JP2000346685A - Ultrasonic sensor, ultrasonic sensing device and ultrasonic flowmeter - Google Patents

Ultrasonic sensor, ultrasonic sensing device and ultrasonic flowmeter

Info

Publication number
JP2000346685A
JP2000346685A JP11160388A JP16038899A JP2000346685A JP 2000346685 A JP2000346685 A JP 2000346685A JP 11160388 A JP11160388 A JP 11160388A JP 16038899 A JP16038899 A JP 16038899A JP 2000346685 A JP2000346685 A JP 2000346685A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
ultrasonic sensor
sensor
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11160388A
Other languages
Japanese (ja)
Other versions
JP3680635B2 (en
Inventor
Masaki Taguchi
正樹 田口
Hiroyuki Yoshimura
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16038899A priority Critical patent/JP3680635B2/en
Publication of JP2000346685A publication Critical patent/JP2000346685A/en
Application granted granted Critical
Publication of JP3680635B2 publication Critical patent/JP3680635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integrated and high-sensitivity ultrasonic sensor used for both transmission and reception, to provide an ultrasonic sensing device and to provide an ultrasonic flowmeter. SOLUTION: This device is provided with a first ultrasonic vibrator 2 in which an electrode 22a and an electrode 22b are constituted at an inorganic piezoelectric material 21 and which is in a longitudinal vibration mode or a perpendicular vibration mode. The device is provided with a second ultrasonic vibrator 3 in which a flexible electrode 24a and a flexible electrode 24b are constituted on both faces of a polymer piezoelectric membrane 31, one face of which is bonded to the side of the ultrasonic emission face of the first ultrasonic vibrator 2 and the other face of which is used as an ultrasonic radiation face 25. Thereby, the first ultrasonic vibrator 2 is used as an ultrasonic sensor for transmission so as to be excited, and an ultrasonic signal is transmitted to an object from the the ultrasonic radiation face 25 via the second ultrasonic vibrator 3. In addition, the second ultrasonic vibrator 3 is used as an ultrasonic sensor for reception, and it receives an ultrasonic signal which is transmitted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は測定対象物に超音波
を放射してセンシングを行う超音波技術を利用する超音
波センサおよびそのセンサを用いたセンシング装置に関
わり、特に、超音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic sensor using an ultrasonic technique for sensing by radiating an ultrasonic wave to an object to be measured and a sensing device using the sensor, and more particularly to an ultrasonic flowmeter. .

【0002】[0002]

【従来の技術】超音波技術を利用してセンシングを行う
センシング装置には、測定対象物あるいは媒体に超音波
を放射しその反射波を検出して位置、距離あるいは速度
の計測装置あるいは画像処理装置や、測定対象の媒体に
超音波を放射しその透過波の伝搬時間を検出して、例え
ば、媒体の流速を測定する超音波流量計などがある。
2. Description of the Related Art A sensing device that performs sensing using ultrasonic technology includes a device for measuring position, distance, or velocity by emitting ultrasonic waves to an object or a medium and detecting reflected waves thereof, or an image processing device. Also, there is an ultrasonic flowmeter that radiates ultrasonic waves to a medium to be measured, detects the propagation time of the transmitted wave, and measures the flow velocity of the medium, for example.

【0003】図5は1対の超音波センサを流体の流れに
沿って対向配置し上流側および下流側に交互に超音波を
送信し、受信するまでの時間差から流速を測定する超音
波流量計の概念図を示す。図5において、従来技術によ
る超音波流量計は、例えば、チタン酸ジルコン酸鉛(PZ
T) の無機圧電材料に電極を構成してなる超音波振動子
2と、この超音波振動子2に接合され他方の面から音波
を放射する音響整合層4とからなる超音波センサ6A,6B
を、測定流体5の媒体中に、あるいは、測定流体5が搬
送される図示省略された測定管路に対して傾斜して、送
信側と受信側とを対向配備して構成される。
[0005] FIG. 5 shows an ultrasonic flowmeter in which a pair of ultrasonic sensors are arranged opposite to each other along the flow of a fluid to transmit ultrasonic waves alternately upstream and downstream, and to measure the flow velocity from the time difference until reception. FIG. In FIG. 5, an ultrasonic flowmeter according to the prior art is, for example, lead zirconate titanate (PZ).
Ultrasonic transducers 6A and 6B each comprising an ultrasonic vibrator 2 having an electrode formed of an inorganic piezoelectric material (T) and an acoustic matching layer 4 joined to the ultrasonic vibrator 2 and emitting a sound wave from the other surface.
Is arranged in the medium of the measurement fluid 5 or inclined with respect to a not-shown measurement pipeline through which the measurement fluid 5 is conveyed, and the transmission side and the reception side are arranged to face each other.

【0004】かかる構成において、超音波流量計は、一
方の超音波センサ(例えば6A)の超音波振動子2(2A)を
送受信回路61A から励振し、流体5との音響インピーダ
ンスの整合を図る音響整合層4Aを介して媒体5に超音波
信号5aを送信する。他方の超音波センサ(6B)は、音響整
合層4Bを介して超音波振動子2(2B)でこの送信された超
音波信号5aを受信し、送受信回路61B でこの超音波信号
5aを検出する。そして、送受信回路61A,61B の送受信機
能を交互に切り換えて、上流側への超音波伝搬時間と下
流側への超音波伝搬時間との伝搬時間差ΔT を測定する
ことにより、測定管路内の流体5の流速あるいは流量を
測定することができる。即ち、従来技術による超音波セ
ンサ6A,6B は同一センサの超音波振動子2を送信用およ
び受信用に切り換えて使用している。
In such a configuration, the ultrasonic flowmeter excites the ultrasonic vibrator 2 (2A) of one ultrasonic sensor (for example, 6A) from the transmission / reception circuit 61A to match the acoustic impedance with the fluid 5. An ultrasonic signal 5a is transmitted to the medium 5 via the matching layer 4A. The other ultrasonic sensor (6B) receives the transmitted ultrasonic signal 5a by the ultrasonic transducer 2 (2B) via the acoustic matching layer 4B, and transmits and receives the ultrasonic signal by the transmission / reception circuit 61B.
5a is detected. The transmission / reception functions of the transmission / reception circuits 61A and 61B are alternately switched to measure the propagation time difference ΔT between the ultrasonic wave propagation time to the upstream side and the ultrasonic wave propagation time to the downstream side. 5 can be measured. That is, the ultrasonic sensors 6A and 6B according to the prior art use the ultrasonic transducer 2 of the same sensor by switching between transmission and reception.

【0005】図6は従来技術による超音波センサ6A,6B
の特性を示す。図6において、横軸に周波数を、縦軸に
送受信回路61A,61B からの電気的励振パワーに対する超
音波出力の送信感度2Sおよび受信する超音波出力に対す
る電気信号への変換パワーを示す受信感度2Rをとる。従
来技術による送受信一体型の超音波センサ6A,6B は、超
音波振動子2の材料特性とその形状とから定まる電気機
械系の振動特性を有し、送信感度と受信感度でそのピー
ク値が異なる。例えば、チタン酸ジルコン酸鉛(PZT) な
どの無機圧電材料で構成される超音波センサ6A,6B の電
気機械系の振動特性は、この超音波センサ6A,6B を送信
用に用いたとき、超音波振動子2の材料特性とその形状
とから定まる共振周波数frでピーク特性を有する曲線2S
の特性を示す。一方、超音波センサ6A,6B を受信用に用
いたとき、この超音波振動子2の機械電気系の振動特性
は、材料特性とその形状とからなる反共振周波数faでピ
ーク特性を有する曲線2Rの特性を示す。この結果、同一
超音波センサ6A,6B を用いて送信用および受信用に兼用
するとき、共振周波数frと反共振周波数faとの中心付近
の周波数帯foで超音波センサ6A,6B を駆動させる、即
ち、送信特性および受信特性の共通部分である周波数fo
を中心周波数とする特性2SR で図示される特性で使用す
るのが最適な超音波センサ6A,6B の感度特性となり、こ
の様な観点で送受信兼用の超音波センサ6A,6B が製作さ
れていた。この様に送受信一体型の超音波センサ6A,6B
の感度特性は、共振周波数frと反共振周波数faとの異な
るピーク周波数があるため、送受信兼用のときは、これ
らのピーク特性のところから外れたところで使用する結
果となり、高感度な超音波センサとはなっていない。
FIG. 6 shows ultrasonic sensors 6A and 6B according to the prior art.
The characteristics of In FIG. 6, the horizontal axis represents the frequency, and the vertical axis represents the transmission sensitivity 2S of the ultrasonic output with respect to the electric excitation power from the transmission / reception circuits 61A and 61B, and the reception sensitivity 2R indicating the conversion power of the received ultrasonic output into an electric signal with respect to the received ultrasonic output. Take. The transmission / reception integrated ultrasonic sensors 6A and 6B according to the prior art have electromechanical vibration characteristics determined by the material characteristics and the shape of the ultrasonic vibrator 2, and their peak values differ in transmission sensitivity and reception sensitivity. . For example, the vibration characteristics of the electromechanical system of the ultrasonic sensors 6A and 6B made of an inorganic piezoelectric material such as lead zirconate titanate (PZT) show that when the ultrasonic sensors 6A and 6B are used for transmission, Curve 2S having a peak characteristic at a resonance frequency fr determined from the material characteristics and the shape of the ultrasonic transducer 2
The characteristics of On the other hand, when the ultrasonic sensors 6A and 6B are used for reception, the vibration characteristic of the electromechanical system of the ultrasonic vibrator 2 is represented by a curve 2R having a peak characteristic at an anti-resonance frequency fa composed of the material characteristic and its shape. The characteristics of As a result, when the same ultrasonic sensor 6A, 6B is used for both transmission and reception, the ultrasonic sensors 6A, 6B are driven in a frequency band fo near the center between the resonance frequency fr and the anti-resonance frequency fa, That is, the frequency fo, which is a common part of the transmission characteristics and the reception characteristics,
The optimum sensitivity characteristic of the ultrasonic sensors 6A and 6B is to be used with the characteristic shown in the characteristic 2SR having the center frequency as the center frequency, and the ultrasonic sensors 6A and 6B for both transmission and reception have been manufactured from such a viewpoint. In this way, the transmission / reception integrated ultrasonic sensors 6A and 6B
Since the sensitivity characteristic of the sensor has a different peak frequency between the resonance frequency fr and the anti-resonance frequency fa, when used for both transmission and reception, the result is that the device is used outside of these peak characteristics. Not.

【0006】[0006]

【発明が解決しようとする課題】この様に、従来技術に
よる超音波センサ、超音波センシング装置および超音波
流量計で同一超音波振動子を送信用および受信用に兼用
したとき、(1) 無機圧電材料で構成される超音波振動子
の音響インピーダンスは、音波を伝搬させる媒質(液体
や気体)の音響インピーダンスに対して非常に大きな値
となり音響インピーダンスの整合がとれない。この液体
や気体などの媒体との結合を改善するため、超音波セン
サは、一般的に超音波振動子に音響整合層を備えて構成
される。また、(2) 送信用および受信用の共振周波数/
反共振周波数にズレが発生し、送受信兼用の高感度な超
音波センサを製作することができなかった。
As described above, when the same ultrasonic transducer is used for both transmission and reception in the conventional ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter, (1) inorganic The acoustic impedance of an ultrasonic vibrator made of a piezoelectric material has a very large value with respect to the acoustic impedance of a medium (a liquid or a gas) for transmitting sound waves, and acoustic impedance cannot be matched. In order to improve the coupling with a medium such as a liquid or a gas, an ultrasonic sensor generally includes an ultrasonic transducer and an acoustic matching layer. In addition, (2) resonance frequency for transmission and reception
A deviation occurred in the anti-resonance frequency, and a high-sensitivity ultrasonic sensor for both transmission and reception could not be manufactured.

【0007】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、送受信
兼用に一体化された超音波センサの共振周波数および反
共振周波数がほぼ一致し、かつ、音響インピーダンスが
比較的低くすることができる一体化された超音波センサ
を製作することにより、送受信兼用の高感度な超音波セ
ンサ、超音波センシング装置および超音波流量計を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to solve the above-mentioned problems and to make the resonance frequency and anti-resonance frequency of an ultrasonic sensor integrated for both transmission and reception substantially coincide. By producing an integrated ultrasonic sensor whose acoustic impedance can be made relatively low, it is possible to provide a high-sensitivity ultrasonic sensor, an ultrasonic sensing device and an ultrasonic flow meter for both transmission and reception. is there.

【0008】[0008]

【課題を解決するための手段】上記課題は本発明によれ
ば、超音波センサは、無機圧電材料に電極を構成してな
る縦振動モードあるいは厚み振動モードの第1超音波振
動子と、高分子圧電膜の両面に可撓性を有する電極を構
成し,一方の面を第1超音波振動子の超音波放出面側と
接合し,他方の面を超音波放射面とする厚み振動モード
の第2超音波振動子と、を備えて構成するものとする。
According to the present invention, there is provided an ultrasonic sensor comprising: a first ultrasonic vibrator in a longitudinal vibration mode or a thickness vibration mode in which an electrode is formed on an inorganic piezoelectric material; Flexible electrodes are formed on both sides of the molecular piezoelectric film, and one side is joined to the ultrasonic emission side of the first ultrasonic vibrator, and the other side is an ultrasonic emission plane. And a second ultrasonic vibrator.

【0009】かかる構成により、第1超音波振動子と第
2超音波振動子とを一体化構成し、第1超音波振動子を
送信用超音波センサとして励振し,第2超音波振動子を
経由してこの超音波放射面から対象物に超音波信号を送
信し、また、第2超音波振動子を受信用超音波センサと
して送信されてくる超音波信号を受信することができ
る。
With this configuration, the first ultrasonic vibrator and the second ultrasonic vibrator are integrally formed, the first ultrasonic vibrator is excited as an ultrasonic sensor for transmission, and the second ultrasonic vibrator is excited. An ultrasonic signal can be transmitted from the ultrasonic radiation surface to the object via the ultrasonic radiation surface, and an ultrasonic signal transmitted using the second ultrasonic transducer as a receiving ultrasonic sensor can be received.

【0010】また、第1超音波振動子は、無機圧電材料
の、例えば、チタン酸ジルコン酸鉛(PZT) あるいはジル
コン酸鉛系から構成することができる。また、第2超音
波振動子の高分子圧電膜は、ポリフッカビニリデン(PVD
F)の膜から構成することができる。
The first ultrasonic vibrator can be made of an inorganic piezoelectric material, for example, lead zirconate titanate (PZT) or lead zirconate. In addition, the polymer piezoelectric film of the second ultrasonic vibrator is made of polyfukka vinylidene (PVD).
F).

【0011】また、この超音波センサを用いたセンシン
グ装置は、超音波センサの第1超音波振動子を励振して
第2超音波振動子を経由してこの超音波放射面から超音
波信号を測定対象物あるいは媒体に放射し、対象物から
反射して戻る超音波信号を第2超音波振動子で受信する
ものとする。
A sensing device using the ultrasonic sensor excites a first ultrasonic vibrator of the ultrasonic sensor and transmits an ultrasonic signal from the ultrasonic radiation surface via a second ultrasonic vibrator. It is assumed that the second ultrasonic transducer receives an ultrasonic signal emitted to the measurement object or medium and reflected back from the object.

【0012】また、超音波センサを用いた超音波流量計
は、測定対象の媒体は流体とし、流体中を透過する透過
波を検出し、上流側への超音波伝搬時間と下流側への超
音波伝搬時間との差から流体の流速を演算するものとす
る。
An ultrasonic flowmeter using an ultrasonic sensor uses a medium as a measurement object as a fluid, detects a transmitted wave transmitted through the fluid, and detects an ultrasonic wave propagation time to an upstream side and an ultrasonic wave to a downstream side. The flow velocity of the fluid is calculated from the difference from the sound wave propagation time.

【0013】かかる構成により、送受信兼用の高感度な
超音波センサを用いることにより、安定に超音波信号の
送受信を行うことができる。この結果、周辺のノイズ環
境との兼ね合いによっては、例えば超音波信号の送信レ
ベルを従来技術レベルよりも下げて使用することがで
き、超音波センサを励振する電気信号レベルを下げて実
用化することができる。
With this configuration, the transmission and reception of the ultrasonic signal can be stably performed by using the high-sensitivity ultrasonic sensor for both transmission and reception. As a result, depending on the balance with the surrounding noise environment, for example, the transmission level of the ultrasonic signal can be used lower than the conventional technology level, and the electric signal level for exciting the ultrasonic sensor can be reduced for practical use. Can be.

【0014】[0014]

【発明の実施の形態】図1は本発明の一実施例による超
音波センサの要部構成図、図2は一実施例による超音波
センシング装置の要部構成図、図3は他の実施例による
超音波センシング装置の要部構成図、図4は本発明によ
る超音波センサの周波数特性図であり、図5、図6に対
応する同一部材には同じ符号が付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a main part of an ultrasonic sensor according to an embodiment of the present invention, FIG. 2 is a diagram showing a main part of an ultrasonic sensing device according to an embodiment, and FIG. FIG. 4 is a frequency characteristic diagram of the ultrasonic sensor according to the present invention, and the same members corresponding to FIGS. 5 and 6 are denoted by the same reference numerals.

【0015】図1において、本発明による超音波センサ
1は、無機圧電材料21に電極22a,22b を構成してなる縦
振動モードあるいは厚み振動モードの第1超音波振動子
2と、高分子圧電膜31の両面に可撓性を有する電極24a,
24b を構成し,一方の面(24a) を第1超音波振動子2の
超音波放出面側(22b) と接合し,他方の面(24b) を超音
波放射面25とする厚み振動モードの第2超音波振動子3
と、を備えて構成される。
In FIG. 1, an ultrasonic sensor 1 according to the present invention comprises a first ultrasonic vibrator 2 in a longitudinal vibration mode or a thickness vibration mode in which electrodes 22a and 22b are formed on an inorganic piezoelectric material 21; Electrodes 24a having flexibility on both surfaces of the membrane 31,
A thickness vibration mode in which one surface (24a) is joined to the ultrasonic emission surface side (22b) of the first ultrasonic vibrator 2 and the other surface (24b) is an ultrasonic radiation surface 25. Second ultrasonic transducer 3
And is provided.

【0016】かかる構成により、第1超音波振動子2と
第2超音波振動子3とを一体化構成し、送信モードで
は、第1超音波振動子2を送信用超音波センサとして励
振し,第2超音波振動子3を経由してこの超音波放射面
25から対象物(5)に超音波信号(5a)を送信する。ま
た、受信モードでは、第2超音波振動子3を受信用超音
波センサとして送信されてくる超音波信号(5b)を受信す
ることができる。
With this configuration, the first ultrasonic vibrator 2 and the second ultrasonic vibrator 3 are integrally formed, and in the transmission mode, the first ultrasonic vibrator 2 is excited as a transmitting ultrasonic sensor. This ultrasonic radiation surface via the second ultrasonic vibrator 3
An ultrasonic signal (5a) is transmitted from 25 to the object (5). In the reception mode, the ultrasonic signal (5b) transmitted from the second ultrasonic transducer 3 as an ultrasonic sensor for reception can be received.

【0017】[0017]

【実施例】(実施例1)図1の(A) において、図示例の
超音波センサ1は、無機圧電材料21、例えば、チタン酸
ジルコン酸鉛(PZT) の両端に可撓性を備える電極22a,22
b を構成し、この電極22a,22b に電圧を印加することに
より、電極22a,22b 方向に振動する縦振動モードあるい
は厚み振動モードの第1超音波振動子2を構成すること
ができる。また同様に、高分子圧電膜31の両面に可撓性
を備える電極24a,24b を、例えば、金属皮膜を蒸着して
構成することによって厚み振動モードの第2超音波振動
子3を構成することができる。そして、第1超音波振動
子2の電極22b と第2超音波振動子3の電極24a との間
を可撓性を備える電気的絶縁層(例えば絶縁樹脂フィル
ム)23で接着などの手段によって接合することにより、
送信用の第1超音波振動子2と受信用の第2超音波振動
子3とを一体化構成することができる。
(Embodiment 1) In FIG. 1A, an ultrasonic sensor 1 shown in the drawing is an example in which an electrode provided with flexibility at both ends of an inorganic piezoelectric material 21, for example, lead zirconate titanate (PZT). 22a, 22
The first ultrasonic vibrator 2 of the longitudinal vibration mode or the thickness vibration mode that vibrates in the direction of the electrodes 22a and 22b can be formed by configuring the electrode b and applying a voltage to the electrodes 22a and 22b. Similarly, the second ultrasonic vibrator 3 in the thickness vibration mode is formed by forming the electrodes 24a and 24b having flexibility on both surfaces of the polymer piezoelectric film 31, for example, by depositing a metal film. Can be. The electrode 22b of the first ultrasonic vibrator 2 and the electrode 24a of the second ultrasonic vibrator 3 are joined by a flexible electric insulating layer (for example, an insulating resin film) 23 by means such as adhesion. By doing
The first ultrasonic transducer 2 for transmission and the second ultrasonic transducer 3 for reception can be integrated.

【0018】この様な構成の超音波センサ1は、高圧の
励振電圧が印加される送信回路11と比較的受信電圧が低
い受信回路12とを電極22b,24a 間で絶縁することができ
るので、送信回路11側から受信回路12側へのノイズの混
入を防止することが容易である。この絶縁層23と接合部
分での超音波信号の減衰は多少発生するが、励振エネル
ギが十分得られるので実用上の支障はなく、第2超音波
振動子3による高感度受信の利点を享受することができ
る。
In the ultrasonic sensor 1 having such a configuration, the transmission circuit 11 to which a high excitation voltage is applied and the reception circuit 12 having a relatively low reception voltage can be insulated between the electrodes 22b and 24a. It is easy to prevent noise from entering the transmission circuit 11 into the reception circuit 12. Although the ultrasonic signal is slightly attenuated at the joint portion with the insulating layer 23, sufficient excitation energy is obtained, so that there is no practical problem, and the advantage of high sensitivity reception by the second ultrasonic transducer 3 is enjoyed. be able to.

【0019】また、図1の(B) において、絶縁層23を省
略して電極22b,24a を直接接合する、あるいは、一方の
電極22b(または電極24a)を省略して他方の電極24a(また
は電極22b)に接着などの手段で接合することもできる。
この場合は、送信回路11側から受信回路12側へのノイズ
の混入防止にテクニックを要するが、接合部分での超音
波信号の減衰を少なくすることができる。
In FIG. 1B, the insulating layer 23 is omitted and the electrodes 22b and 24a are directly joined, or one electrode 22b (or the electrode 24a) is omitted and the other electrode 24a (or It can be joined to the electrode 22b) by means such as adhesion.
In this case, a technique is required to prevent noise from entering the transmission circuit 11 into the reception circuit 12, but the attenuation of the ultrasonic signal at the joint can be reduced.

【0020】次に、本発明による超音波センサ1の周波
数特性を図4に示す。図4において、横軸に周波数を、
縦軸に送信感度および受信感度をとる。第1超音波振動
子2の周波数特性は、送信回路11からの電気励振パワー
に対する超音波信号5aの送信感度特性2Sはピーク送信感
度を周波数fr1 に有する特性を有し、また、受信する超
音波信号5bに対する電気信号への受信感度特性2Rは、ピ
ーク受信感度を周波数fa1 に有する。そして、このピー
ク値の周波数は、第1超音波振動子2の材料特性とその
形状によって定まる。特に、第1超音波振動子2の厚み
寸法を制御することにより、周波数fr1,fa1 を移動する
ことができる。
Next, FIG. 4 shows the frequency characteristics of the ultrasonic sensor 1 according to the present invention. In FIG. 4, the horizontal axis represents frequency,
The vertical axis shows the transmission sensitivity and the reception sensitivity. The frequency characteristic of the first ultrasonic transducer 2 is such that the transmission sensitivity characteristic 2S of the ultrasonic signal 5a with respect to the electric excitation power from the transmission circuit 11 has a characteristic that the peak transmission sensitivity is at the frequency fr1, and The reception sensitivity characteristic 2R to the electric signal with respect to the signal 5b has a peak reception sensitivity at the frequency fa1. The frequency of the peak value is determined by the material characteristics and the shape of the first ultrasonic transducer 2. In particular, by controlling the thickness dimension of the first ultrasonic transducer 2, the frequency fr1, fa1 can be moved.

【0021】また同様に、第2超音波振動子3の周波数
特性は、送信回路11からの電気励振パワーに対する超音
波信号5aの送信感度特性3Sはピーク送信感度を周波数fr
2 に有する特性を有し、また、受信する超音波信号5bに
対する電気信号への受信感度特性3Rは、ピーク受信感度
を周波数fa2 に有する。そして、このピーク値の周波数
は、第2超音波振動子3の材料特性とその形状によって
定まり、特に、第2超音波振動子3の厚み寸法を制御す
ることにより、周波数fr2,fa2 を移動することができ
る。
Similarly, the frequency characteristic of the second ultrasonic transducer 3 is such that the transmission sensitivity characteristic 3S of the ultrasonic signal 5a with respect to the electric excitation power from the transmission circuit 11 indicates the peak transmission sensitivity at the frequency fr.
2 and the reception sensitivity characteristic 3R of the received ultrasonic signal 5b to the electric signal with respect to the received ultrasonic signal 5b has the peak reception sensitivity at the frequency fa2. The frequency of the peak value is determined by the material characteristics and the shape of the second ultrasonic vibrator 3, and the frequency fr2, fa2 is moved by controlling the thickness of the second ultrasonic vibrator 3. be able to.

【0022】図4の図示例では、送信用の第1超音波振
動子2を無機圧電材料のチタン酸ジルコン酸鉛(PZT) あ
るいはジルコン酸鉛系から構成し、受信用の第2超音波
振動子3を高分子圧電膜のポリフッカビニリデン(PVDF)
の膜から構成したものであり、第1超音波振動子2の送
信用の共振周波数fr1 と第2超音波振動子3の受信用の
反共振周波数fa2 を一致させる条件で厚み方向の寸法を
選択する。
In the example shown in FIG. 4, the first ultrasonic transducer 2 for transmission is made of an inorganic piezoelectric material such as lead zirconate titanate (PZT) or lead zirconate, and the second ultrasonic transducer for reception is used. The element 3 is made of a polymer piezoelectric film of polyfukka vinylidene (PVDF).
The dimension in the thickness direction is selected under the condition that the resonance frequency fr1 for transmission of the first ultrasonic transducer 2 and the anti-resonance frequency fa2 for reception of the second ultrasonic transducer 3 are matched. I do.

【0023】かかる構成により、振動に関する電気機械
結合係数が高分子圧電材料よりも高いチタン酸ジルコン
酸鉛(PZT) あるいはジルコン酸鉛系を用いることがで
き、共振周波数fr1 を受信用の高分子圧電材料の第2超
音波振動子3の反共振周波数fa2 と一致させ、超音波セ
ンサ1を周波数fo=fr1(=fa2)で動作させることによ
り、送信感度および受信感度をより一層高感度化するこ
とができ、送受信兼用の高感度な超音波センサを製作す
ることができる。
With this configuration, it is possible to use lead zirconate titanate (PZT) or lead zirconate having a higher electromechanical coupling coefficient with respect to vibration than a polymer piezoelectric material, and to set the resonance frequency fr1 to a polymer piezoelectric material for reception. By making the ultrasonic sensor 1 operate at the frequency fo = fr1 (= fa2) by matching the anti-resonance frequency fa2 of the second ultrasonic vibrator 3 of the material, the transmission sensitivity and the reception sensitivity can be further enhanced. Thus, a high-sensitivity ultrasonic sensor for both transmission and reception can be manufactured.

【0024】さらに、高分子圧電膜のポリフッカビニリ
デン(PVDF)の膜は、無機圧電材料のチタン酸ジルコン酸
鉛(PZT) に較べて音響インピーダンスが低く、水やプラ
スチックなどの音響インピーダンスに近いので、液体や
気体中に超音波を伝播する超音波センサとして、付加的
に音響整合層を付加することなく使用することができ
る。さらにまた、高分子圧電膜のポリフッカビニリデン
(PVDF)の膜は、超音波の受信感度が高い特性があるの
で、超音波受信用に用いることにより、信号対雑音比(S
/N比) を向上させることができる。(実施例2)図2に
おいて、本発明の超音波センサを用いたセンシング装置
は、1個の超音波センサ1Aを予め定められた位置に配置
して、超音波センサ1Aの第1超音波振動子2を送信回路
11から励振して第2超音波振動子3を経由して超音波放
射面25から超音波信号5aを測定対象物5あるいは媒体5
に放射し、対象物5から反射して戻る超音波信号5bを第
2超音波振動子3で受信することができる。
Further, the polymer piezoelectric film of polyfukkavinylidene (PVDF) has a lower acoustic impedance than that of the inorganic piezoelectric material, lead zirconate titanate (PZT), and is close to the acoustic impedance of water and plastic. It can be used as an ultrasonic sensor for transmitting ultrasonic waves in a liquid or a gas without adding an additional acoustic matching layer. In addition, the polymer piezo film
Since the (PVDF) film has the property of high ultrasonic reception sensitivity, the signal-to-noise ratio (S
/ N ratio) can be improved. (Embodiment 2) In FIG. 2, a sensing device using an ultrasonic sensor according to the present invention has a structure in which one ultrasonic sensor 1A is disposed at a predetermined position, and the first ultrasonic vibration of the ultrasonic sensor 1A is performed. Transmitter for child 2
An ultrasonic signal 5a is excited from the ultrasonic wave emitting surface 25 through the second ultrasonic transducer 3 and transmitted from the ultrasonic radiation surface 25 to the object 5 or the medium 5 to be measured.
And the second ultrasonic transducer 3 can receive an ultrasonic signal 5b reflected from the object 5 and returned.

【0025】かかる構成において、送信回路11からパル
ス状に第2超音波振動子3を励振し、バースト状の超音
波信号5aを測定対象物5に放射し、対象物5から反射し
て戻る超音波信号5bを第2超音波振動子3で受信し、送
信パルスから超音波信号5bを検出するまでの時間を計測
することにより、対象物5までの距離を測定することが
できる。また、この時間的変化を測定することにより、
対象物5との相対速度を、超音波センサ1Aが例えば地上
に固定されているときは対象物5の速度を、測定するこ
とができる。
In this configuration, the transmission circuit 11 excites the second ultrasonic transducer 3 in a pulsed manner, emits a burst-shaped ultrasonic signal 5a to the measurement object 5, and reflects the ultrasonic signal 5a from the object 5 to return. The distance to the object 5 can be measured by receiving the sound wave signal 5b by the second ultrasonic transducer 3 and measuring the time from the transmission pulse to the detection of the ultrasonic signal 5b. Also, by measuring this temporal change,
For example, when the ultrasonic sensor 1A is fixed on the ground, the speed of the object 5 can be measured relative to the object 5.

【0026】また、送信回路11から正弦波の連続波を送
信し、この送信超音波信号5aと対象物5からの反射波の
超音波信号5bとを第2超音波振動子3で受信し、受信回
路12に非線形要素を備えて送信波と受信波とのホモダイ
ン検波を行うことにより、対象物5の移動速度、即ち、
ドプラーシフト量を検出することができる。本発明の一
体化された超音波センサ1を用いることにより、送信波
と受信波とのミキシング信号を1個の第2超音波振動子
3で検出することができ、スーパーヘテロダイン検波方
式に較べて信号雑音比(S/N比) の高い信号検出を行うこ
とができる。
Further, a continuous sine wave is transmitted from the transmission circuit 11, and the transmitted ultrasonic signal 5a and the ultrasonic signal 5b of the reflected wave from the object 5 are received by the second ultrasonic transducer 3, By performing a homodyne detection of a transmission wave and a reception wave with a non-linear element in the reception circuit 12, the moving speed of the object 5, that is,
The amount of Doppler shift can be detected. By using the integrated ultrasonic sensor 1 of the present invention, a mixing signal of a transmission wave and a reception wave can be detected by one second ultrasonic vibrator 3, and compared with the superheterodyne detection method. Signal detection with a high signal-to-noise ratio (S / N ratio) can be performed.

【0027】また、図3において、本発明の超音波セン
サを用いたセンシング装置は、1組の超音波センサ1A,1
B を予め定められた位置に配置して、例えば、超音波セ
ンサ1Aの第1超音波振動子2を送信回路11A から励振し
てこの第2超音波振動子3を経由してこの超音波放射面
25から超音波信号5aを測定対象物5あるいは媒体5に放
射し、対象物5から反射して戻る超音波信号5bを別置さ
れた超音波センサ1Bの第2超音波振動子3で受信し、受
信回路12B で検出することができる。
In FIG. 3, a sensing device using the ultrasonic sensor of the present invention includes a pair of ultrasonic sensors 1A and 1A.
B is arranged at a predetermined position, and for example, the first ultrasonic vibrator 2 of the ultrasonic sensor 1A is excited from the transmission circuit 11A, and the ultrasonic wave is radiated through the second ultrasonic vibrator 3 surface
An ultrasonic signal 5a is radiated from 25 to the object 5 or the medium 5 and an ultrasonic signal 5b reflected from the object 5 and returned is received by the second ultrasonic transducer 3 of the ultrasonic sensor 1B separately provided. , Can be detected by the receiving circuit 12B.

【0028】かかる構成により、送信回路11A からパル
ス状に第2超音波振動子3を励振し、バースト状の超音
波信号5aを測定対象物5に放射し、対象物5から反射し
て戻る超音波信号5bを別置された超音波センサ1Bの第2
超音波振動子3で受信し、受信回路12B で送信パルスか
ら超音波信号5bを検出するまでの時間を計測することに
より、対象物5までの距離を超音波センサ1A,1B を配置
した位置を含めた三角測量を行い、より正確な距離を測
定することができる。
With this configuration, the second ultrasonic transducer 3 is excited in a pulse form from the transmission circuit 11A, and a burst-like ultrasonic signal 5a is radiated to the measuring object 5 and reflected from the object 5 and returned. The second ultrasonic sensor 1B separately provided with the sound wave signal 5b
The distance from the transmission pulse to the detection of the ultrasonic signal 5b by the receiving circuit 12B is measured by the receiving by the ultrasonic transducer 3, and the distance to the object 5 is determined by the position of the ultrasonic sensors 1A and 1B. By performing triangulation including this, a more accurate distance can be measured.

【0029】さらに、図2または図3の構成において、
反射波あるいは透過波の検出時間を測定することによ
り、対象物5中に存在する傷あるいは異物の検出を非破
壊検査することができる。 (実施例3)また、図3において、本発明の超音波セン
サを用いた超音波流量計は、1組の超音波センサ1A,1B
を測定流体5の媒体中に、あるいは、測定流体5が搬送
される図示省略された測定管路に対して傾斜して送信側
と受信側とを予め定められた位置に対向配備して構成す
ることができる。
Further, in the configuration of FIG. 2 or FIG.
By measuring the detection time of the reflected wave or the transmitted wave, it is possible to perform a non-destructive inspection on the detection of a scratch or a foreign substance existing in the object 5. (Embodiment 3) In FIG. 3, an ultrasonic flowmeter using the ultrasonic sensor of the present invention is a set of ultrasonic sensors 1A and 1B.
Is arranged in the medium of the measurement fluid 5 or inclined with respect to a measurement pipe (not shown) through which the measurement fluid 5 is conveyed so that the transmission side and the reception side are opposed to each other at a predetermined position. be able to.

【0030】かかる構成により、測定対象の媒体5を流
体とし、流体中を透過する透過波を検出し、上流側への
超音波伝搬時間と下流側への超音波伝搬時間との差から
流体の流速を演算することができる。例えば、上流側に
配置された超音波センサ1Aの第1超音波振動子2を送信
回路11A から励振してこの第2超音波振動子3を経由し
てこの超音波放射面25から超音波信号5aを媒体5に放射
し、媒体5を透過する透過波を下流側に配置された超音
波センサ1Bの第2超音波振動子3で受信し、受信回路12
B で下流側への超音波伝搬時間を測定する。次に、下流
側に配置された超音波センサ1Bの第1超音波振動子2を
送信回路11B から励振してこの第2超音波振動子3を経
由してこの超音波放射面25から超音波信号5bを媒体5に
放射し、媒体5を透過する透過波を上流側に配置された
超音波センサ1Aの第2超音波振動子3で受信し、受信回
路12A で上流側への超音波伝搬時間を測定し、両超音波
伝搬時間差を演算することにより、流体5の流速あるい
は流量を測定することができる。
With this configuration, the medium 5 to be measured is used as a fluid, a transmitted wave transmitted through the fluid is detected, and the difference between the ultrasonic wave propagation time to the upstream side and the ultrasonic wave propagation time to the downstream side is used to detect the transmitted wave. The flow velocity can be calculated. For example, the first ultrasonic transducer 2 of the ultrasonic sensor 1A disposed on the upstream side is excited from the transmission circuit 11A, and the ultrasonic signal is transmitted from the ultrasonic radiation surface 25 via the second ultrasonic transducer 3 to the ultrasonic signal. 5a is radiated to the medium 5, and the transmitted wave transmitted through the medium 5 is received by the second ultrasonic transducer 3 of the ultrasonic sensor 1B disposed on the downstream side.
At B, the ultrasonic propagation time to the downstream side is measured. Next, the first ultrasonic vibrator 2 of the ultrasonic sensor 1B disposed on the downstream side is excited from the transmitting circuit 11B, and the ultrasonic wave is transmitted from the ultrasonic radiation surface 25 through the second ultrasonic vibrator 3 to the ultrasonic wave. The signal 5b is radiated to the medium 5, and the transmitted wave transmitted through the medium 5 is received by the second ultrasonic transducer 3 of the ultrasonic sensor 1A arranged on the upstream side, and the ultrasonic wave is propagated to the upstream side by the receiving circuit 12A. By measuring the time and calculating the difference between the two ultrasonic propagation times, the flow velocity or flow rate of the fluid 5 can be measured.

【0031】本発明によれば、無機圧電材料の第1超音
波振動子と高分子圧電膜の第2超音波振動子とを用い
て、送受信兼用に一体化された超音波センサの共振周波
数および反共振周波数がほぼ一致し、かつ、液体や気体
との音響インピーダンスの整合がとれる一体化された超
音波センサを製作することにより、送受信兼用の高感度
な超音波センサを提供することができ、また、この送受
信兼用の高感度な超音波センサを用いることにより、信
号雑音比の高い各種の超音波センシング装置および超音
波流量計を提供することができる。
According to the present invention, the resonance frequency and the resonance frequency of an ultrasonic sensor integrated for both transmission and reception using a first ultrasonic oscillator made of an inorganic piezoelectric material and a second ultrasonic oscillator made of a polymer piezoelectric film. By manufacturing an integrated ultrasonic sensor that has almost the same anti-resonance frequency and can match acoustic impedance with liquid or gas, it is possible to provide a high-sensitivity ultrasonic sensor for both transmission and reception. Further, by using the high-sensitivity ultrasonic sensor for both transmission and reception, it is possible to provide various ultrasonic sensing devices and ultrasonic flow meters having a high signal-to-noise ratio.

【0032】[0032]

【発明の効果】以上述べたように本発明による超音波セ
ンサは、送受信兼用に一体化され、共振周波数および反
共振周波数がほぼ一致し、かつ、液体や気体との音響イ
ンピーダンスの整合がとれる一体化された高感度な超音
波センサを提供することができ、また、この高感度な超
音波センサを用いることにより、信号雑音比の高い各種
の超音波センシング装置および超音波流量計を提供する
ことができる。
As described above, the ultrasonic sensor according to the present invention is integrated for both transmission and reception, the resonance frequency and the anti-resonance frequency are almost the same, and the acoustic impedance of the liquid or gas can be matched. To provide various types of ultrasonic sensing devices and ultrasonic flowmeters having a high signal-to-noise ratio by using the high-sensitivity ultrasonic sensor. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての超音波センサの要部
構成図
FIG. 1 is a main part configuration diagram of an ultrasonic sensor as one embodiment of the present invention.

【図2】一実施例による超音波センシング装置の要部構
成図
FIG. 2 is a configuration diagram of a main part of an ultrasonic sensing device according to an embodiment.

【図3】他の実施例による超音波センシング装置の要部
構成図
FIG. 3 is a main part configuration diagram of an ultrasonic sensing device according to another embodiment.

【図4】本発明による超音波センサの周波数特性図FIG. 4 is a frequency characteristic diagram of the ultrasonic sensor according to the present invention.

【図5】従来技術による超音波センシング装置の要部構
成図
FIG. 5 is a configuration diagram of a main part of an ultrasonic sensing device according to a conventional technique.

【図6】従来技術による超音波センサの周波数特性図FIG. 6 is a frequency characteristic diagram of an ultrasonic sensor according to the related art.

【符号の説明】[Explanation of symbols]

1,1A,1B,6A,6B 超音波センサ 11,11A,11B 送信回路 12,12A,12B 受信回路 2 第1超音波振動子 21 無機圧電材料 22,22a,22b,24a,24b 電極 23 絶縁層 25 超音波放射面 2S,3S 送信感度特性 2R,3R 受信感度特性 3 第2超音波振動子 31 高分子圧電膜 5 対象物 5a,5b 超音波信号 61A,61B 送受信回路 fr,fr1,fr2 共振周波数 fa,fa1,fa2 反共振周波数 fo 動作周波数 1,1A, 1B, 6A, 6B Ultrasonic sensor 11,11A, 11B Transmitting circuit 12,12A, 12B Receiving circuit 2 First ultrasonic transducer 21 Inorganic piezoelectric material 22,22a, 22b, 24a, 24b Electrode 23 Insulating layer 25 Ultrasonic radiation surface 2S, 3S Transmission sensitivity characteristics 2R, 3R Reception sensitivity characteristics 3 Second ultrasonic transducer 31 Polymer piezoelectric film 5 Object 5a, 5b Ultrasonic signal 61A, 61B Transmission / reception circuit fr, fr1, fr2 Resonance frequency fa, fa1, fa2 Anti-resonant frequency fo Operating frequency

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】無機圧電材料に電極を構成してなる縦振動
モードあるいは厚み振動モードの第1超音波振動子と、
高分子圧電膜の両面に可撓性を有する電極を構成し,一
方の面を第1超音波振動子の超音波放出面側と接合し,
他方の面を超音波放射面とする厚み振動モードの第2超
音波振動子と、を備え、 第1超音波振動子を送信用超音波センサとして励振し,
第2超音波振動子を経由してこの超音波放射面から対象
物に超音波信号を送信し、また、第2超音波振動子を受
信用超音波センサとして送信されてくる超音波信号を受
信する、 ことを特徴とする超音波センサ。
A first ultrasonic vibrator in a longitudinal vibration mode or a thickness vibration mode in which electrodes are formed on an inorganic piezoelectric material;
A flexible electrode is formed on both surfaces of the polymer piezoelectric film, and one surface is joined to the ultrasonic emission surface side of the first ultrasonic transducer,
A second ultrasonic vibrator in a thickness vibration mode having the other surface as an ultrasonic wave emitting surface, wherein the first ultrasonic vibrator is excited as a transmitting ultrasonic sensor,
An ultrasonic signal is transmitted from the ultrasonic radiating surface to the object via the second ultrasonic transducer, and an ultrasonic signal transmitted from the second ultrasonic transducer as a receiving ultrasonic sensor is received. An ultrasonic sensor, comprising:
【請求項2】請求項1に記載の超音波センサにおいて、 第1超音波振動子は、無機圧電材料の、例えば、チタン
酸ジルコン酸鉛(PZT)あるいはジルコン酸鉛系から構成
する、ことを特徴とする超音波センサ。
2. The ultrasonic sensor according to claim 1, wherein the first ultrasonic vibrator is made of an inorganic piezoelectric material, for example, lead zirconate titanate (PZT) or lead zirconate. Ultrasonic sensor featuring.
【請求項3】請求項1に記載の超音波センサにおいて、 第2超音波振動子の高分子圧電膜は、ポリフッカビニリ
デン(PVDF)の膜から構成する、ことを特徴とする超音波
センサ。
3. The ultrasonic sensor according to claim 1, wherein the high-molecular piezoelectric film of the second ultrasonic vibrator is made of a polyfukka vinylidene (PVDF) film.
【請求項4】請求項1ないし請求項3のいずれかの項に
記載の超音波センサを用いたセンシング装置において、 超音波センサの第1超音波振動子を励振して第2超音波
振動子を経由してこの超音波放射面から超音波信号を測
定対象物あるいは媒体に放射し、対象物から反射して戻
る超音波信号を第2超音波振動子で受信する、 ことを特徴とする超音波センシング装置。
4. A sensing device using the ultrasonic sensor according to claim 1, wherein the first ultrasonic transducer of the ultrasonic sensor is excited to produce a second ultrasonic transducer. An ultrasonic signal is radiated from the ultrasonic radiation surface to the measurement object or medium via the ultrasonic radiation surface, and an ultrasonic signal reflected from the object and returned is received by the second ultrasonic vibrator. Sound wave sensing device.
【請求項5】請求項1ないし請求項3のいずれかの項に
記載の超音波センサを用いた超音波流量計において、 測定対象の媒体は流体とし、流体中を透過する透過波を
検出し、上流側への超音波伝搬時間と下流側への超音波
伝搬時間との差から流体の流速を演算する、 ことを特徴とする超音波流量計。
5. An ultrasonic flowmeter using the ultrasonic sensor according to claim 1, wherein a medium to be measured is a fluid, and a transmitted wave transmitted through the fluid is detected. And calculating the flow velocity of the fluid from the difference between the ultrasonic wave propagation time to the upstream side and the ultrasonic wave propagation time to the downstream side.
JP16038899A 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter Expired - Fee Related JP3680635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16038899A JP3680635B2 (en) 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16038899A JP3680635B2 (en) 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2000346685A true JP2000346685A (en) 2000-12-15
JP3680635B2 JP3680635B2 (en) 2005-08-10

Family

ID=15713895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16038899A Expired - Fee Related JP3680635B2 (en) 1999-06-08 1999-06-08 Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3680635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022160477A (en) * 2016-09-19 2022-10-19 レスメッド センサー テクノロジーズ リミテッド Apparatus, system, and method for detecting physiological movement from sound signal and multimodal signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022160477A (en) * 2016-09-19 2022-10-19 レスメッド センサー テクノロジーズ リミテッド Apparatus, system, and method for detecting physiological movement from sound signal and multimodal signal

Also Published As

Publication number Publication date
JP3680635B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP3104956B2 (en) Apparatus and method for acoustic analysis of mixed gas
US4838127A (en) Ultrasonic flow meter
US7069793B2 (en) Ultrasonic flow meter and ultrasonic sensor
CN110199179B (en) Ultrasonic flowmeter and method for detecting a throughflow parameter
US7500403B2 (en) Ultrasonic flow sensor having interlaid transmitting and receiving elements
US11162829B2 (en) Multilayer body that includes piezoelectric body
US6366675B1 (en) Sound pressure detecting system
JP2002135894A (en) Ultrasonic sensor and electronic device using it
JP2001074760A (en) Ultrasonic doppler current meter
JP5658061B2 (en) Mechanical quantity sensor
JP3680635B2 (en) Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter
EP2074388B1 (en) Flow sensor based on a piezoelectric polymer flow tube
JP7151311B2 (en) ultrasonic flow meter
JP6149250B2 (en) Ultrasonic flow meter
JP2005345445A (en) Ultrasonic flowmeter
JP2000304581A (en) Ultrasonic flowmeter
JP3708226B2 (en) Flow velocity measuring device
JP2006030142A (en) Ultrasonic flowmeter
JP2003139591A (en) Ultrasonic flowmeter
JP2001304952A (en) Ultrasonic sound pressure sensor
JPH1114649A (en) Flow-rate measuring device
JP2000193674A (en) Bevel type ultrasonic sensor, ultrasonic flow velocity measuring device using the same and flow velocity measuring method
JP2006138667A (en) Ultrasonic flowmeter and fluid leakage detection device
JP2883057B2 (en) Ultrasonic transducer
JPS631217Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Ref document number: 3680635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees