JP3680635B2 - Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter - Google Patents

Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter Download PDF

Info

Publication number
JP3680635B2
JP3680635B2 JP16038899A JP16038899A JP3680635B2 JP 3680635 B2 JP3680635 B2 JP 3680635B2 JP 16038899 A JP16038899 A JP 16038899A JP 16038899 A JP16038899 A JP 16038899A JP 3680635 B2 JP3680635 B2 JP 3680635B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducer
transducer
sensor
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16038899A
Other languages
Japanese (ja)
Other versions
JP2000346685A (en
Inventor
正樹 田口
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP16038899A priority Critical patent/JP3680635B2/en
Publication of JP2000346685A publication Critical patent/JP2000346685A/en
Application granted granted Critical
Publication of JP3680635B2 publication Critical patent/JP3680635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は測定対象物に超音波を放射してセンシングを行う超音波技術を利用する超音波センサおよびそのセンサを用いたセンシング装置に関わり、特に、超音波流量計に関する。
【0002】
【従来の技術】
超音波技術を利用してセンシングを行うセンシング装置には、測定対象物あるいは媒体に超音波を放射しその反射波を検出して位置、距離あるいは速度の計測装置あるいは画像処理装置や、測定対象の媒体に超音波を放射しその透過波の伝搬時間を検出して、例えば、媒体の流速を測定する超音波流量計などがある。
【0003】
図5は1対の超音波センサを流体の流れに沿って対向配置し上流側および下流側に交互に超音波を送信し、受信するまでの時間差から流速を測定する超音波流量計の概念図を示す。図5において、従来技術による超音波流量計は、例えば、チタン酸ジルコン酸鉛(PZT) の無機圧電材料に電極を構成してなる超音波振動子2と、この超音波振動子2に接合され他方の面から音波を放射する音響整合層4とからなる超音波センサ6A,6B を、測定流体5の媒体中に、あるいは、測定流体5が搬送される図示省略された測定管路に対して傾斜して、送信側と受信側とを対向配備して構成される。
【0004】
かかる構成において、超音波流量計は、一方の超音波センサ(例えば6A)の超音波振動子2(2A)を送受信回路61A から励振し、流体5との音響インピーダンスの整合を図る音響整合層4Aを介して媒体5に超音波信号5aを送信する。他方の超音波センサ(6B)は、音響整合層4Bを介して超音波振動子2(2B)でこの送信された超音波信号5aを受信し、送受信回路61B でこの超音波信号5aを検出する。そして、送受信回路61A,61B の送受信機能を交互に切り換えて、上流側への超音波伝搬時間と下流側への超音波伝搬時間との伝搬時間差ΔT を測定することにより、測定管路内の流体5の流速あるいは流量を測定することができる。即ち、従来技術による超音波センサ6A,6B は同一センサの超音波振動子2を送信用および受信用に切り換えて使用している。
【0005】
図6は従来技術による超音波センサ6A,6B の特性を示す。図6において、横軸に周波数を、縦軸に送受信回路61A,61B からの電気的励振パワーに対する超音波出力の送信感度2Sおよび受信する超音波出力に対する電気信号への変換パワーを示す受信感度2Rをとる。従来技術による送受信一体型の超音波センサ6A,6B は、超音波振動子2の材料特性とその形状とから定まる電気機械系の振動特性を有し、送信感度と受信感度でそのピーク値が異なる。例えば、チタン酸ジルコン酸鉛(PZT) などの無機圧電材料で構成される超音波センサ6A,6B の電気機械系の振動特性は、この超音波センサ6A,6B を送信用に用いたとき、超音波振動子2の材料特性とその形状とから定まる共振周波数frでピーク特性を有する曲線2Sの特性を示す。一方、超音波センサ6A,6B を受信用に用いたとき、この超音波振動子2の機械電気系の振動特性は、材料特性とその形状とからなる反共振周波数faでピーク特性を有する曲線2Rの特性を示す。この結果、同一超音波センサ6A,6B を用いて送信用および受信用に兼用するとき、共振周波数frと反共振周波数faとの中心付近の周波数帯foで超音波センサ6A,6B を駆動させる、即ち、送信特性および受信特性の共通部分である周波数foを中心周波数とする特性2SR で図示される特性で使用するのが最適な超音波センサ6A,6B の感度特性となり、この様な観点で送受信兼用の超音波センサ6A,6B が製作されていた。この様に送受信一体型の超音波センサ6A,6B の感度特性は、共振周波数frと反共振周波数faとの異なるピーク周波数があるため、送受信兼用のときは、これらのピーク特性のところから外れたところで使用する結果となり、高感度な超音波センサとはなっていない。
【0006】
【発明が解決しようとする課題】
この様に、従来技術による超音波センサ、超音波センシング装置および超音波流量計で同一超音波振動子を送信用および受信用に兼用したとき、(1) 無機圧電材料で構成される超音波振動子の音響インピーダンスは、音波を伝搬させる媒質(液体や気体)の音響インピーダンスに対して非常に大きな値となり音響インピーダンスの整合がとれない。この液体や気体などの媒体との結合を改善するため、超音波センサは、一般的に超音波振動子に音響整合層を備えて構成される。また、(2) 送信用および受信用の共振周波数/反共振周波数にズレが発生し、送受信兼用の高感度な超音波センサを製作することができなかった。
【0007】
本発明は上記の点にかんがみてなされたものであり、その目的は前記した課題を解決して、送受信兼用に一体化された超音波センサの共振周波数および反共振周波数がほぼ一致し、かつ、音響インピーダンスが比較的低くすることができる一体化された超音波センサを製作することにより、送受信兼用の高感度な超音波センサ、超音波センシング装置および超音波流量計を提供することにある。
【0008】
【課題を解決するための手段】
上記課題は本発明によれば、超音波センサは、無機圧電材料に電極を構成してなる縦振動モードあるいは厚み振動モードの第1超音波振動子と、高分子圧電膜の両面に可撓性を有する電極を構成し,一方の面を第1超音波振動子の超音波放出面側と接合し,他方の面を超音波放射面とする厚み振動モードの第2超音波振動子と、を備えて構成するものとする。
さらに、前記第1超音波振動子の送信用の共振周波数 (fr1) と前記第2超音波振動子の受信用の反共振周波数 (fa2) を一致させるように第1超音波振動子と第2超音波振動子の厚み方向の寸法を選択すると共に、当該共振周波数および反共振周波数に一致する周波数( fo fr1 fa2) で超音波センサを動作させるものとする。
【0009】
かかる構成により、第1超音波振動子と第2超音波振動子とを一体化構成し、第1超音波振動子を送信用超音波センサとして励振し,第2超音波振動子を経由してこの超音波放射面から対象物に超音波信号を送信し、また、第2超音波振動子を受信用超音波センサとして送信されてくる超音波信号を受信することができる。
【0010】
また、第1超音波振動子は、無機圧電材料の、例えば、チタン酸ジルコン酸鉛(PZT) あるいはジルコン酸鉛系から構成することができる。
また、第2超音波振動子の高分子圧電膜は、ポリフッカビニリデン(PVDF)の膜から構成することができる。
【0011】
また、この超音波センサを用いたセンシング装置は、超音波センサの第1超音波振動子を励振して第2超音波振動子を経由してこの超音波放射面から超音波信号を測定対象物あるいは媒体に放射し、対象物から反射して戻る超音波信号を第2超音波振動子で受信するものとする。
【0012】
また、超音波センサを用いた超音波流量計は、測定対象の媒体は流体とし、流体中を透過する透過波を検出し、上流側への超音波伝搬時間と下流側への超音波伝搬時間との差から流体の流速を演算するものとする。
【0013】
かかる構成により、送受信兼用の高感度な超音波センサを用いることにより、安定に超音波信号の送受信を行うことができる。この結果、周辺のノイズ環境との兼ね合いによっては、例えば超音波信号の送信レベルを従来技術レベルよりも下げて使用することができ、超音波センサを励振する電気信号レベルを下げて実用化することができる。
【0014】
【発明の実施の形態】
図1は本発明の一実施例による超音波センサの要部構成図、図2は一実施例による超音波センシング装置の要部構成図、図3は他の実施例による超音波センシング装置の要部構成図、図4は本発明による超音波センサの周波数特性図であり、図5、図6に対応する同一部材には同じ符号が付してある。
【0015】
図1において、本発明による超音波センサ1は、無機圧電材料21に電極22a,22b を構成してなる縦振動モードあるいは厚み振動モードの第1超音波振動子2と、高分子圧電膜31の両面に可撓性を有する電極24a,24b を構成し,一方の面(24a) を第1超音波振動子2の超音波放出面側(22b) と接合し,他方の面(24b) を超音波放射面25とする厚み振動モードの第2超音波振動子3と、を備えて構成される。
【0016】
かかる構成により、第1超音波振動子2と第2超音波振動子3とを一体化構成し、送信モードでは、第1超音波振動子2を送信用超音波センサとして励振し,第2超音波振動子3を経由してこの超音波放射面25から対象物(5)に超音波信号(5a)を送信する。また、受信モードでは、第2超音波振動子3を受信用超音波センサとして送信されてくる超音波信号(5b)を受信することができる。
【0017】
【実施例】
(実施例1)
図1の(A) において、図示例の超音波センサ1は、無機圧電材料21、例えば、チタン酸ジルコン酸鉛(PZT) の両端に可撓性を備える電極22a,22b を構成し、この電極22a,22b に電圧を印加することにより、電極22a,22b 方向に振動する縦振動モードあるいは厚み振動モードの第1超音波振動子2を構成することができる。また同様に、高分子圧電膜31の両面に可撓性を備える電極24a,24b を、例えば、金属皮膜を蒸着して構成することによって厚み振動モードの第2超音波振動子3を構成することができる。そして、第1超音波振動子2の電極22b と第2超音波振動子3の電極24a との間を可撓性を備える電気的絶縁層(例えば絶縁樹脂フィルム)23で接着などの手段によって接合することにより、送信用の第1超音波振動子2と受信用の第2超音波振動子3とを一体化構成することができる。
【0018】
この様な構成の超音波センサ1は、高圧の励振電圧が印加される送信回路11と比較的受信電圧が低い受信回路12とを電極22b,24a 間で絶縁することができるので、送信回路11側から受信回路12側へのノイズの混入を防止することが容易である。この絶縁層23と接合部分での超音波信号の減衰は多少発生するが、励振エネルギが十分得られるので実用上の支障はなく、第2超音波振動子3による高感度受信の利点を享受することができる。
【0019】
また、図1の(B) において、絶縁層23を省略して電極22b,24a を直接接合する、あるいは、一方の電極22b(または電極24a)を省略して他方の電極24a(または電極22b)に接着などの手段で接合することもできる。この場合は、送信回路11側から受信回路12側へのノイズの混入防止にテクニックを要するが、接合部分での超音波信号の減衰を少なくすることができる。
【0020】
次に、本発明による超音波センサ1の周波数特性を図4に示す。図4において、横軸に周波数を、縦軸に送信感度および受信感度をとる。第1超音波振動子2の周波数特性は、送信回路11からの電気励振パワーに対する超音波信号5aの送信感度特性2Sはピーク送信感度を周波数fr1 に有する特性を有し、また、受信する超音波信号5bに対する電気信号への受信感度特性2Rは、ピーク受信感度を周波数fa1 に有する。そして、このピーク値の周波数は、第1超音波振動子2の材料特性とその形状によって定まる。特に、第1超音波振動子2の厚み寸法を制御することにより、周波数fr1,fa1 を移動することができる。
【0021】
また同様に、第2超音波振動子3の周波数特性は、送信回路11からの電気励振パワーに対する超音波信号5aの送信感度特性3Sはピーク送信感度を周波数fr2 に有する特性を有し、また、受信する超音波信号5bに対する電気信号への受信感度特性3Rは、ピーク受信感度を周波数fa2 に有する。そして、このピーク値の周波数は、第2超音波振動子3の材料特性とその形状によって定まり、特に、第2超音波振動子3の厚み寸法を制御することにより、周波数fr2,fa2 を移動することができる。
【0022】
図4の図示例では、送信用の第1超音波振動子2を無機圧電材料のチタン酸ジルコン酸鉛(PZT) あるいはジルコン酸鉛系から構成し、受信用の第2超音波振動子3を高分子圧電膜のポリフッカビニリデン(PVDF)の膜から構成したものであり、第1超音波振動子2の送信用の共振周波数fr1 と第2超音波振動子3の受信用の反共振周波数fa2 を一致させる条件で厚み方向の寸法を選択する。
【0023】
かかる構成により、振動に関する電気機械結合係数が高分子圧電材料よりも高いチタン酸ジルコン酸鉛(PZT) あるいはジルコン酸鉛系を用いることができ、共振周波数fr1 を受信用の高分子圧電材料の第2超音波振動子3の反共振周波数fa2 と一致させ、超音波センサ1を周波数fo=fr1(=fa2)で動作させることにより、送信感度および受信感度をより一層高感度化することができ、送受信兼用の高感度な超音波センサを製作することができる。
【0024】
さらに、高分子圧電膜のポリフッカビニリデン(PVDF)の膜は、無機圧電材料のチタン酸ジルコン酸鉛(PZT) に較べて音響インピーダンスが低く、水やプラスチックなどの音響インピーダンスに近いので、液体や気体中に超音波を伝播する超音波センサとして、付加的に音響整合層を付加することなく使用することができる。さらにまた、高分子圧電膜のポリフッカビニリデン(PVDF)の膜は、超音波の受信感度が高い特性があるので、超音波受信用に用いることにより、信号対雑音比(S/N比) を向上させることができる。
(実施例2)
図2において、本発明の超音波センサを用いたセンシング装置は、1個の超音波センサ1Aを予め定められた位置に配置して、超音波センサ1Aの第1超音波振動子2を送信回路11から励振して第2超音波振動子3を経由して超音波放射面25から超音波信号5aを測定対象物5あるいは媒体5に放射し、対象物5から反射して戻る超音波信号5bを第2超音波振動子3で受信することができる。
【0025】
かかる構成において、送信回路11からパルス状に第2超音波振動子3を励振し、バースト状の超音波信号5aを測定対象物5に放射し、対象物5から反射して戻る超音波信号5bを第2超音波振動子3で受信し、送信パルスから超音波信号5bを検出するまでの時間を計測することにより、対象物5までの距離を測定することができる。また、この時間的変化を測定することにより、対象物5との相対速度を、超音波センサ1Aが例えば地上に固定されているときは対象物5の速度を、測定することができる。
【0026】
また、送信回路11から正弦波の連続波を送信し、この送信超音波信号5aと対象物5からの反射波の超音波信号5bとを第2超音波振動子3で受信し、受信回路12に非線形要素を備えて送信波と受信波とのホモダイン検波を行うことにより、対象物5の移動速度、即ち、ドプラーシフト量を検出することができる。本発明の一体化された超音波センサ1を用いることにより、送信波と受信波とのミキシング信号を1個の第2超音波振動子3で検出することができ、スーパーヘテロダイン検波方式に較べて信号雑音比(S/N比) の高い信号検出を行うことができる。
【0027】
また、図3において、本発明の超音波センサを用いたセンシング装置は、1組の超音波センサ1A,1B を予め定められた位置に配置して、例えば、超音波センサ1Aの第1超音波振動子2を送信回路11A から励振してこの第2超音波振動子3を経由してこの超音波放射面25から超音波信号5aを測定対象物5あるいは媒体5に放射し、対象物5から反射して戻る超音波信号5bを別置された超音波センサ1Bの第2超音波振動子3で受信し、受信回路12B で検出することができる。
【0028】
かかる構成により、送信回路11A からパルス状に第2超音波振動子3を励振し、バースト状の超音波信号5aを測定対象物5に放射し、対象物5から反射して戻る超音波信号5bを別置された超音波センサ1Bの第2超音波振動子3で受信し、受信回路12B で送信パルスから超音波信号5bを検出するまでの時間を計測することにより、対象物5までの距離を超音波センサ1A,1B を配置した位置を含めた三角測量を行い、より正確な距離を測定することができる。
【0029】
さらに、図2または図3の構成において、反射波あるいは透過波の検出時間を測定することにより、対象物5中に存在する傷あるいは異物の検出を非破壊検査することができる。
(実施例3)
また、図3において、本発明の超音波センサを用いた超音波流量計は、1組の超音波センサ1A,1B を測定流体5の媒体中に、あるいは、測定流体5が搬送される図示省略された測定管路に対して傾斜して送信側と受信側とを予め定められた位置に対向配備して構成することができる。
【0030】
かかる構成により、測定対象の媒体5を流体とし、流体中を透過する透過波を検出し、上流側への超音波伝搬時間と下流側への超音波伝搬時間との差から流体の流速を演算することができる。例えば、上流側に配置された超音波センサ1Aの第1超音波振動子2を送信回路11A から励振してこの第2超音波振動子3を経由してこの超音波放射面25から超音波信号5aを媒体5に放射し、媒体5を透過する透過波を下流側に配置された超音波センサ1Bの第2超音波振動子3で受信し、受信回路12B で下流側への超音波伝搬時間を測定する。次に、下流側に配置された超音波センサ1Bの第1超音波振動子2を送信回路11B から励振してこの第2超音波振動子3を経由してこの超音波放射面25から超音波信号5bを媒体5に放射し、媒体5を透過する透過波を上流側に配置された超音波センサ1Aの第2超音波振動子3で受信し、受信回路12A で上流側への超音波伝搬時間を測定し、両超音波伝搬時間差を演算することにより、流体5の流速あるいは流量を測定することができる。
【0031】
本発明によれば、無機圧電材料の第1超音波振動子と高分子圧電膜の第2超音波振動子とを用いて、送受信兼用に一体化された超音波センサの共振周波数および反共振周波数がほぼ一致し、かつ、液体や気体との音響インピーダンスの整合がとれる一体化された超音波センサを製作することにより、送受信兼用の高感度な超音波センサを提供することができ、また、この送受信兼用の高感度な超音波センサを用いることにより、信号雑音比の高い各種の超音波センシング装置および超音波流量計を提供することができる。
【0032】
【発明の効果】
以上述べたように本発明による超音波センサは、送受信兼用に一体化され、共振周波数および反共振周波数がほぼ一致し、かつ、液体や気体との音響インピーダンスの整合がとれる一体化された高感度な超音波センサを提供することができ、また、この高感度な超音波センサを用いることにより、信号雑音比の高い各種の超音波センシング装置および超音波流量計を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としての超音波センサの要部構成図
【図2】一実施例による超音波センシング装置の要部構成図
【図3】他の実施例による超音波センシング装置の要部構成図
【図4】本発明による超音波センサの周波数特性図
【図5】従来技術による超音波センシング装置の要部構成図
【図6】従来技術による超音波センサの周波数特性図
【符号の説明】
1,1A,1B,6A,6B 超音波センサ
11,11A,11B 送信回路
12,12A,12B 受信回路
2 第1超音波振動子
21 無機圧電材料
22,22a,22b,24a,24b 電極
23 絶縁層
25 超音波放射面
2S,3S 送信感度特性
2R,3R 受信感度特性
3 第2超音波振動子
31 高分子圧電膜
5 対象物
5a,5b 超音波信号
61A,61B 送受信回路
fr,fr1,fr2 共振周波数
fa,fa1,fa2 反共振周波数
fo 動作周波数
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sensor using an ultrasonic technique for sensing by radiating ultrasonic waves to a measurement object and a sensing device using the sensor, and more particularly to an ultrasonic flowmeter.
[0002]
[Prior art]
A sensing device that performs sensing using ultrasonic technology radiates an ultrasonic wave to a measurement object or medium and detects the reflected wave to detect a position, distance, or speed measurement device or image processing device, For example, there is an ultrasonic flowmeter that radiates ultrasonic waves to a medium and detects the propagation time of the transmitted wave to measure the flow velocity of the medium.
[0003]
FIG. 5 is a conceptual diagram of an ultrasonic flowmeter in which a pair of ultrasonic sensors are arranged opposite to each other along the fluid flow, ultrasonic waves are alternately transmitted to the upstream side and the downstream side, and the flow velocity is measured from the time difference until reception. Indicates. In FIG. 5, an ultrasonic flowmeter according to the prior art is joined to an ultrasonic vibrator 2 in which an electrode is formed on an inorganic piezoelectric material of lead zirconate titanate (PZT), for example, and the ultrasonic vibrator 2. The ultrasonic sensors 6A and 6B including the acoustic matching layer 4 that radiates sound waves from the other surface are placed in the medium of the measurement fluid 5 or a measurement pipe (not shown) through which the measurement fluid 5 is conveyed. Inclined and configured so that the transmitting side and the receiving side are opposed to each other.
[0004]
In this configuration, the ultrasonic flowmeter excites the ultrasonic transducer 2 (2A) of one ultrasonic sensor (for example, 6A) from the transmission / reception circuit 61A, and matches the acoustic impedance with the fluid 5 by the acoustic matching layer 4A. The ultrasonic signal 5a is transmitted to the medium 5 via The other ultrasonic sensor (6B) receives the ultrasonic signal 5a transmitted by the ultrasonic transducer 2 (2B) via the acoustic matching layer 4B, and detects the ultrasonic signal 5a by the transmission / reception circuit 61B. . Then, by alternately switching the transmission / reception functions of the transmission / reception circuits 61A and 61B and measuring the propagation time difference ΔT between the ultrasonic propagation time to the upstream side and the ultrasonic propagation time to the downstream side, the fluid in the measurement pipe line A flow rate or flow rate of 5 can be measured. That is, the ultrasonic sensors 6A and 6B according to the prior art use the ultrasonic transducer 2 of the same sensor by switching between transmission and reception.
[0005]
FIG. 6 shows the characteristics of the ultrasonic sensors 6A and 6B according to the prior art. In FIG. 6, the horizontal axis indicates the frequency, and the vertical axis indicates the transmission sensitivity 2S of the ultrasonic output with respect to the electrical excitation power from the transmission / reception circuits 61A and 61B and the reception sensitivity 2R indicating the conversion power to the electrical signal with respect to the received ultrasonic output. Take. The transmission / reception integrated ultrasonic sensors 6A and 6B according to the prior art have electromechanical vibration characteristics determined from the material characteristics and shape of the ultrasonic vibrator 2, and the peak values differ depending on transmission sensitivity and reception sensitivity. . For example, the vibration characteristics of the electromechanical system of ultrasonic sensors 6A and 6B composed of inorganic piezoelectric materials such as lead zirconate titanate (PZT) are supersonic when the ultrasonic sensors 6A and 6B are used for transmission. The characteristic of the curve 2S having the peak characteristic at the resonance frequency fr determined from the material characteristic and the shape of the acoustic wave vibrator 2 is shown. On the other hand, when the ultrasonic sensors 6A and 6B are used for reception, the vibration characteristic of the mechanical electric system of the ultrasonic vibrator 2 is a curve 2R having a peak characteristic at an anti-resonance frequency fa composed of material characteristics and shapes thereof. The characteristics of As a result, when the same ultrasonic sensor 6A, 6B is used for both transmission and reception, the ultrasonic sensor 6A, 6B is driven in the frequency band fo near the center of the resonance frequency fr and the anti-resonance frequency fa. That is, the sensitivity characteristics of the ultrasonic sensors 6A and 6B that are optimally used with the characteristics shown in the characteristic 2SR with the frequency fo, which is the common part of the transmission characteristics and the reception characteristics, as the center frequency. Combined ultrasonic sensors 6A and 6B were manufactured. In this way, the sensitivity characteristics of the transmission / reception integrated ultrasonic sensors 6A and 6B have different peak frequencies between the resonance frequency fr and the anti-resonance frequency fa, so they deviated from these peak characteristics when used for both transmission and reception. By the way, it results in use, and it has not become a highly sensitive ultrasonic sensor.
[0006]
[Problems to be solved by the invention]
In this way, when the same ultrasonic transducer is used for both transmission and reception in conventional ultrasonic sensors, ultrasonic sensing devices, and ultrasonic flowmeters, (1) ultrasonic vibration composed of inorganic piezoelectric materials The acoustic impedance of the child is very large with respect to the acoustic impedance of the medium (liquid or gas) that propagates the sound wave, and the acoustic impedance cannot be matched. In order to improve the coupling with a medium such as liquid or gas, an ultrasonic sensor is generally configured by including an acoustic matching layer in an ultrasonic transducer. In addition, (2) the transmission / reception resonance frequency / anti-resonance frequency was shifted, and a high-sensitivity ultrasonic sensor for both transmission and reception could not be manufactured.
[0007]
The present invention has been made in view of the above points, and its purpose is to solve the above-described problems, and the resonance frequency and anti-resonance frequency of an ultrasonic sensor integrated for transmission and reception are substantially the same, and An object of the present invention is to provide a highly sensitive ultrasonic sensor, an ultrasonic sensing device, and an ultrasonic flowmeter that are used for both transmission and reception by manufacturing an integrated ultrasonic sensor that can have a relatively low acoustic impedance.
[0008]
[Means for Solving the Problems]
According to the present invention, the ultrasonic sensor is flexible on both sides of the first ultrasonic vibrator in the longitudinal vibration mode or the thickness vibration mode in which an electrode is formed on an inorganic piezoelectric material and the polymer piezoelectric film. A second ultrasonic transducer in a thickness vibration mode in which one surface is joined to the ultrasonic emission surface side of the first ultrasonic transducer and the other surface is an ultrasonic radiation surface; It shall be prepared.
Further, the first to match the first ultrasonic resonance frequency for transmission oscillator (fr1) and the second anti-resonance frequency for reception of the ultrasonic transducer (fa2) ultrasonic vibrator and the second It is assumed that the dimension in the thickness direction of the ultrasonic transducer is selected and the ultrasonic sensor is operated at a frequency ( fo = fr1 = fa2) that matches the resonance frequency and the antiresonance frequency .
[0009]
With this configuration, the first ultrasonic transducer and the second ultrasonic transducer are integrally configured, the first ultrasonic transducer is excited as a transmission ultrasonic sensor, and is transmitted via the second ultrasonic transducer. An ultrasonic signal can be transmitted from the ultrasonic radiation surface to the object, and an ultrasonic signal transmitted using the second ultrasonic transducer as a reception ultrasonic sensor can be received.
[0010]
The first ultrasonic transducer can be made of an inorganic piezoelectric material such as lead zirconate titanate (PZT) or lead zirconate.
Further, the polymer piezoelectric film of the second ultrasonic transducer can be composed of a polyfucavinylidene (PVDF) film.
[0011]
In addition, the sensing device using the ultrasonic sensor excites the first ultrasonic transducer of the ultrasonic sensor, and transmits the ultrasonic signal from the ultrasonic radiation surface via the second ultrasonic transducer. Alternatively, it is assumed that an ultrasonic signal radiated to the medium and reflected and returned from the object is received by the second ultrasonic transducer.
[0012]
In addition, an ultrasonic flowmeter using an ultrasonic sensor uses a fluid as a medium to be measured, detects a transmitted wave that passes through the fluid, detects the ultrasonic wave propagation time to the upstream side, and the ultrasonic wave propagation time to the downstream side. The flow rate of the fluid is calculated from the difference.
[0013]
With this configuration, an ultrasonic signal can be stably transmitted and received by using a highly sensitive ultrasonic sensor that is also used for transmission and reception. As a result, depending on the balance with the surrounding noise environment, for example, the ultrasonic signal transmission level can be used lower than the prior art level, and the electric signal level for exciting the ultrasonic sensor can be lowered for practical use. Can do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram of an essential part of an ultrasonic sensor according to an embodiment of the present invention, FIG. 2 is a block diagram of an essential part of an ultrasonic sensing device according to an embodiment, and FIG. FIG. 4 is a diagram showing the frequency characteristics of the ultrasonic sensor according to the present invention. The same members corresponding to those in FIGS. 5 and 6 are given the same reference numerals.
[0015]
In FIG. 1, an ultrasonic sensor 1 according to the present invention includes a first ultrasonic vibrator 2 in a longitudinal vibration mode or a thickness vibration mode in which electrodes 22 a and 22 b are formed on an inorganic piezoelectric material 21, and a polymer piezoelectric film 31. The electrodes 24a and 24b having flexibility are formed on both surfaces, and one surface (24a) is joined to the ultrasonic emission surface side (22b) of the first ultrasonic transducer 2 and the other surface (24b) is And a second ultrasonic transducer 3 in a thickness vibration mode serving as a sound wave radiating surface 25.
[0016]
With this configuration, the first ultrasonic transducer 2 and the second ultrasonic transducer 3 are integrated, and in the transmission mode, the first ultrasonic transducer 2 is excited as a transmission ultrasonic sensor, and the second supersonic transducer 2 is excited. An ultrasonic signal (5a) is transmitted from the ultrasonic radiation surface 25 to the object (5) via the ultrasonic transducer 3. In the reception mode, an ultrasonic signal (5b) transmitted using the second ultrasonic transducer 3 as a reception ultrasonic sensor can be received.
[0017]
【Example】
(Example 1)
In FIG. 1A, an ultrasonic sensor 1 in the illustrated example includes electrodes 22a and 22b having flexibility at both ends of an inorganic piezoelectric material 21, for example, lead zirconate titanate (PZT). By applying a voltage to the electrodes 22a and 22b, the first ultrasonic transducer 2 in the longitudinal vibration mode or the thickness vibration mode that vibrates in the direction of the electrodes 22a and 22b can be configured. Similarly, the second ultrasonic transducer 3 in the thickness vibration mode is configured by forming the electrodes 24a and 24b having flexibility on both surfaces of the polymer piezoelectric film 31 by, for example, depositing a metal film. Can do. Then, the electrode 22b of the first ultrasonic transducer 2 and the electrode 24a of the second ultrasonic transducer 3 are joined by a flexible electrical insulating layer (for example, an insulating resin film) 23 by means such as adhesion. Thus, the first ultrasonic transducer 2 for transmission and the second ultrasonic transducer 3 for reception can be integrated.
[0018]
The ultrasonic sensor 1 having such a configuration can insulate the transmission circuit 11 to which a high excitation voltage is applied from the reception circuit 12 having a relatively low reception voltage between the electrodes 22b and 24a. It is easy to prevent noise from entering from the side to the receiving circuit 12 side. Although the ultrasonic signal is slightly attenuated at the junction with the insulating layer 23, there is no practical problem because sufficient excitation energy is obtained, and the advantage of high sensitivity reception by the second ultrasonic transducer 3 is enjoyed. be able to.
[0019]
Further, in FIG. 1B, the insulating layer 23 is omitted and the electrodes 22b and 24a are directly joined, or one electrode 22b (or electrode 24a) is omitted and the other electrode 24a (or electrode 22b) is omitted. It is also possible to join them to each other by means such as adhesion. In this case, a technique is required to prevent noise from being mixed from the transmission circuit 11 side to the reception circuit 12 side, but attenuation of the ultrasonic signal at the joint portion can be reduced.
[0020]
Next, FIG. 4 shows frequency characteristics of the ultrasonic sensor 1 according to the present invention. In FIG. 4, the horizontal axis represents frequency, and the vertical axis represents transmission sensitivity and reception sensitivity. The frequency characteristic of the first ultrasonic transducer 2 is that the transmission sensitivity characteristic 2S of the ultrasonic signal 5a with respect to the electric excitation power from the transmission circuit 11 has the characteristic that the peak transmission sensitivity is at the frequency fr1, and the received ultrasonic wave. The reception sensitivity characteristic 2R for the electric signal with respect to the signal 5b has a peak reception sensitivity at the frequency fa1. The frequency of this peak value is determined by the material characteristics of the first ultrasonic transducer 2 and its shape. In particular, by controlling the thickness dimension of the first ultrasonic transducer 2, the frequencies fr1 and fa1 can be moved.
[0021]
Similarly, the frequency characteristic of the second ultrasonic transducer 3 has the characteristic that the transmission sensitivity characteristic 3S of the ultrasonic signal 5a with respect to the electric excitation power from the transmission circuit 11 has the peak transmission sensitivity at the frequency fr2, and The reception sensitivity characteristic 3R to the electrical signal with respect to the received ultrasonic signal 5b has a peak reception sensitivity at the frequency fa2. The frequency of the peak value is determined by the material characteristics and the shape of the second ultrasonic transducer 3, and in particular, by controlling the thickness dimension of the second ultrasonic transducer 3, the frequencies fr2 and fa2 are moved. be able to.
[0022]
In the illustrated example of FIG. 4, the first ultrasonic transducer 2 for transmission is composed of inorganic piezoelectric material, lead zirconate titanate (PZT) or lead zirconate, and the second ultrasonic transducer 3 for reception is formed. It is composed of a polymer piezoelectric film of polyfucavinylidene (PVDF), and the first ultrasonic transducer 2 has a resonance frequency fr1 for transmission and the antiresonance frequency fa2 for reception of the second ultrasonic transducer 3. Select the dimension in the thickness direction under the condition to match.
[0023]
With this configuration, it is possible to use a lead zirconate titanate (PZT) or lead zirconate system having a higher electromechanical coupling coefficient related to vibration than that of the polymer piezoelectric material, and the resonance frequency fr1 of the polymer piezoelectric material for receiving is the first. 2 By matching the antiresonance frequency fa2 of the ultrasonic transducer 3 and operating the ultrasonic sensor 1 at the frequency fo = fr1 (= fa2), the transmission sensitivity and the reception sensitivity can be further enhanced. A highly sensitive ultrasonic sensor for both transmission and reception can be manufactured.
[0024]
In addition, the polymer piezoelectric film of polyfucavinylidene (PVDF) has a lower acoustic impedance than that of the inorganic piezoelectric material lead zirconate titanate (PZT), and is close to the acoustic impedance of water and plastics. As an ultrasonic sensor for propagating ultrasonic waves in gas, it can be used without adding an additional acoustic matching layer. Furthermore, the polymer piezoelectric film polyfucavinylidene (PVDF) film has high ultrasonic reception sensitivity, so the signal-to-noise ratio (S / N ratio) can be reduced by using it for ultrasonic reception. Can be improved.
(Example 2)
In FIG. 2, in the sensing device using the ultrasonic sensor of the present invention, one ultrasonic sensor 1A is arranged at a predetermined position, and the first ultrasonic transducer 2 of the ultrasonic sensor 1A is transmitted. An ultrasonic signal 5b which is excited from 11 and radiates an ultrasonic signal 5a from the ultrasonic radiation surface 25 to the measurement object 5 or the medium 5 via the second ultrasonic transducer 3 and is reflected from the object 5 and returned. Can be received by the second ultrasonic transducer 3.
[0025]
In such a configuration, the second ultrasonic transducer 3 is excited in a pulse form from the transmission circuit 11, and a burst-like ultrasonic signal 5 a is radiated to the measurement object 5 and reflected from the object 5 and returned. Is measured by the second ultrasonic transducer 3, and the distance from the transmission pulse to the detection of the ultrasonic signal 5b is measured, whereby the distance to the object 5 can be measured. Further, by measuring this temporal change, the relative speed with respect to the object 5 can be measured, and when the ultrasonic sensor 1A is fixed on the ground, for example, the speed of the object 5 can be measured.
[0026]
Further, a continuous sinusoidal wave is transmitted from the transmission circuit 11, the transmission ultrasonic signal 5 a and the ultrasonic signal 5 b of the reflected wave from the object 5 are received by the second ultrasonic transducer 3, and the reception circuit 12. The moving speed of the object 5, that is, the Doppler shift amount can be detected by performing a homodyne detection of the transmission wave and the reception wave with a nonlinear element. By using the integrated ultrasonic sensor 1 of the present invention, a mixing signal of a transmission wave and a reception wave can be detected by one second ultrasonic transducer 3, and compared with a superheterodyne detection method. Signal detection with a high signal-to-noise ratio (S / N ratio) can be performed.
[0027]
In FIG. 3, the sensing device using the ultrasonic sensor of the present invention has a pair of ultrasonic sensors 1A and 1B arranged at predetermined positions, for example, the first ultrasonic wave of the ultrasonic sensor 1A. The vibrator 2 is excited from the transmission circuit 11A, and the ultrasonic signal 5a is radiated from the ultrasonic radiation surface 25 to the measuring object 5 or the medium 5 via the second ultrasonic vibrator 3, and from the object 5. The ultrasonic signal 5b reflected and returned can be received by the second ultrasonic transducer 3 of the ultrasonic sensor 1B provided separately and detected by the receiving circuit 12B.
[0028]
With this configuration, the second ultrasonic transducer 3 is excited in a pulse form from the transmission circuit 11A, and a burst-like ultrasonic signal 5a is radiated to the measurement object 5 and reflected from the object 5 and returned. Is received by the second ultrasonic transducer 3 of the ultrasonic sensor 1B separately provided, and the distance from the transmission pulse to the detection of the ultrasonic signal 5b by the receiving circuit 12B is measured, whereby the distance to the object 5 is measured. Can be triangulated including the position where the ultrasonic sensors 1A and 1B are arranged, and a more accurate distance can be measured.
[0029]
Furthermore, in the configuration of FIG. 2 or FIG. 3, the detection time of the reflected wave or the transmitted wave is measured, so that the detection of the scratch or the foreign substance existing in the object 5 can be performed nondestructively.
(Example 3)
In FIG. 3, the ultrasonic flowmeter using the ultrasonic sensor of the present invention is not shown in the figure, in which a set of ultrasonic sensors 1A and 1B is conveyed in the medium of the measurement fluid 5 or the measurement fluid 5 is conveyed. The transmission side and the reception side can be arranged opposite to each other at a predetermined position while being inclined with respect to the measured measurement pipeline.
[0030]
With this configuration, the medium 5 to be measured is a fluid, a transmitted wave passing through the fluid is detected, and the flow velocity of the fluid is calculated from the difference between the ultrasonic propagation time upstream and the ultrasonic propagation time downstream. can do. For example, the first ultrasonic transducer 2 of the ultrasonic sensor 1A arranged on the upstream side is excited from the transmission circuit 11A, and the ultrasonic signal is transmitted from the ultrasonic radiation surface 25 via the second ultrasonic transducer 3. 5a is radiated to the medium 5, and the transmitted wave transmitted through the medium 5 is received by the second ultrasonic transducer 3 of the ultrasonic sensor 1B arranged on the downstream side, and the ultrasonic wave propagation time to the downstream side is received by the receiving circuit 12B. Measure. Next, the first ultrasonic transducer 2 of the ultrasonic sensor 1B arranged on the downstream side is excited from the transmission circuit 11B, and the ultrasonic wave is emitted from the ultrasonic radiation surface 25 via the second ultrasonic transducer 3. The signal 5b is radiated to the medium 5, and the transmitted wave transmitted through the medium 5 is received by the second ultrasonic transducer 3 of the ultrasonic sensor 1A arranged on the upstream side, and the ultrasonic wave propagation to the upstream side is received by the receiving circuit 12A. By measuring the time and calculating the difference in propagation time between the two ultrasonic waves, the flow velocity or flow rate of the fluid 5 can be measured.
[0031]
According to the present invention, the resonance frequency and anti-resonance frequency of an ultrasonic sensor integrated for transmission and reception using a first ultrasonic transducer of an inorganic piezoelectric material and a second ultrasonic transducer of a polymer piezoelectric film. By manufacturing an integrated ultrasonic sensor that substantially matches the acoustic impedance of the liquid and gas and can be used for transmission and reception, a highly sensitive ultrasonic sensor that can be used for both transmission and reception can be provided. By using a highly sensitive ultrasonic sensor for both transmission and reception, it is possible to provide various ultrasonic sensing devices and ultrasonic flowmeters having a high signal-to-noise ratio.
[0032]
【The invention's effect】
As described above, the ultrasonic sensor according to the present invention is integrated for transmission / reception, the resonance frequency and the anti-resonance frequency are substantially the same, and the integrated high sensitivity that can match the acoustic impedance with the liquid or gas. In addition, by using this highly sensitive ultrasonic sensor, various ultrasonic sensing devices and ultrasonic flowmeters having a high signal-to-noise ratio can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram of an essential part of an ultrasonic sensor as an embodiment of the present invention. FIG. 2 is a block diagram of an essential part of an ultrasonic sensing device according to an embodiment. Fig. 4 is a frequency characteristic diagram of an ultrasonic sensor according to the present invention. Fig. 5 is a main component configuration diagram of an ultrasonic sensing device according to the prior art. Fig. 6 is a frequency characteristic diagram of an ultrasonic sensor according to the prior art. Explanation of symbols]
1,1A, 1B, 6A, 6B Ultrasonic sensor
11,11A, 11B Transmitter circuit
12,12A, 12B Reception circuit 2 1st ultrasonic transducer
21 Inorganic piezoelectric materials
22,22a, 22b, 24a, 24b electrode
23 Insulation layer
25 Ultrasonic radiation surface
2S, 3S transmission sensitivity characteristics
2R, 3R reception sensitivity characteristics 3 2nd ultrasonic transducer
31 Polymer piezoelectric film 5 Object
5a, 5b Ultrasonic signal
61A, 61B transceiver circuit
fr, fr1, fr2 resonance frequency
fa, fa1, fa2 Anti-resonance frequency
fo operating frequency

Claims (5)

無機圧電材料に電極を構成してなる縦振動モードあるいは厚み振動モードの第1超音波振動子と、高分子圧電膜の両面に可撓性を有する電極を構成し,一方の面を第1超音波振動子の超音波放出面側と接合し,他方の面を超音波放射面とする厚み振動モードの第2超音波振動子と、を備え、
第1超音波振動子を送信用超音波センサとして励振し,第2超音波振動子を経由してこの超音波放射面から対象物に超音波信号を送信し、また、第2超音波振動子を受信用超音波センサとして送信されてくる超音波信号を受信する超音波センサにおいて、
前記第1超音波振動子の送信用の共振周波数と前記第2超音波振動子の受信用の反共振周波数を一致させるように第1超音波振動子と第2超音波振動子の厚み方向の寸法を選択すると共に、当該共振周波数および反共振周波数に一致する周波数で超音波センサを動作させる、
ことを特徴とする超音波センサ。
A longitudinal vibration mode or thickness vibration mode first ultrasonic transducer comprising an electrode made of an inorganic piezoelectric material and a flexible electrode are formed on both sides of the polymer piezoelectric film, and one surface of the first ultrasonic transducer is A second ultrasonic transducer in a thickness vibration mode, which is bonded to the ultrasonic emission surface side of the ultrasonic transducer and has the other surface as an ultrasonic radiation surface,
The first ultrasonic transducer is excited as an ultrasonic sensor for transmission, and an ultrasonic signal is transmitted from the ultrasonic radiation surface to the object via the second ultrasonic transducer, and the second ultrasonic transducer in the ultrasonic sensor that will receive an ultrasonic signal transmitted as ultrasonic sensor receives the,
The first ultrasonic transducer and the second ultrasonic transducer are arranged in the thickness direction so that the resonance frequency for transmission of the first ultrasonic transducer and the anti-resonance frequency for reception of the second ultrasonic transducer coincide with each other. Selecting the dimensions and operating the ultrasonic sensor at a frequency matching the resonant and anti-resonant frequencies,
An ultrasonic sensor.
請求項1に記載の超音波センサにおいて、第1超音波振動子は、無機圧電材料の、例えば、チタン酸ジルコン酸鉛(PZT)あるいはジルコン酸鉛系から構成する、ことを特徴とする超音波センサ。  2. The ultrasonic sensor according to claim 1, wherein the first ultrasonic transducer is composed of an inorganic piezoelectric material such as lead zirconate titanate (PZT) or lead zirconate. Sensor. 請求項1に記載の超音波センサにおいて、第2超音波振動子の高分子圧電膜は、ポリフッカビニリデン(PVDF)の膜から構成する、ことを特徴とする超音波センサ。  2. The ultrasonic sensor according to claim 1, wherein the polymer piezoelectric film of the second ultrasonic transducer is formed of a polyfucavinylidene (PVDF) film. 請求項1ないし請求項3のいずれかの項に記載の超音波センサを用いたセンシング装置において、
超音波センサの第1超音波振動子を励振して第2超音波振動子を経由してこの超音波放射面から超音波信号を測定対象物あるいは媒体に放射し、対象物から反射して戻る超音波信号を第2超音波振動子で受信する、
ことを特徴とする超音波センシング装置。
In the sensing apparatus using the ultrasonic sensor according to any one of claims 1 to 3,
The first ultrasonic transducer of the ultrasonic sensor is excited, an ultrasonic signal is radiated from the ultrasonic radiation surface to the measurement object or medium via the second ultrasonic transducer, and reflected back from the object. Receiving an ultrasonic signal by the second ultrasonic transducer;
An ultrasonic sensing device characterized by that.
請求項1ないし請求項3のいずれかの項に記載の超音波センサを用いた超音波流量計において、測定対象の媒体は流体とし、流体中を透過する透過波を検出し、上流側への超音波伝搬時間と下流側への超音波伝搬時間との差から流体の流速を演算する、
ことを特徴とする超音波流量計。
The ultrasonic flowmeter using the ultrasonic sensor according to any one of claims 1 to 3, wherein a medium to be measured is a fluid, a transmitted wave transmitted through the fluid is detected, and an upstream flow is detected. Calculate the fluid flow velocity from the difference between the ultrasonic propagation time and the ultrasonic propagation time downstream.
An ultrasonic flowmeter characterized by that.
JP16038899A 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter Expired - Fee Related JP3680635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16038899A JP3680635B2 (en) 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16038899A JP3680635B2 (en) 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2000346685A JP2000346685A (en) 2000-12-15
JP3680635B2 true JP3680635B2 (en) 2005-08-10

Family

ID=15713895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16038899A Expired - Fee Related JP3680635B2 (en) 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3680635B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140398A1 (en) * 2016-09-19 2023-03-01 ResMed Sensor Technologies Limited Apparatus, system, and method for detecting physiological movement from audio and multimodal signals

Also Published As

Publication number Publication date
JP2000346685A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP3104956B2 (en) Apparatus and method for acoustic analysis of mixed gas
US6420816B2 (en) Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves
US11162829B2 (en) Multilayer body that includes piezoelectric body
US20140083194A1 (en) Device and method for determining properties of a medium
WO2005095946A1 (en) Supersonic transducer drive method
JP2002135894A (en) Ultrasonic sensor and electronic device using it
US6366675B1 (en) Sound pressure detecting system
JP2001074760A (en) Ultrasonic doppler current meter
JP3680635B2 (en) Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter
JPH1048009A (en) Ultrasound temperature current meter
EP2074388B1 (en) Flow sensor based on a piezoelectric polymer flow tube
JP3708226B2 (en) Flow velocity measuring device
JP2000304581A (en) Ultrasonic flowmeter
JP6149250B2 (en) Ultrasonic flow meter
JP3038584B2 (en) Ultrasonic object detection device
JPS584075A (en) Piezoelectric transformer for ultrasonic folw meter
JP3235637B2 (en) Ultrasonic fluid flow meter
JP2003139591A (en) Ultrasonic flowmeter
JPH08110376A (en) Ultrasonic wave transducer
JP7351508B2 (en) Recognition signal generation element and element recognition system
JPH11108714A (en) Ultrasonic transducer, its driving method and flow velocity measuring equipment
JPH0610255Y2 (en) Ultrasonic transceiver
JP3183133B2 (en) Vortex flow meter
JP2005127786A (en) Ultrasonic flowmeter
JPH09178713A (en) Ultrasonic concentration sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Ref document number: 3680635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees