JP2000298045A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JP2000298045A
JP2000298045A JP11106243A JP10624399A JP2000298045A JP 2000298045 A JP2000298045 A JP 2000298045A JP 11106243 A JP11106243 A JP 11106243A JP 10624399 A JP10624399 A JP 10624399A JP 2000298045 A JP2000298045 A JP 2000298045A
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric body
case
vibration
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11106243A
Other languages
Japanese (ja)
Other versions
JP2000298045A5 (en
JP3498628B2 (en
Inventor
Akihisa Adachi
明久 足立
Kenzo Ochi
謙三 黄地
Masahiko Hashimoto
雅彦 橋本
Toshiharu Sato
利春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10624399A priority Critical patent/JP3498628B2/en
Publication of JP2000298045A publication Critical patent/JP2000298045A/en
Application granted granted Critical
Publication of JP3498628B2 publication Critical patent/JP3498628B2/en
Publication of JP2000298045A5 publication Critical patent/JP2000298045A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a stability of a zero point by a temperature change by constituting an ultrasonic vibrator to reduce effects of the temperature change to measured results in a state without a flow. SOLUTION: A driving circuit 5 drives an ultrasonic vibrator 2 under the control of a control part 10 and a timer 8 starts measuring a time. An ultrasonic pulse propagating in a flow rate measurement part 1 is received by an ultrasonic vibrator 3 and, a reception detection circuit 7 sends a reception detection signal to the control part 10. After the process is repeated N times, a propagation time t1 is operated from a measured time of the timer 8. Thereafter, a switching circuit 6 switches to make the ultrasonic vibrator 3 transmit the pulse, and a propagation time t2 is obtained. A flow rate is calculated from a flow velocity operated from the propagation times t1 and t2 and, an area of the flow rate measurement part 1. At this time, a zero point varies depending on a temperature due to an effect of an unnecessary vibration mode in a state without a flow. Therefore, the ultrasonic vibrators are constituted to make different resonance frequencies of the unnecessary vibration mode of a piezoelectric body and a case. An effect of a temperature change is thus reduced and the zero point is stabilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により気体
や液体の流量や流速の計測を行う超音波流量計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring the flow rate and flow rate of a gas or liquid using ultrasonic waves.

【0002】[0002]

【従来の技術】従来この種の超音波流量計には、例えば
特開平9−133561号公報が知られており、標準状
態の非測定流体の温度(T0)と使用状態の非測定流体
の温度情報(Tsv)からT0/Tsvを補正係数とし
て流量の測定精度を高めていた。
2. Description of the Related Art A conventional ultrasonic flowmeter of this type is known, for example, from Japanese Patent Application Laid-Open No. Hei 9-133561, and includes a temperature (T0) of a non-measured fluid in a standard state and a temperature of a non-measured fluid in a used state. From the information (Tsv), T0 / Tsv was used as a correction coefficient to increase the flow rate measurement accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の超音波流量計では、流れが無い状態の測定結果(以降
ゼロ点とする)が温度変化によって0以外の値となった
場合、動作補償温度範囲全体を補正係数だけで0にする
ことは困難で、温度変化によるゼロ点の安定性が得られ
ないという課題を有していた。
However, in the above-mentioned conventional ultrasonic flowmeter, if the measurement result in a state where there is no flow (hereinafter referred to as a zero point) becomes a value other than 0 due to a temperature change, the operation compensation temperature range It is difficult to set the whole to 0 only by the correction coefficient, and there is a problem that the stability of the zero point due to a temperature change cannot be obtained.

【0004】本発明では上記課題を解決するもので、超
音波振動子の構成により温度変化によるゼロ点の安定性
を向上させることを目的とする。
An object of the present invention is to solve the above-mentioned problems, and to improve the stability of a zero point due to a temperature change by using an ultrasonic vibrator.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、圧電体の不要振動モードとケースの共振周
波数が異なる周波数となるように構成したものである。
In order to solve the above-mentioned problems, the present invention is configured so that the unnecessary vibration mode of the piezoelectric body and the resonance frequency of the case are different from each other.

【0006】上記発明によれば、圧電体とケースが共振
することを阻害でき、一対の超音波振動子で送受信する
超音波パルスに対する不要振動の影響が低減できる。こ
のため温度変化によるゼロ点の安定性を向上させること
ができる。
According to the above invention, the resonance between the piezoelectric body and the case can be prevented, and the influence of unnecessary vibration on the ultrasonic pulse transmitted and received by the pair of ultrasonic transducers can be reduced. Therefore, the stability of the zero point due to the temperature change can be improved.

【0007】[0007]

【発明の実施の形態】本発明の第1の形態の超音波流量
計は、被測定流体が流れる流量測定部と、この流量測定
部に設けられ超音波を送受信する一対の超音波振動子
と、一方の超音波振動子を駆動する駆動回路と、他方の
超音波振動子に接続され超音波パルスを検知する受信検
知回路と、超音波パルスの伝搬時間を測定するタイマ
と、前記駆動回路とタイマを制御する制御部と、前記タ
イマの出力より流量を演算によって求める演算部を備
え、流れが無い状態の測定結果への温度変化による影響
が低減されるように一対の超音波振動子を構成したた
め、温度変化によるゼロ点の安定性を向上させることが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic flowmeter according to a first embodiment of the present invention comprises a flow rate measuring section through which a fluid to be measured flows, and a pair of ultrasonic transducers provided in the flow rate measuring section for transmitting and receiving ultrasonic waves. A drive circuit that drives one ultrasonic transducer, a reception detection circuit that is connected to the other ultrasonic transducer and detects an ultrasonic pulse, a timer that measures the propagation time of the ultrasonic pulse, and the drive circuit A control unit for controlling a timer, and a calculation unit for calculating a flow rate from the output of the timer by calculation, comprising a pair of ultrasonic transducers so as to reduce the influence of a temperature change on the measurement result when there is no flow. Therefore, the stability of the zero point due to the temperature change can be improved.

【0008】本発明の第2の形態の超音波流量計は、第
1の形態の超音波流量計において、一対の超音波振動子
は不要振動モードの影響が低減するよう構成したため、
温度変化によるゼロ点の安定性を向上させることができ
る。
According to the ultrasonic flowmeter of the second embodiment of the present invention, in the ultrasonic flowmeter of the first embodiment, the pair of ultrasonic vibrators are configured to reduce the influence of the unnecessary vibration mode.
The stability of the zero point due to a temperature change can be improved.

【0009】本発明の第3の形態の超音波流量計は、第
2の形態の超音波流量計において、一対の超音波振動子
は電気信号と機械的振動を相互に変換する圧電体と圧電
体の外側にケースを備え、圧電体の不要振動モードの共
振周波数とケースの共振周波数が異なる周波数となるよ
うに構成したため、不要振動モードの影響を低減でき温
度変化によるゼロ点の安定性を向上させることができ
る。
An ultrasonic flowmeter according to a third aspect of the present invention is the ultrasonic flowmeter according to the second aspect, wherein the pair of ultrasonic vibrators are a piezoelectric body and a piezoelectric body which mutually convert an electric signal and mechanical vibration. A case is provided on the outside of the body, and the resonance frequency of the unnecessary vibration mode of the piezoelectric body and the resonance frequency of the case are configured to be different, so the influence of the unnecessary vibration mode can be reduced and the stability of the zero point due to temperature change is improved. Can be done.

【0010】本発明の第4の形態の超音波流量計は、第
2の形態の超音波流量計において、一対の超音波振動子
は電気信号と機械的振動を相互に変換する圧電体と圧電
体の外側にケースを備え、圧電体の不要振動モードの周
波数が使用する周波数より高周波となるように構成した
ため、不要振動モードの影響を低減でき温度変化による
ゼロ点の安定性を向上させることができる。
An ultrasonic flowmeter according to a fourth aspect of the present invention is the ultrasonic flowmeter according to the second aspect, wherein the pair of ultrasonic vibrators are a piezoelectric body and a piezoelectric body which mutually convert an electric signal and mechanical vibration. A case is provided on the outside of the body, and the frequency of the unnecessary vibration mode of the piezoelectric body is configured to be higher than the frequency used, so the influence of the unnecessary vibration mode can be reduced and the stability of the zero point due to temperature change can be improved. it can.

【0011】本発明の第5の形態の超音波流量計は、第
2の形態の超音波流量計において、一対の超音波振動子
は電気信号と機械的振動を相互に変換する圧電体と圧電
体の外側にケースを備え、ケースの振動を阻害するよう
ケースに制振体を設けたため、不要振動モードの影響を
低減でき温度変化によるゼロ点の安定性を向上させるこ
とができる。
An ultrasonic flowmeter according to a fifth aspect of the present invention is the ultrasonic flowmeter according to the second aspect, wherein the pair of ultrasonic vibrators comprises a piezoelectric body and a piezoelectric body which mutually convert an electric signal and mechanical vibration. Since the case is provided outside the body, and the case is provided with the vibration damper to inhibit the vibration of the case, the influence of the unnecessary vibration mode can be reduced and the stability of the zero point due to the temperature change can be improved.

【0012】本発明の第6の形態の超音波流量計は、第
5の形態の超音波流量計において、制振体が剛体からな
るためケースの質量を増大させて不要振動を阻害し、不
要振動モードの影響を低減でき温度変化によるゼロ点の
安定性を向上させることができる。
An ultrasonic flowmeter according to a sixth aspect of the present invention is the ultrasonic flowmeter according to the fifth aspect, wherein the vibration damping body is made of a rigid body, so that the mass of the case is increased to prevent unnecessary vibration, thereby reducing unnecessary vibration. The influence of the vibration mode can be reduced, and the stability of the zero point due to the temperature change can be improved.

【0013】本発明の第7の形態の超音波流量計は、第
5の形態の超音波流量計において、制振体が弾性体から
なるためケースの不要振動を弾性体で損失させ、不要振
動モードの影響を低減でき温度変化によるゼロ点の安定
性を向上させることができる。
An ultrasonic flowmeter according to a seventh aspect of the present invention is the ultrasonic flowmeter according to the fifth aspect, wherein the vibration damper is made of an elastic body, so that unnecessary vibration of the case is lost by the elastic body, The influence of the mode can be reduced, and the stability of the zero point due to the temperature change can be improved.

【0014】本発明の第8の形態の超音波流量計は、第
2の形態の超音波流量計において、一対の超音波振動子
は電気信号と機械的振動を相互に変換する圧電体と圧電
体の外側にケースを備え、ケースは不要な振動を阻害す
るように側壁部に折り曲げ部を設けたため、不要振動モ
ードの影響を低減でき温度変化によるゼロ点の安定性を
向上させることができる。
An ultrasonic flowmeter according to an eighth aspect of the present invention is the ultrasonic flowmeter according to the second aspect, wherein the pair of ultrasonic vibrators are a piezoelectric body and a piezoelectric body which mutually convert an electric signal and mechanical vibration. Since the case is provided outside the body, and the case is provided with a bent portion on the side wall so as to inhibit unnecessary vibration, the influence of the unnecessary vibration mode can be reduced and the stability of the zero point due to a temperature change can be improved.

【0015】本発明の第9の形態の超音波流量計は、第
8の形態の超音波流量計において、折り曲げ部は圧電体
の方向がわかるように設けられたため、圧電体の方向が
わかるようになり超音波流量計への取付が容易となる。
According to the ultrasonic flowmeter of the ninth embodiment of the present invention, since the bending portion is provided so that the direction of the piezoelectric body can be recognized in the ultrasonic flowmeter of the eighth embodiment, the direction of the piezoelectric body can be recognized. And it becomes easy to attach to the ultrasonic flowmeter.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を用いて
説明する。なお図面中で同一符号を付しているものは同
一なものであり、詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the components denoted by the same reference numerals are the same, and the detailed description is omitted.

【0017】(実施例1)図1は本発明の実施例1の超
音波流量計を示すブロック図である。図1において、1
は被測定流体が流れる流量測定部、2、3は流量測定部
1の流れの方向に対し斜めに対向して配置された超音波
振動子、4は超音波振動子2、3の使用周波数を発信す
る発振回路、5は発振回路4に接続され超音波振動子
2、3を駆動する駆動回路、6は送受信する超音波振動
子を切り替える切替回路、7は超音波パルスを検知する
受信検知回路、8は超音波パルスの伝搬時間を計測する
タイマ、9はタイマ8の出力より流量を演算する演算
部、10は駆動回路5とタイマ8に制御信号を出力する
制御部である。
FIG. 1 is a block diagram showing an ultrasonic flowmeter according to a first embodiment of the present invention. In FIG. 1, 1
Is a flow rate measuring unit through which the fluid to be measured flows, 2 and 3 are ultrasonic vibrators arranged obliquely to the flow direction of the flow measuring unit 1, and 4 is a frequency used by the ultrasonic vibrators 2 and 3. An oscillation circuit for transmitting, 5 is a drive circuit connected to the oscillation circuit 4 for driving the ultrasonic vibrators 2 and 3, 6 is a switching circuit for switching the ultrasonic vibrator for transmission and reception, and 7 is a reception detection circuit for detecting an ultrasonic pulse. , 8 is a timer for measuring the propagation time of the ultrasonic pulse, 9 is a calculation unit for calculating the flow rate from the output of the timer 8, and 10 is a control unit for outputting a control signal to the drive circuit 5 and the timer 8.

【0018】まず動作、作用について説明する。例えば
非測定流体を空気、超音波振動子2、3の使用周波数に
は約500kHzを選択する。発振回路4は例えばコンデ
ンサと抵抗で構成され約500kHzの方形波を発信し、
駆動回路7では発振回路4の信号から超音波振動子2を
駆動するため方形波が3波のバースト信号からなる駆動
信号を出力可能とする。また測定手段には測定流量の分
解能を向上するため、例えばシングアラウンド法を用い
る。
First, the operation and operation will be described. For example, the non-measuring fluid is air, and the operating frequency of the ultrasonic vibrators 2 and 3 is selected to be about 500 kHz. The oscillation circuit 4 is composed of, for example, a capacitor and a resistor, and transmits a square wave of about 500 kHz.
The driving circuit 7 can output a driving signal composed of burst signals of three square waves in order to drive the ultrasonic transducer 2 from the signal of the oscillation circuit 4. In order to improve the resolution of the measured flow rate, for example, a sing-around method is used for the measuring means.

【0019】制御部10では駆動回路5に送信開始信号
を出力すると同時に、タイマ8の時間計測を開始させ
る。駆動回路5は送信開始信号を受けると超音波振動子
2を駆動し、超音波パルスを送信する。送信された超音
波パルスは流量測定1内を伝搬し超音波振動子3で受信
される。受信された超音波パルスは超音波振動子3で電
気信号に変換され、受信検知回路7に出力される。受信
検知回路7では受信信号の受信タイミングを決定し、制
御部10に受信検知信号を出力する。制御部10では受
信検知信号を受けると、あらかじめ設定した遅延時間t
d経過後に再び駆動回路5に送信開始信号を出力し、2
回目の計測を行う。この動作をN回繰返した後、タイマ
8を停止させる。演算部10ではタイマ8で測定した時
間を測定回数のNで割り、遅延時間tdを引いて伝搬時
間t1を演算する。
The control section 10 outputs a transmission start signal to the drive circuit 5 and at the same time causes the timer 8 to start measuring time. Upon receiving the transmission start signal, the drive circuit 5 drives the ultrasonic transducer 2 and transmits an ultrasonic pulse. The transmitted ultrasonic pulse propagates in the flow measurement 1 and is received by the ultrasonic transducer 3. The received ultrasonic pulse is converted into an electric signal by the ultrasonic transducer 3 and output to the reception detection circuit 7. The reception detection circuit 7 determines the reception timing of the reception signal, and outputs the reception detection signal to the control unit 10. Upon receiving the reception detection signal, the control unit 10 receives a delay time t set in advance.
After the elapse of d, a transmission start signal is output to the drive circuit 5 again, and 2
Perform the second measurement. After repeating this operation N times, the timer 8 is stopped. The calculation unit 10 calculates the propagation time t1 by dividing the time measured by the timer 8 by the number of measurements N and subtracting the delay time td.

【0020】引き続き切替回路6で駆動回路5と受信回
路7に接続する超音波振動子を切り替え、再び制御部1
0では駆動回路5に送信開始信号を出力すると同時に、
タイマ8の時間計測を開始させる。伝搬時間t1の測定
と逆に、超音波振動子3で超音波パルスを送信し、超音
波振動子2で受信する計測をN回繰返し、演算部9で伝
搬時間t2を演算する。
Subsequently, the switching unit 6 switches the ultrasonic transducers connected to the driving circuit 5 and the receiving circuit 7, and again the control unit 1
At 0, a transmission start signal is output to the drive circuit 5, and at the same time,
The timer 8 starts time measurement. Contrary to the measurement of the propagation time t1, the ultrasonic pulse is transmitted by the ultrasonic vibrator 3 and the measurement received by the ultrasonic vibrator 2 is repeated N times, and the arithmetic unit 9 calculates the propagation time t2.

【0021】ここで、超音波振動子2と超音波振動子3
の中心を結ぶ距離をL、空気の無風状態での音速をC、
流量測定部1内での流速をV、非測定流体の流れの方向
と超音波振動子2と超音波振動子3の中心を結ぶ線との
角度をθとすると、伝搬時間t1、t2は、 t1=L/(C+Vcosθ) (1) t2=L/(C−Vcosθ) (2) で示される。(1)(2)式より音速Cを消去して、流
速Vを求めると V=L/2cosθ(1/t1−1/t2) (3) が得られる。L、θは既知であるのでt1とt2を測定
すれば流速Vが求められる。この流速Vと流量測定部1
の面積をS、補正係数をKとすれば、流量Qは Q=KSV (4) で演算できる。
Here, the ultrasonic oscillator 2 and the ultrasonic oscillator 3
L is the distance connecting the centers of the air, C is the sound speed in the absence of air,
Assuming that the flow velocity in the flow rate measuring unit 1 is V, and the angle between the direction of the flow of the non-measurement fluid and the line connecting the centers of the ultrasonic transducers 2 and 3 is θ, the propagation times t1 and t2 are t1 = L / (C + Vcosθ) (1) t2 = L / (C−Vcosθ) (2) (1) When the sound velocity C is eliminated from the equation (2) and the flow velocity V is obtained, the following equation is obtained: V = L / 2 cos θ (1 / t1-1 / t2) (3) Since L and θ are known, the flow velocity V can be obtained by measuring t1 and t2. The flow velocity V and the flow rate measurement unit 1
If the area of S is S and the correction coefficient is K, the flow rate Q can be calculated by Q = KSV (4).

【0022】次に流れが無い状態での流量計測における
不要振動モードの影響を考える。一般的にシングアラウ
ンド法では、超音波振動子2から送信された超音波パル
スの残響時間や超音波パルスを受信した超音波振動子3
の振動時間が伝搬時間t1よりも長い場合、時間計測に
おいてこれら振動の影響を受ける。そこでこれら振動に
使用周波数以外の周波数成分が含まれていると仮定し、
温度によるゼロ点の変動を計算する。使用する周波数を
f1、不要振動の周波数をf2とし、計算を簡易にする
ためf1、f2は連続する正弦波とし、不要振動の振幅
をAとする。なおf2には周波数のずれが存在し、その
周波数差をdf2とする。また空気の流れは無いので、
温度をTとすると超音波振動子間を伝搬する時間Pt
は、 Pt=L/(331+0.6・T) (5) で示される。
Next, the influence of the unnecessary vibration mode on the flow rate measurement in a state where there is no flow will be considered. Generally, in the sing-around method, the reverberation time of the ultrasonic pulse transmitted from the ultrasonic transducer 2 and the ultrasonic transducer 3 which receives the ultrasonic pulse
If the vibration time is longer than the propagation time t1, these vibrations are affected in the time measurement. Therefore, assuming that these vibrations contain frequency components other than the used frequency,
Calculate zero point variation with temperature. The frequency to be used is f1, the frequency of the unnecessary vibration is f2, f1 and f2 are continuous sine waves, and the amplitude of the unnecessary vibration is A to simplify the calculation. Note that there is a frequency shift in f2, and the frequency difference is df2. Also, because there is no air flow,
Assuming that the temperature is T, the propagation time Pt between the ultrasonic transducers
Is expressed as Pt = L / (331 + 0.6 · T) (5)

【0023】 ここで超音波振動子2で送信する場合を、 R1=sin{2π・f1・(tーPt)}+Asin(2π・f2・t) (6) 超音波振動子3で送信する場合を、 R2=sin{2π・f1・(tーPt)}+Asin{2π・(f2+df2)・t} (7) とする。(6)、(7)式より温度Tを変えたときのR
1、R2が5回目にゼロと交差する時間t1、t2を求
め、(3)式を用いて流量を算出する。f1を500kH
z、f2を200kHz、Aを−60dBとして、df2が
0kHz、1kHz、5kHzでの計算結果を図2〜4に示す。
Here, the case of transmission by the ultrasonic vibrator 2 is as follows: R1 = sins2π · f1 · (t−Pt)} + Asin (2π · f2 · t) (6) The case of transmission by the ultrasonic vibrator 3 Let R2 = sin {2π · f1 · (t−Pt)} + Asin {2π · (f2 + df2) · t} (7) R when temperature T is changed according to equations (6) and (7)
The times t1 and t2 at which the first and R2 cross zero at the fifth time are obtained, and the flow rate is calculated using the equation (3). f1 at 500kH
Assuming that z and f2 are 200 kHz and A is -60 dB, FIGS. 2 to 4 show calculation results when df2 is 0 kHz, 1 kHz, and 5 kHz.

【0024】図2のように、f2にずれが無い場合は、
温度によるゼロ点の変動は見られない。一方df2が1
kHz、5kHzである図3と図4では、温度によりゼロ点が
周期的な変動している。またdf2の大きさによって、
振幅に変化が見られる。以上の計算結果から、不要振動
モードの影響で温度によりゼロ点が周期的な変動をする
ことが推定できる。
As shown in FIG. 2, when there is no deviation in f2,
There is no change in the zero point due to temperature. On the other hand, df2 is 1
In FIGS. 3 and 4, which are kHz and 5 kHz, the zero point periodically fluctuates depending on the temperature. Also, depending on the size of df2,
There is a change in amplitude. From the above calculation results, it can be estimated that the zero point periodically fluctuates depending on the temperature under the influence of the unnecessary vibration mode.

【0025】そこで超音波振動子の構成と使用周波数、
不要振動周波数の関係を示す。超音波振動子11の構成
の一例を図5、この超音波振動子11に用いる圧電体を
図6、7に示す。超音波振動子11は圧電体12とケー
ス13と整合層14、裏ぶた15からなる。ケース13
には厚み0.2mmのステンレスを用い、深さが約3mmと
なるよう成形加工する。このケース13に裏ぶた15だ
けを取り付けた形状の振動解析を有限要素法を用いて行
うと、約200kHz付近に共振モードが存在する。超音
波振動子11に用いる圧電体12は、電極面の1辺が約
8mmの正方形で、高さが約2.7mmとする。この形状の
圧電体12は縦振動できないので、図6のように圧電体
16に縦の溝17を3本、図7のように圧電体18に縦
横の溝19を各3本設け、縦振動可能な構成とする。こ
れら構成の圧電体16、圧電体18のインピーダンス特
性を図8、図9に示す。図8のインピーダンス特性では
200kHz付近に不要振動モードの共振が見られる。こ
れに対し図9のインピーンダス特性では200kHz付近
の不要振動モードの共振がほぼ見られない。
Therefore, the configuration and operating frequency of the ultrasonic vibrator,
The relationship between the unnecessary vibration frequencies is shown. FIG. 5 shows an example of the configuration of the ultrasonic vibrator 11, and FIGS. 6 and 7 show a piezoelectric body used for the ultrasonic vibrator 11. The ultrasonic transducer 11 includes a piezoelectric body 12, a case 13, a matching layer 14, and a back cover 15. Case 13
Is formed using a stainless steel having a thickness of 0.2 mm so as to have a depth of about 3 mm. When a vibration analysis of a shape in which only the case back 15 is attached to the case 13 is performed by using the finite element method, a resonance mode exists at about 200 kHz. The piezoelectric body 12 used for the ultrasonic vibrator 11 is a square having one side of the electrode surface of about 8 mm and a height of about 2.7 mm. Since the piezoelectric body 12 having this shape cannot longitudinally vibrate, the piezoelectric body 16 is provided with three vertical grooves 17 as shown in FIG. 6 and the piezoelectric body 18 is provided with three vertical and horizontal grooves 19 as shown in FIG. A configuration is possible. FIGS. 8 and 9 show impedance characteristics of the piezoelectric bodies 16 and 18 having these configurations. In the impedance characteristic of FIG. 8, resonance of an unnecessary vibration mode is observed at around 200 kHz. On the other hand, in the impedance characteristic of FIG. 9, resonance of an unnecessary vibration mode near 200 kHz is hardly observed.

【0026】圧電体16、圧電体18を用いた超音波振
動子を構成し、温度変化によるゼロ点の変動を測定した
実験結果を図10、図11に示す。図10では温度変化
によりゼロ点が周期性的な変動を示している。これに対
し図11では温度変化によるゼロ点の変動に周期的な現
象が見られない。
FIGS. 10 and 11 show the results of an experiment in which an ultrasonic vibrator using the piezoelectric bodies 16 and 18 was constructed and the change of the zero point due to a temperature change was measured. In FIG. 10, the zero point shows a periodic fluctuation due to a temperature change. On the other hand, in FIG. 11, no periodic phenomenon is observed in the fluctuation of the zero point due to the temperature change.

【0027】上記結果より、圧電体12の不要振動モー
ドの共振周波数とケース13の共振周波数が近い値のと
き温度変化によりゼロ点が周期的な変動し、圧電体12
の不要振動モードの共振周波数とケース13の共振周波
数が異なる周波数となるように圧電体12を構成すると
温度変化に依存せずゼロ点が安定することがわかる。
From the above results, when the resonance frequency of the unnecessary vibration mode of the piezoelectric body 12 and the resonance frequency of the case 13 are close to each other, the zero point periodically fluctuates due to a temperature change.
When the piezoelectric body 12 is configured such that the resonance frequency of the unnecessary vibration mode and the resonance frequency of the case 13 are different from each other, it is understood that the zero point is stabilized without depending on the temperature change.

【0028】なお実施例1では流量計測にシングアラウ
ンド法を用いるとしたが、上記条件に限定されるわけで
なく、1回だけの計測でも、周期的な計測をN回行いそ
の平均値を測定する方法に用いてもよい。また非測定流
体を空気としたが、空気以外のLPガスや都市ガスのよ
うな気体でも、水やガソリンのような液体でも構わな
い。
In the first embodiment, the sing-around method is used for the flow rate measurement. However, the present invention is not limited to the above conditions, and even a single measurement, a periodic measurement is performed N times and the average value is measured. May be used. Although the non-measurement fluid is air, it may be a gas other than air, such as LP gas or city gas, or a liquid such as water or gasoline.

【0029】また一対の超音波振動子を流れに対して斜
めに対向するように配置したが、流れに対して平行に配
置しても構わないし、流量測定部の内壁面での反射を利
用するような位置に配置しても構わない。また超音波振
動子の使用周波数を500kHz、不要振動の周波数を2
00kHzとしたが、上記条件に限定されるわけでなく、
使用周波数は気体であれば10kHz〜1MHz、液体であれ
ば100kHz〜10MHz程度の範囲が一般的である。また
圧電体の電極面の1辺が8mmの正方形で高さが2.7mm
の直方体としたが、上記寸法以外の直方体でも、薄い円
板、円柱、多角形の柱でも構わない。
Although a pair of ultrasonic transducers are disposed so as to be obliquely opposed to the flow, they may be disposed in parallel to the flow, and the reflection on the inner wall surface of the flow rate measuring unit is used. It may be arranged at such a position. The operating frequency of the ultrasonic vibrator is 500 kHz, and the frequency of unnecessary vibration is 2
Although it was set to 00 kHz, it is not limited to the above conditions,
The frequency used is generally in the range of about 10 kHz to 1 MHz for gas and about 100 kHz to 10 MHz for liquid. The electrode surface of the piezoelectric body is a square of 8 mm on a side and 2.7 mm in height.
However, a rectangular parallelepiped other than the above dimensions, a thin disk, a column, or a polygonal column may be used.

【0030】(実施例2)以下、本発明の実施例2につ
いて、図面を参照しながら説明する。図12は実施例2
の超音波振動子の断面図である。20は超音波振動子、
22はケース、23は整合層、24は裏ぶたで、以上は
図5の構成と同様なものである。図5の構成と異なるの
は、圧電体12を円柱状とした点である。なお動作原理
は実施例1と同様なので省略する。
(Embodiment 2) Hereinafter, Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 12 shows the second embodiment.
3 is a sectional view of the ultrasonic transducer of FIG. 20 is an ultrasonic transducer,
Reference numeral 22 denotes a case, 23 denotes a matching layer, and 24 denotes a back cover. The above is the same as the configuration shown in FIG. 5 in that the piezoelectric body 12 has a columnar shape. The principle of operation is the same as that of the first embodiment, and a description thereof will be omitted.

【0031】例えば直径1.5mm、高さが2.7mmの円
柱状の9本の圧電体21と、整合層23をケース22の
天部に接着固定して、裏ぶた24をケース22に電気溶
接する。圧電体21では広がり振動の共振周波数のほう
が縦振動の共振周波数より高周波に存在する。このため
広がり振動を不要振動とすれば、圧電体21の不要振動
モードの共振周波数とケース22の共振周波数が異なる
周波数となるため、不要振動モードの影響が低減でき実
施例1と同様に温度変化に依存せずゼロ点が安定する。
For example, nine cylindrical piezoelectric members 21 having a diameter of 1.5 mm and a height of 2.7 mm, and a matching layer 23 are adhesively fixed to the top of the case 22, and the back lid 24 is electrically welded to the case 22. I do. In the piezoelectric body 21, the resonance frequency of the spread vibration exists at a higher frequency than the resonance frequency of the longitudinal vibration. For this reason, if the spread vibration is regarded as unnecessary vibration, the resonance frequency of the unnecessary vibration mode of the piezoelectric body 21 and the resonance frequency of the case 22 are different from each other. The zero point is stable regardless of.

【0032】なお実施例2では円柱状の圧電体の縦振動
を用いるとしたが、多角形の柱状圧電体の縦振動でも構
わないし、薄い円板の広がり振動でも構わない。また圧
電体21を9本設けるとしたが、必要な数量を用いれば
よく、1本以上なら何本でも構わない。
In the second embodiment, the vertical vibration of the columnar piezoelectric body is used. However, the vertical vibration of the polygonal columnar piezoelectric body or the spread vibration of a thin circular plate may be used. In addition, although nine piezoelectric bodies 21 are provided, the required number may be used and any number of one or more may be used.

【0033】(実施例3)以下、本発明の実施例3につ
いて、図面を参照しながら説明する。図13は実施例3
の超音波振動子の断面図である。25は超音波振動子、
26は圧電体、27はケース、29は整合層、30は裏
ぶたで、以上は図5の構成と同様なものである。図5の
構成と異なるのは、ケース27の内壁側面に制振体27
を設けた点である。なお動作原理は実施例1と同様なの
で省略する。
Embodiment 3 Hereinafter, Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 13 shows the third embodiment.
3 is a sectional view of the ultrasonic transducer of FIG. 25 is an ultrasonic transducer,
26 is a piezoelectric body, 27 is a case, 29 is a matching layer, and 30 is a back cover. The above is the same as the configuration of FIG. 5 is different from the configuration of FIG.
Is provided. The principle of operation is the same as that of the first embodiment, and a description thereof will be omitted.

【0034】例えば厚みが0.3mmで幅が2.5mmのス
テンレス製リングからなる制振体27をケース28の内
壁側面に接着固定する。圧電体26は制振体28に接触
すると特性が劣化するので、圧電体26と制振体27は
接触しないように構成する。整合層23と裏ぶた30を
取り付けて、超音波振動子25を構成する。圧電体26
の不要振動モードの共振周波数は図8に示すように約2
00kHzである。ケース28は制振体27が接着された
ため、質量が増加し、共振周波数が200kHzよりも低
周波側にシフトする。さらに剛性も向上するため、振動
しにくくなる。
For example, a vibration damper 27 made of a stainless steel ring having a thickness of 0.3 mm and a width of 2.5 mm is bonded and fixed to the inner wall side surface of the case 28. Since the characteristics of the piezoelectric body 26 deteriorate when the piezoelectric body 26 comes into contact with the vibration damper 28, the piezoelectric body 26 and the vibration damper 27 are configured so as not to contact with each other. The ultrasonic transducer 25 is configured by attaching the matching layer 23 and the back cover 30. Piezoelectric body 26
The resonance frequency of the unnecessary vibration mode is about 2 as shown in FIG.
00 kHz. In the case 28, since the vibration damping body 27 is bonded, the mass increases, and the resonance frequency shifts to a lower frequency side than 200 kHz. Further, since the rigidity is improved, it is difficult to vibrate.

【0035】上記構成の超音波振動子25を用いた超音
波流量計で温度変化によるゼロ点の変動を測定した実験
では、実施例1の図11とほぼ等しい結果が得られた。
以上のように圧電体26には200kHzの不要振動モー
ドがあっても、ケース28に剛体からなる制振体27を
設けて圧電体26の不要振動モードの周波数と異なる共
振周波数となるようにすれば、温度変化に依存せずゼロ
点が安定することがわかる。さらに制振体27はケース
28に内包されているため、非測定流体に直接触れるこ
とがほとんど無いため非測定流体による腐食が防止で
き、長期信頼性も向上できる。
In an experiment in which the change of the zero point due to the temperature change was measured by the ultrasonic flowmeter using the ultrasonic vibrator 25 having the above-described structure, a result almost equal to that of the first embodiment shown in FIG. 11 was obtained.
As described above, even if the piezoelectric body 26 has the unnecessary vibration mode of 200 kHz, the vibration damper 27 made of a rigid body is provided in the case 28 so that the resonance frequency is different from the frequency of the unnecessary vibration mode of the piezoelectric body 26. For example, it is understood that the zero point is stabilized irrespective of the temperature change. Further, since the vibration damping body 27 is contained in the case 28, it hardly comes into direct contact with the non-measuring fluid, so that corrosion by the non-measuring fluid can be prevented, and the long-term reliability can be improved.

【0036】なお実施例3では制振体27は厚みが0.
3mmで幅が2.5mmのステンレス製リングとしたが、寸
法、材質、形状を変更してよく、複数の棒や板でも構わ
ない。また制振体27をケース28の内壁側面に接着固
定するとしたが、接着以外の手段で固定しても良いし、
外壁側面に設けてもよい。
In the third embodiment, the damping body 27 has a thickness of 0.1 mm.
Although a stainless steel ring having a width of 3 mm and a width of 2.5 mm is used, the dimensions, material, and shape may be changed, and a plurality of bars or plates may be used. In addition, the vibration damping body 27 is bonded and fixed to the inner wall side surface of the case 28, but may be fixed by means other than bonding.
It may be provided on the side surface of the outer wall.

【0037】(実施例4)以下、本発明の実施例4につ
いて、図面を参照しながら説明する。図14は実施例4
の超音波振動子の断面図である。31は超音波振動子、
32は圧電体、34はケース、35は整合層、36は裏
ぶたで、以上は図5の構成と同様なものである。図5の
構成と異なるのは、ケース34の外壁側面に制振体33
を設けた点である。なお動作原理は実施例1と同様なの
で省略する。
Embodiment 4 Hereinafter, Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 14 shows the fourth embodiment.
3 is a sectional view of the ultrasonic transducer of FIG. 31 is an ultrasonic transducer,
Reference numeral 32 denotes a piezoelectric body, reference numeral 34 denotes a case, reference numeral 35 denotes a matching layer, reference numeral 36 denotes a back cover. The above is the same as the configuration shown in FIG. 5 is different from the configuration in FIG.
Is provided. The principle of operation is the same as that of the first embodiment, and a description thereof will be omitted.

【0038】例えば厚みが50μmのポリイミドと25
μmのシリコン系の接着剤からなるカプトンテープを制
振体33として用いる。シリコン系接着剤は低温でも硬
度が変化しにくいので広い温度範囲で弾性体として用い
ることが可能である。またポリイミドは制振体33の質
量を増加させて、制振効果を増加させる作用を有す。ケ
ース34に圧電体32と整合層35を接着し、裏ぶた3
6を電気溶接したのち、ケース34の外壁側面にカプト
ンテープを数周巻付けて制振体33を構成する。超音波
振動子31の200kHz付近の共振は、制振体33を設
けることにより共振が少しだけ弱められることを確認し
た。これは弾性体である制振体33がケース34の振動
エネルギを吸収、損失させ、機械的Qを低減したためと
考えられる。
For example, polyimide having a thickness of 50 μm and 25
A Kapton tape made of a silicon-based adhesive of μm is used as the vibration damper 33. Since the hardness of the silicone-based adhesive hardly changes even at a low temperature, it can be used as an elastic body in a wide temperature range. In addition, polyimide has a function of increasing the mass of the damping body 33 and increasing the damping effect. The piezoelectric body 32 and the matching layer 35 are bonded to the case 34,
6 is electrically welded, and a Kapton tape is wound around the outer wall side surface of the case 34 several times to form the vibration damping body 33. It was confirmed that the resonance at around 200 kHz of the ultrasonic vibrator 31 was slightly weakened by providing the vibration damper 33. This is probably because the vibration damper 33, which is an elastic body, absorbed and lost the vibration energy of the case 34 and reduced the mechanical Q.

【0039】上記構成の超音波振動子31を用いた超音
波流量計で温度変化によるゼロ点の変動を測定した実験
では、実施例1の図11とほぼ等しい結果が得られた。
以上のように圧電体32とケース34は200kHzの不
要振動モードがあっても、ケース34に弾性体からなる
制振体33を設けて超音波振動子31の共振を弱めれ
ば、温度変化に依存せずゼロ点が安定することがわか
る。さらに制振体33は非常に薄いため、超音波振動子
31をあまり大きくすることなくゼロ点の安定性が向上
できる。
In an experiment in which the change of the zero point due to the temperature change was measured by the ultrasonic flowmeter using the ultrasonic vibrator 31 having the above configuration, a result almost equal to that of FIG. 11 of the first embodiment was obtained.
As described above, even if the piezoelectric body 32 and the case 34 have an unnecessary vibration mode of 200 kHz, if the vibration suppressor 33 made of an elastic body is provided in the case 34 to weaken the resonance of the ultrasonic vibrator 31, temperature change may occur. It can be seen that the zero point is stable without depending on it. Further, since the vibration damper 33 is very thin, the stability of the zero point can be improved without making the ultrasonic transducer 31 too large.

【0040】なお実施例4では制振体33はポリイミド
とシリコン系接着剤からなるカプトンテープをケース3
3の外壁に巻付けて構成するとしたが、カプトンテープ
以外のテープでも構わないし、筒状やリング状のゴム成
形品をケース33の外壁や内壁にはめ込む構成や、ケー
ス34の外壁や内壁にゴムあるいは制振塗料などを塗布
して構成しても構わない。
In the fourth embodiment, the vibration damper 33 is made of a Kapton tape made of polyimide and a silicone-based adhesive.
3, a tape other than Kapton tape may be used. A cylindrical or ring-shaped rubber molded product may be fitted on the outer or inner wall of the case 33, or a rubber may be formed on the outer or inner wall of the case 34. Alternatively, it may be configured by applying a damping paint or the like.

【0041】(実施例5)以下、本発明の実施例5につ
いて、図面を参照しながら説明する。図15は実施例5
の超音波振動子の断面図である。37は超音波振動子、
38は圧電体、39はケース、41は整合層、42は裏
ぶたで、以上は図5の構成と同様なものである。図5の
構成と異なるのは、ケース39の側壁にケース39の剛
性を高めるため天部と同心円状の折り曲げ部40を設け
た点である。なお動作原理は実施例1と同様なので省略
する。
(Embodiment 5) Hereinafter, Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 15 shows the fifth embodiment.
3 is a sectional view of the ultrasonic transducer of FIG. 37 is an ultrasonic transducer,
Reference numeral 38 denotes a piezoelectric body, 39 denotes a case, 41 denotes a matching layer, and 42 denotes a back cover. The above is the same as the configuration shown in FIG. The difference from the configuration of FIG. 5 is that a bent portion 40 concentric with the top portion is provided on the side wall of the case 39 to increase the rigidity of the case 39. The principle of operation is the same as that of the first embodiment, and a description thereof will be omitted.

【0042】厚み0.2mmのステンレス板から天部43
を有するケース39を成型加工する。このとき、側壁に
は天部43と同心円状の折り曲げ部40を同時に成型加
工する。天部43の内壁側に圧電体38、外壁側に整合
層41を接着固定し、裏ぶた42を電気溶接して超音波
振動子37を組み立てる。ケース39は実施例1のケー
ス13とほぼ同じ構成をしているが、折り曲げ部40が
設けられたため剛性が増大し側壁部は振動しにくくな
る。またケース39の共振周波数は200kHzよりも高
周波側にシフトし、圧電体38の不要振動モードの周波
数とは異なる周波数となる。このように圧電体38に2
00kHzの不要振動モードが存在しても、折り曲げ部4
0を設けてケース39の剛性を増大させれば、ケース3
9に制振体などの部品を取り付けたり、大きさを変えた
りしなくても容易に温度変化に依存しない安定したゼロ
点が得られる。
The stainless steel plate having a thickness of 0.2 mm
Is molded. At this time, a bent portion 40 concentric with the ceiling portion 43 is simultaneously formed on the side wall. The piezoelectric body 38 is adhered and fixed to the inner wall side of the top part 43 and the matching layer 41 is adhered and fixed to the outer wall side, and the back cover 42 is electrically welded to assemble the ultrasonic vibrator 37. Although the case 39 has substantially the same configuration as the case 13 of the first embodiment, the rigidity is increased due to the provision of the bent portion 40, and the side wall portion is less likely to vibrate. The resonance frequency of the case 39 shifts to a higher frequency side than 200 kHz, and is different from the frequency of the unnecessary vibration mode of the piezoelectric body 38. Thus, the piezoelectric body 38
Even if an unnecessary vibration mode of 00 kHz exists, the bent portion 4
0 to increase the rigidity of the case 39, the case 3
A stable zero point that does not depend on temperature changes can be easily obtained without attaching a component such as a vibration damper to 9 or changing its size.

【0043】なお実施例5では折り曲げ部40を天部4
3と同心円状に構成するとしたが、折り曲げ部40は2
ケ所以上設けても良く、例えば図16に示すように、複
数のびーど43や、図17に示すように縦方向に折り曲
げ部44を設けても構わない。また圧電体が例えば四角
形の場合、図18のように天部45が四角形に類似した
形状となるよう成型加工するとケースに内包された圧電
体の方向がわかるようになり、流量測定部1への取付が
容易となる。なお圧電体が四角形以外の多角形の場合、
少なくとも天部の形状は圧電体の形状に合わせて変化さ
せればいいということは言うまでもない。
In the fifth embodiment, the bent portion 40 is
3 and the bent portion 40 is formed as a concentric circle.
For example, a plurality of beads 43 may be provided as shown in FIG. 16, or a bent portion 44 may be provided in the vertical direction as shown in FIG. When the piezoelectric body is, for example, a square, if the top part 45 is formed into a shape similar to a square as shown in FIG. 18, the direction of the piezoelectric body contained in the case can be understood, and Mounting becomes easy. If the piezoelectric body is a polygon other than a square,
It goes without saying that at least the shape of the top portion may be changed according to the shape of the piezoelectric body.

【0044】なお、実施例1、3〜5ではケースがステ
ンレスとしたが、非測定流体中で使用可能な材料ならな
んでも良い。またケースの厚みを0.2mmとしたが、こ
の厚みよりも厚くても薄くても構わないし、ケース全体
の厚みを同一にする必要もない。また圧電体の使用周波
数を500kHz、不要振動周波数を200kHzとしたが、
使用する圧電体の形状や振動モードのより使用周波数や
不要振動周波数が変化することは言うまでもない。
In the first, third to fifth embodiments, the case is made of stainless steel. However, any material that can be used in the non-measuring fluid may be used. Although the thickness of the case is 0.2 mm, it may be thicker or thinner than this thickness, and it is not necessary to make the thickness of the entire case the same. Also, the operating frequency of the piezoelectric body was 500 kHz, and the unnecessary vibration frequency was 200 kHz.
It goes without saying that the used frequency and the unnecessary vibration frequency change depending on the shape and vibration mode of the piezoelectric body used.

【0045】[0045]

【発明の効果】以上の説明から明らかなように本発明の
超音波流量計によれば次の効果が得られる。
As is apparent from the above description, the following effects can be obtained according to the ultrasonic flowmeter of the present invention.

【0046】第1の超音波流量計は、被測定流体が流れ
る流量測定部と、この流量測定部に設けられ超音波を送
受信する一対の超音波振動子と、一方の前記超音波振動
子を駆動する駆動回路と、他方の前記超音波振動子に接
続され超音波パルスを検知する受信検知回路と、超音波
パルスの伝搬時間を測定するタイマと、駆動回路とタイ
マを制御する制御部と、タイマの出力より流量を演算に
よって求める演算部を備え、流れが無い状態の測定結果
への温度変化による影響が低減されるように一対の超音
波振動子を構成したため、温度変化によるゼロ点の安定
性の高い超音波流量計を得ることができる。
The first ultrasonic flow meter includes a flow measuring unit through which a fluid to be measured flows, a pair of ultrasonic transducers provided in the flow measuring unit for transmitting and receiving ultrasonic waves, and one of the ultrasonic transducers. A drive circuit for driving, a reception detection circuit connected to the other ultrasonic transducer and detecting an ultrasonic pulse, a timer for measuring the propagation time of the ultrasonic pulse, and a control unit for controlling the drive circuit and the timer, Equipped with a calculation unit that calculates the flow rate from the output of the timer by calculation, and a pair of ultrasonic vibrators are configured to reduce the effect of temperature change on the measurement result when there is no flow, so the zero point is stabilized by temperature change It is possible to obtain an ultrasonic flowmeter having high performance.

【0047】第2の超音波流量計は、一対の超音波振動
子は不要振動モードの影響が低減するよう構成したた
め、温度変化によるゼロ点の安定性の高い超音波流量計
を得ることができる。
In the second ultrasonic flow meter, the pair of ultrasonic vibrators are configured so that the influence of the unnecessary vibration mode is reduced, so that an ultrasonic flow meter having high stability of the zero point due to a temperature change can be obtained. .

【0048】第3の超音波流量計は、一対の超音波振動
子は電気信号と機械的振動を相互に変換する圧電体と圧
電体の外側にケースを備え、圧電体の不要振動モードの
共振周波数とケースの共振周波数が異なる周波数となる
ように構成したため、不要振動モードの影響を低減でき
温度変化によるゼロ点の安定性の高い超音波流量計を得
ることができる。
In the third ultrasonic flowmeter, the pair of ultrasonic transducers includes a piezoelectric body for converting an electric signal and mechanical vibration to each other, and a case outside the piezoelectric body. Since the configuration is such that the frequency and the resonance frequency of the case are different from each other, it is possible to reduce the influence of the unnecessary vibration mode and obtain an ultrasonic flowmeter with high stability of the zero point due to a temperature change.

【0049】第4の超音波流量計は、一対の超音波振動
子は電気信号と機械的振動を相互に変換する圧電体と圧
電体の外側にケースを備え、圧電体の不要振動モードの
周波数が使用する周波数より高周波となるように構成し
たため不要振動モードの影響を低減でき、温度変化によ
るゼロ点の安定性が高い超音波流量計を得ることができ
る。
The fourth ultrasonic flowmeter has a pair of ultrasonic vibrators each including a piezoelectric body for converting an electric signal and mechanical vibration to each other and a case outside the piezoelectric body, and a frequency of an unnecessary vibration mode of the piezoelectric body. Is configured to be higher in frequency than the frequency used, the influence of the unnecessary vibration mode can be reduced, and an ultrasonic flowmeter having high stability of the zero point due to a temperature change can be obtained.

【0050】第5の超音波流量計は、一対の超音波振動
子は電気信号と機械的振動を相互に変換する圧電体と圧
電体の外側にケースを備え、ケースの振動を阻害するよ
うケースに制振体を設けたため不要振動モードの影響を
低減でき、温度変化によるゼロ点の安定性の高い超音波
流量計を得ることができる。
In the fifth ultrasonic flowmeter, the pair of ultrasonic transducers includes a piezoelectric body for converting an electric signal and mechanical vibration to each other, and a case outside the piezoelectric body. Since the vibration damping member is provided in the apparatus, the influence of the unnecessary vibration mode can be reduced, and an ultrasonic flowmeter having a high zero point stability due to a temperature change can be obtained.

【0051】本発明の第6の形態の超音波流量計は、第
5の形態の超音波流量計において、制振体が剛体からな
るためケースの質量を増大させて不要振動を阻害し不要
振動モードの影響を低減でき、温度変化によるゼロ点の
安定性が高い超音波流量計を得ることができる。
The ultrasonic flowmeter according to the sixth embodiment of the present invention is different from the ultrasonic flowmeter according to the fifth embodiment in that the vibration damper is made of a rigid body, so that the mass of the case is increased to prevent unnecessary vibration and to reduce unnecessary vibration. The influence of the mode can be reduced, and an ultrasonic flowmeter having high stability of a zero point due to a temperature change can be obtained.

【0052】第7の超音波流量計は、制振体が弾性体か
らなるためケースの不要振動を弾性体で損失させ不要振
動モードの影響を低減でき、温度変化によるゼロ点の安
定性が高い超音波流量計を得ることができる。
In the seventh ultrasonic flowmeter, since the vibration damper is made of an elastic body, unnecessary vibration of the case can be lost by the elastic body to reduce the influence of the unnecessary vibration mode, and the zero point stability due to temperature change is high. An ultrasonic flow meter can be obtained.

【0053】第8の超音波流量計は、一対の超音波振動
子は電気信号と機械的振動を相互に変換する圧電体と圧
電体の外側にケースを備え、ケースは不要な振動を阻害
するように側壁部に折り曲げ部を設けたため不要振動モ
ードの影響を低減でき、温度変化によるゼロ点の安定性
が高い超音波流量計を得ることができる。
In the eighth ultrasonic flowmeter, the pair of ultrasonic transducers has a piezoelectric body for converting electric signals and mechanical vibrations mutually and a case outside the piezoelectric body, and the case inhibits unnecessary vibrations. Since the bent portion is provided on the side wall as described above, the influence of the unnecessary vibration mode can be reduced, and an ultrasonic flowmeter having high stability of the zero point due to the temperature change can be obtained.

【0054】第9の超音波流量計は、折り曲げ部は圧電
体の方向がわかるように設けられたため、圧電体の方向
がわかるようになり組立てが容易な超音波流量計を得る
ことができる。
In the ninth ultrasonic flowmeter, since the bent portion is provided so that the direction of the piezoelectric body can be recognized, the direction of the piezoelectric body can be recognized, and an ultrasonic flowmeter that can be easily assembled can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における超音波流量計のブロ
ック図
FIG. 1 is a block diagram of an ultrasonic flow meter according to a first embodiment of the present invention.

【図2】同流量計において周波数差df2が0kHzの場
合について計算した特性図
FIG. 2 is a characteristic diagram calculated for the flow meter when the frequency difference df2 is 0 kHz.

【図3】同流量計において周波数差df2が1kHzの場
合について計算した特性図
FIG. 3 is a characteristic diagram calculated when the frequency difference df2 is 1 kHz in the same flowmeter.

【図4】同流量計において周波数差df2が5kHzの場
合について計算した特性図
FIG. 4 is a characteristic diagram calculated in a case where a frequency difference df2 is 5 kHz in the same flowmeter.

【図5】同流量計における超音波振動子の断面図FIG. 5 is a sectional view of an ultrasonic transducer in the flow meter.

【図6】同流量計における超音波振動子の断面図FIG. 6 is a sectional view of an ultrasonic transducer in the flow meter.

【図7】同流量計における圧電体(縦横溝)の外観斜視
FIG. 7 is an external perspective view of a piezoelectric body (length and width grooves) in the flow meter.

【図8】同流量計における圧電体(縦溝)のインピーダ
ンス特性図
FIG. 8 is an impedance characteristic diagram of a piezoelectric body (vertical groove) in the flow meter.

【図9】同流量計における圧電体(縦横溝)のインピー
ダンス特性図
FIG. 9 is an impedance characteristic diagram of a piezoelectric body (length and width grooves) in the flow meter.

【図10】同流量計において縦溝の圧電体を用いて測定
した特性図
FIG. 10 is a characteristic diagram measured by using a piezoelectric material in a vertical groove in the flow meter.

【図11】同流量計において縦横溝の圧電体を用いて測
定した特性図
FIG. 11 is a characteristic diagram of the flow meter measured using piezoelectric bodies in vertical and horizontal grooves.

【図12】本発明の実施例2における超音波振動子の断
面図
FIG. 12 is a sectional view of an ultrasonic vibrator according to a second embodiment of the present invention.

【図13】本発明の実施例3における超音波振動子の断
面図
FIG. 13 is a sectional view of an ultrasonic transducer according to a third embodiment of the present invention.

【図14】本発明の実施例4における超音波振動子の断
面図
FIG. 14 is a sectional view of an ultrasonic transducer according to a fourth embodiment of the present invention.

【図15】本発明の実施例5における超音波振動子の断
面図
FIG. 15 is a sectional view of an ultrasonic transducer according to a fifth embodiment of the present invention.

【図16】同超音波振動子の変形例1の断面図FIG. 16 is a sectional view of Modification Example 1 of the ultrasonic transducer.

【図17】同超音波振動子の変形例2の側面図FIG. 17 is a side view of a modified example 2 of the ultrasonic transducer.

【図18】同超音波振動子の変形例3の外観図FIG. 18 is an external view of Modification 3 of the ultrasonic transducer.

【符号の説明】[Explanation of symbols]

1 流量測定部 2、3、20、25、31、37 超音波振動子 5 駆動回路 7 受信検知回路 8 タイマ 9 演算部 10 制御部 12、21、26、32、38 圧電体 13、22、28、34、39 ケース 27、33 制振体 DESCRIPTION OF SYMBOLS 1 Flow rate measurement part 2, 3, 20, 25, 31, 37 Ultrasonic vibrator 5 Drive circuit 7 Reception detection circuit 8 Timer 9 Calculation part 10 Control part 12, 21, 26, 32, 38 Piezoelectric body 13, 22, 28 , 34, 39 Case 27, 33 Damper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04R 1/44 330 H04R 1/44 330D 3/00 330 3/00 330 17/00 330 17/00 330Y (72)発明者 橋本 雅彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 佐藤 利春 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F035 DA05 DA14 DA16 DA19 5D019 AA11 BB08 BB12 BB17 EE04 FF02 GG01 5D107 AA10 AA14 CC01 CC10 CC12 CC13 CD02 CD08 FF02 FF07──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04R 1/44 330 H04R 1/44 330D 3/00 330 3/00 330 17/00 330 17/00 330Y ( 72) Inventor Masahiko Hashimoto 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshiharu Sato 1006 Odaka Kadoma, Kadoma City Osaka Pref. Matsushita Electric Industrial Co., Ltd.F-term (reference) 2F035 DA05 DA14 DA16 DA19 5D019 AA11 BB08 BB12 BB17 EE04 FF02 GG01 5D107 AA10 AA14 CC01 CC10 CC12 CC13 CD02 CD08 FF02 FF07

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】被測定流体が流れる流量測定部と、この流
量測定部に設けられ超音波を送受信する一対の超音波振
動子と、一方の前記超音波振動子を駆動する駆動回路
と、他方の前記超音波振動子に接続され超音波パルスを
検知する受信検知回路と、前記超音波パルスの伝搬時間
を測定するタイマと、前記駆動回路と前記タイマを制御
する制御部と、前記タイマの出力より流量を演算によっ
て求める演算部とを備え、流れが無い状態の測定結果へ
の温度変化による影響が低減されるように前記一対の超
音波振動子を構成した超音波流量計。
1. A flow rate measuring unit through which a fluid to be measured flows, a pair of ultrasonic transducers provided in the flow measuring unit for transmitting and receiving ultrasonic waves, a driving circuit for driving one ultrasonic transducer, and the other. A reception detection circuit connected to the ultrasonic transducer for detecting an ultrasonic pulse, a timer for measuring a propagation time of the ultrasonic pulse, a control unit for controlling the driving circuit and the timer, and an output of the timer An ultrasonic flowmeter, comprising: a calculation unit for further calculating a flow rate, wherein the pair of ultrasonic vibrators are configured to reduce an influence of a temperature change on a measurement result in a state where there is no flow.
【請求項2】一対の超音波振動子は不要振動モードの影
響が低減するよう構成した請求項1記載の超音波流量
計。
2. The ultrasonic flowmeter according to claim 1, wherein the pair of ultrasonic vibrators are configured to reduce the influence of an unnecessary vibration mode.
【請求項3】一対の超音波振動子は電気信号と機械的振
動を相互に変換する圧電体と前記圧電体の外側にケース
を備え、前記圧電体の不要振動モードの共振周波数と前
記ケースの共振周波数が異なる周波数となるように構成
した請求項2記載の超音波流量計。
3. A pair of ultrasonic vibrators each include a piezoelectric body for mutually converting an electric signal and mechanical vibration and a case outside the piezoelectric body, and a resonance frequency of an unnecessary vibration mode of the piezoelectric body and a case frequency of the case. 3. The ultrasonic flow meter according to claim 2, wherein the resonance frequencies are different.
【請求項4】一対の超音波振動子は電気信号と機械的振
動を相互に変換する圧電体と前記圧電体の外側にケース
を備え、前記圧電体の不要振動モードの周波数が使用す
る周波数より高周波となるように構成した請求項2記載
の超音波流量計。
4. A pair of ultrasonic vibrators include a piezoelectric body for mutually converting an electric signal and mechanical vibration and a case outside the piezoelectric body, and a frequency of an unnecessary vibration mode of the piezoelectric body is higher than a frequency used. 3. The ultrasonic flowmeter according to claim 2, wherein the ultrasonic flowmeter is configured to have a high frequency.
【請求項5】一対の超音波振動子は電気信号と機械的振
動を相互に変換する圧電体と前記圧電体の外側にケース
を備え、前記ケースの振動を阻害するよう前記ケースに
制振体を設けた請求項2記載の超音波流量計。
5. A pair of ultrasonic vibrators each include a piezoelectric body for mutually converting an electric signal and mechanical vibration and a case outside the piezoelectric body, and a vibration damper is provided on the case so as to inhibit the vibration of the case. The ultrasonic flowmeter according to claim 2, further comprising:
【請求項6】制振体が剛体からなる請求項5記載の超音
波流量計。
6. The ultrasonic flowmeter according to claim 5, wherein the vibration damper is made of a rigid body.
【請求項7】制振体が弾性体からなる請求項5記載の超
音波流量計。
7. The ultrasonic flowmeter according to claim 5, wherein the vibration damper is made of an elastic material.
【請求項8】一対の超音波振動子は電気信号と機械的振
動を相互に変換する圧電体と前記圧電体の外側に側壁部
を有するケースを備え、前記側壁部に折り曲げ部を設け
た請求項2記載の超音波流量計。
8. A pair of ultrasonic transducers comprising: a piezoelectric body for mutually converting an electric signal and mechanical vibration; and a case having a side wall outside the piezoelectric body, wherein a bent portion is provided on the side wall. Item 7. An ultrasonic flowmeter according to Item 2.
【請求項9】折り曲げ部は圧電体の方向がわかるように
設けられた請求項8記載の超音波流量計。
9. The ultrasonic flowmeter according to claim 8, wherein the bent portion is provided so that the direction of the piezoelectric body can be recognized.
JP10624399A 1999-04-14 1999-04-14 Ultrasonic transducer and ultrasonic flow meter using it Expired - Fee Related JP3498628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10624399A JP3498628B2 (en) 1999-04-14 1999-04-14 Ultrasonic transducer and ultrasonic flow meter using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10624399A JP3498628B2 (en) 1999-04-14 1999-04-14 Ultrasonic transducer and ultrasonic flow meter using it

Publications (3)

Publication Number Publication Date
JP2000298045A true JP2000298045A (en) 2000-10-24
JP3498628B2 JP3498628B2 (en) 2004-02-16
JP2000298045A5 JP2000298045A5 (en) 2004-08-26

Family

ID=14428684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10624399A Expired - Fee Related JP3498628B2 (en) 1999-04-14 1999-04-14 Ultrasonic transducer and ultrasonic flow meter using it

Country Status (1)

Country Link
JP (1) JP3498628B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188946A (en) * 2000-12-21 2002-07-05 Murata Mfg Co Ltd Ultrasonic sensor
JP2003315122A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
US7162930B2 (en) 2003-04-28 2007-01-16 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor
JP2007201993A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Ultrasonic transducer and ultrasonic flowmeter
JP2007199003A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Ultrasonic transducer and ultrasonic flowmeter
JP2010178017A (en) * 2009-01-29 2010-08-12 Taisei Corp Oscillator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188946A (en) * 2000-12-21 2002-07-05 Murata Mfg Co Ltd Ultrasonic sensor
JP2003315122A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
US7162930B2 (en) 2003-04-28 2007-01-16 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor
JP2007201993A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Ultrasonic transducer and ultrasonic flowmeter
JP2007199003A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Ultrasonic transducer and ultrasonic flowmeter
JP2010178017A (en) * 2009-01-29 2010-08-12 Taisei Corp Oscillator

Also Published As

Publication number Publication date
JP3498628B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP3810430B2 (en) Ultrasonic ranging device
JP4233445B2 (en) Ultrasonic flow meter
JP2960726B2 (en) Device for measuring and / or monitoring the filling level
JP6172533B2 (en) Ultrasonic transducer and ultrasonic flow meter having the same
JP2005164571A (en) Ultrasonic flowmeter and ultrasonic sensor
JPH0771987A (en) Ultrasonic fluid vibration flowmeter
US20100257940A1 (en) Ultrasonic transducer for determining and/or monitoring flow of a measured medium through a measuring tube
JP2008275607A (en) Ultrasonic flow meter
JP3498628B2 (en) Ultrasonic transducer and ultrasonic flow meter using it
JP2008232801A (en) Ultrasonic transducer and ultrasonic level gage
US6366675B1 (en) Sound pressure detecting system
JP2000298045A5 (en)
JP3436179B2 (en) Ultrasonic flowmeter and flow measurement method
JP2003014515A (en) Ultrasonic flowmeter
JP3324720B2 (en) Flow velocity measuring device
JP3708226B2 (en) Flow velocity measuring device
JP6149250B2 (en) Ultrasonic flow meter
JP3562261B2 (en) Ultrasonic transducer and ultrasonic flowmeter using the same
JP2011007764A (en) Ultrasonic level meter
JP2011007763A (en) Ultrasonic flowmeter
JP5533332B2 (en) Ultrasonic flow meter
JP2004294181A (en) Ultrasonic oscillator and fluid flow measuring device using it
JPH0618245Y2 (en) Ultrasonic sensor
JP3738891B2 (en) Ultrasonic flow meter
JPH1114649A (en) Flow-rate measuring device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3498628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees