JP2006160961A - Method for joining parts, parts-joined configuration, and apparatus for joining parts - Google Patents

Method for joining parts, parts-joined configuration, and apparatus for joining parts Download PDF

Info

Publication number
JP2006160961A
JP2006160961A JP2004357442A JP2004357442A JP2006160961A JP 2006160961 A JP2006160961 A JP 2006160961A JP 2004357442 A JP2004357442 A JP 2004357442A JP 2004357442 A JP2004357442 A JP 2004357442A JP 2006160961 A JP2006160961 A JP 2006160961A
Authority
JP
Japan
Prior art keywords
adhesive
adherend
filled
columnar protrusion
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004357442A
Other languages
Japanese (ja)
Inventor
Hisayoshi Oshima
久慶 大島
Tarou Teru
太郎 照
Yusuke Taneda
裕介 種子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004357442A priority Critical patent/JP2006160961A/en
Publication of JP2006160961A publication Critical patent/JP2006160961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining parts enabling the position and posture of a bonding object to be adjusted for such a bonding practice that a plurality of columnar projections on an adherend are threaded with holes provided on a bonding object correspondingly to the projections followed by filling an adhesive, which is then cured and set. <P>SOLUTION: The method comprises the following practice: A plurality of columnar projections 1a on an adherend 1 are threaded with holes 2a provided on a bonding object 2 correspondingly to the projections followed by adjusting the posture of the bonding object 2 and then filling an energy ray-curable adhesive 3 to effect joining the adherend 1 and the bonding object 2. In this practice, based on the result of detecting the position of the bonding object 2 relative to the adherend 1, part of the adhesive 3 filled so that shrinkage force act in the direction of desiring moving the bonding object 2 is irradiated with energy rays, and by altering the combination of the irradiated positions to control the position and posture of the bonding object 2, thus effecting the aimed joining. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、接着物を被着物に接合する部品接合方法、部品接合形態および部品接合装置に関するものである。   The present invention relates to a component bonding method, a component bonding mode, and a component bonding apparatus for bonding an adhesive to an adherend.

従来では、一般に部品を接着する接着剤としては、加熱硬化型、嫌気硬化型、光(紫外線、可視光等)硬化型などが代表的で、幾つかの性質を兼ね備えたものもある。その中でも熱硬化型樹脂やエネルギ線硬化型樹脂に代表される硬化型樹脂は、反応速度が速く硬化時間が大幅に短縮されることから、生産工程を高効率化する目的で様々な分野で利用されている(例えば特許文献1ないし7参照)。
特許文献1では、接着剤の粘度を低下させ、加圧して、接着剤層を薄くかつ均一にすることにより、接着剤の硬化収縮や温度変化による体積変化が小さく均一に起こるように工夫した技術について開示されている。
特許文献2では、紫外線照射強度ムラを検出し、透過光制御部にてその強度ムラをなくすように制御して硬化収縮の均一性を向上させ、光学部品が本来有する面精度を維持した状態で接合する技術について開示されている。
特許文献3では、平均粒径10μm以下の酸化物セラミック微粒子を添加して接着剤そのものの硬化収縮や温度変化による体積変化が小さくなるように工夫した技術について開示されている。また、特許文献4では、熱収縮樹脂を紫外線硬化型樹脂の中に含有させ、紫外線照射による硬化と熱による収縮の発生タイミングをそれぞれ制御することで実装の信頼性を確保する技術について開示されている。
特許文献5では、接着物と被着物の間に中間保持部材を設け、充填接着並みの調整代を許容して、薄い接着剤層のため、接着剤の硬化収縮や温度変化による体積変化が小さくなるように工夫している。また、特許文献6では、粒径と密度をそろえた充填剤を添加し、接着剤そのものの硬化収縮や温度変化による体積変化が小さくなるように工夫した技術について開示されている。
特許文献7では、接着物と被着物および接着部の構造を工夫し、接着剤塗布と同時に硬化することにより、2部材近傍の接着剤から硬化して2部材間の相対位置が硬化収縮に影響を受けにくくする技術について開示されている。
また、被着物と接着物の相対的な位置を計測する位置計測手段の計測結果を基に複数有る照射手段を個別に制御し、収縮力により発生する接着物にかかる応力を互いに相殺して被着物に対する接着物の相対的な位置を保持もしくは任意の位置に動作させて保持することで、硬化収縮のバランスにより発生する接着物の位置ずれを低減することも研究されている。
とくに、光学部品をはじめとした高速化の必要な部品接合では、一般的に、加熱硬化型の場合は、オーブン等で熱を加える工程が必要であるため、工程の高速化の妨げになることや、部品によっては熱を許容できないものも存在する。また嫌気硬化型は硬化プロセスの特徴から制限された接着構造とする必要があるため、光硬化型の中でも紫外線(UV)硬化型の接着剤を使用して接合する場合が多い。
特開2000−090481公報 特開2001−350072公報 特開平07−201028号公報 特開平05−041408号公報 特開平10−309801号公報 特開平10−121013号公報 特開平08−209075号公報
Conventionally, as an adhesive for adhering parts in general, a heat curable type, an anaerobic curable type, a light (ultraviolet ray, visible light, etc.) curable type and the like are representative, and some have some properties. Among them, curable resins typified by thermosetting resins and energy beam curable resins are used in various fields for the purpose of increasing the production process efficiency because the reaction speed is high and the curing time is greatly shortened. (For example, see Patent Documents 1 to 7).
In Patent Document 1, a technique in which the viscosity of an adhesive is reduced and pressed to make the adhesive layer thin and uniform, so that the volume change due to curing shrinkage and temperature change of the adhesive is small and occurs uniformly. Is disclosed.
In Patent Document 2, the UV irradiation intensity unevenness is detected, and the transmitted light control unit controls the intensity unevenness to improve the uniformity of curing shrinkage, while maintaining the surface accuracy inherent to the optical component. A technique for joining is disclosed.
Patent Document 3 discloses a technique in which oxide ceramic fine particles having an average particle size of 10 μm or less are added so that the volume change due to curing shrinkage and temperature change of the adhesive itself is reduced. Patent Document 4 discloses a technique for ensuring mounting reliability by containing a heat-shrinkable resin in an ultraviolet curable resin and controlling the generation timing of curing by ultraviolet irradiation and shrinkage by heat, respectively. Yes.
In Patent Document 5, an intermediate holding member is provided between an adhesive and an adherend, and an adjustment allowance similar to that of filling adhesion is allowed. Since the adhesive layer is thin, a change in volume due to curing shrinkage of the adhesive or a change in temperature is small. It is devised to become. Patent Document 6 discloses a technique in which a filler having a uniform particle size and density is added so that the volume change due to curing shrinkage and temperature change of the adhesive itself is reduced.
In Patent Document 7, the structure of the adhesive, the adherend, and the adhesive part is devised, and the adhesive is cured simultaneously with the application of the adhesive, so that the adhesive is cured from the adhesive in the vicinity of the two members, and the relative position between the two members affects the curing shrinkage. The technology which makes it difficult to receive is disclosed.
Further, a plurality of irradiation means are individually controlled based on the measurement result of the position measuring means for measuring the relative position of the adherend and the adhesive, and the stress applied to the adhesive caused by the contraction force is canceled out mutually. It has also been studied to reduce misalignment of the adhesive caused by the balance of cure shrinkage by holding the relative position of the adhesive with respect to the kimono or holding it in an arbitrary position.
In particular, when joining parts that require high speed, such as optical parts, in general, in the case of a thermosetting type, a process of applying heat in an oven or the like is required, which hinders speeding up of the process. Some components cannot tolerate heat. In addition, since the anaerobic curable type needs to have a limited adhesion structure due to the characteristics of the curing process, it is often joined using an ultraviolet (UV) curable adhesive among the photocurable types.
JP 2000-090481 A JP 2001-350072 A Japanese Patent Application Laid-Open No. 07-201028 Japanese Patent Laid-Open No. 05-041408 JP-A-10-309801 JP-A-10-121013 Japanese Patent Laid-Open No. 08-209075

しかしながら、硬化のさい、どのタイプの接着剤でも体積収縮(硬化収縮)による応力(硬化収縮力)が発生するという問題がよく知られている。一般に、アクリル系紫外線硬化性樹脂は5〜10%、エポキシ系紫外線硬化性樹脂は2〜5%程度硬化収縮し、収縮量に比例して硬化収縮力が増加する。
この硬化収縮力による影響は接着強度的には僅かな低下しかなくても、精密組み立てにおいて大きな課題であり、高精度な調整後に硬化収縮の影響で、調整した位置にずれが生じてしまう可能性がある。
この課題を上記の従来技術では大きく4種類の方法で対策している。すなわち、1つ目の方法は、特許文献1や特許文献5のように、使用(塗布)する接着剤を薄く少量とし、硬化収縮量を低減する方法である。
しかし、特許文献1では、基本的に面接着であり、特殊な接着剤を使用する必要がある。また、特許文献5では接着構造が限定される上、間接接着であるため別部品を必要とし、接着箇所が増えるという不具合がある。
2つ目の方法は、特許文献2のように、照射するUV光を制御してバラツキを無くし、硬化収縮の均一性を向上させる方法である。しかし、この方法では、接着構造が基本的に面接着に限定されてしまうという問題と、接着剤の塗布ムラがある場合には、硬化収縮による位置ずれを回避できない不具合がある。
3つ目の方法は、特許文献7のように、接着構造と接着プロセスの工夫により硬化収縮による部品の位置ずれを抑える方法である。やはりこの方法でも、接着構造が限定され、汎用的な高精度UV接着方法にはなり得ない。
4つ目の方法は、特許文献3、特許文献4、特許文献6のように接着剤自体に手を加える方法である。セラミックス微粒子添加や充填材添加で接着剤の硬化収縮を小さくする技術や熱収縮樹脂の添加で硬化と収縮の発生タイミングを分離する技術がある。
However, the problem that stress (curing shrinkage force) due to volume shrinkage (curing shrinkage) occurs in any type of adhesive during curing is well known. In general, acrylic ultraviolet curable resin cures and shrinks by about 5 to 10%, and epoxy ultraviolet curable resin cures by about 2 to 5%, and the curing shrinkage increases in proportion to the amount of shrinkage.
Although the effect of this curing shrinkage force is only a slight decrease in adhesive strength, it is a major issue in precision assembly, and the adjustment position may be displaced due to the effect of curing shrinkage after high-precision adjustment. There is.
This problem is addressed by four types of methods in the prior art described above. That is, the first method is a method of reducing the amount of curing shrinkage by reducing the amount of adhesive used (applied) thinly and in a small amount as in Patent Document 1 and Patent Document 5.
However, in patent document 1, it is surface adhesion fundamentally and it is necessary to use a special adhesive agent. Moreover, in patent document 5, since the adhesion structure is limited, since it is indirect adhesion, another part is required and there exists a malfunction that an adhesion location increases.
The second method is a method of improving uniformity of curing shrinkage by controlling the UV light to be irradiated to eliminate variations as in Patent Document 2. However, this method has a problem that the bonding structure is basically limited to surface bonding and a problem that misalignment due to curing shrinkage cannot be avoided when there is uneven application of the adhesive.
The third method is a method of suppressing positional deviation of parts due to curing shrinkage by devising an adhesion structure and an adhesion process as disclosed in Patent Document 7. This method also has a limited bonding structure and cannot be a general-purpose high-precision UV bonding method.
The fourth method is a method of modifying the adhesive itself as in Patent Document 3, Patent Document 4, and Patent Document 6. There are techniques for reducing the curing shrinkage of the adhesive by adding ceramic fine particles and fillers, and a technique for separating the generation timing of curing and shrinkage by adding a heat shrink resin.

これらの接着剤の開発が、本課題に対して最も盛んに行われている対策である。しかし、この場合は、特殊な接着剤を使用する必要があり、また接着剤量が増えれば比例的に硬化収縮量が増え、部品の位置ずれが大きくなる。接着形態にも部品位置ずれ量が寄与してしまうという不具合がある。
上記課題をエネルギ線硬化型接着剤の特徴である接着接合工程の高速性や簡易性を維持し、特殊な接着剤を使用することなく、硬化収縮による部品の位置ずれを回避し、接着接合を高精度化する方法及び装置を提供することも研究されている。
この研究は、被着物と接着物の相対的な位置を計測する位置計測手段の計測結果を基に複数有る照射手段を個別に制御し、収縮力により発生する接着物にかかる応力を互いに相殺して被着物に対する接着物の相対的な位置を保持、もしくは任意の位置に移動させて保持することで、硬化収縮のバランスにより発生する接着物の位置ずれを低減するというものである。
そこで、本発明の目的は、上述した実情を考慮して、被着物に設けられた複数の柱状突起に対してそれに対応して接着物に設けられた穴を挿入し、接着物の位置、姿勢(6軸)を調整し、柱状突起と穴の間の調整代に接着剤を充填して硬化し固定するという接着形態に対して、エネルギ線照射を制御して接着剤の硬化収縮力のバランスを調整し、接着物の位置、姿勢の調整を可能とする部品接合方法、部品接合形態および部品接合装置を提供することにある。
The development of these adhesives is the most vigorous countermeasure for this problem. However, in this case, it is necessary to use a special adhesive, and as the amount of the adhesive increases, the amount of cure shrinkage increases proportionally, and the positional deviation of the parts increases. There is a problem in that the amount of component position deviation also contributes to the bonding form.
Maintaining the high speed and simplicity of the adhesive bonding process, which is a feature of energy beam curable adhesives, and avoiding misalignment of parts due to curing shrinkage without using special adhesives. It has also been studied to provide a method and apparatus for increasing the accuracy.
In this research, multiple irradiation means are individually controlled based on the measurement result of the position measurement means that measures the relative position of the adherend and the adhesive, and the stress applied to the adhesive caused by the contraction force is canceled with each other. By holding the relative position of the adhesive with respect to the adherend, or by moving it to an arbitrary position, the positional deviation of the adhesive caused by the balance of curing shrinkage is reduced.
Therefore, in view of the above-described situation, the object of the present invention is to insert a hole provided in the adhesive corresponding to the plurality of columnar protrusions provided in the adherend, and position and posture of the adhesive. Adjusting (six axis), filling the adhesive in the adjustment margin between the columnar protrusion and the hole, curing and fixing, and controlling the energy beam irradiation to balance the curing shrinkage of the adhesive It is an object to provide a component joining method, a component joining form, and a component joining apparatus that can adjust the position and posture of an adhesive.

上記の課題を解決するために、請求項1に記載の発明は、被着物に設けられた複数の柱状突起に対して、該柱状突起に対応して接着物に設けられた穴を挿入し、前記接着物の姿勢を調整し、前記柱状突起と前記穴との間の調整代にエネルギ線硬化特性を有する接着剤を充填してエネルギ線を照射することにより、前記接着物を前記被着物に接合する部品接合方法において、前記被着物に対する前記接着物の相対的な位置検出結果に基づいて、前記接着物を移動させたい方向に収縮力が働くように前記複数の柱状突起と前記穴との間に充填された接着剤の一部にエネルギ線を照射させ、該照射位置の組み合せを変えることによって、前記接着物の位置、姿勢を制御しながら接合することを特徴とする。
また、請求項2に記載の発明は、前記柱状突起と前記接着物の穴との間にリング状に充填された前記接着剤の柱状突起の軸を中心として少なくとも3分割し、該分割した接着物の上下2方向のエネルギ線照射部分の組み合せを変えることにより、前記接着物の位置、姿勢を制御しながら接合する請求項1記載の部品接合方法を特徴とする。
また、請求項3に記載の発明は、前記柱状突起の軸方向と垂直の平面内の被着物に対する接着物の相対的な位置検出結果に基づいて、前記複数の柱状突起と前記穴の間に充填された接着剤の柱状突起よりも前記接着物を移動したい方向と逆に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して位置調整しながら接合する請求項1または2記載の部品接合方法を特徴とする。
また、請求項4に記載の発明は、前記柱状突起の軸方向と垂直の平面内の被着物に対する接着物の相対的な角度検出結果に基づいて、前記複数の柱状突起と前記穴の間に充填された接着剤の柱状突起よりも前記接着物を回転させたい方向と逆に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して回転調整させながら接合する請求項1または2記載の部品接合方法を特徴とする。
また、請求項5に記載の発明は、前記柱状突起の軸方向の被着物に対する接着物の相対的な位置検出結果に基づいて、前記被着物の柱状突起と前記接着物の穴の仮想交点を含む平面よりも移動方向側に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して位置調整しながら接合する請求項1または2記載の部品接合方法を特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 inserts holes provided in the adhesive corresponding to the columnar protrusions into the plurality of columnar protrusions provided in the adherend, By adjusting the posture of the adhesive, and filling the adhesive with energy ray curing characteristics into the adjustment margin between the columnar protrusion and the hole, and irradiating the adhesive with the energy ray, the adhesive is applied to the adherend. In the component joining method for joining, the plurality of columnar protrusions and the holes are arranged so that a contraction force acts in a direction in which the adhesive is desired to be moved based on a detection result of a relative position of the adhesive with respect to the adherend. By irradiating a part of the adhesive filled in between with energy rays and changing the combination of the irradiation positions, the bonding is performed while controlling the position and posture of the adhesive.
According to a second aspect of the present invention, there is provided at least three divisions around the axis of the columnar protrusion of the adhesive filled in a ring shape between the columnar protrusion and the hole of the adhesive, and the divided adhesion The component joining method according to claim 1, wherein joining is performed while controlling a position and a posture of the adhesive by changing a combination of energy beam irradiation portions in two vertical directions of the article.
According to a third aspect of the present invention, between the plurality of columnar protrusions and the holes based on a result of detecting the relative position of the adhesive to the adherend in a plane perpendicular to the axial direction of the columnar protrusions. By irradiating energy rays to the filled adhesive in the direction opposite to the direction in which the adhesive is desired to move rather than the columnar protrusions of the filled adhesive, the adhesive is joined to the adherend while adjusting its position. A component joining method according to claim 1 or 2.
According to a fourth aspect of the present invention, there is provided a gap between the plurality of columnar protrusions and the holes based on a result of detecting a relative angle of the adhesive to the adherend in a plane perpendicular to the axial direction of the columnar protrusions. Joining the adhesive while rotating the adhesive with respect to the adherend by irradiating energy rays to the adhesive filled in the direction opposite to the direction in which the adhesive is desired to rotate rather than the columnar protrusions of the adhesive. The component joining method according to claim 1 or 2 is characterized.
According to a fifth aspect of the present invention, the virtual intersection of the columnar protrusion of the adherend and the hole of the adhesive is determined based on the relative position detection result of the adhesive with respect to the adherend in the axial direction of the columnar protrusion. 3. The component joining method according to claim 1, wherein the adhesive is joined to the adherend while adjusting its position by irradiating the adhesive filled in the moving direction with respect to the plane including the adhesive. And

また、請求項6に記載の発明は、前記柱状突起の軸と垂直の平面に対する被着物と接着物の相対的な角度検出結果に基づいて、前記被着物の柱状突起と前記接着物の穴の仮想交点を含む平面よりも回転方向側に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して回転調整させながら接合する請求項1または2記載の部品接合方法を特徴とする。
また、請求項7に記載の発明は、請求項1ないし6記載の部品接合方法で用いる部品接合形態において、前記柱状突起の軸に対して傾き、その傾きが前記接着物の上下で逆になった互いに対向した接着面を前記被着物および前記接着物が有し、その間がエネルギ線硬化特性を有する接着剤により充填されていることを特徴とする。
また、請求項8に記載の発明は、部分的にエネルギ線を照射する接着層が、それぞれ分離層で分離されている請求項7記載の部品接合形態を特徴とする。
また、請求項9に記載の発明は、被着物に対する接着物の相対的な位置を検出する位置検出手段と、前記被着物の柱状突起と前記接着物の穴の間に充填されたエネルギ線硬化特性を有する接着剤の一部にエネルギ線を照射する複数のエネルギ線照射手段を備え、前記位置検出手段の検出結果に基づいて、前記接着剤へのエネルギ線照射部分の組み合せを選択手段により選択し、接着することを特徴とする。
また、請求項10に記載の発明は、前記柱状突起と前記接着物の穴の間にリング状に充填された接着剤を前記柱状突起の軸を中心として少なくとも3分割し、該分割した接着物の上下2方向のエネルギ線の選択照射が可能なように構成されている請求項9記載の部品接合装置を特徴とする。
According to a sixth aspect of the present invention, based on a result of detecting a relative angle between the adherend and the adhesive with respect to a plane perpendicular to the axis of the columnar protrusion, the columnar protrusion of the adherend and the hole of the adhesive are detected. The component joining according to claim 1 or 2, wherein the adhesive is joined to the adherend while rotating the adhesive to the adherend by irradiating the adhesive filled in the rotational direction with respect to the rotation direction side with respect to the plane including the virtual intersection. Features method.
The invention according to claim 7 is the component joining form used in the component joining method according to any one of claims 1 to 6, wherein the inclination is inclined with respect to the axis of the columnar protrusion, and the inclination is reversed up and down of the adhesive. In addition, the adherend and the adhesive have adhesive surfaces facing each other, and the space between them is filled with an adhesive having energy ray curing characteristics.
Further, the invention described in claim 8 is characterized in that the part bonding form according to claim 7 is such that the adhesive layers that partially irradiate energy rays are separated by the separation layers.
According to a ninth aspect of the present invention, there is provided a position detecting means for detecting a relative position of the adhesive with respect to the adherend, and energy ray hardening filled between the columnar protrusion of the adherend and the hole of the adhesive. A plurality of energy ray irradiation means for irradiating energy rays to a part of the adhesive having characteristics is selected, and the combination of the energy ray irradiation portions to the adhesive is selected by the selection means based on the detection result of the position detection means And bonding.
In the invention according to claim 10, the adhesive filled in a ring shape between the columnar protrusion and the hole of the adhesive is divided into at least three parts around the axis of the columnar protrusion, and the divided adhesive The component joining apparatus according to claim 9, which is configured to be capable of selectively irradiating energy beams in two vertical directions.

本発明によれば、被着物に対する接着物の相対的な位置検出結果に基づいて、接着物を移動させたい方向に収縮力が働くように複数の柱状突起と穴の間に充填された接着剤の一部にエネルギ線を照射させることで、接着物の位置、姿勢を制御しながら接合することで、接着剤の硬化収縮による部品のずれを低減しながら高精度に接合することが可能になる。   According to the present invention, the adhesive filled between the plurality of columnar protrusions and the holes so that the contraction force acts in the direction in which the adhesive is desired to move based on the relative position detection result of the adhesive with respect to the adherend. By irradiating a part of the energy beam, it is possible to bond with high accuracy while reducing the deviation of the parts due to curing shrinkage of the adhesive by bonding while controlling the position and posture of the adhesive. .

以下、図面を参照して、本発明の実施の形態を詳細に説明する。以下では、接着剤はエネルギ線硬化型接着剤(例えば、光硬化型接着剤(UV硬化型接着剤、可視光硬化型接着剤)、放射線硬化型接着剤、X線硬化型接着剤)を対象として説明する。
通常、被着物に接着物を、例えばUV硬化型接着剤にて接着接合する場合、接着剤を2部材の界面に塗布し、これにUV(紫外線)光を照射することにより接着剤が硬化して接着される。
この接着剤硬化時には、硬化収縮現象が発生し、一般のアクリル系紫外線硬化性樹脂は5〜10%、エポキシ系紫外線硬化性樹脂は2〜5%前後収縮する。接合する部品を高精度に調整しても、この硬化収縮による収縮力により接合中にずれてしまうという問題がある。
そこで、前述した研究で説明したように、接着剤の複数有るエネルギ線照射手段を個別に制御し、収縮力により発生する接着物にかかる応力を互いに相殺して被着物に対する接着物の相対的な位置を保持して硬化させることで、部品を高精度に接合することが可能となる。
図1は対象の接着形態を説明する概略斜視図である。図2は図1の対象の接着形態の充填接着部分を説明する部分詳細図である。図3は図2の充填接着部分を示す断面図である。
本発明が対象とする接着形態は、図1ないし図3を参照して、被着物(ブラケット)1に設けられた複数の柱状突起1aに対して、それに対応して接着物(例えば、液晶パネルブラケット)2に設けられた穴2aを挿入し、接着物2の位置、姿勢を調整し、柱状突起1aと穴2aの間の調整代にエネルギ線硬化特性を有する接着剤3を充填してエネルギ線を照射して接合するものである。
図4は対象の接着形態を使用した製品例を示す概略斜視図である。図5は対象の接着形態を使用した他の製品例を示す概略斜視図である。このような接合形態は、多軸調整を必要とする光学部品の調整接着に良く用いられる形態である。
図4において、製品(液晶プロジェクタ)のRGB三色それぞれの液晶パネルを6軸×3=計18軸調整し、合成プリズムを接合する接合工程で使用する場合を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the adhesive is an energy ray curable adhesive (for example, a light curable adhesive (UV curable adhesive, visible light curable adhesive), a radiation curable adhesive, an X-ray curable adhesive). Will be described.
Usually, when an adhesive is bonded to an adherend with, for example, a UV curable adhesive, the adhesive is cured by applying the adhesive to the interface between the two members and irradiating this with UV (ultraviolet) light. Glued together.
When this adhesive is cured, a curing shrinkage phenomenon occurs, and a general acrylic ultraviolet curable resin contracts by about 5 to 10%, and an epoxy ultraviolet curable resin contracts by about 2 to 5%. Even if the parts to be joined are adjusted with high accuracy, there is a problem that they are displaced during joining due to the shrinkage force caused by the curing shrinkage.
Therefore, as explained in the above-described research, the energy beam irradiation means having a plurality of adhesives are individually controlled to cancel each other's stress applied to the adhesive due to the contraction force, and to make the adhesive relative to the adherend. By holding the position and curing it, the components can be joined with high accuracy.
FIG. 1 is a schematic perspective view for explaining a bonding form of an object. FIG. 2 is a partial detail view for explaining a filling and bonding portion of the bonding form of the object of FIG. FIG. 3 is a cross-sectional view showing the filling and bonding portion of FIG.
1 to 3, the adhesive form targeted by the present invention corresponds to a plurality of columnar protrusions 1 a provided on an adherend (bracket) 1 corresponding to an adhesive (for example, a liquid crystal panel). The hole 2a provided in the bracket 2) is inserted, the position and posture of the adhesive 2 are adjusted, and the adhesive 3 having the energy ray curing characteristic is filled in the adjustment allowance between the columnar protrusion 1a and the hole 2a. It joins by irradiating a line.
FIG. 4 is a schematic perspective view showing an example of a product using the target adhesive form. FIG. 5 is a schematic perspective view showing another product example using the target adhesive form. Such a joining form is a form often used for adjustment adhesion of optical components that require multi-axis adjustment.
FIG. 4 shows a case where liquid crystal panels of RGB (three colors) of a product (liquid crystal projector) are used in a joining process in which 6 axes × 3 = total 18 axes are adjusted and a composite prism is joined.

図5において、複写機(画像形成装置)の読み取りユニットのレンズブロックにCCDを接合する工程で使用する場合を示している。図4および図5において、図1ないし図3と同一部分には同一符号を付して冗長となる説明は省略する。
なお、図中、符号2bはCCD、13は合成プリズム、14は投射レンズ、15はスクリーンそして16はレンズブロックを示している。また、接着物2は図5の場合にCCD基板である。
設計通り被着物1に設けられた柱状突起1aが接着物2の穴2aの中央に位置するようになった場合、柱状突起1aを中心として充填された接着剤3の体積がバランスしているため、接着剤3の硬化収縮による収縮力もほぼバランスし、接着剤硬化時に接着物2はほとんど動かない。
しかし、被着物1に対して接着物2の位置、姿勢を調整した場合、柱状突起1aの中心と穴2aの中心がずれるため、接着剤3の硬化の硬化収縮により接着剤3の多い側に接着物2がずれてしまう。
また、柱状突起1aの中心と穴2aの中心のずれがない場合でも、接着剤3の塗布量のバラツキや、塗布バランスのバラツキ、エネルギ線の照射バラツキ等も接着剤硬化時の接着物2ずれが発生する原因となる。とくに柱状突起1aの軸方向のずれは、接着物2の上下の塗布バランスの違い、エネルギ線の照射バラツキにより発生する。
本発明は、このような多軸調整部品の位置、姿勢を検出手段で検出し、接着剤硬化時のずれが無くなる方向に硬化収縮を発生させるように柱状突起1aと穴2aの間の接着剤の一部にエネルギ線を照射し、その照射位置の組み合せを制御することで、接着物2の調整位置を保ったまま高精度な接合を可能とするものである。
FIG. 5 shows a case where the CCD is used in the process of bonding the CCD to the lens block of the reading unit of the copying machine (image forming apparatus). 4 and 5, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
In the figure, reference numeral 2b denotes a CCD, 13 denotes a combining prism, 14 denotes a projection lens, 15 denotes a screen, and 16 denotes a lens block. The adhesive 2 is a CCD substrate in the case of FIG.
When the columnar protrusion 1a provided on the adherend 1 is positioned at the center of the hole 2a of the adhesive 2 as designed, the volume of the adhesive 3 filled around the columnar protrusion 1a is balanced. The shrinkage force due to the curing shrinkage of the adhesive 3 is almost balanced, and the adhesive 2 hardly moves when the adhesive is cured.
However, when the position and posture of the adhesive 2 are adjusted with respect to the adherend 1, the center of the columnar protrusion 1 a and the center of the hole 2 a are shifted. The adhesive 2 is displaced.
Even when there is no deviation between the center of the columnar protrusion 1a and the center of the hole 2a, variations in the amount of the adhesive 3 applied, variations in the application balance, variations in the irradiation of energy rays, and the like are also observed. Cause the occurrence. In particular, the axial deviation of the columnar protrusion 1a occurs due to the difference in the upper and lower coating balance of the adhesive 2 and the variation in irradiation of energy rays.
The present invention detects the position and orientation of such a multi-axis adjusting component with a detecting means, and causes the adhesive between the columnar protrusion 1a and the hole 2a so as to cause curing shrinkage in a direction in which there is no deviation during curing of the adhesive. By irradiating a part of the energy beam and controlling the combination of the irradiation positions, it is possible to perform highly accurate bonding while maintaining the adjustment position of the adhesive 2.

図6は本発明の接合方法を実施するための接合装置構成の実施の形態を示す概略図である。図6において、被着物把持手段12で把持された被着物1と、接着物把持手段11で把持された接着物2と、被着物1に対する位置、姿勢を位置検出手段9で認識する。
また、接合装置には、被着物1上の接着目標位置に位置調整する接着物位置調整手段10と、図6には示してないが、位置調整前または後に被着物1の柱状突起1aと接着物2の穴2aの間にエネルギ線硬化型接着剤を塗布する塗布手段が有る。
図6の状態は接着物2の位置調整とエネルギ線硬化型接着剤の塗布が終わった状態である。この状態でエネルギ線硬化型接着剤にエネルギ線を照射して接着剤を硬化し、被着物1と接着物2を接合する接合作業が実施される。
通常、全ての接着剤3に均一にエネルギ線を照射するが、前に記載した接着剤3に、硬化収縮のバランスにより、被着物1に対する接着物3のずれが発生する。
そこで、被着物1の柱状突起1aと接着物2の穴2aの間に充填されたエネルギ線硬化特性を有する接着剤3の一部にエネルギ線を照射する複数のエネルギ線照射手段(上部エネルギ線照射手段4a、下部エネルギ線照射手段4b)と、被着物1に対する接着物2の相対的な位置を検出する位置検出手段9の検出結果を基に、接着剤3へのエネルギ線照射部分の組み合せを選択するエネルギ線選択手段5を構成する。
接着物2を移動させたい方向(硬化収縮によるずれをキャンセルする方向)に収縮力が働くようにエネルギ線を照射の組み合せを選択手段で切り換えることで、接着物2の位置、姿勢を制御しながら接着することが可能となり、高精度に接着物2を接合することができるようになる。
エネルギ線照射は、被着物1の柱状突起1aと接着物2の穴2aの間にリング状に充填された接着剤3の柱状突起1aの軸を中心として少なくとも120度3分割、接着物2の上下2方向、計6箇所のエネルギ線の選択照射が可能なように構成する。なお、符号6はエネルギ線発生手段、17はコンピュータを示している。
FIG. 6 is a schematic view showing an embodiment of a joining apparatus configuration for carrying out the joining method of the present invention. In FIG. 6, the position detection means 9 recognizes the adherend 1 gripped by the adherend gripping means 12, the adhesive 2 gripped by the adhesive gripping means 11, and the position and posture with respect to the adherend 1.
Further, the bonding apparatus includes an adhesive position adjusting means 10 that adjusts the position to the target position of adhesion on the adherend 1 and a columnar protrusion 1a of the adherend 1 that is not shown in FIG. There is an application means for applying an energy ray curable adhesive between the holes 2 a of the object 2.
The state of FIG. 6 is a state in which the position adjustment of the adhesive 2 and the application of the energy beam curable adhesive have been completed. In this state, the energy ray curable adhesive is irradiated with energy rays to cure the adhesive, and a bonding operation for bonding the adherend 1 and the adhesive 2 is performed.
Normally, all the adhesives 3 are uniformly irradiated with energy rays, but due to the balance of curing shrinkage in the adhesives 3 described above, deviation of the adhesives 3 with respect to the adherend 1 occurs.
Therefore, a plurality of energy beam irradiation means (upper energy beam) for irradiating a part of the adhesive 3 having the energy beam curing characteristic filled between the columnar protrusion 1a of the adherend 1 and the hole 2a of the bonded material 2. Based on the detection result of the irradiation means 4a, the lower energy ray irradiation means 4b) and the position detection means 9 for detecting the relative position of the adhesive 2 with respect to the adherend 1, the combination of the energy ray irradiated portions to the adhesive 3 The energy beam selecting means 5 for selecting is configured.
While controlling the position and posture of the adhesive 2 by switching the combination of irradiation of energy rays with the selection means so that the contraction force works in the direction in which the adhesive 2 is to be moved (the direction to cancel the deviation due to curing shrinkage). It becomes possible to bond, and it becomes possible to bond the adhesive 2 with high accuracy.
Energy beam irradiation is performed at least 120 degrees in three parts around the axis of the columnar protrusion 1a of the adhesive 3 filled in a ring shape between the columnar protrusion 1a of the adherend 1 and the hole 2a of the adhesive 2. It is configured to allow selective irradiation of energy beams in a total of six locations in two vertical directions. Reference numeral 6 denotes energy beam generating means, and 17 denotes a computer.

図7はエネルギ線照射手段の構成を示す概略斜視図である。図7は90度4分割で選択照射可能なようにした構成である。それらの照射部分の組み合せを変えて、接着剤3の硬化をすることで被着物1に対する接着物2の6軸の調整をすることが可能になる。
図8は照射エリアが3分割の場合を示す概略部分斜視図である。図9は照射エリアが4分割の場合を示す概略部分斜視図である。図7ないし図9において、照射エリアは第1上部照射エリア19、第2上部照射エリア20、第3上部照射エリア21、第4上部照射エリア22、第1下部照射エリア23、第2下部照射エリア24、第3下部照射エリア25、第4下部照射エリア26である。
リング状に充填された接着剤照射部分を分割することで、柱状突起1aの軸方向と垂直の平面内の被着物1に対する接着物2の位置調整と角度調整可能にしている。なお、図8および図9において、符号27はエネルギ線伝達用ファイバ、28は立ち上げミラーを示している。
分割数は120度3分割の構成で6軸の姿勢制御が可能であるが、90度4分割で構成した方が、接着物の調整がし易くなり望ましい。分割数を増やすと調整装置が複雑、高価になってしまうという課題があるが、さらに多分割で照射できるようにした方が、細かな調整が可能になる。
FIG. 7 is a schematic perspective view showing the configuration of the energy beam irradiation means. FIG. 7 shows a configuration in which selective irradiation can be performed in 90 degrees and four divisions. It is possible to adjust the six axes of the adhesive 2 with respect to the adherend 1 by changing the combination of the irradiated portions and curing the adhesive 3.
FIG. 8 is a schematic partial perspective view showing a case where the irradiation area is divided into three parts. FIG. 9 is a schematic partial perspective view showing a case where the irradiation area is divided into four parts. 7 to 9, the irradiation areas are the first upper irradiation area 19, the second upper irradiation area 20, the third upper irradiation area 21, the fourth upper irradiation area 22, the first lower irradiation area 23, and the second lower irradiation area. 24, a third lower irradiation area 25, and a fourth lower irradiation area 26.
By dividing the adhesive irradiated portion filled in a ring shape, the position and angle of the adhesive 2 can be adjusted with respect to the adherend 1 in a plane perpendicular to the axial direction of the columnar protrusion 1a. 8 and 9, reference numeral 27 denotes an energy ray transmitting fiber, and 28 denotes a rising mirror.
Although the number of divisions can be controlled in six axes with a configuration of 120 degrees and three divisions, a configuration of 90 degrees and four divisions is preferable because the adhesive can be easily adjusted. When the number of divisions is increased, there is a problem that the adjustment device becomes complicated and expensive. However, fine adjustment is possible if irradiation is performed in multiple divisions.

図10は柱状突起の軸方向と垂直の平面内の接着物の相対的な位置(X、Y軸)の調整方法を示す概略斜視図である。図11は−X方向の調整過程を示す平面図である。図12は+X方向の調整過程を示す平面図である。
図13は−Y方向の調整過程を示す平面図である。図14は+Y方向の調整過程を示す平面図である。図15は図10の柱状突起の軸方向と垂直の平面内の接着物の相対的な位置を示す側面図である。
図10において、柱状突起1aの軸方向と垂直の平面(XY平面)内の被着物1に対する接着物2の相対的な位置(XY軸)検出結果に基づいて、複数の柱状突起1aと穴2aの間に充填された接着剤3の柱状突起1aよりも接着物2を移動したい方向と逆に充填された接着剤にエネルギ線を照射するように照射部分を組み合わせる。
これによって、柱状突起1aと穴2aとの間に硬化収縮力が働き、穴2aを柱状突起1aに近づけるように接着物2が移動し、被着物1において対する接着物2のXY方向の位置調整を行うことができる。
図10ないし図15において、実線の円は上方からのエネルギ線照射エリアを示している。被着物1の下からの照射エリアは上からの照射エリアと同じである。図10ないし図15において、図7ないし図9と同一部分には同一符号を付して冗長となる説明は省略する。
FIG. 10 is a schematic perspective view showing a method for adjusting the relative position (X, Y axes) of the adhesive in a plane perpendicular to the axial direction of the columnar protrusions. FIG. 11 is a plan view showing the adjustment process in the −X direction. FIG. 12 is a plan view showing the adjustment process in the + X direction.
FIG. 13 is a plan view showing the adjustment process in the -Y direction. FIG. 14 is a plan view showing the adjustment process in the + Y direction. FIG. 15 is a side view showing the relative position of the adhesive in a plane perpendicular to the axial direction of the columnar protrusions of FIG.
In FIG. 10, a plurality of columnar protrusions 1a and holes 2a are detected based on the detection result of the relative position (XY axis) of the adhesive 2 with respect to the adherend 1 in a plane (XY plane) perpendicular to the axial direction of the columnar protrusion 1a. The irradiated portions are combined so that energy rays are irradiated to the adhesive filled in the direction opposite to the direction in which the adhesive 2 is desired to move rather than the columnar protrusions 1a of the adhesive 3 filled in between.
As a result, a curing shrinkage force acts between the columnar protrusion 1a and the hole 2a, the adhesive 2 moves so as to bring the hole 2a closer to the columnar protrusion 1a, and the position adjustment of the adhesive 2 on the adherend 1 in the XY direction is adjusted. It can be performed.
In FIG. 10 to FIG. 15, a solid circle indicates an energy ray irradiation area from above. The irradiation area from below the adherend 1 is the same as the irradiation area from above. 10 to 15, the same parts as those in FIGS. 7 to 9 are denoted by the same reference numerals, and redundant description is omitted.

図16は柱状突起の軸方向と垂直の平面内の接着物角度(θ軸)の調整方法を示す概略斜視図である。図17は−θ方向の調整過程を示す平面図である。図18は+θ方向の調整過程を示す平面図である。
図16ないし図18において、実線の円は上方からのエネルギ線照射エリアを示している。被着物1の下からの照射エリアは上からの照射エリアと同じである。なお、図7ないし図9と同一部分には同一符号を付して冗長となる説明は省略する。
柱状突起1aの軸方向と垂直の平面(XY平面)内の被着物に対する接着物の相対的な角度検出結果に基づいて、複数の柱状突起1aと穴2aの間に充填された接着剤3の柱状突起1aよりも接着物2を回転させたい方向と逆に充填された接着剤にエネルギ線を照射するように照射部分を組み合わせることで接着収縮力により偶力が発生し、被着物1に対する接着物2のθ軸方向の回転調整をすることができる。
図19は柱状突起の軸方向の接着物位置(Z軸)の調整方法を示す概略斜視図である。図20は+Z方向の調整過程を示す側面図である。図21は−Z方向の調整過程を示す側面図である。図19ないし図21において、図7ないし図9と同一部分には同一符号を付して冗長となる説明は省略する。
柱状突起1aの軸方向の被着物1に対する接着物2の相対的な位置検出結果に基づいて、被着物1の柱状突起1aと接着物2の穴2aの仮想交点を含む平面よりも移動方向側に充填された接着剤にエネルギ線を照射する。
すなわち、接着物2上下の照射を切り換え、接着物2より上下に盛り上げて塗布された接着剤3の硬化収縮のバランスを調整することで、接着物2を持ち上げたり、下げたりする力が働き、被着物1に対する接着物2のZ軸方向(柱状突起1aの軸方向)の位置調整をすることができる。
FIG. 16 is a schematic perspective view showing a method of adjusting the adhesive angle (θ axis) in a plane perpendicular to the axial direction of the columnar protrusions. FIG. 17 is a plan view showing the adjustment process in the −θ direction. FIG. 18 is a plan view showing the adjustment process in the + θ direction.
In FIG. 16 to FIG. 18, a solid circle indicates an energy beam irradiation area from above. The irradiation area from below the adherend 1 is the same as the irradiation area from above. The same parts as those in FIGS. 7 to 9 are denoted by the same reference numerals and redundant description is omitted.
The adhesive 3 filled between the plurality of columnar protrusions 1a and the holes 2a is detected based on the result of detecting the relative angle of the adhesive to the adherend in the plane (XY plane) perpendicular to the axial direction of the columnar protrusions 1a. A couple of forces is generated by the adhesive shrinkage by combining the irradiated portions so that the energy rays are applied to the adhesive filled in the direction opposite to the direction in which the adhesive 2 is desired to rotate rather than the columnar protrusions 1a, and the adhesive 1 adheres to the adherend 1 The rotation of the object 2 in the θ-axis direction can be adjusted.
FIG. 19 is a schematic perspective view illustrating a method for adjusting the position of the adhesive (Z axis) in the axial direction of the columnar protrusion. FIG. 20 is a side view showing the adjustment process in the + Z direction. FIG. 21 is a side view showing the adjustment process in the -Z direction. 19 to 21, the same parts as those in FIGS. 7 to 9 are denoted by the same reference numerals, and redundant description is omitted.
Based on the relative position detection result of the adhesive 2 with respect to the adherend 1 in the axial direction of the columnar protrusion 1a, the moving direction side of the plane including the virtual intersection of the columnar protrusion 1a of the adherend 1 and the hole 2a of the adhesive 2 An energy ray is applied to the adhesive filled in the.
That is, by switching the irradiation of the adhesive 2 up and down and adjusting the balance of curing shrinkage of the adhesive 3 applied by raising and lowering the adhesive 2, the force to lift or lower the adhesive 2 works. The position of the adhesive 2 with respect to the adherend 1 in the Z-axis direction (the axial direction of the columnar protrusion 1a) can be adjusted.

図22は柱状突起の軸方向と垂直平面(XY平面)に対するあおり角度(α軸)の調整方法を示す概略斜視図である。図23は+α方向の調整過程を示す側面図である。図24は−α方向の調整過程を示す側面図である。図22ないし図24において、図7ないし図9と同一部分には同一符号を付して冗長となる説明は省略する。
図25は柱状突起の軸方向と垂直平面(XY平面)に対するあおり角度(β軸)の調整方法を示す概略斜視図である。図26は+β方向の調整過程を示す側面図である。図27は−β方向の調整過程を示す側面図である。図22および図25において、実線の円は上方からのエネルギ線照射エリアを示し、点線の円は上方からのエネルギ線照射エリアを示している。
柱状突起1aの軸と垂直の平面に対する被着物1と接着物2の相対的な角度検出結果に基づいて、被着物1の柱状突起1aと接着物2の穴2aの仮想交点を含む平面よりも回転向側に充填された接着剤3においてエネルギ線を照射する。
すなわち、接着物2上下の照射の組み合せで、接着物2より上下に盛り上げて塗布された接着剤3の硬化収縮力により発生する偶力のバランスを調整することによって、被着物1に対する接着物2のα、β軸方向の回転調整をすることができる。図25ないし図27において、図7ないし図9と同一部分には同一符号を付して冗長となる説明は省略する。
これらを組み合わせて接着物2の位置、姿勢を制御することで調整軸6軸全ての方向の接着物ずれを低減することが可能となる。本書で説明した接着形態は接着物2側に穴2a、被接着物1側に柱状突起1aがある場合で説明している。
しかしながら、接着物2側に柱状突起、被接着物1側に穴がある場合でも硬化収縮力の働き方が逆になるだけで、照射方法を逆にしてやれば同様に調整軸6軸に対して高精度な接合が可能になる。
FIG. 22 is a schematic perspective view showing a method of adjusting the tilt angle (α axis) relative to the axial direction of the columnar protrusion and the vertical plane (XY plane). FIG. 23 is a side view showing the adjustment process in the + α direction. FIG. 24 is a side view showing the adjustment process in the −α direction. 22 to 24, the same parts as those in FIGS. 7 to 9 are denoted by the same reference numerals, and redundant description is omitted.
FIG. 25 is a schematic perspective view showing a method of adjusting the tilt angle (β axis) relative to the axial direction of the columnar protrusion and the vertical plane (XY plane). FIG. 26 is a side view showing the adjustment process in the + β direction. FIG. 27 is a side view showing the adjustment process in the −β direction. 22 and 25, a solid circle indicates an energy beam irradiation area from above, and a dotted circle indicates an energy beam irradiation area from above.
Based on the relative angle detection result of the adherend 1 and the adhesive 2 with respect to a plane perpendicular to the axis of the columnar protrusion 1a, the plane 1 includes a virtual intersection of the columnar protrusion 1a of the adherend 1 and the hole 2a of the adhesive 2. The energy rays are irradiated on the adhesive 3 filled on the rotation direction side.
That is, the adhesive 2 to the adherend 1 is adjusted by adjusting the balance of the couple generated by the curing shrinkage force of the adhesive 3 that is applied up and down from the adhesive 2 by a combination of irradiation on the upper and lower sides of the adhesive 2. The rotation in the α and β axis directions can be adjusted. 25 to 27, the same parts as those in FIGS. 7 to 9 are denoted by the same reference numerals, and redundant description is omitted.
By combining these and controlling the position and posture of the adhesive 2, it is possible to reduce the adhesive displacement in all the six adjustment axes. The bonding form described in this document is described in the case where the hole 2a is on the bonded object 2 side and the columnar protrusion 1a is on the bonded object 1 side.
However, even if there is a columnar protrusion on the adhesive 2 side and a hole on the adherend 1 side, the work of the curing shrinkage force is only reversed, and if the irradiation method is reversed, similarly to the adjustment axis 6 axis High precision bonding is possible.

図28は通常の接着形態と本発明による接着形態で接着物に働く収縮力の違いを示す概略図である。接着物2のZ軸方向(柱状突起1aの軸方向)の位置調整は、接着物2より上下に盛り上げて塗布された接着剤3の硬化収縮のバランスで調整する。
しかし、図28に示すように、柱状突起1aの軸に対して傾き、その傾きが接着物2の上下で逆になった互いに対向した接着面を被着物1、接着物2が持ち、その間がエネルギ線硬化特性を有する接着剤3で充填されていることで、接着剤3の収縮による収縮力にZ方向の分力が大きく働くようになるため、通常の突起、穴の接着形態に比べて、Z方向の調整、α、β方向のあおり調整がし易くなる。
また、部分的にエネルギ線を照射する照射エリアごとに、接着層を分離層で分離することで、他の照射エリアの照射の影響が及び難くなるため、接着物の位置、姿勢の制御がしやすくなる。
FIG. 28 is a schematic view showing the difference in shrinkage force acting on the adhesive in the normal adhesive form and the adhesive form according to the present invention. The position adjustment of the adhesive 2 in the Z-axis direction (the axial direction of the columnar protrusion 1 a) is adjusted by the balance of curing shrinkage of the adhesive 3 that is raised and applied above the adhesive 2.
However, as shown in FIG. 28, the adherend 1 and the adhesive 2 have adhesive surfaces facing each other in which the inclination is inclined with respect to the axis of the columnar protrusion 1 a and the inclination is reversed up and down of the adhesive 2. Since it is filled with the adhesive 3 having the energy ray curing characteristic, the component force in the Z direction is greatly applied to the contraction force due to the contraction of the adhesive 3. , Adjustment in the Z direction, and tilt adjustment in the α and β directions are facilitated.
In addition, by separating the adhesive layer with a separation layer for each irradiation area that is partially irradiated with energy rays, it becomes difficult to influence the irradiation of other irradiation areas, so the position and posture of the adhesive can be controlled. It becomes easy.

本発明によれば、柱状突起1aと接着物2の穴2aの間にリング状に充填された接着剤3の柱状突起1aの軸を中心として少なくとも3分割、接着物2の上下2方向、計6箇所のエネルギ線照射部分の組み合せを変えることで、被着物1を接着物2に対して6軸に動かすことが可能な硬化収縮力のバランス状態を作ることが可能となり、接着剤3の硬化収縮による接着物2のずれを低減しながら高精度に接合することができる。
本発明によれば、柱状突起1aの軸方向と垂直の平面内の被着物1に対する接着物2の相対的な位置検出結果に基づいて、複数の柱状突起1aと穴2aの間に充填された接着剤3の柱状突起1aよりも接着物2を移動したい方向に充填された接着剤3にエネルギ線を照射することで、接着平面内の接着剤3の硬化収縮力のバランス状態が変わり、ずれを低減する方向に接着物2を移動することができ、高精度な接合をすることができる。
本発明によれば、柱状突起1aの軸方向と垂直の平面内の被着物1に対する接着物2の相対的な角度検出結果に基づいて、複数の柱状突起1aと穴2aの間に充填された接着剤3の柱状突起1aよりも接着物2を回転させたい方向に充填された接着剤3にエネルギ線を照射することで、接着平面内の接着剤の硬化収縮力のバランス状態が変わり、接着平面内の接着物の角度ずれを低減する方向に偶力が働き、接着物2を角度ずれが低減する方向に回転移動することができるので、高精度な接合をすることができる。
本発明によれば、柱状突起1aの軸と垂直の平面に対する被着物1と接着物2の相対的な角度検出結果に基づいて、被着物1の柱状突起1aと接着物2の穴2aの仮想交点を含む平面よりも回転向側に充填された接着剤にエネルギ線を照射することで、接着平面と垂直方向の接着剤3の硬化収縮力のバランス状態が変わり、接着物2をあおり方向に動かす偶力が働くので、あおり方向の角度ずれを低減でき、高精度な接合をすることができる。
According to the present invention, the columnar protrusion 1a of the adhesive 3 filled in a ring shape between the columnar protrusion 1a and the hole 2a of the adhesive 2 has at least three divisions around the axis of the columnar protrusion 1a. By changing the combination of the six energy beam irradiation portions, it becomes possible to create a balance state of the curing shrinkage force that can move the adherend 1 to six axes with respect to the adhesive 2, and cure the adhesive 3. Bonding can be performed with high accuracy while reducing displacement of the adhesive 2 due to shrinkage.
According to the present invention, the space between the plurality of columnar protrusions 1a and the holes 2a is filled based on the result of detecting the relative position of the adhesive 2 with respect to the adherend 1 in the plane perpendicular to the axial direction of the columnar protrusions 1a. By irradiating the energy 3 to the adhesive 3 filled in the direction in which the adhesive 2 is desired to move rather than the columnar protrusions 1a of the adhesive 3, the balance state of the curing shrinkage force of the adhesive 3 in the bonding plane changes and shifts. It is possible to move the adhesive 2 in the direction of reducing the resistance, and it is possible to perform highly accurate joining.
According to the present invention, the space between the plurality of columnar protrusions 1a and the holes 2a is filled based on the detection result of the relative angle of the adhesive 2 with respect to the adherend 1 in the plane perpendicular to the axial direction of the columnar protrusions 1a. By irradiating the energy 3 to the adhesive 3 filled in the direction in which the adhesive 2 is to be rotated rather than the columnar protrusions 1a of the adhesive 3, the balance state of the curing shrinkage force of the adhesive in the adhesive plane is changed. A couple acts in a direction to reduce the angular deviation of the adhesive in the plane, and the adhesive 2 can be rotated and moved in a direction to reduce the angular deviation, so that highly accurate joining can be performed.
According to the present invention, based on the relative angle detection result of the adherend 1 and the adhesive 2 with respect to a plane perpendicular to the axis of the columnar protrusion 1a, the virtual projection of the columnar protrusion 1a of the adherend 1 and the hole 2a of the adhesive 2 is achieved. By irradiating the adhesive filled in the rotational direction with respect to the rotation direction side from the plane including the intersection, the balance state of the curing shrinkage force of the adhesive 3 in the direction perpendicular to the bonding plane is changed, and the adhesive 2 is moved in the tilt direction. Since the moving couple works, the angular deviation in the tilt direction can be reduced, and highly accurate joining can be performed.

本発明によれば、柱状突起1aの軸に対して傾き、その傾きが接着物2の上下で逆になった互いに対向した接着面を被着物1、接着物2が持ち、その間がエネルギ線硬化特性を有する接着剤3で充填されていることで、接着剤の硬化収縮による収縮力が接着物に働きやすくなる。
また、接着平面方向の分力のバランスと接着平面方向の分力のバランスで、接着物2を被着物1に対して6軸方向に容易に調整することができるので、接着時のずれを低減した高精度接合が可能になる。
本発明によれば、部分的にエネルギ線を照射する接着層が、それぞれ分離層で分離されていることで、接着剤への部分的なエネルギ線の照射をしたときに、他の照射エリアへのエネルギ線照射の影響を少なくすることができるので、接着物の位置、姿勢の調整が容易になり、高精度接合が可能になる。
本発明によれば、被着物1に対する接着物2の相対的な位置を検出する位置検出手段9(図6)と、被着物1の柱状突起1aと接着物2の穴2aの間に充填されたエネルギ線硬化特性を有する接着剤の一部にエネルギ線が照射する複数のエネルギ線照射手段4a、4bにより構成される。
そのさい、前記位置検出手段9の検出結果に基づいて、接着剤3へのエネルギ線照射部分の組合せを選択手段5で選択し接着することで、硬化収縮力のバランスを変えることでき、ずれを低減する方向に接着物3を制御できるので、接着物3を高精度に接合可能な接合装置を提供できる。
本発明によれば、柱状突起1aと接着物2の穴2aの間にリング状に充填された接着剤3の柱状突起1aの軸を中心として少なくとも3分割、接着物2の上下2方向、計6箇所のエネルギ線の選択照射が可能なように構成されていることで、硬化収縮力のバランス状態を変えることができ、接着物2の位置、姿勢の6軸を調整することが可能になり、接着物3を高精度に接合可能な接合装置を提供できる。
According to the present invention, the adherend 1 and the adhesive 2 have adhesive surfaces opposite to each other, which are inclined with respect to the axis of the columnar protrusion 1a, and the inclination is reversed up and down of the adhesive 2, and the energy ray is cured between them. By being filled with the adhesive 3 having the characteristics, the shrinkage force due to curing shrinkage of the adhesive easily acts on the adhesive.
Moreover, since the adhesive 2 can be easily adjusted in the 6-axis direction with respect to the adherend 1 by the balance of the component forces in the adhesion plane direction and the balance of the component forces in the adhesion plane direction, the deviation during adhesion is reduced. High-precision joining is possible.
According to the present invention, the adhesive layers that partially irradiate the energy rays are separated by the separation layers, respectively, so that when the adhesive is partially irradiated with the energy rays, the adhesive layer is irradiated to another irradiation area. Since the influence of the energy beam irradiation can be reduced, the position and posture of the adhesive can be easily adjusted, and high-precision joining is possible.
According to the present invention, the position detection means 9 (FIG. 6) for detecting the relative position of the adhesive 2 with respect to the adherend 1 and the columnar protrusion 1a of the adherend 1 and the hole 2a of the adhesive 2 are filled. A plurality of energy beam irradiation means 4a and 4b for irradiating a part of the adhesive having energy beam curing characteristics with energy beams.
At that time, the balance of the curing shrinkage force can be changed by selecting and adhering the combination of the energy ray irradiation portions to the adhesive 3 based on the detection result of the position detecting means 9, and the deviation can be changed. Since the adhesive 3 can be controlled in a decreasing direction, it is possible to provide a joining device that can join the adhesive 3 with high accuracy.
According to the present invention, the columnar protrusion 1a of the adhesive 3 filled in a ring shape between the columnar protrusion 1a and the hole 2a of the adhesive 2 has at least three divisions around the axis of the columnar protrusion 1a. By being able to selectively irradiate 6 energy rays, it is possible to change the balance state of curing shrinkage force and to adjust the 6 axes of the position and posture of the adhesive 2. A joining device capable of joining the adhesive 3 with high accuracy can be provided.

対象の接着形態を説明する概略斜視図である。It is a schematic perspective view explaining the adhesion | attachment form of object. 図1の対象の接着形態の充填接着部分を説明する部分詳細図である。It is a partial detail drawing explaining the filling adhesion | attachment part of the adhesion | attachment form of the object of FIG. 図2の充填接着部分を示す断面図である。It is sectional drawing which shows the filling adhesion | attachment part of FIG. 対象の接着形態を使用した製品例を示す概略斜視図である。It is a schematic perspective view which shows the example of a product using the adhesion form of object. 対象の接着形態を使用した他の製品例を示す概略斜視図である。It is a schematic perspective view which shows the other product example which uses the adhesion form of object. 本発明の接合方法を実施するための接合装置構成の実施の形態を示す概略図である。It is the schematic which shows embodiment of the joining apparatus structure for enforcing the joining method of this invention. エネルギ線照射手段の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of an energy ray irradiation means. 照射エリアが3分割の場合を示す概略部分斜視図である。It is a general | schematic fragmentary perspective view which shows the case where an irradiation area is divided into 3 parts. 照射エリアが4分割の場合を示す概略部分斜視図である。It is a schematic partial perspective view which shows the case where an irradiation area is divided into four. 柱状突起の軸方向と垂直の平面内の接着物の相対的な位置(X、Y軸)の調整方法を示す概略斜視図である。It is a schematic perspective view which shows the adjustment method of the relative position (X, Y-axis) of the adhesive material in the plane perpendicular | vertical to the axial direction of a columnar protrusion. −X方向の調整過程を示す平面図である。It is a top view which shows the adjustment process of -X direction. +X方向の調整過程を示す平面図である。It is a top view which shows the + X direction adjustment process. −Y方向の調整過程を示す平面図である。It is a top view which shows the adjustment process of -Y direction. +Y方向の調整過程を示す平面図である。It is a top view which shows the + Y direction adjustment process. 図10の柱状突起の軸方向と垂直の平面内の接着物の相対的な位置を示す側面図である。It is a side view which shows the relative position of the adhesive material in the plane perpendicular | vertical to the axial direction of the columnar protrusion of FIG. 柱状突起の軸方向と垂直の平面内の接着物角度(θ軸)の調整方法を示す概略斜視図である。It is a schematic perspective view which shows the adjustment method of the adhesion material angle ((theta) axis | shaft) in the plane perpendicular | vertical to the axial direction of a columnar protrusion. −θ方向の調整過程を示す平面図である。It is a top view which shows the adjustment process of -theta direction. +θ方向の調整過程を示す平面図である。It is a top view which shows the adjustment process of + (theta) direction. 柱状突起の軸方向の接着物位置(Z軸)の調整方法を示す概略斜視図である。It is a schematic perspective view which shows the adjustment method of the adhesive substance position (Z-axis) of the axial direction of a columnar protrusion. +Z方向の調整過程を示す側面図である。It is a side view which shows the + Z direction adjustment process. −Z方向の調整過程を示す側面図である。It is a side view which shows the adjustment process of -Z direction. 柱状突起の軸方向と垂直平面(XY平面)に対するあおり角度(α軸)の調整方法を示す概略斜視図である。It is a schematic perspective view which shows the adjustment method of the tilt angle ((alpha) axis) with respect to the axial direction of a columnar protrusion, and a perpendicular plane (XY plane). +α方向の調整過程を示す側面図である。It is a side view which shows the + α direction adjustment process. −α方向の調整過程を示す側面図である。It is a side view which shows the adjustment process of -alpha direction. 柱状突起の軸方向と垂直平面(XY平面)に対するあおり角度(β軸)の調整方法を示す概略斜視図である。It is a schematic perspective view which shows the adjustment method of the tilt angle ((beta) axis | shaft) with respect to the axial direction and vertical plane (XY plane) of a columnar protrusion. +β方向の調整過程を示す側面図である。It is a side view which shows the + beta direction adjustment process. −β方向の調整過程を示す側面図である。It is a side view which shows the adjustment process of -beta direction. 通常の接着形態と本発明による接着形態で接着物に働く収縮力の違いを示す概略図である。It is the schematic which shows the difference of the shrinkage force which acts on a bonded material by the normal adhesive form and the adhesive form by this invention.

符号の説明Explanation of symbols

1 被着物(ブラケット)
1a 柱状突起に対して、
2 接着物(例えば、液晶パネルブラケット)
2a 穴
3 接着剤
4a エネルギ線照射手段(上部エネルギ線照射手段)
4b エネルギ線照射手段(下部エネルギ線照射手段)
5 エネルギ線選択手段
9 位置検出手段
10 接着物位置調整手段
1 Substrate (bracket)
1a For columnar protrusions,
2 Adhesive (for example, LCD panel bracket)
2a hole 3 adhesive 4a energy beam irradiation means (upper energy beam irradiation means)
4b Energy beam irradiation means (lower energy beam irradiation means)
5 Energy ray selection means 9 Position detection means 10 Adhesive position adjustment means

Claims (10)

被着物に設けられた複数の柱状突起に対して、該柱状突起に対応して接着物に設けられた穴を挿入し、前記接着物の姿勢を調整し、前記柱状突起と前記穴との間の調整代にエネルギ線硬化特性を有する接着剤を充填してエネルギ線を照射することにより、前記接着物を前記被着物に接合する部品接合方法において、前記被着物に対する前記接着物の相対的な位置検出結果に基づいて、前記接着物を移動させたい方向に収縮力が働くように前記複数の柱状突起と前記穴との間に充填された接着剤の一部にエネルギ線を照射させ、該照射位置の組み合せを変えることによって、前記接着物の位置、姿勢を制御しながら接合することを特徴とする部品接合方法。   For a plurality of columnar protrusions provided on the adherend, holes provided in the adhesive corresponding to the columnar protrusions are inserted to adjust the posture of the adhesive, and between the columnar protrusions and the holes. In the component joining method for joining the adhesive to the adherend by filling an adhesive having energy ray curing characteristics in the adjustment allowance and irradiating the energy ray, the relative of the adhesive to the adherend Based on the position detection result, energy rays are irradiated to a part of the adhesive filled between the plurality of columnar protrusions and the hole so that a contraction force acts in a direction in which the adhesive is desired to move, A component joining method, wherein joining is performed while controlling a position and a posture of the adhesive by changing a combination of irradiation positions. 前記柱状突起と前記接着物の穴との間にリング状に充填された前記接着剤の柱状突起の軸を中心として少なくとも3分割し、該分割した接着物の上下2方向のエネルギ線照射部分の組み合せを変えることにより、前記接着物の位置、姿勢を制御しながら接合することを特徴とする請求項1記載の部品接合方法。   The adhesive is filled in a ring shape between the columnar protrusion and the hole of the adhesive, and is divided into at least three parts around the axis of the columnar protrusion of the adhesive. The component joining method according to claim 1, wherein joining is performed while controlling the position and posture of the adhesive by changing the combination. 前記柱状突起の軸方向と垂直の平面内の被着物に対する接着物の相対的な位置検出結果に基づいて、前記複数の柱状突起と前記穴の間に充填された接着剤の柱状突起よりも前記接着物を移動したい方向と逆に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して位置調整しながら接合することを特徴とする請求項1または2記載の部品接合方法。   Based on the relative position detection result of the adhesive with respect to the adherend in the plane perpendicular to the axial direction of the columnar protrusion, the columnar protrusion of the adhesive filled between the plurality of columnar protrusions and the hole is more 3. The adhesive is bonded to the adherend while adjusting the position of the adhesive by irradiating the adhesive filled with the energy beam in the direction opposite to the direction in which the adhesive is desired to move. Parts joining method. 前記柱状突起の軸方向と垂直の平面内の被着物に対する接着物の相対的な角度検出結果に基づいて、前記複数の柱状突起と前記穴の間に充填された接着剤の柱状突起よりも前記接着物を回転させたい方向と逆に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して回転調整させながら接合することを特徴とする請求項1または2記載の部品接合方法。   Based on the detection result of the relative angle of the adhesive to the adherend in a plane perpendicular to the axial direction of the columnar protrusions, the columnar protrusions of the adhesive filled between the plurality of columnar protrusions and the holes are more 3. The adhesive is bonded to the adherend while the adhesive is rotated with respect to the adherend by irradiating energy filled to the adhesive filled in the direction opposite to the direction in which the adhesive is to be rotated. The component joining method described. 前記柱状突起の軸方向の被着物に対する接着物の相対的な位置検出結果に基づいて、前記被着物の柱状突起と前記接着物の穴の仮想交点を含む平面よりも移動方向側に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して位置調整しながら接合することを特徴とする請求項1または2記載の部品接合方法。   Based on the detection result of the relative position of the adhesive with respect to the adherend in the axial direction of the columnar protrusion, filling was performed on the moving direction side from the plane including the virtual intersection of the columnar protrusion of the adherend and the hole of the adhesive. The component joining method according to claim 1, wherein the adhesive is joined to the adherend while adjusting the position of the adhesive by irradiating the adhesive with energy rays. 前記柱状突起の軸と垂直の平面に対する被着物と接着物の相対的な角度検出結果に基づいて、前記被着物の柱状突起と前記接着物の穴の仮想交点を含む平面よりも回転方向側に充填された接着剤にエネルギ線を照射することにより、前記接着物を前記被着物に対して回転調整させながら接合することを特徴とする請求項1または2記載の部品接合方法。   Based on the detection result of the relative angle between the adherend and the adhesive with respect to a plane perpendicular to the axis of the columnar protrusion, the rotation direction side of the plane including the virtual intersection of the columnar protrusion of the adherend and the hole of the adhesive 3. The component joining method according to claim 1, wherein the adhesive is joined to the adherend while rotating the adhesive to the adherend by irradiating the filled adhesive with energy rays. 請求項1ないし6記載の部品接合方法で用いる部品接合形態において、前記柱状突起の軸に対して傾き、その傾きが前記接着物の上下で逆になった互いに対向した接着面を前記被着物および前記接着物が有し、その間がエネルギ線硬化特性を有する接着剤により充填されていることを特徴とする部品接合形態。   The component bonding form used in the component bonding method according to claim 1, wherein the adhesion surfaces facing each other are inclined with respect to an axis of the columnar protrusion, and the inclination is opposite to the upper and lower sides of the adhesive. A part joining form characterized in that the adhesive has an adhesive, and the space between them is filled with an adhesive having energy ray curing characteristics. 部分的にエネルギ線を照射する接着層が、それぞれ分離層で分離されていることを特徴とする請求項7記載の部品接合形態。   8. The component bonding mode according to claim 7, wherein the adhesive layers that partially irradiate the energy rays are separated by a separation layer. 被着物に対する接着物の相対的な位置を検出する位置検出手段と、前記被着物の柱状突起と前記接着物の穴の間に充填されたエネルギ線硬化特性を有する接着剤の一部にエネルギ線を照射する複数のエネルギ線照射手段を備え、前記位置検出手段の検出結果に基づいて、前記接着剤へのエネルギ線照射部分の組み合せを選択手段により選択し、接着することを特徴とする部品接合装置。   An energy ray is applied to a part of the adhesive having the energy ray hardening characteristic filled between the columnar protrusion of the adherend and the hole of the adhesive, and a position detecting means for detecting a relative position of the adhesive with respect to the adherend. A plurality of energy ray irradiating means for irradiating, and selecting and bonding a combination of energy ray irradiating portions to the adhesive by a selecting means based on the detection result of the position detecting means apparatus. 前記柱状突起と前記接着物の穴の間にリング状に充填された接着剤を前記柱状突起の軸を中心として少なくとも3分割し、該分割した接着物の上下2方向のエネルギ線の選択照射が可能なように構成されていることを特徴とする請求項9記載の部品接合装置。   The adhesive filled in a ring shape between the columnar protrusion and the hole of the adhesive is divided into at least three with the axis of the columnar protrusion as the center, and selective irradiation of energy beams in two directions in the vertical direction of the divided adhesive is performed. The component joining apparatus according to claim 9, wherein the component joining apparatus is configured to be possible.
JP2004357442A 2004-12-09 2004-12-09 Method for joining parts, parts-joined configuration, and apparatus for joining parts Pending JP2006160961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357442A JP2006160961A (en) 2004-12-09 2004-12-09 Method for joining parts, parts-joined configuration, and apparatus for joining parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357442A JP2006160961A (en) 2004-12-09 2004-12-09 Method for joining parts, parts-joined configuration, and apparatus for joining parts

Publications (1)

Publication Number Publication Date
JP2006160961A true JP2006160961A (en) 2006-06-22

Family

ID=36663338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357442A Pending JP2006160961A (en) 2004-12-09 2004-12-09 Method for joining parts, parts-joined configuration, and apparatus for joining parts

Country Status (1)

Country Link
JP (1) JP2006160961A (en)

Similar Documents

Publication Publication Date Title
TWI654587B (en) Device for manufacturing electronic device using device wafer
JP5139736B2 (en) Liquid crystal component manufacturing method and manufacturing apparatus
JPH09274536A (en) Display device, production of the same and electronic device
JP6034969B2 (en) Panel mounting device
KR102091884B1 (en) Method and apparatus for bonding workpiece
JP2009025345A (en) Method for manufacturing liquid crystal component
CN105359203B (en) The manufacturing method of abutted equipment
JP2004115545A (en) Method for position control-type bonding and joining and apparatus therefor
JP4822386B2 (en) Part joining method
JP4933368B2 (en) Manufacturing method of liquid crystal parts
JP2006160961A (en) Method for joining parts, parts-joined configuration, and apparatus for joining parts
CN106550176B (en) Lens focusing method and optical module
JP2007219337A (en) Method of adhesion and fixing of optical component and laser light source apparatus
TW201708863A (en) Lens focusing method and optical module
JP4307897B2 (en) Joining method, joining apparatus, and component joining apparatus using the joining apparatus
JPH11101934A (en) Manufacturing method and manufacturing device for color resolving optical module
JP2010243566A (en) Adhesion fixing method and method of fixing optical element
JP2006250968A (en) Projection type display device, and method and device for adjusting and attaching liquid crystal display element for projection type display device
JP7188316B2 (en) Camera module manufacturing method
JP4593100B2 (en) Article having bonding structure and bonding method thereof
JP4530688B2 (en) Semiconductor bonding method and bonding apparatus
JP2006224193A (en) Electronic device and manufacturing method of electronic device
WO2020240968A1 (en) Method and device for manufacturing camera module, and method for manufacturing optical module
JP2007105568A (en) Head unit and head attaching method
JP2005298654A (en) Joining method