JP4822386B2 - Part joining method - Google Patents

Part joining method Download PDF

Info

Publication number
JP4822386B2
JP4822386B2 JP2004115446A JP2004115446A JP4822386B2 JP 4822386 B2 JP4822386 B2 JP 4822386B2 JP 2004115446 A JP2004115446 A JP 2004115446A JP 2004115446 A JP2004115446 A JP 2004115446A JP 4822386 B2 JP4822386 B2 JP 4822386B2
Authority
JP
Japan
Prior art keywords
adhesive
adhesive layer
irradiated
irradiation
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004115446A
Other languages
Japanese (ja)
Other versions
JP2005298638A (en
Inventor
久慶 大島
太郎 照
裕介 種子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004115446A priority Critical patent/JP4822386B2/en
Publication of JP2005298638A publication Critical patent/JP2005298638A/en
Application granted granted Critical
Publication of JP4822386B2 publication Critical patent/JP4822386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for bonding with which an initial shift and an internal stress of a bonding material due to curing shrinkage are reduced and a change with time (a shift with time) of the bonding material is reduced when parts are joined with an energy ray-curable adhesive. <P>SOLUTION: An adhesive having energy ray-curing characteristics is partially irradiated with energy rays and the irradiated part is scanned to cure the whole adhesive layer. Curing is partially and successively carried out while maintaining a state in which an uncured part is present in the periphery of the irradiated part by curing the whole adhesive layer. The amount of curing and shrinking of the adhesive (a reduction in volume due to the curing shrinkage) is supplemented from the uncured adhesive having fluidity in the periphery of the irradiated part. Thereby, the production of stress (tensile stress) in the interior of the adhesive due to the curing shrinkage is suppressed. As a result, the initial shift of the bonding material due to the curing shrinkage of the adhesive is reduced and the positional shift (shift with time) of the bonding material caused by natural and gradual release of the residual stress in the adhesive layer is remarkably reduced. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

この発明は、接着剤による部品の接合方法及び接合装置に関するものであり、接着層の収縮に伴う残留応力を低減して接着される部品(被接着物と接着物)間の接着時の初期ずれ(初期位置ずれ)を防止して初期位置精度を高め、その後の時間の経過にともなって、残留応力の変化によって生じる上記部品間の位置ずれを防止できるものであり、この位置ずれが性能に影響する精密部品、例えば、情報記録装置の光ピックアップの光学部品接着や、液晶プロジェクターの液晶パネル接着などに極めて有効なものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding method and a bonding apparatus for parts using an adhesive, and reduces initial stress caused by shrinkage of an adhesive layer to reduce initial stress during bonding between parts to be bonded (bonded object and bonded object). (Initial position deviation) is prevented to improve the initial position accuracy, and over time, the position deviation between the above parts caused by changes in residual stress can be prevented, and this position deviation affects the performance. It is extremely effective for bonding precision components such as optical components of optical pickups of information recording apparatuses and liquid crystal panels of liquid crystal projectors.

一般に部品を接着する接着剤としては、加熱硬化型、嫌気硬化型、光(紫外線、可視光等)硬化型などが代表的なものであり、幾つかの性質を兼ね備えたものもある。その中でも紫外線硬化型樹脂に代表されるエネルギー線硬化型樹脂は、反応速度が速く硬化時間が大幅に短縮されることから、様々な分野で利用されている。
加熱硬化型の場合は、オーブン等で熱を加える工程が必要であるため、工程の高速化の妨げになることや、部品によっては熱を許容できないものも存在するために、光学部品の接着には利用性が悪く、また、嫌気硬化型は硬化プロセスの特徴から制限された接着構造にする必要があるために光学部品の接着には利用性が悪い。
また、エネルギー線硬化型接着剤による場合は、熱的影響がほとんど無く、接着構造についての特別な制限がないことなどから光硬化型が用いられるが、光学部品をはじめとした接着の高速化が必要な部品接合においては殊に紫外線(UV)硬化型が多用されている。
In general, as an adhesive for adhering parts, a heat curing type, an anaerobic curing type, a light (ultraviolet ray, visible light, etc.) curing type, etc. are representative, and some have some properties. Among them, energy ray curable resins typified by ultraviolet curable resins are used in various fields because of their high reaction speed and greatly shortened curing time.
In the case of the thermosetting type, a process of applying heat in an oven or the like is required, which hinders the speeding up of the process, and some parts cannot tolerate heat. Is unusable, and the anaerobic curing type needs to have a limited adhesion structure due to the characteristics of the curing process, and therefore is unusable for bonding optical components.
In addition, in the case of an energy ray curable adhesive, a photo-curing type is used because there is almost no thermal influence and there are no special restrictions on the adhesive structure. In particular, ultraviolet (UV) curable molds are frequently used for joining necessary parts.

他方、加熱硬化型、嫌気硬化型、光硬化型のいずれであっても、接着剤が硬化するとき、硬化収縮(体積収縮)し、この収縮により内部応力(硬化収縮力)を生じるという問題がある。この硬化収縮は、一般に、アクリル系紫外線硬化性樹脂で5〜10%、エポキシ系紫外線硬化性樹脂で2〜5%程度であり、収縮量が大きいほど硬化収縮力が大きい。この硬化収縮力は接着強度には余り影響しないが、精密組立においては、接着される部品間の高い位置精度が要求されるために、例え微小であっても接着されたものの位置ずれはその組み立て品の性能、品質に大きな影響を与える。すなわち、高精度に位置決めされた状態で接着されても、接着剤の硬化収縮の影響で、調整した部品間位置にずれを生じたり(初期ずれ)、硬化収縮により蓄積された接着剤内部応力が硬化後の温度変化等により開放され、部品の接着位置が経時的に変化を起して、精密組立品の機能を阻害する可能性がある。
従来の技術においては、この初期ずれと経時変化(経時ずれ)の課題に対して、大別して次の4つの方法で対処している。
On the other hand, the heat curing type, the anaerobic curing type, and the photo-curing type have a problem that when the adhesive is cured, it is cured and contracted (volume contraction), and this contraction generates internal stress (curing contraction force). is there. This curing shrinkage is generally about 5 to 10% for an acrylic ultraviolet curable resin and about 2 to 5% for an epoxy ultraviolet curable resin, and the curing shrinkage force increases as the shrinkage amount increases. This curing shrinkage force does not significantly affect the adhesive strength, but in precision assembly, high positional accuracy between the parts to be bonded is required. It has a great influence on the performance and quality of the product. In other words, even when bonded in a state of being positioned with high accuracy, the adjusted inter-component position may be displaced due to the effect of curing shrinkage of the adhesive (initial deviation), or the internal stress of the adhesive accumulated by curing shrinkage may be reduced. There is a possibility that it will be released due to a temperature change after curing, etc., and the bonding position of the parts will change over time, impairing the function of the precision assembly.
In the prior art, the problems of the initial deviation and the change with time (time deviation) are roughly divided into the following four methods.

1つ目の方法は、特開2000−090481号公報や特開平10−309801号公報に記載されているものであり、これは、使用する接着剤を薄く少量とし、硬化収縮量を低減する方法である。しかし、上記特開2000−090481号公報のものは基本的に面接着であり、特殊な接着剤を使用する必要がある。また、上記特開平10−309801号公報のものは接着構造が限定される上、間接接着であるため別部品を必要とし、接着箇所が増えるという不具合がある。   The first method is described in Japanese Patent Application Laid-Open No. 2000-090481 and Japanese Patent Application Laid-Open No. 10-309801, which is a method for reducing the amount of curing shrinkage by reducing the amount of adhesive used in a thin amount. It is. However, the thing of the said Unexamined-Japanese-Patent No. 2000-090481 is basically surface adhesion, and it is necessary to use a special adhesive agent. Further, the one disclosed in Japanese Patent Laid-Open No. 10-309801 has a problem in that the bonding structure is limited and indirect bonding is required, so that another part is required and the number of bonding points increases.

2つ目の方法は、特開2001−350072号公報に記載されているものであり、これは、照射するUV光を制御してばらつきを無くし、硬化収縮の均一性を向上させる方法である。この方法では、接着構造が基本的に面接着に限定されてしまうという問題と、接着剤の塗布むらがある場合には、硬化収縮による位置ずれを回避できない不具合がある。また、ほぼ同時に接着層全体が硬化してしまうため、硬化収縮による内部応力が高く、経時変化(経時ずれ)が起こりやすいという不具合がある。   The second method is described in Japanese Patent Application Laid-Open No. 2001-350072, which is a method of controlling the UV light to be irradiated to eliminate variations and improve the uniformity of curing shrinkage. In this method, there is a problem that the bonding structure is basically limited to surface bonding, and there is a problem that misalignment due to curing shrinkage cannot be avoided when there is uneven application of adhesive. Further, since the entire adhesive layer is cured almost simultaneously, there is a problem that internal stress due to curing shrinkage is high, and a change with time (time shift) is likely to occur.

3つ目の方法は、特開平10−121013号公報、特開平07−201028号公報、特開平05−041408号公報に記載されているものであり、これは、接着剤自体に手を加える方法で、例えば、セラミックス微粒子の添加や充填材添加で接着剤の硬化収縮を小さくする技術や熱収縮樹脂の添加で硬化と収縮の発生タイミングを分離するものである。そして、これらの接着剤の開発が上記課題解決のために盛んに行われている。しかし、この場合は、特殊な接着剤を使用する必要があり、また接着剤量が増えれば比例的に硬化収縮量が増え、内部応力が増え、経時変化が起こりやすいという不具合がある。   The third method is described in JP-A-10-121013, JP-A-07-201028, and JP-A-05-041408, which is a method of modifying the adhesive itself. Thus, for example, the timing of occurrence of curing and shrinkage is separated by the technique of reducing the curing shrinkage of the adhesive by the addition of ceramic fine particles or the addition of a filler or the addition of a heat shrink resin. And development of these adhesives is actively performed for the solution of the said subject. However, in this case, it is necessary to use a special adhesive, and as the amount of the adhesive increases, there is a problem that the amount of cure shrinkage increases proportionally, the internal stress increases, and a change with time is likely to occur.

4つ目の方法は、特開平09−197105号公報に記載されているものであり、これは、接着剤の硬化収縮に伴う接合層の収縮に追従して接合層の厚みを調整しながら接合し、収縮に起因する応力を低減するものである。しかし、この技術は、硬化収縮する接着剤と収縮しない部品の界面に起きる応力のみを低減できるもので、硬化後の接着剤内部の残留応力を十分低減することができないので、経時変化を防止して高い位置精度を保つことはできない。
特開2000−090481号公報 特開平10−309801号公報 特開2001−350072号公報 特開平10−121013号公報 特開平07−201028号公報 特開平05−041408号公報 特開平09−197105号公報
The fourth method is described in Japanese Patent Application Laid-Open No. 09-197105, which is performed by adjusting the thickness of the bonding layer following the shrinkage of the bonding layer accompanying the curing shrinkage of the adhesive. Thus, the stress due to shrinkage is reduced. However, this technology can reduce only the stress that occurs at the interface between the adhesive that cures and shrinks and the part that does not shrink, and it cannot sufficiently reduce the residual stress inside the adhesive after curing. High position accuracy cannot be maintained.
JP 2000-090481 A JP-A-10-309801 JP 2001-350072 A JP-A-10-121013 Japanese Patent Application Laid-Open No. 07-201028 Japanese Patent Laid-Open No. 05-041408 JP 09-197105 A

そこで、本発明は接着物の硬化収縮による初期ずれを低減しつつ、硬化時に蓄積される内部応力を低減し、接着物の経時変化(経時ずれ)を少なくすることができる接着方法、接着装置を工夫することをその課題とするものである。   Therefore, the present invention provides a bonding method and a bonding apparatus that can reduce initial stress due to curing shrinkage of an adhesive, reduce internal stress accumulated at the time of curing, and reduce change with time (time shift) of the adhesive. The challenge is to devise.

〔解決手段1〕(請求項1に対応)
上記課題を解決するために講じた手段1は、エネルギー線硬化特性をもつ接着剤によって被接着物に接着物を接着する部品接合方法を前提として、
上記エネルギー線を接着層の一部に照射し、当該照射部を走査して接着層全体を順次硬化させる部品接合方法であって、上記接着層への照射部を複数の照射部として、接着物中心に対して対称となる位置を同時に照射し走査することである。
〔作用〕
紫外線等のエネルギー線を接着層の一部に照射し、当該照射部を走査して接着層全体を硬化させることで、照射部周囲に未硬化部が存在する状態を維持しながら部分的に順次硬化させ、接着剤の硬化収縮分(硬化収縮による体積減少分)が、照射部周囲の流動性のある未硬化接着剤から補充されるので、硬化収縮によって接着剤内部に応力(引っ張り応力)が生じることが抑制される。したがって、接着剤の硬化収縮による接着物の初期ずれが低減されるとともに、接着層内残留応力が自然に徐々に解放されるにつれて生じる接着物の位置ずれ(経時ずれ)が著しく低減される。
さらに、上記接着層への照射部を複数の照射部として、接着物中心に対して対称となる位置を同時に照射し走査して接着層全体を硬化させることで、硬化収縮力が接着物中心に相殺され全体としてバランス(均衡)するので、硬化収縮力による接着物のずれが著しく低減される
[Solution 1] (corresponding to claim 1)
Means 1 taken in order to solve the above problems is based on the premise of a component bonding method in which an adhesive is bonded to an adherend by an adhesive having energy ray curing characteristics.
A part joining method in which a part of an adhesive layer is irradiated with the energy beam and the irradiated part is scanned to sequentially cure the entire adhesive layer, wherein the adhesive part is a plurality of irradiated parts. It is to irradiate and scan a position that is symmetrical with respect to the center at the same time .
[Action]
By irradiating part of the adhesive layer with energy rays such as ultraviolet rays and scanning the irradiated part to cure the entire adhesive layer, it is partially sequentially while maintaining the state where the uncured part exists around the irradiated part Curing and curing shrinkage of the adhesive (volume decrease due to curing shrinkage) is replenished from fluid uncured adhesive around the irradiated area, so stress (tensile stress) is generated inside the adhesive by curing shrinkage. Occurrence is suppressed. Therefore, the initial deviation of the adhesive due to the curing shrinkage of the adhesive is reduced, and the positional deviation (time deviation) of the adhesive which occurs as the residual stress in the adhesive layer is gradually gradually released is remarkably reduced.
Furthermore, by setting the irradiation part to the adhesive layer as a plurality of irradiation parts and simultaneously irradiating and scanning a position symmetrical with respect to the center of the adhesive to cure the entire adhesive layer, the curing shrinkage force is brought to the adhesive center. Since they are offset and balanced as a whole, the deviation of the adhesive due to the curing shrinkage force is remarkably reduced .

〔実施態様1〕(請求項2に対応)
実施態様1は、上記解決手段1の部品接合方法について、上記接着層中央部に最初にエネルギー線を照射し、その接着層硬化部の外周近傍から順次硬化するように照射部を平面走査することで接着層全体を硬化させることである。
〔作用〕
接着層中央部に最初にエネルギー線を照射し、その接着層硬化部の外周近傍から順次連続硬化するように照射部を平面走査することで、硬化が接着層中央部から外周部に向かって順次進むので、硬化収縮分がその硬化部周囲の未硬化接着剤から補充される。
なお、上記平面走査による硬化部周囲の未硬化部分については、上記硬化部の収縮分をその流動性によって補充できる程度のものであればよいから、これは極めて微小でよい。したがって、この未硬化部分のその後の硬化に伴う応力、残留応力は極めて微小であり、これによる位置ずれ(初期ずれ、経時ずれ)は極めて微小である。
[Embodiment 1] (corresponding to claim 2)
Embodiment 1 relates to the component joining method of Solution 1 above, first irradiating the central portion of the adhesive layer with energy rays, and scanning the irradiated portion in a plane so as to be sequentially cured from the vicinity of the outer periphery of the adhesive layer cured portion. Is to cure the entire adhesive layer.
[Action]
By first irradiating the center of the adhesive layer with energy rays and scanning the irradiated part in a plane so that the adhesive layer is continuously cured sequentially from the vicinity of the outer periphery of the adhesive layer, curing is sequentially performed from the center of the adhesive layer toward the outer periphery. As it proceeds, the cure shrinkage is replenished from the uncured adhesive around the cured portion.
Note that the uncured portions of the cured portion around by the plane scanning, because as long as enough to replenish by its fluidity of shrinkage of the hardening unit, which may be very small. Accordingly, the stress and residual stress associated with the subsequent curing of the uncured portion are extremely small, and the positional deviation (initial deviation and temporal deviation) due to this is extremely small.

〔実施態様2〕(請求項3に対応)
実施態様2は、上記解決手段1の部品接合方法について、上記エネルギー線を集光してその焦点を接着層内部に最初に合わせて照射し、その接着層硬化部の外周近傍から順次硬化させるように照射部を三次元走査することで接着層全体を硬化させることである。
〔作用〕
エネルギー線を集光し、その焦点を接着層内部に最初に合わせて照射し、その接着層硬化部の外周近傍から順次連続硬化するように照射部を三次元走査することにより、接着層が厚い場合でも、硬化部周囲の未硬化接着剤から硬化収縮分が順次補充され、また、接着層内部から外面側に向かって硬化が順次進むので、硬化収縮分の周囲の未硬化接着剤からの補充作用が、接着剤全体への照射完了まで持続される。
[Embodiment 2] (corresponding to claim 3)
In the second embodiment, with respect to the component joining method of the solution 1, the energy rays are condensed and focused on the inside of the adhesive layer to be irradiated first, and then sequentially cured from the vicinity of the outer periphery of the adhesive layer curing portion. In other words, the entire adhesive layer is cured by three-dimensionally scanning the irradiated portion.
[Action]
Concentrate the energy rays, irradiate the focal point first inside the adhesive layer and irradiate the irradiated part three-dimensionally so that the adhesive part is continuously cured from the vicinity of the outer periphery of the adhesive layer, thereby thickening the adhesive layer. Even in this case, the curing shrinkage is replenished sequentially from the uncured adhesive around the cured part, and the curing proceeds sequentially from the inside of the adhesive layer toward the outer surface, so replenishment from the uncured adhesive around the cure shrinkage. The action is continued until irradiation of the entire adhesive is completed.

〔実施態様3〕(請求項4に対応)
実施態様3は、上記解決手段1の部品接合方法について、上記エネルギー線を複数の方向から照射して、各エネルギー線の交差部分を照射部とし、該照射部を三次元で走査することで接着層全体を硬化させることである。
〔作用〕
エネルギー線を複数の方向から照射して、各エネルギー線の交差部分を照射部とし、該照射部を三次元で走査することで、エネルギー密度の高い部分を接着層内部に容易に形成することができ、このエネルギー密度の高い部分でエネルギー線照射による硬化が促進される。そして、上記エネルギー線の交差部分(照射部)を三次元で走査することで、硬化部が三次元で制御されるから、その硬化収縮分の周囲の未硬化接着剤からの補充作用が、接着剤全体への照射が完了するまで持続される。
[Embodiment 3] (corresponding to claim 4)
Embodiment 3 relates to the component joining method of Solution 1 described above. Irradiation is performed by irradiating the energy beam from a plurality of directions, using an intersection of each energy beam as an irradiation unit, and scanning the irradiation unit in three dimensions. It is to cure the entire layer.
[Action]
By irradiating energy rays from a plurality of directions and using the intersection of each energy beam as an irradiator, and scanning the irradiator in three dimensions, a portion having a high energy density can be easily formed inside the adhesive layer. In addition, curing by irradiation with energy rays is promoted at a portion where the energy density is high. And since the cured part is controlled in three dimensions by scanning the intersection (irradiation part ) of the energy beam in three dimensions, the replenishment action from the uncured adhesive around the cure shrinkage is the adhesion This is continued until irradiation of the entire agent is completed.

〔実施態様4〕(請求項5に対応)
実施態様4は、上記解決手段1、実施態様1又は実施態様2の部品接合方法について、そのエネルギー線の照射部を接着層外周に向かって走査するとき、その走査間隔を開けて間欠照射して未硬化部が接着層外周までつながるように残し、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることである。
〔作用〕
接着層外周に向かって照射部を走査するとき、走査間隔を開けて間欠照射して未硬化部が接着層外周までつながるように残し、その後未硬化部分にエネルギー線を照射して接着層全体を硬化させることで、接着剤の硬化収縮に遅れがある場合でも照射部の近くに流動可能な未硬化部分が残るから、硬化収縮分が周囲の未硬化接着剤から補充される。
未硬化部が接着層外周まで繋がっているので、未硬化部が硬化収縮するときその内部に応力が生じることが可及的に抑制される。
[Embodiment 4] (corresponding to claim 5)
Embodiment 4 relates to the component joining method of Solution 1 , Embodiment 1 or Embodiment 2 described above, and when scanning the irradiated portion of the energy beam toward the outer periphery of the adhesive layer, intermittent irradiation is performed with a scanning interval. This is to leave the uncured part so as to be connected to the outer periphery of the adhesive layer, and then irradiate the uncured part with energy rays to cure the entire adhesive layer.
[Action]
When scanning the irradiated part toward the outer periphery of the adhesive layer, intermittent irradiation is performed with a scanning interval left so that the uncured part is connected to the outer periphery of the adhesive layer, and then the uncured part is irradiated with energy rays to irradiate the entire adhesive layer. By curing, even if there is a delay in the curing shrinkage of the adhesive, an uncured portion that can flow is left in the vicinity of the irradiated portion, so that the cured shrinkage is supplemented from the surrounding uncured adhesive.
Since the uncured portion is connected to the outer periphery of the adhesive layer, when the uncured portion is cured and contracted, the occurrence of stress in the inside is suppressed as much as possible.

〔実施態様5〕(請求項6に対応)
実施態様5は、上記解決手段1の部品接合方法について、照射部を接着層外周に向かって走査するとき、その走査間隔を開けて放射状に走査することで、未硬化部が接着層外周までつながるように残し、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることである。
〔作用〕
接着層外周に向かって照射部を走査するとき、走査間隔を開けて放射状に走査することで未硬化部が接着層外周までつながるように残し、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることで、接着剤の硬化収縮に反応の遅れがある場合でも照射部の周囲に未硬化部分が残るから、硬化収縮分が周囲の未硬化接着剤から補充される。
[Embodiment 5] (corresponding to claim 6)
Embodiment 5, the component bonding method of the above solution 1, when scanning toward the irradiated portion in the adhesive layer outer periphery, by scanning radially open the scan spacing, the uncured portion is connected to the adhesive layer periphery And then irradiating the uncured part with energy rays to cure the entire adhesive layer.
[Action]
When scanning the irradiated part toward the outer periphery of the adhesive layer, leave the uncured part connected to the outer periphery of the adhesive layer by scanning radially with a scan interval, and then irradiate the uncured part with energy rays and bond By curing the entire layer, an uncured portion remains around the irradiated portion even when there is a reaction delay in the cure shrinkage of the adhesive, so that the cure shrinkage is supplemented from the surrounding uncured adhesive.

〔実施態様6〕(請求項7に対応)
実施態様6は、上記解決手段1、実施態様1、又は実施態様2の部品接合方法について、その光エネルギー線の照射部を接着層中央部から外周に向かって走査するとき、間欠照射して未硬化部を分散させ、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることである。
〔作用〕
接着層中央部から外周に向かって照射部を走査するとき、間欠照射して未硬化部を分散させ、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化することにより、接着剤の硬化収縮に反応の遅れがある場合でも照射部の周囲に未硬化部分が分散しているので、硬化収縮分が周囲の未硬化接着剤から補充される。
[Embodiment 6] (corresponding to claim 7)
Embodiment 6, the above solution 1, for component bonding method of embodiment 1, or embodiment 2, when you scan the irradiation portion of the light energy beam toward the outer periphery from the adhesive layer central portion, intermittently irradiated Not It is to disperse the cured portion and then irradiate the uncured portion with energy rays to cure the entire adhesive layer.
[Action]
Toward the outer periphery from the adhesive layer center part when you scan the irradiation unit, by dispersing an uncured portion intermittently irradiated, then, by curing the entire adhesive layer is irradiated with energy rays uncured portion, adhesive Even when there is a reaction delay in curing shrinkage, uncured portions are dispersed around the irradiated portion, so that the curing shrinkage is supplemented from the surrounding uncured adhesive.

削 除( Delete )

実施態様7〕(請求項8に対応)
実施態様7は、上記解決手段1、実施態様2、又は実施態様3の部品接合方法について、その接着剤と接着物及び/又被接着物が接する部分以外の接着剤にエネルギー線を最初に照射し、接着剤と接着物及び/又被接着物が接する部分の接着剤を最後に硬化させることである。
〔作用〕
接着剤と接着物及び/又被接着物が接する部分以外の接着剤にエネルギー線を最初に照射し、接着剤と接着物及び/又被接着物が接する部分の接着剤を最後に硬化させることで、硬化収縮による内部応力が抑制される他、接着剤の硬化収縮力が未硬化層で吸収されて接着物と被接着物間に作用することなしに接着層の大部分が硬化させられるので、接着物の初期ずれが低減される。
[ Embodiment 7 ] (corresponding to claim 8 )
In the seventh embodiment , the energy beam is first irradiated to the adhesive other than the portion where the adhesive and the adhesive and / or the adherend are in contact with each other in the solution 1 , the embodiment 2, or the third embodiment. Then, the adhesive at the portion where the adhesive and the adhesive and / or the adherend are in contact is finally cured.
[Action]
The energy rays are first irradiated to the adhesive other than the part where the adhesive and the adhesive and / or the adherend are in contact, and the adhesive at the part where the adhesive and the adhesive and / or the adherend is in contact is finally cured. In addition to suppressing internal stress due to curing shrinkage, the adhesive shrinkage is absorbed by the uncured layer, and most of the adhesive layer is cured without acting between the adhesive and the adherend. , The initial displacement of the adhesive is reduced.

実施態様8〕(請求項9に対応)
実施態様8は、解決手段1、実施態様2、又は実施態様3の部品接合方法について、接着物と被接着物が直接接している場合、接着物と被接着物と接着剤との交線から先にエネルギー線を照射して硬化させ、その後、接着層中央部から外周に向かって照射部を走査することである。
〔作用〕
接着物と被接着物が直接接している場合、接着物と被接着物と接着剤の交線部分から先にエネルギー線を照射して硬化させ、その後、接着層中央部から外周に向かって照射部を走査することにより、接着物と被接着物と接着剤の交線部分で接着物が仮固定され、このように仮固定された状態で他の部分の硬化が進む。そしてまた、硬化収縮分がその周囲の未硬化接着剤から補充されながら順次硬化される。
したがって、硬化当初の部品の位置ずれが回避され、また、硬化後の接着物の経時ずれも低減される。
[ Embodiment 8 ] (corresponding to claim 9 )
Embodiment 8, solutions 1, the component bonding method of the embodiment 2, or embodiment 3, the line of intersection if the adhesive material and the adherend is in direct contact, the contact kimono and adherends with the adhesive It is to first irradiate and cure the energy ray, and then scan the irradiated portion from the central portion of the adhesive layer toward the outer periphery.
[Action]
If the adhesive material and the adherend is in direct contact, previously cured by irradiating an energy beam from the intersection section of the contact kimono adherend and the adhesive, then irradiated toward the outer periphery from the adhesive layer central portion by scanning the part, adhesion thereof with intersection section of contact kimono adherends and adhesive is temporarily fixed, the curing of the other portions in a state in which the thus temporarily fixed proceeds. Further, the cured shrinkage is sequentially cured while being replenished from the surrounding uncured adhesive.
Therefore, the positional deviation of the parts at the initial stage of curing is avoided, and the temporal deviation of the adhesive after curing is reduced.

実施態様9〕(請求項10に対応)
実施態様9は、解決手段1乃至実施態様8の部品接合方法について、照射部の走査の後に接着層全体にエネルギー線を均一照射して、接着剤を完全硬化させることである。
〔作用〕
照射部の走査の後に接着層全体にエネルギー線を均一照射して、接着剤を完全硬化させることで、照射部の走査漏れによる未硬化部分が残存することはなく、したがって、残存した未硬化接着剤の接着後の硬化反応による接着物の経時ずれが著しく抑制される。
なお、上記の接着層全体に対するエネルギー線の均一照射は、走査による一次的照射がなされた後残された未硬化部分を硬化させるために行う二次的照射であり、この二次的照射により硬化される接着層の体積は一次的照射による硬化体積に比べ少ないので、それに伴う内部応力、残留応力は小さく、したがって、これによる初期ずれ、経時ずれは極めて微小である。
[ Embodiment 9 ] (corresponding to claim 10 )
Embodiment 9 is the component joining method according to Solution 1 to Embodiment 8 , in which after the irradiation portion is scanned, the entire adhesive layer is uniformly irradiated with energy rays to completely cure the adhesive.
[Action]
By uniformly irradiating the entire adhesive layer with energy rays after scanning the irradiated area and completely curing the adhesive, there will be no uncured part left due to the scanning leakage of the irradiated area. The time lag of the bonded product due to the curing reaction after bonding of the agent is remarkably suppressed.
The uniform irradiation of the energy beam to the entire adhesive layer is a secondary irradiation performed to cure the uncured portion remaining after the primary irradiation by scanning, and is cured by this secondary irradiation. Since the volume of the adhesive layer to be formed is smaller than the cured volume by primary irradiation, the accompanying internal stress and residual stress are small. Therefore, the initial deviation and the temporal deviation due to this are extremely small.

〔解決手段2〕
上記課題解決のために講じた手段2は、エネルギー線硬化特性をもつ接着剤によって被接着物に接着物を接着する部品接合装置を前提として、
上記接着層の一部にエネルギー線を照射する照射手段と、その照射部を走査する走査手段を備えていることである。
〔作用〕
接着層の一部にエネルギー線を照射する照射手段と、照射部を走査する走査手段を備え、照射手段によるエネルギー線を接着層に局部的に照射して接着硬化させ、この照射部を上記走査手段で走査する。これにより局部的に接着硬化が促進され、この接着硬化範囲が順次に拡大されて接着層全体に及ぼされる。このようにして、解決手段1の部品接合方法を実行することができる。
[Solution 2]
Means 2 taken to solve the above problems is based on the premise of a component joining apparatus that adheres an adhesive to an adherend with an adhesive having energy ray curing characteristics.
An irradiation means for irradiating a part of the adhesive layer with energy rays and a scanning means for scanning the irradiation portion are provided.
[Action]
An irradiation means for irradiating a part of the adhesive layer with energy rays and a scanning means for scanning the irradiating portion are provided. The energy rays from the irradiating means are locally irradiated on the adhesive layer to be adhesively cured, and this irradiation portion is scanned as described above. Scan by means. As a result, adhesion hardening is locally promoted, and this adhesion hardening range is sequentially expanded to reach the entire adhesive layer. In this way, the component joining method of the solving means 1 can be executed.

〔実施態様1〕
この実施態様1は、解決手段2の部品接合装置について、そのエネルギー線を接着層内部に集光して照射する集光照射手段と、照射部を三次元走査する三次元走査手段を備えていることである。
〔作用〕
エネルギー線を接着層内部に集光して照射する集光照射手段と、照射部を三次元走査する三次元走査手段を備えていることにより、集光照射手段によって集光照射された位置において接着層の接着硬化作用を進行させ、三次元走査手段によって、集光照射される位置を接着層内において三次元的に走査する。これにより、接着硬化範囲が接着層の内部において順次三次元方向に拡大されて接着層全体に及ぼされる。このようにして、解決手段1の実施態様2の部品接合方法を容易に実行することができる。
[Embodiment 1]
This embodiment 1 includes a condensing irradiating means for condensing and irradiating the energy rays inside the adhesive layer, and a three-dimensional scanning means for three-dimensionally scanning the irradiating portion of the component joining apparatus of the solving means 2. That is.
[Action]
Condensing irradiation means for condensing and irradiating energy rays inside the adhesive layer, and a three-dimensional scanning means for three-dimensional scanning of the irradiation part, so that adhesion is performed at a position where light is condensed and irradiated by the condensing irradiation means. The adhesive curing action of the layer is advanced, and the position to be condensed and irradiated is three-dimensionally scanned in the adhesive layer by the three-dimensional scanning means. As a result, the adhesive curing range is sequentially expanded in the three-dimensional direction inside the adhesive layer to reach the entire adhesive layer. In this way, the component joining method according to the second embodiment of the solving means 1 can be easily performed.

〔実施態様2〕
この実施態様2は、上記実施態様1の部品接合装置について、そのエネルギー線を複数の方向から交差させるように照射する照射手段と、各エネルギー線を走査する複数の走査手段を備え、照射の重なり部を三次元走査する操作手段を備えていることである。
〔作用〕
エネルギー線を複数の方向から照射する複数の照射手段と、各照射手段を三次元走査する複数の走査手段を備え、複数のエネルギー線を重ね合わせるように走査することで、解決手段1の実施態様3の部品接合方法を容易に実行することができる。
[Embodiment 2]
The second embodiment includes an irradiation unit that irradiates the energy beams so as to intersect from a plurality of directions, and a plurality of scanning units that scan the energy beams, and overlaps the irradiation. And an operating means for three-dimensionally scanning the part.
[Action]
An embodiment of solving means 1 comprising a plurality of irradiation means for irradiating energy rays from a plurality of directions and a plurality of scanning means for three-dimensionally scanning each irradiation means, and scanning the plurality of energy rays so as to overlap each other. The component joining method 3 can be easily executed.

〔実施態様3〕
この実施態様3は、解決手段2乃至上記実施態様2の部品接合装置について、エネルギー線の照射を高速でON、OFFする遮光手段及びその制御手段を備えていることである。
〔作用〕
エネルギー線の照射をON、OFFする遮光手段を備えることで、走査途中で接着層外周までつながるように未硬化部を残し、接着剤の硬化収縮に遅れが有る場合でも、照射部の近くに流動可能な未硬化部分を残すことができる。これにより、解決手段1の実施態様4の部品接合方法を実行することができる。
[Embodiment 3]
Embodiment 3 is that the component joining apparatus according to Solution 2 to Embodiment 2 is provided with light shielding means for turning on and off the energy beam irradiation at high speed and its control means.
[Action]
Equipped with a light-blocking means that turns on and off the irradiation of energy rays, leaving an uncured part so that it can be connected to the outer periphery of the adhesive layer in the middle of scanning, even if there is a delay in the curing shrinkage of the adhesive, it flows near the irradiated part Possible uncured parts can be left. Thereby, the component joining method of Embodiment 4 of the solution means 1 can be performed.

〔実施態様4〕
この実施態様4は、解決手段1乃至上記実施態様3の部品接合装置について、その接着層位置、被接着物位置、接着物位置を認識する認識手段を備え、接着層位置、被接着物位置、接着物位置に応じた最適走査パターンを選択する選択手段を備えていることである。
〔作用〕
接着層位置、被接着物位置、接着物位置を認識する認識手段を備え、接着剤の塗布範囲、塗布形状のばらつきに関わらず、最適な走査パターンを設定できる。
[Embodiment 4]
This embodiment 4 includes a recognizing means for recognizing the position of the adhesive layer, the position of the adherend, and the position of the adherend of the component joining apparatus according to the solution 1 to the embodiment 3 above, It is provided with the selection means which selects the optimal scanning pattern according to the adhesive substance position.
[Action]
Recognizing means for recognizing the position of the adhesive layer, the position of the adherend, and the position of the adhesive is provided, and an optimum scanning pattern can be set regardless of variations in the adhesive application range and application shape.

〔実施態様5〕
実施態様5は、解決手段5乃至上記実施態様4の部品接合装置について、そのエネルギー線照射部を走査して後、接着層全体にエネルギー線を照射する照射手段を備えていることである。
〔作用〕
エネルギー線照射部を接着層に走査して後、接着層全体にエネルギー線を照射する照射手段を備えているので、エネルギー線の走査漏れによる未硬化部分の残留がなくなり、未硬化接着剤の接着後の反応による接着物の経時ずれの発生をより一層防止することができる。
[Embodiment 5]
Embodiment 5 is that the component joining apparatus according to Solution 5 to Embodiment 4 includes irradiation means for irradiating the entire adhesive layer with energy rays after scanning the energy ray irradiation portion.
[Action]
After irradiating the energy ray irradiation part to the adhesive layer, it is equipped with an irradiation means that irradiates the entire adhesive layer with energy rays, so there is no residue of uncured parts due to energy beam scanning leakage, and adhesion of uncured adhesive It is possible to further prevent the occurrence of time lag of the adhesive due to the subsequent reaction.

本発明の効果を各請求項毎に整理すれば次のとおりである。
(1)請求項1に係る発明
エネルギー線を接着層の一部に照射し当該照射部を走査して、接着層全体を硬化させることで、接着剤の硬化収縮による体積不足分が照射部周囲の未硬化接着剤から補充されるので、硬化時の接着層内応力を緩和して硬化収縮による接着物の当初の位置ずれを低減することができる。また、硬化時の接着層内応力の緩和により接着層内残留応力が低減され、残留応力の経時変化に伴う接着物のその後の経時ずれを防止することができる。
さらに、上記接着層への照射部を複数の照射部として、接着物の中心に対して対称となる位置を同時に照射し走査することで、接着物中心の対称位置で硬化が同時に進行し、硬化収縮力が中心点対称となり、互いに反対方向に作用し相殺されて均衡する。その結果、硬化収縮による接着物の位置ずれを一層顕著に低減することができる
The effects of the present invention will be summarized for each claim as follows.
(1) The invention according to claim 1 By irradiating a part of the adhesive layer with energy rays and scanning the irradiated part to cure the entire adhesive layer, the volume shortage due to the curing shrinkage of the adhesive is around the irradiated part. Since the uncured adhesive is replenished, the stress in the adhesive layer at the time of curing can be relieved, and the initial misalignment of the adhesive due to curing shrinkage can be reduced. In addition, the residual stress in the adhesive layer is reduced by the relaxation of the stress in the adhesive layer at the time of curing, and it is possible to prevent the subsequent aging of the adhesive due to the change of the residual stress with time.
Furthermore, by setting the irradiation part to the adhesive layer as a plurality of irradiation parts and simultaneously irradiating and scanning a position that is symmetric with respect to the center of the adhesive, curing proceeds simultaneously at the symmetrical position of the center of the adhesive. The contraction force is symmetric with respect to the center point, and acts in opposite directions to be offset and balanced. As a result, it is possible to further significantly reduce the displacement of the adhesive due to curing shrinkage .

(2)請求項2に係る発明
接着層中央部に最初にエネルギー線を照射しその接着層硬化部の外周近傍から順次硬化させるように照射部を平面走査することで、接着層中央部から外方に向かって硬化が順次進み、硬化収縮による体積不足分がその周囲(平面視における周囲)の未硬化接着剤から補充される。エネルギー線の照射部の走査が平面走査であるから、その走査制御が極めて単純であり、接着層が薄くて平面的な部品接合に特に適している。
(2) The invention according to claim 2 The irradiation layer is scanned from the central portion of the adhesive layer by first irradiating the central portion of the adhesive layer with energy rays and scanning the irradiation portion so as to be sequentially cured from the vicinity of the outer periphery of the adhesive layer cured portion. Curing progresses sequentially, and the volume shortage due to curing shrinkage is replenished from the uncured adhesive around it (periphery in plan view). Since the scanning of the energy beam irradiation part is a planar scanning, the scanning control is very simple, and the adhesive layer is thin and particularly suitable for planar component joining.

(3)請求項3に係る発明
エネルギー線を集光した焦点を接着層内部に最初に合わせて照射し、その接着層硬化部の外周近傍から順次硬化させるように照射部を三次元走査することで、接着層内部から硬化が三次元的に順次進められ、硬化収縮分がその硬化部周囲(空間的な周囲)の未硬化接着剤から補充されるので、接着層が厚い充填接着(図5の接着形態)や肉盛り接着(図6の接着形態)の場合でも、深さ方向の接着剤内の応力発生が緩和され、接着層内残留応力が低減される。
(3) The invention according to claim 3 The irradiation part is three-dimensionally scanned so that the focal point on which the energy beam is condensed is first irradiated inside the adhesive layer and then cured sequentially from the vicinity of the outer periphery of the adhesive layer cured part. Then, the curing proceeds three-dimensionally from the inside of the adhesive layer, and the cure shrinkage is replenished from the uncured adhesive around the cured portion (spatial periphery), so that the adhesive layer is thickly filled (see FIG. 5). In the case of adhesive bonding) and build-up bonding (bonding form in FIG. 6), the stress generation in the adhesive in the depth direction is alleviated and the residual stress in the adhesive layer is reduced.

(4)請求項4に係る発明
エネルギー線を複数の方向から照射し、各エネルギー線の交差部分を照射部とし、該照射部を三次元で走査することで容易にエネルギー密度の高い部分を接着層内部に作ることができる。したがって、接着層内部が部分的、集中的に硬化され、この硬化部分が三次元的に制御されるので、請求項1に係る発明の効果を一層顕著に実現することができる。
(4) The invention according to claim 4 The energy rays are irradiated from a plurality of directions, the crossing portion of each energy ray is set as the irradiation portion, and the irradiation portion is easily three-dimensionally bonded to a portion having a high energy density. Can be made inside the layer. Accordingly, the inside of the adhesive layer is partially and intensively cured, and this cured portion is controlled three-dimensionally, so that the effect of the invention according to claim 1 can be realized more remarkably.

(5)請求項5に係る発明
接着層外周に向かって照射部を走査する際に、走査間隔を開けて間欠照射して未硬化部が接着層外周までつながるように残し、その後未硬化部分にエネルギー線を照射して接着層全体を硬化させることで、接着剤の硬化収縮に遅れが有る場合でも照射部の近くに流動可能な未硬化部分を必ず残しながら順次硬化させることができ、これにより、請求項1乃至請求項3に係る発明の効果を一層顕著に実現することができる。
(5) The invention according to claim 5 When scanning the irradiation part toward the outer periphery of the adhesive layer, intermittent irradiation is performed with a scanning interval left so that the uncured part is connected to the outer periphery of the adhesive layer, and then the uncured part is left. By irradiating the energy beam and curing the entire adhesive layer, even if there is a delay in the curing shrinkage of the adhesive, it can be cured sequentially while always leaving an uncured part that can flow near the irradiated part. The effects of the inventions according to claims 1 to 3 can be realized more remarkably.

(6)請求項6に係る発明
接着層外周に向かって照射部を走査する際に、走査間隔を開けて放射状に走査することで、未硬化部が接着層外周までつながるように残し、その後未硬化部分にエネルギー線を照射して接着層全体を硬化させることにより、接着剤の硬化収縮に反応の遅れが有る場合でも照射部の周囲に未硬化部分を必ず残しながら順次硬化させることができ、これにより、請求項1に係る発明の効果を一層顕著に実現することができる。
(6) The invention according to claim 6 When scanning the irradiated portion toward the outer periphery of the adhesive layer, by scanning radially with a scanning interval, the uncured portion is left so as to be connected to the outer periphery of the adhesive layer, and then unexposed. By irradiating the cured part with energy rays and curing the entire adhesive layer, even if there is a reaction delay in the curing shrinkage of the adhesive, it can be sequentially cured while leaving an uncured part around the irradiated part, Thereby, the effect of the invention according to claim 1 can be realized more remarkably.

(7)請求項7に係る発明
接着層中央部から外周に向かって照射部を走査するとき、間欠照射して未硬化部を分散させ、その後未硬化部分にもエネルギー線を照射して接着層全体を硬化させることにより、接着剤の硬化収縮に反応の遅れが有る場合についても、上記間欠照射部の周囲に未硬化部分を残しながら順次硬化させることができ、これにより、請求項1乃至請求項3に係る発明の効果を一層顕著に実現することができる。
(7) wherein when you scan the irradiation portion toward the outer periphery from the invention the adhesive layer center part according to claim 7, dispersing the uncured portion by intermittently irradiating the adhesive layer and thereafter irradiated with an energy beam in the uncured portion By curing the whole, even when there is a reaction delay in the curing shrinkage of the adhesive, it is possible to sequentially cure while leaving an uncured portion around the intermittent irradiation portion. The effect of the invention according to Item 3 can be realized more remarkably.

削 除( Delete )

8)請求項8に係る発明
接着剤と接着物及び/又被接着物が接する部分以外の接着剤にエネルギー線を最初に照射し、接着剤と接着物及び/又被接着物が接する部分の接着剤を最後に硬化させることで、接着剤と接着物及び/又被接着物が接する部分が最後まで未硬化層として残るので、接着剤の硬化収縮力がこの未硬化層で接着物及び/又被接着物に対して遮断されて接着物と被接着物間に作用しないままで接着層の大部分が硬化することになる。したがって、請求項1、請求項3、又は請求項4に係る発明の効果を一層顕著に実現することができ、硬化収縮による接着物のずれが一層顕著に低減される。
( 8) The invention according to claim 8 The portion where the adhesive and the adhesive and / or the adherend are in contact with each other by first irradiating the adhesive other than the portion where the adhesive and the adhesive and / or the adherend are in contact with each other. When the adhesive is finally cured, the portion where the adhesive and the adhesive and / or the adherend are in contact with each other remains as an uncured layer, so that the curing shrinkage of the adhesive is reduced in the uncured layer. / Also, most of the adhesive layer is cured without being blocked between the adherend and acting between the adherend and the adherend. Therefore, the effect of the invention according to claim 1 , claim 3, or claim 4 can be realized more remarkably, and the deviation of the adhesive due to curing shrinkage is further reduced remarkably.

9)請求項9に係る発明
接着物と被接着物が直接接している場合、接着物と被接着物と接着剤の交線から先にエネルギー線を走査して硬化させ、その後接着層中央部から外周に向かって照射部を走査することにより、照射工程の初期において接着物と被接着物と接着剤の交線部分の少ない硬化量により接着物が仮固定される。このように仮固定された状態で接着層全体についての硬化が順次進行するので、請求項1、請求項3、又は請求項4に係る発明の効果を一層顕著に実現することができ、接着当初の上記位置ずれが一層確実に低減される。
(9) according If invention adhesive material and adherend according to claim 9 is in direct contact, previously cured by scanning the energy beam from the line of intersection between tangent kimono adherend adhesive, then the adhesive layer center by scanning the irradiated portion from the part toward the outer periphery, the adhesive material is temporarily fixed by the small amount of cure of intersection section of contact kimono and adherends with the adhesive in the initial irradiation step. Since the hardening of the entire adhesive layer sequentially proceeds in such a temporarily fixed state, the effect of the invention according to claim 1 , claim 3, or claim 4 can be realized more remarkably. The above-described misalignment is more reliably reduced.

10)請求項10に係る発明
照射部の走査の後に接着層全体にエネルギー線を均一照射して、接着剤を完全硬化させることで、照射部の走査漏れによる未硬化部分の残留がなくなる。したがって、請求項1乃至請求項9に係る発明の効果を一層顕著に実現することができ、未硬化接着剤の接着後の硬化反応の進行に伴う接着物の経時ずれの発生を一層顕著に低減することができる。
( 10) Invention according to claim 10
By uniformly irradiating the entire adhesive layer with energy rays after scanning of the irradiated portion and completely curing the adhesive, there remains no uncured portion due to scanning leakage of the irradiated portion . Therefore, the effects of the inventions according to claims 1 to 9 can be realized more remarkably, and the occurrence of time lag of the bonded product accompanying the progress of the curing reaction after bonding of the uncured adhesive can be further significantly reduced. can do.

削 除( Delete )

削 除( Delete )

削 除( Delete )

削 除( Delete )

削 除( Delete )

削 除( Delete )

削 除( Delete )

削 除( Delete )

例えば、情報記録装置の光ピックアップを構成する部品であるハウジング(材質:アルミ)とサイズ10mm×10mm×10mm程度の光学プリズムを重ね合わせてUV硬化型接着剤で接合する場合、接着剤を2部材の界面に厚さ20〜30μmで塗布し、これにUV(紫外線)光を照射して接着するとき、接着剤の厚さが厳格に均一で、照射も厳格に全面均一であっても、ハウジングと光学プリズムとが接着当初において最悪でも5μm程度の位置ずれ(初期位置ずれ)が見られ、また、その後、最悪でも2〜3μm程度の経時位置ずれが見られる。
UV硬化型接着剤で接着して上記情報記録装置の光ピックアップを製作する場合にこの発明を適用した例等の実施例を説明する。
For example, when a housing (material: aluminum) that is a component constituting an optical pickup of an information recording apparatus and an optical prism having a size of about 10 mm × 10 mm × 10 mm are overlapped and bonded with a UV curable adhesive, two adhesives are used. Even if the thickness of the adhesive is strictly uniform and the irradiation is strictly uniform on the entire surface, it is applied to the housing with a thickness of 20 to 30 μm. At the beginning of bonding, the optical prism and the optical prism have a worst-case misalignment (initial misalignment) of about 5 μm. Thereafter, the worst-case misalignment with time is about 2-3 μm.
An embodiment such as an example in which the present invention is applied when an optical pickup of the information recording apparatus is manufactured by bonding with a UV curable adhesive will be described.

本発明の実施例の接合装置を図1を参照しながら説明する。
実施例の接合装置は、被接着物把持手段12で把持された被接着物(実施例1では上記ハウジング)1と、接着物把持手段13で把持された接着物(実施例1では上記光学プリズム)2と、それの被接着物に対する位置を、接着物位置認識手段9で光学的に認識し、被接着物上の接着目標位置に位置調整する接着物調整手段11と、位置調整前または後に被接着物と接着物の接合面にエネルギー線硬化型接着剤を塗布する塗布手段(図示略)を有している。なお、図1は接着物、被接着物の位置調整、エネルギー線硬化型接着剤の塗布(接着層3の厚さは、上記と同様の20〜30μm)が終わった状態を示している。
この状態で、UV硬化型接着剤に紫外線(UV)を照射して接着剤を硬化させて被接着物1と接着物2を接合する。
A joining apparatus according to an embodiment of the present invention will be described with reference to FIG.
The bonding apparatus according to the embodiment includes an object to be bonded (the housing in the first embodiment) 1 held by the object holding means 12 and an adhesive (the optical prism in the first embodiment) held by the adhesive holding means 13. ) 2, an adhesive adjusting means 11 for optically recognizing the position of the object to be adhered by the adhesive position recognizing means 9 and adjusting the position to an adhesion target position on the adherend, and before or after the position adjustment Application means (not shown) for applying an energy ray curable adhesive to the bonding surface between the adherend and the adhesive is provided. In addition, FIG. 1 has shown the state which the position adjustment of the adhesives and to-be-adhered objects, and application | coating of the energy-beam curable adhesive (the thickness of the contact bonding layer 3 is 20-30 micrometers similar to the above) was finished.
In this state, the UV curable adhesive is irradiated with ultraviolet rays (UV) to cure the adhesive and bond the adherend 1 and the adhesive 2 together.

紫外線照射装置は、紫外線(エネルギー線)を接着層に照射する照射手段6と、照射される紫外線をXY方向(水平二次元方向)に走査する走査手段7を備えており、照射手段6からの紫外線が遮光手段10を経て接着物(光学プリズム)2の一部に照射され、これが接着物(光学プリズム)2を透過して接着層3に照射される。接着層3への上記紫外線の照射位置5は、接着層3の中心部から外側に広がるように走査手段7によって走査される。この実施例1における走査経路4は図2(a)に示すとおりであり、この渦巻き経路上の(1)〜(8)(図2(b))に示すように多数部分で紫外線が照射される(上記(1)〜(8)の各部分は模式的な表示であり、実際には照射範囲は直径0.2〜0.3mmの円形であり、各部分の中心間間隔を0.2〜0.3mmにして走査する)。
走査中における照射は通常の連続照射であるが、コンピュータで遮光手段10をON・OFF制御して走査線上に未硬化層を残しながら走査してもよい。
なお、上記遮光手段10は電磁駆動によるシャッターであるが、回転式シャッターや液晶シャッター等の遮光手段を用いることができる。制御が容易、遮光時間の変更が容易等の利点があることから、実施例1は電磁駆動によるシャッターを用いている。
The ultraviolet irradiation device includes irradiation means 6 that irradiates the adhesive layer with ultraviolet rays (energy rays) and scanning means 7 that scans the irradiated ultraviolet rays in the XY directions (horizontal two-dimensional directions). Ultraviolet rays are applied to a part of the adhesive (optical prism) 2 through the light shielding means 10, and this is transmitted through the adhesive (optical prism) 2 and applied to the adhesive layer 3. Irradiation position location 5 of the ultraviolet to the adhesive layer 3 is scanned by the scanning unit 7 so as to spread outward from the center portion of the adhesive layer 3. Scanning route 4 in the first embodiment is as shown in FIG. 2 (a), the spiral path on the (1) to (8) of ultraviolet numerous parts as shown in (FIG. 2 (b)) irradiation (Each part of the above (1) to (8) is a schematic display. Actually, the irradiation range is a circle having a diameter of 0.2 to 0.3 mm. 2 to 0.3 mm and scan).
Irradiation during scanning is normal continuous irradiation, but scanning may be performed while leaving the uncured layer on the scanning line by controlling the light shielding means 10 on and off with a computer.
The light shielding means 10 is an electromagnetically driven shutter, but a light shielding means such as a rotary shutter or a liquid crystal shutter can be used. Since there are advantages such as easy control and easy change of the light shielding time, the first embodiment uses an electromagnetically driven shutter.

各照射位置では、紫外線を照射された部分のみで硬化反応が起こり、その周囲の接着剤は未硬化の状態で流動性が保たれているので、図2(b)に模式的に示すように、硬化収縮をしている接着剤へ向かってその周囲の未硬化部分から、未硬化接着剤が引き込まれ、これによって硬化収縮分が補充される。このような補充作用は全ての各照射部分においてなされ、照射部は最終的に接着層の外周部に達し、この外周部における硬化では、収縮分を補充する未硬化部分は隣接していないが、収縮に対する抵抗はないので、内部応力は発生しない。したがって、接着層全域において、硬化収縮に伴って強い応力が生じることはなく、また強い内部応力が残留することもない。   At each irradiation position, the curing reaction occurs only in the portion irradiated with ultraviolet rays, and the surrounding adhesive is kept in a fluid state in an uncured state, so as schematically shown in FIG. Then, the uncured adhesive is drawn from the surrounding uncured portion toward the adhesive that is undergoing cure shrinkage, thereby replenishing the cure shrinkage. Such a replenishment effect is made in all each irradiation part, the irradiation part finally reaches the outer peripheral part of the adhesive layer, and in the curing in this outer peripheral part, the uncured part that supplements the shrinkage is not adjacent, There is no resistance to shrinkage, so no internal stress is generated. Therefore, no strong stress is generated along with the curing shrinkage in the entire adhesive layer, and no strong internal stress remains.

上記の平面走査する紫外線走査手段7は、遮光手段10が装着されている照射ヘッド71をXYステージ72でXY方向に移動させて照射位置5をXY方向に走査するものである(図3)。他にモータmで駆動されるガルバノミラー7a,7bで光軸をXY方向に偏向させて走査するもの(図4)を用いることもできる。   The ultraviolet scanning means 7 for performing the above-described plane scanning is to scan the irradiation position 5 in the XY direction by moving the irradiation head 71 on which the light shielding means 10 is mounted in the XY direction by the XY stage 72 (FIG. 3). In addition, it is also possible to use a galvanometer mirror 7a, 7b driven by a motor m that scans with the optical axis deflected in the XY directions (FIG. 4).

接着層が厚い場合についての実施例2を説明する(図5)。
照射ヘッド71aに集光レンズ、集光ミラー等で構成した集光手段を設け、これをXYステージ72に支持させている。また、照射ヘッド71aはZ軸(縦軸)方向に移動するものであり、接着層に対する焦点位置(照射位置)5を上下方向に走査させることができる。これにより、XYZ方向に走査させることができる。
最初に紫外線の焦点位置5を接着層内部位置に合わせて当該内部位置を照射し、接着層硬化部の外周近傍から順次硬化させるように照射部を三次元走査する。これにより、硬化部の外周近傍に常に未硬化部が存在する状態を保ちながら、順次硬化させる。
三次元走査する方法としては、集光手段を備えた照射ヘッド71aで紫外線を接着層に照射し、焦点をXYZαβステージでXYZαβ方向(4aは主走査方向、4bは副走査方向)に走査するようにすることもできる(図5)。これによれば、XYZ方向での走査に加えてαβ方向にも走査する(αβ方向への光軸の回転)ことによって、XYZ方向への走査では当てられない部分(例えば隅)がある場合でも、この部分にも確実に照射光を当てることができる。
Example 2 in the case where the adhesive layer is thick will be described (FIG. 5).
The irradiation head 71 a is provided with condensing means composed of a condensing lens, a condensing mirror, etc., and is supported by the XY stage 72. The irradiation head 71a moves in the Z-axis (vertical axis) direction, and can scan the focal position (irradiation position) 5 with respect to the adhesive layer in the vertical direction. Thereby, it is possible to scan in the XYZ directions.
First, the focal position 5 of the ultraviolet ray is aligned with the internal position of the adhesive layer to irradiate the internal position, and the irradiated portion is three-dimensionally scanned so as to be sequentially cured from the vicinity of the outer periphery of the adhesive layer cured portion. Thereby, it is made to harden | cure sequentially, maintaining the state in which an unhardened part always exists in the outer periphery vicinity of a hardening part.
As a three-dimensional scanning method, ultraviolet rays are irradiated onto the adhesive layer by an irradiation head 71a having a condensing means, and the focal point is scanned in the XYZαβ direction (4a is the main scanning direction, 4b is the sub-scanning direction) by the XYZαβ stage. (Fig. 5). According to this, in addition to scanning in the XYZ directions, scanning is also performed in the αβ direction (rotation of the optical axis in the αβ direction), so that even if there is a portion (for example, a corner) that cannot be applied in the scanning in the XYZ direction. The irradiated light can be reliably applied to this part.

次に、肉盛り接着を行う実施例3を説明する(図6)。
肉盛り接着(角部に盛られた接着剤による接着)など、不均一な接着層による場合は、例えば、照射手段6−1〜6−8によってX方向とZ方向との複数の方向から紫外線を照射してその照射部を重ね合わせ、照射の重なり部を三次元で走査する。すなわち、縦方向の照射手段6−2,4,6,8によって接着剤3aを局部的に照射しつつ走査手段によって水平面内においてXY方向に走査し、横方向の照射手段6−1,3,5,7によって微小厚さの水平平面光で接着剤3aの全幅に照射しつつ走査手段によってこれをZ方向(垂直方向)に走査することで、両照射光が交差する部分が、接着剤内部で三次元的に走査されるようにしている。
Next, Example 3 in which overlay bonding is performed will be described (FIG. 6).
In the case of using a non-uniform adhesive layer such as overlay adhesion (adhesion with an adhesive deposited at the corner), for example, ultraviolet rays are emitted from a plurality of directions of X and Z directions by irradiation means 6-1 to 6-8. Are irradiated, the irradiated portions are overlapped, and the irradiated overlapping portion is scanned in three dimensions. That is, the longitudinal direction of the irradiation means 6-2,4,6,8 scanned in XY direction in the horizontal plane by locally irradiating while scanning means an adhesive 3a, lateral illumination means 6-1,3, By irradiating the entire width of the adhesive 3a with a very thin horizontal plane light 5 and 7 while scanning it in the Z direction (vertical direction) by the scanning means, the portion where the two irradiation lights intersect is inside the adhesive. It is designed to be scanned three-dimensionally.

次に、実施例4について説明する(図7)。
ところで、紫外線が照射されてからの粘度上昇に対して硬化収縮が発生するまでの遅れが大きい接着剤の場合、照射部の周囲にエネルギー線が照射されるまでに充分硬化収縮が発生しておらず、周りの接着層の流動性が低下してから硬化収縮が発生し内部応力が蓄積してしまうという問題がある。このような場合には、紫外線の照射をON・OFFする遮光手段10を設け(図1参照)、接着層外周に向かって照射部を走査する際に、走査間隔を開けて間欠照射して未硬化部が接着層外周までつながるように残す(図7(a))ことによって、接着剤の反応に遅れがあり硬化収縮の発生が遅い場合でも走査速度を遅くせずに、エネルギー線照射部の近くに未硬化部分4dを介在させることができる。そして、未硬化部分が接着層外周までつながるように配置することで、未硬化部分4dが隔離されず、硬化収縮分への未硬化部分からの補充がスムーズに行われる。走査間隔を開けて放射状に走査することで、未硬化部分4dが接着層外周までつながるように残すことにより同じ効果が得られる(図7(b))。また、遮光手段を高速でON、OFFさせて間欠照射して未硬化部分4dを分散させる(図7(c))ようにすることで、同様の結果が得られる。
Next, Example 4 will be described (FIG. 7).
By the way, in the case of an adhesive having a large delay until the curing shrinkage occurs with respect to the increase in viscosity after irradiation with ultraviolet rays, the curing shrinkage sufficiently occurs before the irradiation with the energy rays around the irradiated part. However, after the fluidity of the surrounding adhesive layer is lowered, there is a problem that curing shrinkage occurs and internal stress accumulates. In such a case, the light shielding means 10 for turning on / off the irradiation of ultraviolet rays is provided (see FIG. 1), and when the irradiation portion is scanned toward the outer periphery of the adhesive layer, the irradiation is not performed by intermittent irradiation with a scanning interval. By leaving the hardened part connected to the outer periphery of the adhesive layer (FIG. 7 (a)), even if there is a delay in the reaction of the adhesive and the occurrence of the hardening shrinkage is slow, the scanning speed is not slowed down. An uncured portion 4d can be interposed nearby. Then, the uncured portions are arranged to be connected to the adhesive layer periphery, without the uncured portions 4d are isolated, can be smoothly replenished from the uncured portions of the curable shrinkage. Open the scanning interval by scanning radially, the same effect by uncured portions min 4d leaves to be connected to the adhesive layer periphery is obtained (FIG. 7 (b)). Also, ON the light blocking means at high speed, thereby OFF dispersing the uncured part minute 4d intermittently irradiated by a (FIG. 7 (c)) as the same results are obtained.

次いで、接着時の位置ずれ(初期ずれ)防止に特に有効な実施例を説明する(図8)。
複数の照射部を走査して接着層を硬化させる場合、接着物中心に対して対称となる位置を同時に照射走査する。このようにすると、接着物に矢印方向の硬化収縮力が働いても、その硬化収縮力はその方向が反対方向で、互いに相殺されてバランスするので、硬化収縮による接着物の初期ずれが低減される。
なお、接着物中心に対して対称で、同時に照射される照射部分の対は、一つでなければならない理由はなく、2組、3組を同時に照射するようにすることもできる。
Next, an embodiment that is particularly effective for preventing misalignment (initial misalignment) during bonding will be described (FIG. 8).
In the case where the adhesive layer is cured by scanning a plurality of irradiated portions, a position that is symmetrical with respect to the center of the adhesive is simultaneously irradiated and scanned. In this way, even if the curing shrinkage force in the direction of the arrow acts on the adhesive, the curing shrinkage force is counterbalanced and balanced against each other, so the initial deviation of the adhesive due to cure shrinkage is reduced. The
Note that there is no reason that the pair of irradiated portions that are symmetrical with respect to the center of the adhesive and are irradiated at the same time should be one, and two sets and three sets can be irradiated at the same time.

更に、接着剤の充填、肉盛りによる接着物の初期ずれを防止する接着法の例を図9−1、図9−2に示している。
図9−1の例は被接着物1と一辺が20mm×厚さ5mm程度の四角な接着物2との間の幅2〜3mmの隙間に接着剤3aを厚さ3〜5mmで充填する充填接着である。接着剤3aと接着物2及び/又被接着物1が接する部分以外の接着剤3aにエネルギー線を最初に走査して照射し、これによって接着剤3aと接着物2及び/又被接着物1が接する部分の接着剤を最後に硬化させる(硬化部分4c参照)ことで、接着剤の硬化収縮による収縮力が、接着剤硬化の最終段階まで未硬化部分(流動層)4dによって吸収されて、接着物2あるいは被接着物1に作用することが回避されるので、初期ずれが低減される。
また、図9−2の例は、被接着物1と一辺が20mm×厚さ5mmの四角な接着物2との間の角部に高さ3〜5mmに肉盛りされた接着剤3aによる肉盛り接着である。このように、接着物2と被接着物1が直接接している接着形態では、接着物2、被接着物1と接着剤3aの交線から先に紫外線線を走査し、その部分を硬化させる(硬化部分4c参照)ことで、この交線における当初接着で接着物が被接着物に仮止めされるから、この仮止め固定作用により初期ずれが一層低減される。
Furthermore, examples of the bonding method for preventing the initial displacement of the bonded material due to filling of the adhesive and building up are shown in FIGS. 9-1 and 9-2.
In the example of FIG. 9A, the adhesive 3a is filled with a thickness of 3 to 5 mm in a gap of 2 to 3 mm in width between the adherend 1 and a square adhesive 2 having a side of 20 mm and a thickness of about 5 mm. Adhesion. An energy beam is first scanned and irradiated to the adhesive 3a other than the part where the adhesive 3a and the adhesive 2 and / or the adherend 1 are in contact with each other, whereby the adhesive 3a and the adhesive 2 and / or the adherend 1 are irradiated. By finally curing the adhesive of the part in contact with the adhesive (see the cured part 4c), the shrinkage force due to the curing shrinkage of the adhesive is absorbed by the uncured part (fluidized layer) 4d until the final stage of the adhesive curing, Since it is avoided to act on the adhesive 2 or the adherend 1, the initial deviation is reduced.
Moreover, the example of FIGS. 9-2 is the meat | flesh by the adhesive agent 3a piled up in height 3-5 mm in the corner | angular part between the to-be-adhered object 1 and the square adhesive material 2 whose side is 20 mm x thickness 5 mm. It is prime bonding. Thus, in the bonding form in which the adhesive 2 and the adherend 1 are in direct contact, the ultraviolet ray is scanned first from the intersection line of the adhesive 2 and the adherend 1 and the adhesive 3a, and the portion is cured. (Refer to the hardened portion 4c) By this initial bonding at this intersection line, the bonded product is temporarily fixed to the bonded object, so that the initial displacement is further reduced by this temporary fixing fixing action.

また、例えば、CCDカメラで撮影した画像から接合装置に接着層位置、被接着物位置、接着物位置を認識する認識手段(図1における接着剤位置、接着物位置認識手段9)を備え、これによって、接着物位置とともに接着剤のエッジを検出して塗布形状を自動的に認識することで、接着剤の塗布状態(塗布位置、塗布形状)がばらつく場合でも、走査開始位置、走査範囲、走査パターンを最適な状態に決定し、最適走査パターンで走査することができる。
例えば、図1の接着形態では、接着剤のエッジを検出し、その囲まれる領域の重心位置を求め、その重心位置に紫外線の照射、予め決めておいた走査ピッチに基づき順次走査を行い、走査が接着剤のエッジで囲まれた領域を完全に越えたときに照射及び走査を終了するようにすればよい。
Further, for example, the bonding apparatus is provided with recognition means (adhesive position, adhesive position recognition means 9 in FIG. 1) for recognizing the position of the adhesive layer, the position of the adherend, and the position of the adhesive from the image taken by the CCD camera. By detecting the edge of the adhesive along with the position of the adhesive and automatically recognizing the application shape, even if the application state (application position, application shape) of the adhesive varies, the scan start position, the scan range, and the scan It is possible to determine the optimum pattern and scan with the optimum scanning pattern.
For example, in the bonding form shown in FIG. 1, the edge of the adhesive is detected, the center of gravity of the surrounded area is obtained, the center of gravity is irradiated with ultraviolet rays, and scanning is sequentially performed based on a predetermined scanning pitch. Irradiation and scanning may be terminated when the region completely exceeds the region surrounded by the edge of the adhesive.

さらに、紫外線照射部を接着層全体に走査して後、接着層全体にエネルギー線を均一照射する照射手段、例えば照射光の拡散手段によって、紫外線の接着層全面に均一照射することで、走査による照射もれのために未硬化部分が残存していても、最終的に全ての接着剤を硬化させることができるので、未硬化接着剤の残存による接着後の接着硬化反応による経時ずれの発生を防止することができる。
なお、この均一照射は、走査による一次的照射がなされた後残された未硬化部分を硬化させるために行う二次的照射であり、この二次的照射により硬化される接着層の体積は一次的照射による硬化体積に比べて少ないので、これに伴う内部応力、残留応力は小さく、その位置ずれ、経時ずれへの影響は微小である。
Further, after scanning the entire surface of the adhesive layer with the ultraviolet irradiation portion, the irradiation layer uniformly irradiates the entire adhesive layer with energy rays, for example, the irradiation light diffusing means, and uniformly irradiates the entire surface of the adhesive layer. Even if uncured parts remain due to leakage, all adhesives can be finally cured, so the occurrence of time lag due to the adhesive curing reaction after bonding due to the remaining uncured adhesives. Can be prevented.
This uniform irradiation is a secondary irradiation performed to cure the uncured portion left after the primary irradiation by scanning, and the volume of the adhesive layer cured by this secondary irradiation is the primary Therefore, the internal stress and residual stress are small, and the influence on the positional deviation and temporal deviation is very small.

は、実施例の全体図である。These are the whole figures of an Example. (a)は、実施例1による照射部の走査経路の一例を模式的に示す斜視図であり、(b)は、接着層内の接着剤の動きを模式的に示す平面図である。(A) is a perspective view which shows typically an example of the scanning path | route of the irradiation part by Example 1, (b) is a top view which shows typically a motion of the adhesive agent in an adhesive layer. は、実施例1における走査手段の一例を示す斜視図である。These are perspective views which show an example of the scanning means in Example 1. FIG. は、実施例1における走査手段の他の一例を示す斜視図である。These are the perspective views which show another example of the scanning means in Example 1. FIG. (a)は、実施例2の主要部を示す斜視図であり、(b)は実施例2における副走査方向を示す一部拡大断面図である。(A) is a perspective view which shows the principal part of Example 2, (b) is a partial expanded sectional view which shows the subscanning direction in Example 2. FIG. (a)は、実施例3の主要部を示す斜視図であり、(b)は実施例3における照射位置を示す一部拡大断面図である。(A) is a perspective view which shows the principal part of Example 3, (b) is a partial expanded sectional view which shows the irradiation position in Example 3. FIG. (a)は、走査間隔を開けて間欠照射する照射パターンの1例を模式的に示す平面図であり、(b)は他の照射パターンの例を示す模式図であり、(c)はさらに他の照射パターンの例を示す模式図である。(A) is a top view which shows typically an example of the irradiation pattern which opens a scanning space | interval and intermittently irradiates, (b) is a schematic diagram which shows the example of another irradiation pattern, (c) is further It is a schematic diagram which shows the example of another irradiation pattern. (a)は、硬化収縮力を相殺させて均衡させるものの平面接着における照射パターンの一例を示す模式図であり、(b)は肉盛り接着における照射パターンの一例を示す模式図である。(A) is a schematic diagram which shows an example of the irradiation pattern in plane adhesion | attachment of what offsets and shrinks hardening shrinkage force, (b) is a schematic diagram which shows an example of the irradiation pattern in build-up adhesion | attachment. は、充填接着についての実施例6を模式的に示す断面図である。These are sectional drawings showing typically Example 6 about filling adhesion. は、肉盛り接着についての実施例6を模式的に示す断面図である。 These are sectional drawings showing typically Example 6 about build-up adhesion.

1:被接着物
2:接着物
3:接着層
3a:接着剤
4:走査パターン
4a:主走査方向
4b:副走査方向
4c:硬化部分
4d:未硬化部分
5:紫外線(エネルギー線)照射位置
6:紫外線照射手段
7:紫外線走査手段
9:接着剤位置,接着物位置認識手段
10:紫外線遮光手段
11:接着物調整手段
12:被接着物把持手段
13:接着物把持手段
71,71a:照射ヘッド
72:XYステージ
1: Adhered object 2: Adhered object 3: Adhesive layer 3a: Adhesive 4: Scanning pattern 4a: Main scanning direction 4b: Sub-scanning direction 4c: Cured portion 4d: Uncured portion 5: UV (energy ray) irradiation position 6 : Ultraviolet irradiation means 7: Ultraviolet scanning means 9: Adhesive position, adhesive position recognition means 10: Ultraviolet light shielding means 11: Adhesive adjusting means 12: Adhered object holding means 13: Adhesive holding means 71, 71a: Irradiation head 72: XY stage

Claims (10)

エネルギー線を接着層の一部に照射し、当該照射部を走査して接着層全体を順次硬化させる部品接合方法であって
上記接着層への照射部を複数の照射部として、接着物中心に対して対称となる位置を同時に照射し走査することを特徴とする部品接合方法。
A part joining method in which energy rays are irradiated onto a part of an adhesive layer, the irradiated portion is scanned, and the entire adhesive layer is sequentially cured,
A component joining method comprising: irradiating and scanning a position that is symmetrical with respect to the center of an adhesive, using a plurality of irradiated portions on the adhesive layer as a plurality of irradiated portions .
請求項1の部品接合方法において、接着層中央部に最初にエネルギー線を照射し、その接着層硬化部の外周近傍から順次硬化するように照射部を平面走査することを特徴とする部品接合方法。   2. The component bonding method according to claim 1, wherein the central portion of the adhesive layer is first irradiated with energy rays, and the irradiated portion is planarly scanned so as to be sequentially cured from the vicinity of the outer periphery of the adhesive layer cured portion. . 請求項1の部品接合方法において、エネルギー線を集光してその焦点を接着層内部に最初に合わせて照射し、その接着層硬化部の外周近傍から順次硬化するように照射部を三次元走査することで接着層全体を硬化させることを特徴とする部品接合方法。   3. The component joining method according to claim 1, wherein the energy ray is condensed and focused on the inside of the adhesive layer for irradiation first, and the irradiation part is three-dimensionally scanned so as to be sequentially cured from the vicinity of the outer periphery of the adhesive layer hardening part. A part joining method characterized by curing the entire adhesive layer. 請求項1の部品接合方法において、エネルギー線を複数の方向から照射して、各エネルギー線の交差部分を照射部とし、該照射部を三次元で走査することで接着層全体を硬化させることを特徴とする部品接合方法。 The component bonding method according to claim 1, wherein energy rays are irradiated from a plurality of directions, an intersection portion of each energy ray is set as an irradiation portion, and the entire adhesive layer is cured by scanning the irradiation portion in three dimensions. Part joining method characterized. 請求項1乃至請求項3のいずれか一項の部品接合方法において、接着層外周に向かって照射部を走査するとき、走査間隔を開けて間欠照射して未硬化部が接着層外周までつながるように残し、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることを特徴とする部品接合方法。 4. The component joining method according to claim 1 , wherein when the irradiated portion is scanned toward the outer periphery of the adhesive layer, the uncured portion is connected to the outer periphery of the adhesive layer by intermittently irradiating with a scanning interval. And then curing the entire adhesive layer by irradiating the uncured portion with energy rays. 請求項1の部品接合方法において、接着層外周に向かって照射部を走査するとき、走査間隔を開けて放射状に走査することで、未硬化部が接着層外周までつながるように残し、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることを特徴とする部品接合方法。 In the component bonding method according to claim 1, when the irradiated portion is scanned toward the outer periphery of the adhesive layer, the uncured portion is left so as to be connected to the outer periphery of the adhesive layer by scanning radially with a scanning interval. A method for joining parts, comprising irradiating the cured portion with energy rays to cure the entire adhesive layer. 請求項1乃至請求項3のいずれか一項の部品接合方法において、接着層中央部から外周に向かって照射部を走査するとき、間欠照射して未硬化部を分散させ、その後、未硬化部分にエネルギー線を照射して接着層全体を硬化させることを特徴とする部品接合方法。 In component bonding method of any one of claims 1 to 3, toward the outer periphery from the adhesive layer center part when it scans the irradiation unit, by dispersing an uncured portion intermittently irradiated, then uncured portions A method for joining parts, wherein the entire adhesive layer is cured by irradiating with energy rays. 請求項1、請求項3、又は請求項4の部品接合方法において、接着剤と接着物及び/又被接着物が接する部分以外の接着剤にエネルギー線を最初に照射し、接着剤と接着物及び/又被接着物が接する部分の接着剤を最後に硬化させることを特徴とする部品接合方法。 5. The component joining method according to claim 1 , claim 3, or claim 4 , wherein an energy ray is first irradiated to an adhesive other than a part where the adhesive and the adhesive and / or the adherend are in contact, and the adhesive and the adhesive are bonded. And / or a method of joining parts, wherein the adhesive at the portion where the adherend is in contact is finally cured. 請求項1、請求項3、又は請求項4の部品接合方法において、接着物と被接着物が直接接している場合、接着物と被接着物と接着剤の交線から先にエネルギー線を照射して硬化させ、その後、接着層中央部から外周に向かって照射部を走査することを特徴とする部品接合方法。 Claim 1, irradiation according to claim 3, or component bonding method according to claim 4, if the adhesive material and the adherend is in direct contact, the energy beam first from intersection line of contact kimono and adherends with the adhesive And then curing, and then scanning the irradiated portion from the central portion of the adhesive layer toward the outer periphery. 請求項1乃至請求項9のいずれか一項の部品接合方法において、照射部の走査の後に接着層全体にエネルギー線を均一照射して、接着剤を完全硬化させることを特徴とする部品接合方法。
The component bonding method according to any one of claims 1 to 9 , wherein the adhesive is completely cured by uniformly irradiating the entire adhesive layer with energy rays after scanning of the irradiation portion. .
JP2004115446A 2004-04-09 2004-04-09 Part joining method Expired - Fee Related JP4822386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115446A JP4822386B2 (en) 2004-04-09 2004-04-09 Part joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115446A JP4822386B2 (en) 2004-04-09 2004-04-09 Part joining method

Publications (2)

Publication Number Publication Date
JP2005298638A JP2005298638A (en) 2005-10-27
JP4822386B2 true JP4822386B2 (en) 2011-11-24

Family

ID=35330576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115446A Expired - Fee Related JP4822386B2 (en) 2004-04-09 2004-04-09 Part joining method

Country Status (1)

Country Link
JP (1) JP4822386B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245206B2 (en) * 2006-04-13 2013-07-24 富士ゼロックス株式会社 Structure manufacturing method and structure, and droplet discharge device
JP5125247B2 (en) * 2007-06-20 2013-01-23 マツダ株式会社 Workpiece joining method
JP5509529B2 (en) * 2008-03-28 2014-06-04 マツダ株式会社 Joined assembly manufacturing method and joined assembly manufacturing apparatus
JP5320866B2 (en) * 2008-07-04 2013-10-23 マツダ株式会社 Joined assembly manufacturing method and joined assembly manufacturing apparatus
JP5320867B2 (en) * 2008-07-04 2013-10-23 マツダ株式会社 Joined assembly manufacturing method and joined assembly manufacturing apparatus
CN102785453B (en) * 2011-05-18 2015-03-11 宸鸿科技(厦门)有限公司 Transparent multilayer board pasting device and method thereof for preventing liquid glue from overflowing
JP6475948B2 (en) * 2014-10-10 2019-02-27 デンカ株式会社 JOINT BODY AND MANUFACTURING METHOD THEREOF
JP7298348B2 (en) 2019-07-05 2023-06-27 オムロン株式会社 Bonded product manufacturing method and bonded product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103906A (en) * 1984-10-27 1986-05-22 Kamemizu Kagaku Kogyo Kk Curing of conductive resin by laser beam irradiation
JP2908259B2 (en) * 1994-12-09 1999-06-21 ウシオ電機株式会社 Method and apparatus for bonding liquid crystal panels
JPH08210911A (en) * 1995-02-02 1996-08-20 Canon Inc Measuring method for ultraviolet intensity distribution and its device, fitting method for optical component, and prism
JPH0996822A (en) * 1995-09-29 1997-04-08 Toshiba Corp Substrate joining device
JPH11260517A (en) * 1998-03-10 1999-09-24 Hitachi Chem Co Ltd Method for connecting fine electrode and electrode connecting adhesive therefor and fine electrode connecting structure using the adhesive
JP4265039B2 (en) * 1998-08-04 2009-05-20 Jsr株式会社 Photocurable composition and cured film
JP2004004349A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Optical packaging substrate, optical device and method for manufacturing optical device

Also Published As

Publication number Publication date
JP2005298638A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP6932676B2 (en) Transfer method, manufacturing method of image display device using this, and transfer device
JP4310410B2 (en) Method for integrating multiple optical components at wafer level
JP4822386B2 (en) Part joining method
JP2014120604A (en) Imprint device, method of manufacturing device and mold for use in imprint device
JPH0857967A (en) Three-dimensional shaping method
JP2009025345A (en) Method for manufacturing liquid crystal component
JP2007219337A (en) Method of adhesion and fixing of optical component and laser light source apparatus
JP2004115545A (en) Method for position control-type bonding and joining and apparatus therefor
JP4307897B2 (en) Joining method, joining apparatus, and component joining apparatus using the joining apparatus
JPS59121992A (en) Method and device for arranging wire on light curable adhesive layer
JP7013274B2 (en) Manufacturing method of liquid discharge head
JP2010243566A (en) Adhesion fixing method and method of fixing optical element
JP4593100B2 (en) Article having bonding structure and bonding method thereof
JP4554646B2 (en) Resin film forming method and resin film forming apparatus
JP2006224193A (en) Electronic device and manufacturing method of electronic device
JP6650396B2 (en) Optical device manufacturing method and optical device
JP4278141B2 (en) Bonding method and apparatus
JP4546719B2 (en) Position control type adhesive bonding method and apparatus
JP2004009528A (en) Method for joining and assembling optical write head, and optical write head
JP5486705B1 (en) Material bonding equipment
WO2020240968A1 (en) Method and device for manufacturing camera module, and method for manufacturing optical module
JP6829219B2 (en) Laminating method and laminating device
JP2006062270A (en) Joint structure, jointing method and jointing apparatus
JP2007109302A (en) Optical pickup and its manufacturing method
JP2006160961A (en) Method for joining parts, parts-joined configuration, and apparatus for joining parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees