JP2007201993A - Ultrasonic transducer and ultrasonic flowmeter - Google Patents

Ultrasonic transducer and ultrasonic flowmeter Download PDF

Info

Publication number
JP2007201993A
JP2007201993A JP2006020271A JP2006020271A JP2007201993A JP 2007201993 A JP2007201993 A JP 2007201993A JP 2006020271 A JP2006020271 A JP 2006020271A JP 2006020271 A JP2006020271 A JP 2006020271A JP 2007201993 A JP2007201993 A JP 2007201993A
Authority
JP
Japan
Prior art keywords
ultrasonic transducer
ultrasonic
piezoelectric body
identification means
terminal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006020271A
Other languages
Japanese (ja)
Inventor
Akihisa Adachi
明久 足立
Masato Sato
真人 佐藤
Yukinori Ozaki
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006020271A priority Critical patent/JP2007201993A/en
Publication of JP2007201993A publication Critical patent/JP2007201993A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic transducer which estimates a direction of a piezoelectric material having an anisotropy sealed by a case and a terminal strip from an appearance of the ultrasonic transducer. <P>SOLUTION: In the ultrasonic transducer 9 comprised of the piezoelectric material 21 having the anisotropy and the terminal strip 19 connected to a flange portion 18a as sealing the piezoelectric material 21, the direction of the piezoelectric material 21 is estimated from the appearance of the ultrasonic transducer 9, a deterioration of a transceiver sensitivity is prevented, and a reduction of a measuring accuracy is prevented, by arranging the terminal strip 19 so as to suit a line to join external electrode terminals 22 and 23 to the direction of the piezoelectric material 21. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波パスルの送受信を行う超音波送受波器およびこの超音波送受波器を用いて気体や液体の流量や流速の計測を行う超音波流量計に関するものである。   The present invention relates to an ultrasonic transducer that performs transmission and reception of ultrasonic pulses and an ultrasonic flowmeter that measures the flow rate and flow velocity of gas and liquid using the ultrasonic transducer.

従来、この種の超音波流量計に用いる超音波送受波器は、図9、図10に示すように従来の超音波送受波器1は有天筒状のケース2の天部3の内壁面に圧電体4を接着固定し、さらにフランジ部5に端子板6を接合して圧電体4を封止しすることにより、可燃性流体の流量を計測するときの安全性や圧電体の信頼性を高める構造としていた(例えば、特許文献1参照)。さらに圧電体4の方向がわかるようにケ?ス2には折り曲げ部7が設けられており、外観から観察不能な圧電体4の方向がわかるように工夫されていた。
特開2000−298045号公報
Conventionally, as shown in FIGS. 9 and 10, the ultrasonic transducer used in this type of ultrasonic flowmeter is the inner wall surface of the top portion 3 of the celestial cylindrical case 2. The piezoelectric body 4 is bonded and fixed, and the terminal plate 6 is joined to the flange portion 5 to seal the piezoelectric body 4, so that the safety and the reliability of the piezoelectric body are measured when the flow rate of the flammable fluid is measured. (For example, refer to Patent Document 1). Further, the case 2 is provided with a bent portion 7 so that the direction of the piezoelectric body 4 can be seen, and it has been devised so that the direction of the piezoelectric body 4 that cannot be observed can be seen from the appearance.
JP 2000-298045 A

しかしながら、前記従来の構成では、折り曲げ部が外部から観察できない例えば超音波流量計の流量測定部に一対の超音波送受波器を対向させて取り付ける場合には、超音波流量計の組立工程で圧電体の方向を推定することができない。このため圧電体4を所定の方向に設定することができず、送受信感度が低下するため計測精度が低下するという課題を有していた。   However, in the conventional configuration, when a pair of ultrasonic transducers are mounted facing each other on the flow rate measurement unit of the ultrasonic flowmeter, for example, the bent portion cannot be observed from the outside, the piezoelectric flow meter is assembled in the ultrasonic flowmeter assembly process. The direction of the body cannot be estimated. For this reason, the piezoelectric body 4 cannot be set in a predetermined direction, and the transmission / reception sensitivity is lowered, so that the measurement accuracy is lowered.

本発明は前記従来の課題を解決するもので、ケースと端子板で封止した異方性を有す圧電体の向きを超音波送受波器の外観から推定可能とする超音波送受波器を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and provides an ultrasonic transducer capable of estimating the direction of an anisotropic piezoelectric body sealed with a case and a terminal plate from the appearance of the ultrasonic transducer. It is intended to provide.

前記従来の課題を解決するために、本発明の超音波送受波器は、天部と側壁部とフランジ部を有する有天筒状のケースと、その天部の内壁面に接続された異方性を有する圧電体と、圧電体を封止するようにフランジ部に接続された端子板からなる超音波送受波器において、前記超音波送受波器の外観から圧電体の方向を推定可能とする方向識別手段を構成したものである。   In order to solve the above-described conventional problems, an ultrasonic transducer according to the present invention includes a ceiling-shaped case having a top portion, a side wall portion, and a flange portion, and an anisotropic body connected to the inner wall surface of the top portion. In an ultrasonic transducer comprising a piezoelectric body having a property and a terminal plate connected to a flange so as to seal the piezoelectric body, the direction of the piezoelectric body can be estimated from the appearance of the ultrasonic transducer It constitutes a direction identification means.

これにより一対の超音波送受波器を対向させて利用する場合、超音波送受波器の方向識別手段を用いれば圧電体の向きが所定の方向になるように配置することができる。   Thus, when a pair of ultrasonic transducers are used facing each other, the direction of the piezoelectric body can be arranged in a predetermined direction by using the direction identification means of the ultrasonic transducer.

ケースと端子板で封止した異方性を有す圧電体の向きを超音波送受波器の外観から推定することが可能となり、超音波送受波器の内部に封止された圧電体の向きを制御することにより送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   It is possible to estimate the orientation of the anisotropic piezoelectric body sealed with the case and terminal board from the appearance of the ultrasonic transducer, and the orientation of the piezoelectric body sealed inside the ultrasonic transducer By controlling this, it is possible to prevent a decrease in transmission / reception sensitivity and a decrease in measurement accuracy.

第1の発明は、形状の異方性を有す圧電体をケース内に封止した超音波送受波器であって、超音波送受波器の外観から圧電体の配置情報を推定可能とする方向識別手段を備えたため、超音波送受波器の内部に封止された圧電体の向きを制御することにより送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   1st invention is the ultrasonic transducer which sealed the piezoelectric material which has anisotropy of shape in a case, Comprising: The arrangement | positioning information of a piezoelectric material can be estimated from the external appearance of an ultrasonic transducer Since the direction identification means is provided, it is possible to prevent a decrease in transmission / reception sensitivity by controlling the direction of the piezoelectric body sealed inside the ultrasonic transducer, and it is possible to prevent a decrease in measurement accuracy. .

第2の発明は、特に、第1の発明の超音波送受波器を天部と側壁部とフランジ部を有する有天筒状のケースと、天部の内壁面に接続された異方性を有する圧電体と、圧電体を封止するようにフランジ部に接続された端子板を備えたため、圧電体を封止することができ、超音波送受波器の長期信頼性を向上できる。   In particular, the second invention is characterized in that the ultrasonic transducer according to the first invention has an anisotropy connected to a ceiling-like case having a top portion, a side wall portion, and a flange portion, and an inner wall surface of the top portion. Since the piezoelectric body having the terminal plate connected to the flange portion so as to seal the piezoelectric body is provided, the piezoelectric body can be sealed, and the long-term reliability of the ultrasonic transducer can be improved.

第3の発明は、特に、第1または第2の発明の超音波送受波器の方向識別手段は端子板の外側表面に設けたため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   In the third invention, in particular, since the direction identification means of the ultrasonic transducer of the first or second invention is provided on the outer surface of the terminal plate, the piezoelectric body sealed inside the ultrasonic transducer is provided. It becomes easy to control the direction, can prevent the transmission / reception sensitivity from decreasing, and can prevent the measurement accuracy from decreasing.

第4の発明は、特に、第1または第2の発明の超音波送受波器の方向識別手段は端子板に設けた複数の外部電極端子の中の所定の2本を結んでできる直線とし、前記方向識別手段が示す方向と圧電体の方向が所定の角度となるように設定するため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   In the fourth invention, in particular, the direction identification means of the ultrasonic transducer of the first or second invention is a straight line formed by connecting predetermined two of the plurality of external electrode terminals provided on the terminal plate, Since the direction indicated by the direction identification means and the direction of the piezoelectric body are set at a predetermined angle, the direction of the piezoelectric body sealed inside the ultrasonic transducer is easily controlled, and the transmission / reception sensitivity is reduced. Therefore, it is possible to prevent a decrease in measurement accuracy.

第5の発明は、特に、第4の発明の超音波送受波器の端子板に3本以上の外部電極端子を設ける場合であって、方向識別手段に用いる2本の外部電極端子は他の外部電極端子と異なる形状を備えたため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   The fifth invention is particularly the case where three or more external electrode terminals are provided on the terminal plate of the ultrasonic transducer of the fourth invention, and the two external electrode terminals used for the direction identification means are other Because it has a shape different from that of the external electrode terminal, it becomes easy to control the orientation of the piezoelectric body sealed inside the ultrasonic transducer, and it can prevent a decrease in transmission and reception sensitivity and prevent a decrease in measurement accuracy. Is possible.

第6の発明は、特に、第1または第2の発明の超音波送受波器の方向識別手段は超音波送受波器の端子板の外側表面に設けた線状あるいは記号とし、前記方向識別手段が示す方向と圧電体の方向が所定の位置関係となるように設定するため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   In the sixth invention, in particular, the direction identification means of the ultrasonic transducer of the first or second invention is a line or symbol provided on the outer surface of the terminal plate of the ultrasonic transducer, and the direction identification means The direction of the piezoelectric body and the direction of the piezoelectric body are set so as to have a predetermined positional relationship. Therefore, the orientation of the piezoelectric body sealed inside the ultrasonic transducer can be easily controlled, and deterioration of transmission / reception sensitivity is prevented. Therefore, it is possible to prevent a decrease in measurement accuracy.

第7の発明は、特に、第6の発明の超音波送受波器のケースと端子板で圧電体を封止した後に端子板の外側表面に線状あるいは記号からなる方向識別手段を設けたため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   In the seventh aspect of the invention, in particular, since the piezoelectric body is sealed with the case and the terminal plate of the ultrasonic transducer according to the sixth aspect of the invention, the direction identification means consisting of a line or a symbol is provided on the outer surface of the terminal plate. Control of the direction of the piezoelectric body sealed inside the ultrasonic transducer is facilitated, and it is possible to prevent a decrease in transmission / reception sensitivity and a decrease in measurement accuracy.

第8の発明は、特に、第1または第2の発明の超音波送受波器の圧電体の送波・受波面または送波・受波面と対向する面の少なくとも一方の面に1本以上の溝を設け、前記圧電体の配置情報は前記溝の少なくとも1本の溝の方向としたため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。   In the eighth invention, in particular, at least one surface of the piezoelectric body of the ultrasonic wave transmitter / receiver of the first or second invention is at least one of the transmitting / receiving surface or the surface facing the transmitting / receiving surface. Since a groove is provided and the arrangement information of the piezoelectric body is the direction of at least one groove of the groove, it becomes easy to control the direction of the piezoelectric body sealed inside the ultrasonic transducer, and the transmission / reception sensitivity is lowered. Therefore, it is possible to prevent a decrease in measurement accuracy.

第9の発明は、ケースの天部の外壁面に整合層を備えた第2〜第8のいずれかの発明の超音波送受波器であるため、送受信感度を向上させることができ、測定精度を向上させることが可能となる。   The ninth invention is the ultrasonic transducer according to any one of the second to eighth inventions provided with a matching layer on the outer wall surface of the top of the case, so that the transmission / reception sensitivity can be improved and the measurement accuracy can be improved. Can be improved.

第10の発明は、被測定流体が流れる流量測定部と、この流量測定部に設けられ超音波を送受信する第1〜第9のいずれかの発明の一対の超音波振送受波器と、一方の前記超音波送受波器を駆動する駆動回路と、他方の前記超音波送受波器に接続され超音波パルスを検知する受信検知回路と、前記超音波パルスの伝搬時間を測定するタイマと、前記駆動回路と前記タイマを制御する制御部と、前記タイマの出力より流量を演算によって求める演算部とを備えた超音波流量計であって、前記超音波流量計では前記超音波送受波器の前記端子板の外側表面のみ観測可能となるよう配置されており、前記超音波送受波器の取付角
度は一方の超音波送受波器の方向識別手段が示す方向と他方の超音波送受波器の方向識別手段が示す方向が所定の角度となるように設定したため、超音波送受波器の内部に封止された圧電体の向きの制御が容易となり、送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となる。
A tenth aspect of the invention is a flow rate measurement unit through which a fluid to be measured flows, a pair of ultrasonic transmission / reception units according to any one of the first to ninth aspects that are provided in the flow rate measurement unit and transmit / receive ultrasonic waves, A driving circuit for driving the ultrasonic transducer, a reception detection circuit for detecting an ultrasonic pulse connected to the other ultrasonic transducer, a timer for measuring a propagation time of the ultrasonic pulse, An ultrasonic flowmeter comprising a drive circuit, a control unit for controlling the timer, and a calculation unit for calculating a flow rate from an output of the timer, wherein the ultrasonic flowmeter includes the ultrasonic transducer It is arranged so that only the outer surface of the terminal plate can be observed, and the mounting angle of the ultrasonic transducer is the direction indicated by the direction identification means of one ultrasonic transducer and the direction of the other ultrasonic transducer The direction indicated by the identification means is a predetermined angle Therefore, it becomes easy to control the direction of the piezoelectric body sealed inside the ultrasonic transducer, can prevent a decrease in transmission / reception sensitivity, and can prevent a decrease in measurement accuracy. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお図面中で同一符号を付しているものは同一なものであり、詳細な説明は省略する。また、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, what attaches | subjects the same code | symbol in drawing is the same thing, and abbreviate | omits detailed description. Further, the present invention is not limited by this embodiment.

(実施の形態1)
図1は本発明の第1の実施の形態における超音波送受波器を用いた超音波流量計の概略構成図である。図1において、8は被測定流体が流れる流量測定部、9、10は流量測定部8の流れの方向に対し斜めに対向して配置された超音波送受波器、11は超音波送受波器9、10の使用周波数を発信する発振回路、12は発振回路11に接続され超音波送受波器9、10を駆動する駆動回路、13は送受信する超音波送受波器を切り替える切替回路、14は超音波パルスを検知する受信検知回路、15は超音波パルスの伝搬時間を計測するタイマ、16はタイマ15の出力より流量を演算する演算部、17は駆動回路12とタイマ15に制御信号を出力する制御部である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an ultrasonic flowmeter using the ultrasonic transducer according to the first embodiment of the present invention. In FIG. 1, 8 is a flow rate measuring unit through which a fluid to be measured flows, 9, 10 are ultrasonic transducers arranged obliquely with respect to the flow direction of the flow rate measuring unit 8, and 11 is an ultrasonic transducer. Reference numerals 9 and 10 denote oscillation circuits that transmit operating frequencies, reference numeral 12 denotes a drive circuit that is connected to the oscillation circuit 11 and drives the ultrasonic transducers 9 and 10, reference numeral 13 denotes a switching circuit that switches the ultrasonic transducers to be transmitted and received, and reference numeral 14 A reception detection circuit for detecting an ultrasonic pulse, 15 is a timer for measuring the propagation time of the ultrasonic pulse, 16 is a calculation unit for calculating a flow rate from the output of the timer 15, and 17 is a control signal output to the drive circuit 12 and the timer 15 It is a control part.

上記のように構成される超音波流量計の動作を説明する。本実施の形態では被測定流体を都市ガス、超音波流量計として家庭用ガスメ?タを想定し、流量測定部8を構成する材料をアルミニウム合金ダイカストとする。   The operation of the ultrasonic flowmeter configured as described above will be described. In the present embodiment, the gas to be measured is assumed to be a city gas and a household gas meter is assumed to be an ultrasonic flow meter, and the material constituting the flow rate measuring unit 8 is an aluminum alloy die casting.

また超音波送受波器9、10の使用周波数には約500kHzを選択する。発振回路11は例えばコンデンサと抵抗で構成され約500kHzの方形波を発信し、駆動回路11では発振回路11の信号から超音波送受波器9を駆動するため方形波が3波のバースト信号からなる駆動信号を出力可能とする。また測定手段には測定流量の分解能を向上するため、シングアラウンド法を用いる。   In addition, about 500 kHz is selected as the operating frequency of the ultrasonic transducers 9 and 10. The oscillation circuit 11 is composed of, for example, a capacitor and a resistor, and transmits a square wave of about 500 kHz. The drive circuit 11 drives the ultrasonic transducer 9 from the signal of the oscillation circuit 11, and the square wave is composed of a burst signal of three waves. A drive signal can be output. The measuring means uses a single-around method to improve the resolution of the measured flow rate.

制御部17では駆動回路12に送信開始信号を出力すると同時に、タイマ15の時間計測を開始させる。駆動回路12は送信開始信号を受けると超音波送受波器9を駆動し、超音波パルスを送信する。送信された超音波パルスは流量測定部8内を伝搬し超音波送受波器10で受信される。受信された超音波パルスは超音波送受波器10で電気信号に変換され、受信検知回路14に出力される。受信検知回路14では受信信号の受信タイミングを決定し、制御部17に受信検知信号を出力する。制御部17では受信検知信号を受けると、あらかじめ設定した遅延時間td経過後に再び駆動回路12に送信開始信号を出力し、2回目の計測を行う。この動作をN回繰返した後、タイマ15を停止させる。演算部16ではタイマ15で測定した時間を測定回数のNで割り、遅延時間tdを引いて伝搬時間t1を演算する。   The control unit 17 outputs a transmission start signal to the drive circuit 12 and starts time measurement of the timer 15 at the same time. When receiving the transmission start signal, the drive circuit 12 drives the ultrasonic transducer 9 and transmits an ultrasonic pulse. The transmitted ultrasonic pulse propagates through the flow rate measuring unit 8 and is received by the ultrasonic transducer 10. The received ultrasonic pulse is converted into an electrical signal by the ultrasonic transducer 10 and output to the reception detection circuit 14. The reception detection circuit 14 determines the reception timing of the reception signal and outputs the reception detection signal to the control unit 17. Upon receipt of the reception detection signal, the control unit 17 outputs a transmission start signal to the drive circuit 12 again after a preset delay time td has elapsed, and performs the second measurement. After repeating this operation N times, the timer 15 is stopped. The calculation unit 16 calculates the propagation time t1 by dividing the time measured by the timer 15 by the number of times N and subtracting the delay time td.

引き続き切替回路13で駆動回路12と受信検知回路14に接続する超音波送受波器を切り替え、再び制御部17では駆動回路12に送信開始信号を出力すると同時に、タイマ15の時間計測を開始させる。伝搬時間t1の測定と逆に、超音波送受波器10で超音波パルスを送信し、超音波送受波器9で受信する計測をN回繰返し、演算部16で伝搬時間t2を演算する。   Subsequently, the ultrasonic transducer connected to the drive circuit 12 and the reception detection circuit 14 is switched by the switching circuit 13, and the control unit 17 again outputs a transmission start signal to the drive circuit 12 and simultaneously starts time measurement of the timer 15. Contrary to the measurement of the propagation time t1, an ultrasonic pulse is transmitted by the ultrasonic transducer 10 and the measurement received by the ultrasonic transducer 9 is repeated N times, and the propagation time t2 is calculated by the calculation unit 16.

ここで、超音波送受波器9と超音波送受波器10の中心を結ぶ距離をL、空気の無風状態での音速をC、流量測定部8内での流速をV、非測定流体の流れの方向と超音波送受波器9と超音波送受波器10の中心を結ぶ線との角度をθとすると、伝搬時間t1、t2は、
t1=L/(C+Vcosθ) (1)
t2=L/(C−Vcosθ) (2)
で示される。(1)(2)式より音速Cを消去して、流速Vを求めると
V=L/2cosθ(1/t1?1/t2) (3)
が得られる。L、θは既知であるのでt1とt2を測定すれば流速Vが求められる。この流速Vと流量測定部8の面積をS、補正係数をKとすれば、流量Qは
Q=KSV (4)
で演算できる。
Here, the distance connecting the centers of the ultrasonic transducer 9 and the ultrasonic transducer 10 is L, the speed of sound in an airless state is C, the flow velocity in the flow rate measuring unit 8 is V, and the flow of the non-measurement fluid The propagation time t1 and t2 are expressed as follows, where θ is the angle between the direction of and the line connecting the centers of the ultrasonic transducer 9 and the ultrasonic transducer 10.
t1 = L / (C + V cos θ) (1)
t2 = L / (C−Vcos θ) (2)
Indicated by (1) When sonic velocity C is eliminated from equation (2) and flow velocity V is obtained, V = L / 2 cos θ (1 / t1−1 / t2) (3)
Is obtained. Since L and θ are known, the flow velocity V can be obtained by measuring t1 and t2. If the flow velocity V and the area of the flow rate measuring unit 8 are S and the correction coefficient is K, the flow rate Q is Q = KSV (4)
It can be calculated with.

以上のような動作原理で流量計測を行う超音波流量計に用いる超音波送受波器について、図2から図5を用いて説明する。   An ultrasonic transducer used in an ultrasonic flowmeter that performs flow measurement based on the above operation principle will be described with reference to FIGS.

図2は実施の形態1の超音波送受波器の外観図、図3は超音波送受波器の断面図、図4は超音波送受波器に用いる圧電体の外観図である。   2 is an external view of the ultrasonic transducer according to the first embodiment, FIG. 3 is a cross-sectional view of the ultrasonic transducer, and FIG. 4 is an external view of a piezoelectric body used in the ultrasonic transducer.

図2において、超音波送受波器9(超音波送受波器9と超音波送受波器10は同じ構成)は、有天筒状のケース18と、ケース18の天部18aの外側に設けた整合層20と、ケース18のフランジ部18bに接続された端子板19からなる。また図3において、超音波送受波器9は、ケース18の天部18aの内側に接続された圧電体21と、外部電極端子22、23を備えた端子板19と、外部電極端子22と圧電体21を加圧接続する導電ゴム24からなる。また図4のように、超音波送受波器9に用いる圧電体21は、21aと21bの2つ面が電極面であり、長さはL、幅はW、厚みはTである。   In FIG. 2, the ultrasonic transducer 9 (the ultrasonic transducer 9 and the ultrasonic transducer 10 have the same configuration) are provided on the outer side of the top 18 a of the cylindrical case 18 and the top 18 a of the case 18. It consists of a matching layer 20 and a terminal plate 19 connected to the flange portion 18 b of the case 18. 3, the ultrasonic transducer 9 includes a piezoelectric body 21 connected to the inside of the top 18a of the case 18, a terminal plate 19 having external electrode terminals 22 and 23, an external electrode terminal 22, and a piezoelectric element. It consists of a conductive rubber 24 that pressurizes and connects the body 21. As shown in FIG. 4, the piezoelectric body 21 used in the ultrasonic transducer 9 has two surfaces 21a and 21b as electrode surfaces, a length L, a width W, and a thickness T.

例えば、超音波送受波器9に用いる圧電体21の長さをL=8mm、幅をW=3とすると、電極面21a(電極面21aと電極面21bは同じ構成)は長方形となり、形状の異方性を備えた圧電体となる。超音波送受波器9、10に用いている圧電体21の電極面21aが互いに平行となるよう対向させた場合、送受信感度は最も大きくなる。しかし、圧電体21はケース18と端子板19によって封止されているため、電極面21aの方向を観察することができない。さらにケース19が円筒形であるため、電極面21aの方向は時計の針のごとく回転し、その方向は外観から推定することができない。   For example, when the length of the piezoelectric body 21 used in the ultrasonic transducer 9 is L = 8 mm and the width is W = 3, the electrode surface 21a (the electrode surface 21a and the electrode surface 21b have the same configuration) has a rectangular shape. The piezoelectric body has anisotropy. When the electrode surfaces 21a of the piezoelectric bodies 21 used in the ultrasonic transducers 9 and 10 are opposed to each other in parallel, the transmission / reception sensitivity is maximized. However, since the piezoelectric body 21 is sealed by the case 18 and the terminal plate 19, the direction of the electrode surface 21a cannot be observed. Furthermore, since the case 19 is cylindrical, the direction of the electrode surface 21a rotates like a clock hand, and the direction cannot be estimated from the appearance.

そこで、図5のように電極面21aの長辺をAA‘、端子板19に設けた外部電極端子21と22の中心を結ぶ線をBB’とし、長辺AA‘と外部電極端子を結ぶ線BB’が平行となるよう超音波送受波器9を構成する。このように構成することによって、超音波送受波器9、10の外部電極端子を結ぶ線BB’の方向を制御することにより、電極面21aの方向を制御することが可能となる。   Therefore, as shown in FIG. 5, the long side of the electrode surface 21a is AA ', the line connecting the centers of the external electrode terminals 21 and 22 provided on the terminal plate 19 is BB', and the line connecting the long side AA 'and the external electrode terminal The ultrasonic transducer 9 is configured so that BB ′ is parallel. With this configuration, the direction of the electrode surface 21a can be controlled by controlling the direction of the line BB 'connecting the external electrode terminals of the ultrasonic transducers 9 and 10.

ここで流量測定部8に超音波送受波器9、10を取り付ける場合を考える。前述のように圧電体21の電極面21aを平行に対向させるため、外部電極端子を結ぶ線BB‘の方向を制御する。しかし流量測定部8に超音波送受波器9、10を取り付ける場合、2個の超音波送受波器9、10の外部電極22、23を同時に観察することは難しい。そこで、流量測定部8の天面8a(あるいは底面8b)に基準線CC‘を設定し、この基準線CC’と外部電極を結ぶ線BB’が平行となるように、超音波送受波器9、10をそれぞれ取り付ける。その結果、圧電体21の電極面21aを平行に対向させることが可能となり、送受信感度が高くなり、流量計測精度が向上する。   Here, a case where ultrasonic transducers 9 and 10 are attached to the flow rate measuring unit 8 will be considered. As described above, the direction of the line BB 'connecting the external electrode terminals is controlled in order to make the electrode surfaces 21a of the piezoelectric body 21 face each other in parallel. However, when the ultrasonic transducers 9 and 10 are attached to the flow rate measuring unit 8, it is difficult to observe the external electrodes 22 and 23 of the two ultrasonic transducers 9 and 10 at the same time. Therefore, a reference line CC ′ is set on the top surface 8a (or bottom surface 8b) of the flow rate measuring unit 8, and the ultrasonic transducer 9 is set so that the line BB ′ connecting the reference line CC ′ and the external electrode is parallel. 10 is attached. As a result, the electrode surfaces 21a of the piezoelectric body 21 can be made to face each other in parallel, the transmission / reception sensitivity is increased, and the flow rate measurement accuracy is improved.

なお、実施の形態1では圧電体21は長さがL=8mm、幅がW=3mmの直方体としたが、楕円柱や三角柱等の多角柱のように形状に異方性のある圧電体であれば構わない。また、外部電極端子を結ぶ線BB‘と電極面21aの長辺AA’が平行となるよう構成するとしたが、直角で構わないし、管理可能ならば任意の角度に設定しても構わない。また
電極面21aの長辺をAA‘としたが、短辺をAA’としても構わない。また超音波送受波器9に整合層20を備える構成としたが、被測定流体によっては整合層20を備える必要はない。
In the first embodiment, the piezoelectric body 21 is a rectangular parallelepiped having a length of L = 8 mm and a width of W = 3 mm. However, the piezoelectric body 21 is a piezoelectric body having an anisotropic shape such as an elliptical column or a triangular column. It doesn't matter if it exists. In addition, the line BB ′ connecting the external electrode terminals and the long side AA ′ of the electrode surface 21a are configured to be parallel to each other. However, the line BB ′ may be a right angle, and may be set to any angle as long as it can be managed. The long side of the electrode surface 21a is AA ′, but the short side may be AA ′. Further, although the ultrasonic transducer 9 is configured to include the matching layer 20, it is not necessary to include the matching layer 20 depending on the fluid to be measured.

(実施の形態2)
図6は実施の形態2の端子板側から見た超音波送受波器の外観図である。8は流量測定部、8aは流量測定部9の天面、8bは流量測定部8の底面、19は端子板、21aは封止された圧電体21の電極面、22と23は端子板19に備えた外部電極端子で、以上は図5の構成と同様なものである。図5の構成と異なるのは、端子板19に3つめの外部電極端子25を設けた点である。
(Embodiment 2)
FIG. 6 is an external view of the ultrasonic transducer viewed from the terminal board side of the second embodiment. 8 is a flow measurement unit, 8a is a top surface of the flow measurement unit 9, 8b is a bottom surface of the flow measurement unit 8, 19 is a terminal plate, 21a is an electrode surface of the sealed piezoelectric body 21, and 22 and 23 are terminal plates 19. The above is the same as the configuration of FIG. The difference from the configuration of FIG. 5 is that a third external electrode terminal 25 is provided on the terminal plate 19.

例えば、端子板9に外部電極端子が3本あると外部電極端子を結ぶ線BB’が3本引けるため、外部電極端子を結ぶ線BB’と電極面21aの長辺AA‘とを平行に設定することが難しくなる。そこで、外部電極端子22、23の太さを太くし、外部電極端子25を細くする。このように太さの違う外部電極端子22、23、25を用いることにより、太い外部電極端子22、23を結ぶ線をBB‘とすれば、圧電体21の方向を制御することが可能となる。   For example, if there are three external electrode terminals on the terminal plate 9, three lines BB ′ connecting the external electrode terminals can be drawn, so the line BB ′ connecting the external electrode terminals and the long side AA ′ of the electrode surface 21a are set in parallel. It becomes difficult to do. Therefore, the thickness of the external electrode terminals 22 and 23 is increased, and the external electrode terminal 25 is decreased. By using the external electrode terminals 22, 23, and 25 having different thicknesses as described above, if the line connecting the thick external electrode terminals 22 and 23 is BB ′, the direction of the piezoelectric body 21 can be controlled. .

以上のように構成された超音波送受波器の流量測定部8への取付方法、超音波流量計の動作原理は実施の形態1と同様なので省略する。   The method of attaching the ultrasonic transducer configured as described above to the flow rate measuring unit 8 and the operation principle of the ultrasonic flow meter are the same as those in the first embodiment, and therefore will be omitted.

なお、実施の形態2では、外部電極端子22、23を太く、外部電極端子25を細くするとしたが、外部電極端子22、23と外部電極端子25が区別可能ならば、外部電極端子22、23の形状やガラスハーメチックの色などを変更しても構わない。また外部電極端子を3本としたが、外部電極端子22、23の2本と他の外部電極端子が区別できるのであれば、外部電極端子は4本以上あっても構わない。   In the second embodiment, the external electrode terminals 22 and 23 are thick and the external electrode terminal 25 is thin. However, if the external electrode terminals 22 and 23 and the external electrode terminal 25 can be distinguished, the external electrode terminals 22 and 23 are used. You may change the shape and color of the glass hermetic. Although the number of external electrode terminals is three, the number of external electrode terminals may be four or more as long as two external electrode terminals 22 and 23 can be distinguished from other external electrode terminals.

(実施の形態3)
図7は実施の形態3の端子板側から見た超音波送受波器の外観図である。8は流量測定部、8aは流量測定部8の天面、8bは流量測定部8の底面、19は端子板、21aは封止された圧電体21の電極面、22と23は端子板19に備えた外部電極端子で、以上は図5の構成と同様なものである。図5の構成と異なるのは、端子板19に方向識別手段として方向指示線26を設けた点である。
(Embodiment 3)
FIG. 7 is an external view of an ultrasonic transducer viewed from the terminal board side according to the third embodiment. 8 is a flow measurement unit, 8a is a top surface of the flow measurement unit 8, 8b is a bottom surface of the flow measurement unit 8, 19 is a terminal plate, 21a is an electrode surface of the sealed piezoelectric body 21, and 22 and 23 are terminal plates 19. The above is the same as the configuration of FIG. 5 is different from the configuration of FIG. 5 in that a direction indicating line 26 is provided on the terminal board 19 as direction identification means.

電極面21aの長辺AA‘と方向指示線26が平行になるよう端子板19を配置した後に、圧電体21を端子板19で封止する。このような位置関係となるように端子板19を配置すれば、圧電体21の方向を制御することが可能となる。   After the terminal plate 19 is arranged so that the long side AA ′ of the electrode surface 21 a and the direction indicating line 26 are parallel, the piezoelectric body 21 is sealed with the terminal plate 19. If the terminal plate 19 is arranged so as to have such a positional relationship, the direction of the piezoelectric body 21 can be controlled.

以上のように構成された超音波送受波器の流量測定部8への取付方法、超音波流量計の動作原理は実施の形態1と同様なので省略する。   The method of attaching the ultrasonic transducer configured as described above to the flow rate measuring unit 8 and the operation principle of the ultrasonic flow meter are the same as those in the first embodiment, and therefore will be omitted.

なお、実施の形態3では、方向識別手段を方向指示線26としたが、方向指示が可能ならば文字や2次元バーコードなどの記号でも構わない。また電極面21aの長辺AA’と方向指示線26が平行となるよう構成するとしたが、直角で構わないし、管理可能ならば任意の角度に設定しても構わない。   In the third embodiment, the direction identifying means is the direction indicating line 26. However, a symbol such as a character or a two-dimensional bar code may be used if the direction can be specified. Further, the long side AA 'of the electrode surface 21a and the direction indicating line 26 are configured to be parallel to each other, but may be a right angle, or may be set to an arbitrary angle as long as it can be managed.

また実施の形態1〜3では、圧電体21は長さLと幅Wが異なる寸法としたが、電極面21aに設けた電極が長方形等の形状異方性を備えるならば長さLと幅Wが等しい正方形でも構わないし、図8のように電極面21aに溝27を設けた形状でも構わない。   In the first to third embodiments, the piezoelectric body 21 has dimensions different from each other in length L and width W. However, if the electrode provided on the electrode surface 21a has a shape anisotropy such as a rectangle, the length L and width Squares having the same W may be used, or a shape in which the groove 27 is provided on the electrode surface 21a as shown in FIG.

以上のように、本発明にかかる超音波送受波器は、圧電体の向きを超音波送受波器の外観から推定することが可能となるので送受信感度の低下を防止することができ、測定精度の低下を防ぐことが可能となるので、家庭用のガスメータや水道メータや燃料電池の水素ガスの流量計測等の用途にも適用できる。   As described above, since the ultrasonic transducer according to the present invention can estimate the direction of the piezoelectric body from the appearance of the ultrasonic transducer, it is possible to prevent a decrease in transmission / reception sensitivity and to measure accuracy. Therefore, it can be applied to applications such as measurement of hydrogen gas flow rate in household gas meters, water meters, and fuel cells.

本発明の実施の形態1における超音波流量計の概略構成図1 is a schematic configuration diagram of an ultrasonic flow meter according to Embodiment 1 of the present invention. 実施の形態1の超音波送受波器の外観図External view of the ultrasonic transducer of the first embodiment 実施の形態1の超音波送受波器の断面図Sectional view of the ultrasonic transducer of the first embodiment 実施の形態1の圧電体の外観図External view of piezoelectric body of embodiment 1 実施の形態1の超音波送受波器の流量計測部への取り付け構成図FIG. 3 is a diagram showing a configuration of attaching the ultrasonic transducer according to the first embodiment to a flow rate measuring unit. 実施の形態2の端子板側から見た超音波送受波器の外観図External view of ultrasonic transducer viewed from terminal plate side of embodiment 2 実施の形態3の端子板側から見た超音波送受波器の外観図External view of ultrasonic transducer as seen from terminal plate side of embodiment 3 圧電体の一例を示す外観図External view showing an example of a piezoelectric body 従来の超音波送受波器の断面図Cross-sectional view of a conventional ultrasonic transducer 従来の超音波送受波器の外観図External view of conventional ultrasonic transducer

符号の説明Explanation of symbols

8 流量測定部
9 超音波送受波器
10 超音波送受波器
12 駆動回路
14 受信検知回路
15 タイマ
16 演算部
17 制御部
18 ケース
18a 天部
18b フランジ部
19 端子板
20 整合層
21 圧電体
22 外部電極端子
23 外部電極端子
25 外部電極端子
26 方向指示線
27 溝
8 Flow measurement unit 9 Ultrasonic transducer
DESCRIPTION OF SYMBOLS 10 Ultrasonic transducer 12 Drive circuit 14 Reception detection circuit 15 Timer 16 Calculation part 17 Control part 18 Case 18a Top part 18b Flange part 19 Terminal board 20 Matching layer 21 Piezoelectric body 22 External electrode terminal 23 External electrode terminal 25 External electrode terminal 26 Direction indicator 27 Groove

Claims (10)

形状の異方性を有す圧電体をケース内に封止した超音波送受波器であって、前記超音波送受波器の外観から前記圧電体の配置情報を推定可能とする方向識別手段を備えた超音波送受波器。 An ultrasonic transducer in which a piezoelectric body having a shape anisotropy is sealed in a case, and direction identification means that can estimate the arrangement information of the piezoelectric body from the appearance of the ultrasonic transducer Ultrasonic transducer equipped. 天部と側壁部とフランジ部を有する有天筒状のケースと、前記天部の内壁面に接続された異方性を有する圧電体と、前記圧電体を封止するように前記フランジ部に接続された端子板からなる請求項1記載の超音波送受波器。 A cylindrical case having a top part, a side wall part, and a flange part, a piezoelectric body having anisotropy connected to the inner wall surface of the top part, and the flange part so as to seal the piezoelectric body 2. The ultrasonic transducer according to claim 1, comprising a connected terminal plate. 方向識別手段は端子板の外側表面に設けた請求項1または2記載の超音波送受波器。 3. The ultrasonic transducer according to claim 1, wherein the direction identification means is provided on the outer surface of the terminal board. 方向識別手段は端子板に設けた複数の外部電極端子の中の所定の2本を結んでできる直線とし、前記方向識別手段が示す方向と圧電体の方向が所定の角度となるように設定する請求項1または2記載の超音波送受波器。 The direction identification means is a straight line formed by connecting predetermined two of the plurality of external electrode terminals provided on the terminal plate, and the direction indicated by the direction identification means and the direction of the piezoelectric body are set at a predetermined angle. The ultrasonic transducer according to claim 1 or 2. 端子板に3本以上の外部電極端子を設ける場合であって、方向識別手段に用いる2本の外部電極端子は他の外部電極端子と異なる形状を備えた請求項4記載の超音波送受波器。 5. The ultrasonic transducer according to claim 4, wherein three or more external electrode terminals are provided on the terminal plate, and the two external electrode terminals used for the direction identification means have different shapes from the other external electrode terminals. . 方向識別手段は超音波送受波器の端子板の外側表面に設けた線状あるいは記号とし、前記方向識別手段が示す方向と圧電体の方向が所定の位置関係となるように設定する請求項1または2記載の超音波送受波器。 The direction identification means is a line or symbol provided on the outer surface of the terminal plate of the ultrasonic transducer, and is set so that the direction indicated by the direction identification means and the direction of the piezoelectric body have a predetermined positional relationship. Or the ultrasonic transducer according to 2. ケースと端子板で圧電体を封止した後に端子板の外側表面に線状あるいは記号からなる方向識別手段を設けた請求項6記載の超音波送受波器。 The ultrasonic transducer according to claim 6, wherein after the piezoelectric body is sealed with the case and the terminal plate, linear or symbol direction identification means is provided on the outer surface of the terminal plate. 圧電体の送波・受波面または送波・受波面と対向する面の少なくとも一方の面に1本以上の溝を設け、前記圧電体の配置情報は前記溝の少なくとも1本の溝の方向とした請求項1または2記載の超音波送受波器。 One or more grooves are provided on at least one of the transmitting / receiving surface of the piezoelectric body or the surface facing the transmitting / receiving surface, and the arrangement information of the piezoelectric body includes the direction of at least one of the grooves The ultrasonic transducer according to claim 1 or 2. ケースの天部の外壁面に整合層を備えた請求項2〜8のいずれか1項記載の超音波送受波器。 The ultrasonic transducer according to any one of claims 2 to 8, wherein a matching layer is provided on an outer wall surface of a top portion of the case. 被測定流体が流れる流量測定部と、この流量測定部に設けられ超音波を送受信する請求項1〜9のいずれか1項記載の一対の超音波振送受波器と、一方の前記超音波送受波器を駆動する駆動回路と、他方の前記超音波送受波器に接続され超音波パルスを検知する受信検知回路と、前記超音波パルスの伝搬時間を測定するタイマと、前記駆動回路と前記タイマを制御する制御部と、前記タイマの出力より流量を演算によって求める演算部とを備えた超音波流量計であって、前記超音波流量計では前記超音波送受波器の前記端子板の外側表面のみ観測可能となるよう配置されており、前記超音波送受波器の取付角度は一方の超音波送受波器の方向識別手段が示す方向と他方の超音波送受波器の方向識別手段が示す方向が所定の角度となるように設定した超音波流量計。 A flow rate measurement unit through which a fluid to be measured flows, a pair of ultrasonic transducers according to any one of claims 1 to 9 provided in the flow rate measurement unit and transmitting / receiving ultrasonic waves, and one of the ultrasonic transmission / reception units A drive circuit for driving a wave detector, a reception detection circuit for detecting an ultrasonic pulse connected to the other ultrasonic transducer, a timer for measuring a propagation time of the ultrasonic pulse, the drive circuit and the timer An ultrasonic flow meter comprising a control unit for controlling the flow rate and a calculation unit for calculating a flow rate from an output of the timer, wherein the ultrasonic flow meter has an outer surface of the terminal plate of the ultrasonic transducer Are arranged so that only the ultrasonic transducer can be observed, and the mounting angle of the ultrasonic transducer is the direction indicated by the direction identification means of one ultrasonic transducer and the direction indicated by the direction identification means of the other ultrasonic transducer Is set at a predetermined angle. Ultrasonic flow meter was.
JP2006020271A 2006-01-30 2006-01-30 Ultrasonic transducer and ultrasonic flowmeter Pending JP2007201993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020271A JP2007201993A (en) 2006-01-30 2006-01-30 Ultrasonic transducer and ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020271A JP2007201993A (en) 2006-01-30 2006-01-30 Ultrasonic transducer and ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2007201993A true JP2007201993A (en) 2007-08-09

Family

ID=38456095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020271A Pending JP2007201993A (en) 2006-01-30 2006-01-30 Ultrasonic transducer and ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2007201993A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295180A (en) * 1994-04-28 1995-11-10 Konica Corp Automatic developing machine for silver halide photographic sensitive material
JPH08272295A (en) * 1995-02-01 1996-10-18 Toppan Printing Co Ltd Biodegradble adhesive sheet
JP2000298045A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004015150A (en) * 2002-06-04 2004-01-15 Murata Mfg Co Ltd Ultrasonic sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295180A (en) * 1994-04-28 1995-11-10 Konica Corp Automatic developing machine for silver halide photographic sensitive material
JPH08272295A (en) * 1995-02-01 1996-10-18 Toppan Printing Co Ltd Biodegradble adhesive sheet
JP2000298045A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004015150A (en) * 2002-06-04 2004-01-15 Murata Mfg Co Ltd Ultrasonic sensor

Similar Documents

Publication Publication Date Title
JP5682156B2 (en) Ultrasonic flow meter
EP3457127A1 (en) Reflection wave sensor and detection method
JP2005164571A (en) Ultrasonic flowmeter and ultrasonic sensor
US8844359B2 (en) Apparatus for noninvasive measurement of properties of a fluid flowing in a tubing having a smaller inner diameter passage
JP2001050785A (en) Ultrasonic transceiver and ultrasonic flowmeter
US11162829B2 (en) Multilayer body that includes piezoelectric body
CN103562687A (en) Ultrasonic transducer and ultrasonic flow-meter
WO2012081195A1 (en) Flow volume measuring device
JP2008164465A (en) Ultrasound flowmeter
US8694271B2 (en) Apparatus and method for non invasive measurement of properties of a fluid flowing in a flexible tubing or conduit
CA2557099A1 (en) Doppler type ultrasonic flow meter
JP4775006B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP2007201993A (en) Ultrasonic transducer and ultrasonic flowmeter
JP2007201992A (en) Ultrasonic wave sending and receiving apparatus, and ultrasonic flowmeter
JP3498628B2 (en) Ultrasonic transducer and ultrasonic flow meter using it
PT103565A (en) PIEZOELECTRIC POLYMER BASED FLOW SENSOR
JP2000298045A5 (en)
JP4400260B2 (en) Flow measuring device
JP2004286763A (en) Ultrasonic transducer and ultrasonic flow measuring instrument
JP2015019317A (en) Ultrasonic sensor and ultrasonic flow meter
KR200489769Y1 (en) Ultrasonic flow meter with enhanced adhesion to pipe
JP2009058404A (en) Ultrasonic flowmeter
JP2000162020A (en) Bypass pipe type liquid level gage
JP3680635B2 (en) Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter
JP2006138667A (en) Ultrasonic flowmeter and fluid leakage detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427