6982737B2 (en) Ultrasonic flow meter
JP3824236B2 (en) Ultrasonic flow measuring device
JP6229144B2 (en) Flow measuring device
JP2003114142A (en) Ultrasonic gas meter
JP3781424B2 (en) Ultrasonic flow measuring device
JP3383575B2 (en) Pulsation absorption structure of flow meter
JP2009058404A (en) Ultrasonic flowmeter
JPH11281438A (en) Pulsation absorbing structure for flow meter
JP3383576B2 (en) Pulsation absorption structure of flow meter
JP6488463B2 (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804