JP2006159269A - Roll for scale breaker, its production method, and quenching device - Google Patents
Roll for scale breaker, its production method, and quenching device Download PDFInfo
- Publication number
- JP2006159269A JP2006159269A JP2004357164A JP2004357164A JP2006159269A JP 2006159269 A JP2006159269 A JP 2006159269A JP 2004357164 A JP2004357164 A JP 2004357164A JP 2004357164 A JP2004357164 A JP 2004357164A JP 2006159269 A JP2006159269 A JP 2006159269A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- hardness
- mass
- wear
- quenching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
この発明は、熱延鋼板のスケールを除去する酸洗ライン等の化学的デスケールラインに前置され、鋼板の繰返し屈曲によりスケールに亀裂を生じさせることでデスケール能率を高めるためのスケールブレーカーにワークロールとして配設されるスケールブレーカー用ロールに関し、より詳しくは、スポーリングや疲労損壊の感受性の増大を伴わずに耐摩耗性を強化する技術に関する。 The present invention provides a work breaker for a scale breaker for increasing the descaling efficiency by causing cracks in the scale by repeatedly bending the steel plate in front of a chemical descaling line such as a pickling line for removing the scale of the hot rolled steel plate. More particularly, the present invention relates to a technique for enhancing wear resistance without increasing the sensitivity to spalling and fatigue damage.
熱間圧延によって製造されたいわゆるホットコイルにはスケールと呼ばれる硬い酸化皮膜が形成されている。このスケールは、更に板厚を薄くするための冷間圧延などの後続工程に支障となるため、予め酸洗工程で除去される。
酸洗工程では、酸液による化学的な除去に先立ち、鋼板を機械的に繰返し屈曲させ、スケールにクラックを生じさせて除去効果を高めるためのスケールブレーキング処理が施されている。上記処理を行うための設備としては、バックアップロール付きのピンチローラ群を通板方向に上下千鳥に連ねたテンションレベラータイプのものが一般的であり、この設備にワークロールとして組み込まれるロールが本明細書で云うスケールブレーカー用ロールである。
A so-called hot coil manufactured by hot rolling has a hard oxide film called a scale. Since this scale hinders subsequent processes such as cold rolling for further reducing the plate thickness, it is removed in advance in the pickling process.
In the pickling process, prior to chemical removal with an acid solution, a steel sheet is mechanically repeatedly bent, and a scale breaking process is performed to increase the removal effect by causing cracks in the scale. As the equipment for performing the above-mentioned processing, a pinch roller group with a backup roll is generally a tension leveler type that is connected in a staggered manner in the plate direction, and a roll incorporated as a work roll in this equipment is described in this specification. It is a roll for scale breakers.
スケールブレーカー用ロールには、高接触圧・高速下での転動接触やスケール粉の噛み込みに耐える高度の耐摩耗性に加えて耐スポーリング性が要求される(尚、スポーリングは表層部の剥れ落ち)。また、デスケール水がかかる使用環境に耐える一定の耐食性も要求される。ついては、1〜3%Cr鋳鋼ロールや5〜9%Cr鋼肉盛ロールが以前から使用されていたが、耐摩耗性,耐スポーリング性のいずれにおいても不足していた。
そこで、新たなスケールブレーカー用ロールとして、溶製冷間工具鋼系の熱処理硬化ロール(例えば特許文献1参照)や、溶製高速度工具鋼系の熱処理硬化ロール(例えば特許文献2参照)、粉末冶金製高速度工具鋼系の熱処理硬化ロール(例えば特許文献3参照)が提供され、耐スポーリング性を確保しつつ耐摩耗性の大幅向上がもたらされている。
The roll for scale breaker is required to have high spalling resistance in addition to high wear resistance that can withstand rolling contact under high contact pressure and high speed and biting of scale powder. ). In addition, a certain level of corrosion resistance is required to withstand the usage environment in which descaling water is applied. As for the 1 to 3% Cr cast steel roll and the 5 to 9% Cr steel build-up roll, they have been used for a long time. However, both the wear resistance and the spalling resistance were insufficient.
Therefore, as a new roll for a scale breaker, a heat treatment hardening roll of a molten cold tool steel system (for example, see Patent Document 1), a heat treatment hardening roll of a molten high speed tool steel system (for example, see Patent Document 2), powder metallurgy. A high-speed tool steel-based heat-treatment hardening roll (see, for example, Patent Document 3) is provided, and the wear resistance is greatly improved while ensuring the spalling resistance.
因みに、上記のロールは、いずれも、Cr(クロム),Mo(モリブデン),V(バナジウム),W(タングステン)といった硬質炭化物形成元素を主成分として含有する高炭素高合金鋼材に熱処理(焼入れや焼戻し)を施して、表面から深さ5〜10mmまでに亘る表層部(すなわち表面から少なくとも深さ5mmまでに亘る表層部)の硬さを高位に確保したものであり、上記表層部の硬さが、溶製冷間工具鋼系の熱処理硬化ロール(特許文献1)及び溶製高速度工具鋼系の熱処理硬化ロール(特許文献2)ではHs85〜90(Hv750〜800)となっていて、いわばHv750超級であり、粉末冶金製高速度工具鋼系の熱処理硬化ロール(特許文献3)ではHs90〜95強(Hv800強〜950弱)となっていて、いわばHv800超級である。 Incidentally, each of the above rolls is subjected to heat treatment (quenching and quenching) on a high carbon high alloy steel material containing hard carbide forming elements such as Cr (chromium), Mo (molybdenum), V (vanadium), and W (tungsten) as main components. Tempering), and the hardness of the surface layer portion extending from the surface to a depth of 5 to 10 mm (that is, the surface layer portion extending from the surface to a depth of at least 5 mm) is secured at a high level. However, it is Hs85-90 (Hv750-800) in the heat treatment hardening roll (Patent Document 1) of the molten cold tool steel system and the heat treatment hardening roll (Patent Document 2) of the molten high speed tool steel system, so to speak, Hv750. It is super-class, and it is Hs 90-95 (Hv 800 strong-950 weak) in the heat-treatment hardening roll (Patent Document 3) made of powder metallurgy high-speed tool steel. 00 more than class.
この他、スケールブレーカー用ロールと似た使われ方のロールとして、冷延鋼板を繰返し屈曲変形させて平坦度を改善するレベラーラインのワークロールがある(例えば特許文献4参照)。このレベラー用ワークロールは、0.3〜1mmといった薄肉の鋼板を、軽度の塑性変形を生じる歪率で屈曲変形させる必要性から直径20〜60mmといった超細径であり、長さはスケールブレーカー用ロールと同等である。よって、スケールブレーカー用ロールよりも更に撓み変形が生じやすく、耐疲労折損性が特に重要となる。ところが、このレベラー用ワークロールに焼入れを施すと超細径ゆえに芯部も硬化状態(Hv500以上)となってしまう。ついては、上記特許文献の発明においては、ロール表層部に圧縮残留応力を具備させることで耐疲労折損性の確保が図られている。すなわち、スケールブレーカー用ロールと似てはいるものの、深さ方向の硬さ推移や焼入れ条件の工夫をはじめとして、相互の技術転用が適うケースは少ない。 In addition, there is a leveler line work roll that improves the flatness by repeatedly bending and deforming a cold-rolled steel sheet as a roll that is similar to the scale breaker roll (see, for example, Patent Document 4). This leveler work roll has an ultra-thin diameter of 20-60 mm due to the need to bend and deform a thin steel plate of 0.3-1 mm with a strain rate that causes slight plastic deformation, and the length is for a scale breaker. Equivalent to a roll. Therefore, bending deformation is more likely to occur than the scale breaker roll, and fatigue breakage resistance is particularly important. However, when the leveler work roll is quenched, the core portion is also in a cured state (Hv 500 or more) because of the ultra-small diameter. Therefore, in the invention of the above-mentioned patent document, securing of fatigue breakage resistance is achieved by providing the roll surface layer portion with compressive residual stress. In other words, although it is similar to a roll for scale breakers, there are few cases where mutual technical diversion is suitable, including ingenuity of hardness transition in the depth direction and quenching conditions.
ところで、上述したような高硬さには、鋼材基地の焼入れ硬化に加えて、分散状態で含まれる硬質炭化物の存在が大きく寄与しており、その結果、鋼材基地の靱性(延いては耐スポーリング性)を犠牲にせずに更なる硬質化(延いては耐摩耗性の向上)が実現できたものと考えられる。また、粉末冶金製高速度工具鋼系の熱処理硬化ロール(特許文献3)がHv800超級という特段の高硬さとなっている(延いては耐摩耗性も一段と向上している)のは、粉末冶金製という材質に由来する上記炭化物の緻密性と均一性により、Hv800超級の高硬さとしても靱性が損われなかったためとみられる。 By the way, in addition to quenching and hardening of the steel base, the presence of hard carbides contained in a dispersed state greatly contributes to the high hardness as described above. It is considered that further hardening (and improvement in wear resistance) could be realized without sacrificing the (polling property). The powder metallurgy high-temperature tool steel heat treatment hardening roll (Patent Document 3) has a particularly high hardness of Hv800 and higher (and thus wear resistance is further improved). This is probably because the toughness was not impaired even when the hardness was higher than Hv800 due to the denseness and uniformity of the carbide derived from the material made of the product.
しかしながら、スケールブレーカー用ロールについては、上記の粉末冶金製高速度工具鋼系の熱処理硬化ロール(特許文献3)を更に上回る耐摩耗性が求められている。これは、ロールの摩耗寿命が、自動車ボディー用途などにおける高張力鋼板採用の増大に伴う摩耗負荷の増大によって短くなる傾向にあり、その結果、経済的な観点からの通板速度の確保・向上が容易でなくなったからである。 However, the scale breaker roll is required to have higher wear resistance than the heat-treatment hardening roll (Patent Document 3) of the powder metallurgy high-speed tool steel system. This is because the wear life of rolls tends to be shortened due to the increase in wear load accompanying the increase in the use of high-tensile steel sheets in automobile body applications, etc. It is no longer easy.
ついては、耐摩耗性の更なる向上を要するものであり、先ずは、ロール表層部の硬さを上述した粉末冶金製高速度工具鋼系の熱処理硬化ロール(特許文献3)よりも更に高めることが考えられるが、そのロールにおけるHv800超級の表層部硬さは、耐スポーリング性との兼合いで得られた言わば上限値である。また、通板速度(延いてはロール回転速度)を更に上げたいというニーズも視野に入れると、細長い形状(たとえば、直径80〜100mm×長さ1600〜2400mm)ゆえに生じやすいロールの繰り返し撓み変形を考慮した耐疲労損壊性も確保しておくことが望ましく、この点からは、表層部硬さを寧ろ幾らか抑制して靱性を高目に確保することが望まれる。 Therefore, it is necessary to further improve the wear resistance. First, the hardness of the roll surface layer may be further increased as compared with the above-described heat-treatment hardening roll of the powder metallurgy high-speed tool steel system (Patent Document 3). Although it is considered, the surface layer hardness of Hv800 and higher in the roll is an upper limit value obtained in view of the anti-spalling property. In addition, considering the need to further increase the sheet passing speed (and hence the roll rotation speed), the rolls are repeatedly bent and deformed easily because of the elongated shape (for example, diameter 80 to 100 mm × length 1600 to 2400 mm). It is desirable to ensure fatigue damage resistance in consideration, and from this point, it is desirable to secure a high toughness by suppressing the surface layer hardness somewhat.
一方、前記工具鋼系高炭素高合金鋼材の使用は耐摩耗性を高位に確保するための必須要件と見なされ、特に粉末冶金製のものによるのが、靱性,耐スポーリング性,耐疲労損壊性などの強度特性の損失を補うための好適要件と見られる。
そこで、粉末冶金製の工具鋼系高炭素高合金鋼材を素材とするスケールブレーカー用ロールという範疇内で、従来の高硬さ指向ロール(粉末冶金製高速度工具鋼系の熱処理硬化ロール/特許文献3)に勝る耐摩耗性を備えた製品を、該従来ロールの表層部硬さ(即ちHv800超級)を下回る表層部硬さを以て実現する技術の提供を課題とした。
On the other hand, the use of the above-mentioned tool steel-based high carbon high alloy steel is regarded as an indispensable requirement for ensuring high wear resistance. Particularly, those made of powder metallurgy are used for toughness, spalling resistance, fatigue damage resistance. This is considered to be a preferable requirement to compensate for the loss of strength characteristics such as property.
Therefore, within the category of scale breaker roll made of powder metallurgy tool steel high carbon high alloy steel material, conventional high hardness oriented roll (heat treatment hardening roll of powder metallurgy high speed tool steel system / patent document An object of the present invention is to provide a technology that realizes a product having wear resistance superior to 3) with a surface layer hardness lower than the surface layer hardness of the conventional roll (ie, higher than Hv800).
本発明のスケールブレーカー用ロール(請求項1)は、このような課題を解決するために創案されたものであり、
硬質炭化物形成元素を主成分として含有する粉末冶金製の高炭素高合金鋼組成のロール状賦形体を素材とし、熱処理によって表面から少なくとも深さ5mmまでの表層部が高硬さの耐摩耗層となっているスケールブレーカー用ロールにおいて、
前記素材は、主成分元素としてC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%を含有し、前記耐摩耗層には、前記主成分元素で構成される硬質の炭化物が、断面見掛け粒径10μm以下の略球状微粒子の形で且つ10〜30断面見掛け面積%という高い占積率で分布していて、該耐摩耗層の硬さがHv700〜850の範囲にあり、また、該耐摩耗層の内側には、有効硬化状態の裏打領域と未硬化状態まで硬さが急落する硬さ急変部と未硬化状態の芯部領域とがこの順に連なっていて、該裏打領域の深さ方向の硬さ減少勾配は深さ増10mm当りのHv値減少が200ポイント台という緩勾配であり、且つ、該硬さ急変部は、ロール中心からロール半径の(1/√2)の距離に在る、半径方向に関するロール断面積2等分位置よりもロール中心側に位置しており、更には、該芯部領域の硬さがHv300以下である、
ことを特徴とする。
The roll for a scale breaker of the present invention (Claim 1) was created in order to solve such a problem,
A roll-shaped shaped body made of powder metallurgy made of powder metallurgy containing a hard carbide forming element as a main component is used as a raw material, and a surface layer portion at least 5 mm deep from the surface by heat treatment is a wear-resistant layer having a high hardness. In the roll for the scale breaker,
The material contains C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass% as main component elements, and the wear-resistant layer. The hard carbide composed of the main component element is distributed in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 10 μm or less and with a high space factor of 10-30 cross-sectional apparent area%, and the wear resistance The hardness of the layer is in the range of Hv 700 to 850, and inside the wear-resistant layer, there is a backing region in an effective cured state, a hardness suddenly changing portion where the hardness suddenly drops to an uncured state, and an uncured core The hardness decreasing gradient in the depth direction of the backing region is a gentle gradient with the Hv value decrease per 10 mm depth increase being on the order of 200 points, and the hardness suddenly changing portion is , Radial direction at a distance of (1 / √2) of the roll radius from the roll center Located in the roll center side than the roll cross section bisecting position related, further, the hardness of the core region is Hv300 or less,
It is characterized by that.
また、本発明のスケールブレーカー用ロール(請求項2)は、
粉末原料を焼結する工程を経て調製された高炭素高合金鋼組成のロール状賦形体を、焼入れを含む熱処理工程に供して得られた、表面から少なくとも深さ5mmまでの表層部が高硬さの耐摩耗層となっているスケールブレーカー用ロールにおいて、
前記ロール状賦形体は主成分元素としてC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%を含有する組成であって、前記焼入れのための加熱は、50〜200℃/sの昇温速度と焼入れ温度における5〜30sの温度保持という急速短時間加熱条件によっており、
前記耐摩耗層には、前記主成分元素で構成される硬質の炭化物が、断面見掛け粒径10μm以下の略球状微粒子の形で且つ10〜30断面見掛け面積%という高い占積率で分布していて、該耐摩耗層の硬さがHv700〜850の範囲にあり、また、該耐摩耗層の内側には、有効硬化状態の裏打領域と未硬化状態まで硬さが急落する硬さ急変部と未硬化状態の芯部領域とがこの順に連なっていて、該裏打領域内の深さ方向の硬さ減少勾配は深さ増10mm当りのHv値減少が200ポイント台という緩勾配であり、且つ、該硬さ急変部は、ロール中心からロール半径の(1/√2)の距離に在る、半径方向に関するロール断面積2等分位置よりもロール中心側に位置しており、更には、該芯部領域の硬さがHv300以下である、
ことを特徴とする。
The roll for scale breaker of the present invention (Claim 2)
A roll-shaped shaped body having a high carbon and high alloy steel composition prepared through a step of sintering a powder raw material is subjected to a heat treatment step including quenching, and a surface layer portion having a depth of at least 5 mm from the surface is hard. In the scale breaker roll that is the wear-resistant layer,
The roll-shaped shaped body has a composition containing C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass% as main component elements. The heating for quenching is based on a rapid heating condition of a temperature rising rate of 50 to 200 ° C./s and a temperature holding of 5 to 30 s at the quenching temperature,
In the wear-resistant layer, hard carbides composed of the main component elements are distributed in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 10 μm or less and with a high space factor of 10-30 cross-sectional apparent area%. The wear-resistant layer has a hardness in the range of Hv 700 to 850, and on the inner side of the wear-resistant layer, there is an effective hardened backing region and a hardness suddenly changing portion where the hardness suddenly drops to an uncured state. The core region in the uncured state is connected in this order, and the hardness decreasing gradient in the depth direction in the backing region is a gentle gradient in which the Hv value decrease per 10 mm depth increase is on the order of 200 points, and The sudden hardness change portion is located on the roll center side from the roll cross-sectional area bisected position in the radial direction at a distance (1 / √2) of the roll radius from the roll center. The hardness of the core region is Hv300 or less,
It is characterized by that.
さらに、本発明のスケールブレーカー用ロール(請求項3)は、上記の請求項1,2記載のスケールブレーカー用ロールであって更に、前記主成分元素のうちのCr分は、その4〜7割が基地金属相に含まれている、ことを特徴とする。 Furthermore, the roll for scale breakers of the present invention (Claim 3) is the roll for scale breakers according to Claims 1 and 2, and the Cr content of the main component elements is 40 to 70%. Is contained in the base metal phase.
また、本発明のスケールブレーカー用ロールの製造方法(請求項4)は、
粉末原料を焼結する工程を経て調製された、硬質炭化物形成元素を主成分として含有する高炭素高合金鋼組成のロール状賦形体を、焼入れを含む熱処理工程に供して、表面から少なくとも深さ5mmまでの表層部を高硬さの耐摩耗層とした硬化ロールを得る、スケールブレーカー用ロールの製造方法において、
前記ロール状賦形体を、主成分元素としてC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%を含有する組成とした上で、前記焼入れを、誘導加熱によって50〜200℃/sの昇温速度で焼入れ温度に加熱し5〜30s温度保持してから5〜50℃/sの降温速度にて冷却させるという急速・短時間加熱−緩速冷却条件にて施すことにより、
前記硬化ロールとして、前記耐摩耗層に、前記主成分元素で構成される硬質の炭化物が、断面見掛け粒径10μm以下の略球状微粒子の形で且つ10〜30断面見掛け面積%という高い占積率で分布していて、該耐摩耗層の硬さがHv700〜850の範囲にあり、また、該耐摩耗層の内側には、有効硬化状態の裏打領域と未硬化状態まで硬さが急落する硬さ急変部と未硬化状態の芯部領域とがこの順に連なっていて、該裏打領域内の深さ方向の硬さ減少勾配は深さ増10mm当りのHv値減少が200ポイント台という緩勾配であり、且つ、該硬さ急変部が、ロール中心からロール半径の(1/√2)の距離に在る、半径方向に関するロール断面積2等分位置よりもロール中心側に位置しており、更には、該芯部領域の硬さがHv300以下であるロールを得る、
ことを特徴とする。
Moreover, the manufacturing method (Claim 4) of the roll for scale breakers of this invention,
A high-carbon high-alloy steel composition roll-shaped body containing a hard carbide-forming element as a main component, prepared through a step of sintering a powder raw material, is subjected to a heat treatment step including quenching, and at least a depth from the surface In a method for producing a roll for a scale breaker, obtaining a curing roll having a surface layer portion of up to 5 mm with a high hardness wear-resistant layer,
The roll-shaped shaped product has a composition containing C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass% as main component elements. In the above, the quenching is rapidly performed by induction heating to a quenching temperature at a heating rate of 50 to 200 ° C./s, holding the temperature for 5 to 30 s, and then cooling at a cooling rate of 5 to 50 ° C./s. By applying under short heating and slow cooling conditions,
As the hardening roll, a hard carbide composed of the main component element in the wear-resistant layer is in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 10 μm or less and a high space factor of 10-30 cross-sectional apparent area%. The hardness of the wear-resistant layer is in a range of Hv 700 to 850, and the hardness of the wear-resistant layer suddenly drops to the backing region in the effective cured state and the uncured state. The suddenly changing portion and the uncured core region are connected in this order, and the hardness decreasing gradient in the depth direction in the backing region is a gentle gradient in which the Hv value decrease per 10 mm depth increase is on the order of 200 points. And the hardness suddenly changing portion is located on the roll center side from the roll cross-sectional area bisected position in the radial direction at a distance of (1 / √2) of the roll radius from the roll center, Furthermore, the hardness of the core region is Hv300 or higher. Get the roll is,
It is characterized by that.
また、本発明の焼入れ装置(請求項5)は、上記の請求項4の製造方法における前記焼入れを行うための焼入れ装置であって、前記ロール状賦形体を、その軸線を鉛直方向に配向させた姿勢で支持するとともに軸心回転させるワーク支持回転装置と、前記ロール状賦形体の軸線方向の短区間を誘導加熱するための誘導コイルと該コイルによる加熱部を追随冷却するための少なくとも空冷ジャケットを配した冷却ゾーンとを有する加熱冷却ユニットと、前記ワーク支持回転装置と前記加熱冷却ユニットの少なくとも一方を鉛直方向走行させるようにしたワーク対加熱冷却ユニット相対走行機構と、を備えていることを特徴とする。 A quenching apparatus according to the present invention (Claim 5) is a quenching apparatus for performing the quenching in the manufacturing method according to Claim 4, and the axis of the roll-shaped shaped body is oriented in the vertical direction. Supporting and rotating device for supporting in a different posture and rotating the shaft center, induction coil for induction heating a short section in the axial direction of the roll-shaped shaped body, and at least an air cooling jacket for following the heating portion by the coil A heating / cooling unit having a cooling zone, and a workpiece-to-heating / cooling unit relative traveling mechanism configured to cause at least one of the workpiece support rotating device and the heating / cooling unit to travel in a vertical direction. Features.
このような本発明のスケールブレーカー用ロール(請求項1)にあっては、先ず、略球状微粒子の硬質炭化物を高い断面占積率で分布させたことにより、Hv800超級の従来ロール(特許文献3)を,更にはHv750超級の従来ロール(特許文献1,2)をも下回るHv700超級の表層部硬さを以て、耐摩耗性がHv800超級ロールよりも更に高位に向上している。そのことを図面を引用して確認する。図2は、摩耗試験の結果を示し、(a)が比較表、(b)が対比グラフである。図3は摩耗試験の実施態様を示し、図4は、本発明の試験材の断面を示す図面代用写真であり、SEM(走査型電子顕微鏡)による2000倍ミクロ組織である。 In such a roll for scale breaker of the present invention (Claim 1), first, hard carbides of substantially spherical fine particles are distributed with a high cross-sectional space factor, so that a conventional roll of Hv800 superclass (Patent Document 3). ), And the surface layer part hardness of Hv700 super class, which is lower than that of conventional rolls of Hv750 superclass (Patent Documents 1 and 2), the wear resistance is improved to a higher level than that of Hv800 superclass rolls. Confirm that with reference to the drawings. FIG. 2 shows the results of the wear test, where (a) is a comparison table and (b) is a comparison graph. FIG. 3 shows an embodiment of the abrasion test, and FIG. 4 is a drawing-substituting photograph showing a cross-section of the test material of the present invention, and has a 2000-fold microstructure by SEM (scanning electron microscope).
図2において、資料番号A1のものは本発明の粉末冶金製ロール(高C−13Cr鋼)で摩耗量は4mgであり、資料番号B1のものは従来の粉末冶金製ロール(粉末冶金製高速度工具鋼系の熱処理硬化ロール/特許文献3)で摩耗量は19mgであり、資料番号B2のものは従来の溶製ロール(溶製高速度工具鋼系の熱処理硬化ロール/特許文献2)で摩耗量は75mgであり、資料番号B3のものは従来の溶製ロール(溶製冷間工具鋼系の熱処理硬化ロール/特許文献1)で摩耗量は31mgであり、資料番号B4のものは従来の鍛鋼ロール(1〜3%Cr)で摩耗量は195mgであった。 In FIG. 2, the material number A1 is the powder metallurgy roll (high C-13Cr steel) of the present invention and the wear amount is 4 mg, and the material number B1 is the conventional powder metallurgy roll (powder metallurgy high speed). The wear amount of tool steel heat treatment hardening roll / Patent Document 3) is 19 mg, and the material number B2 is worn by the conventional melting roll (melting high speed tool steel heat treatment hardening roll / Patent Document 2). The amount is 75 mg, the material number B3 is a conventional smelting roll (melting cold tool steel heat treatment hardening roll / Patent Document 1), and the wear amount is 31 mg, and the material number B4 is a conventional forged steel. The wear amount was 195 mg with a roll (1 to 3% Cr).
図2で明らかな本発明ロールの優れた耐摩耗性は、主として、請求項2記載の10〜30断面見掛け面積%という炭化物微粒子(硬質炭化物)の高い断面占積率(図4参照)によってもたらされるミクロな支柱機能によるところと推認される。
即ち、炭化物相は焼入れ後の基地金属相と比べても約3倍の硬さを有するから、ロール表面では先ず基地金属相の摩耗が始まって、炭化物相を凸部とし基地金属相を凹部とする緩い起伏が生じ、この状態で摩耗が進行して行く。そして、その際、炭化物相,基地金属相それぞれの寸法基準の摩耗速度V1,V2は等しいから、各相にかかる加重圧力(単位面積当り)を夫々P1,P2とし、V1=k1×P1、V2=k2×P2(k1,k2は定数)であるとすると、
k1×P1=k2×P2、即ち、P2=(k1/k2)×P1 ……………………(1)
となる。
The excellent wear resistance of the roll of the present invention, which is apparent in FIG. 2, is mainly brought about by the high cross-sectional space factor (see FIG. 4) of carbide fine particles (hard carbide) of 10-30 cross-sectional apparent area% according to claim 2. It is assumed that this is due to the micro strut function.
That is, since the carbide phase has about three times the hardness compared with the quenched base metal phase, the wear of the base metal phase starts on the roll surface first, and the carbide phase is a convex portion and the base metal phase is a concave portion. Loose undulations occur, and wear progresses in this state. In this case, since the wear speeds V1 and V2 based on the dimensions of the carbide phase and the base metal phase are equal, the weighted pressure (per unit area) applied to each phase is P1 and P2, respectively, and V1 = k1 × P1 and V2 = K2 × P2 (k1 and k2 are constants)
k1 × P1 = k2 × P2, that is, P2 = (k1 / k2) × P1 (1)
It becomes.
また、各相の面積比率をS1:S2=A:(1−A)とすると、各相にかかる荷重の比率はF1:F2 = P1×A:P2×(1−A) = P1×A:(k1/k2)×P1×(1−A) = k2×A:k1×(1−A) …………………………………………(2)
となる。更に、F1+F2=F(トータル荷重) ……………………………………(3)
とおいて、これらの式を解くと、
(F1/F)≡θ1=k2×A/{k2×A+k1×(1−A)},
(F2/F)≡θ2=k1×(1−A)/{k2×A+k1×(1−A)}………(4)
となる。
If the area ratio of each phase is S1: S2 = A: (1-A), the ratio of the load applied to each phase is F1: F2 = P1 × A: P2 × (1-A) = P1 × A: (K1 / k2) × P1 × (1-A) = k2 × A: k1 × (1-A) …………………………………… (2)
It becomes. Furthermore, F1 + F2 = F (total load) ……………………………… (3)
If you solve these equations,
(F1 / F) ≡θ1 = k2 × A / {k2 × A + k1 × (1-A)},
(F2 / F) ≡θ2 = k1 × (1-A) / {k2 × A + k1 × (1-A)} (4)
It becomes.
ここで、仮にk2=3×k1(基地金属相は炭化物相と比べて3倍ほど摩耗しやすい)とすると、上記(4)式は、
θ1=3×A/(2×A+1), θ2=(1−A)/(2×A+1) …………(5)
となり、これにA={0.05, 0.1, 0.2, 0.3}を入れると、
θ1={0.136, 0.250, 0.429, 0.563}となる。
即ち、耐摩耗性の高い炭化物相には、その面積比率を上回る荷重が分配されるのである。これは、云い換えれば、前記炭化物相を凸部とする緩い起伏が、上記の炭化物相に偏倚した荷重分配が実現されるような形態で生じていることになる。そして、本発明ロールでは、10μm以下という極小の炭化物微粒子が、無数のミクロ支柱として機能し、摩耗要因となる荷重に対抗している、ということである。
Here, if k2 = 3 × k1 (the base metal phase is likely to wear about three times as much as the carbide phase), the above equation (4) is
θ1 = 3 × A / (2 × A + 1), θ2 = (1−A) / (2 × A + 1) (5)
When A = {0.05, 0.1, 0.2, 0.3} is added to this,
θ1 = {0.136, 0.250, 0.429, 0.563}.
That is, a load exceeding the area ratio is distributed to the carbide phase having high wear resistance. In other words, this means that the loose undulation with the carbide phase as a convex portion is generated in a form that realizes load distribution biased to the carbide phase. And in this invention roll, it is that the very small carbide | carbonized_material of 10 micrometers or less functions as an infinite number of micro struts, and opposes the load which becomes a wear factor.
この他、10μm以下という炭化物微粒子の粒度は、150メッシュよりも細かい研磨剤の粒度に類し(JIS R6001参照)、本発明ロールの処理対象であるホットコイルのスケールの厚さ(50〜100μm程度)よりも十分に小さい。そのため、仮に脱落した場合にもスケール粉中に埋もれた存在となり、脱落粒子起因の擦過による摩耗ないし疵入りにつながる恐れも小さい。 In addition, the particle size of carbide fine particles of 10 μm or less is similar to the particle size of an abrasive finer than 150 mesh (see JIS R6001), and the thickness of the scale of the hot coil that is the subject of the roll of the present invention (about 50 to 100 μm). Small enough). For this reason, even if it falls off, it becomes buried in the scale powder, and there is little possibility that it will lead to wear or wrinkles due to abrasion caused by the fallen particles.
本発明のスケールブレーカー用ロール(請求項1)にあっては、さらに、最小加熱時間の焼入れ等によって深さ方向の硬さ推移が独特のパターンとなっており、それによって、耐疲労損壊性が向上している。そのことを図面を引用して確認する。図5は、ロール表面からロール中心に向かう硬さ推移曲線を対比表示した図であり、黒丸付き太線A1は本発明の粉末冶金製ロール(高C−13Cr鋼)であり、黒四角付き中線B1は従来の粉末冶金製ロール(粉末冶金製高速度工具鋼系の熱処理硬化ロール/特許文献3)であり、短破線B2は従来の溶製ロール(溶製高速度工具鋼系の熱処理硬化ロール/特許文献2)であり、細い長破線B3は従来の溶製ロール(溶製冷間工具鋼系の熱処理硬化ロール/特許文献1)である。 In the scale breaker roll of the present invention (Claim 1), the hardness transition in the depth direction is a unique pattern due to quenching or the like of the minimum heating time. It has improved. Confirm that with reference to the drawings. FIG. 5 is a diagram showing a contrast of hardness transition curves from the roll surface toward the roll center. A thick line A1 with black circles is the powder metallurgy roll of the present invention (high C-13Cr steel), and a black squared middle line. B1 is a conventional powder metallurgy roll (powder metallurgy high speed tool steel heat treatment hardening roll / Patent Document 3), and short dashed line B2 is a conventional melt roll (melting high speed tool steel heat treatment hardening roll). / Patent Document 2), and the thin long broken line B3 is a conventional melting roll (melting cold tool steel heat treatment hardening roll / Patent Document 1).
本発明ロールA1は、表面から少なくとも深さ5mmまでの(目安として深さ5〜10mmまでの)表層部をHv700超級の耐摩耗層としたものであるが、焼入硬化層はこれよりも深い領域に達しており、JIS G 0559によれば、C含量が0.53mass%以上の高炭素鋼については、Hv500の深さまでが有効硬化層であるとされる。
ここで、図5の硬さ推移曲線を見ると、本発明の粉末冶金製ロールA1(太線)では、深さ8mmまでがHv700以上の耐摩耗層となっており、また、その内側の深さ8mmから深さ17mmまでの領域がHv700〜500(即ち有効硬化状態の)裏打領域として連なり、更にその内側の深さ17mmから深さ20mmまでの領域が、Hv500から未硬化状態(焼入れ硬化の兆候も生じていない状態)と見なせるHv300以下のロール芯部(ロール中心とその近傍)まで硬さが急落する硬さ急変部が連なっており、硬さ急変部の更に内側の芯部領域は高靱性の未硬化状態に確保されている。よって、上記裏打領域および硬さ急変部における深さ方向の硬さ減少勾配は、夫々、
(700−500)Hv/(8−17)mm=Hv220ポイント減/10mm深さ増、
(500−300)Hv/(17−20)mm=Hv670ポイント減/10mm深さ増となっている。
The roll A1 of the present invention has a surface layer portion of at least 5 mm deep (up to a depth of 5 to 10 mm as a guide) from the surface as a wear resistant layer of Hv700 superclass, but the quench hardening layer is deeper than this. According to JIS G 0559, the high hardened steel having a C content of 0.53 mass% or more is considered to be an effective hardened layer up to a depth of Hv500.
Here, when the hardness transition curve of FIG. 5 is seen, in the powder metallurgy roll A1 (thick line) of the present invention, a depth of up to 8 mm is a wear-resistant layer of Hv700 or more, and the inner depth thereof. An area from 8 mm to 17 mm in depth is connected as a backing area of Hv 700 to 500 (that is, in an effective hardening state), and an inner area from 17 mm to 20 mm in depth is in an uncured state from Hv 500 (indication of quench hardening) In addition, there is a series of suddenly changing hardness parts where the hardness suddenly drops to a roll core part of Hv300 or less (the center of the roll and its vicinity) that can be regarded as a state where no hardness has occurred. The uncured state is secured. Therefore, the hardness decreasing gradient in the depth direction in the backing region and the hardness suddenly changing portion, respectively,
(700-500) Hv / (8-17) mm = Hv 220 points decrease / 10 mm depth increase,
(500−300) Hv / (17−20) mm = Hv670 point decrease / 10 mm depth increase.
因みに、従来の粉末冶金製ロールB1,溶製ロールB2,溶製ロールB3では、上記裏打領域における硬さ減少勾配は、Hv500までの範囲が裏打領域であると見なして、夫々
(800−500)Hv/(10−18)mm=Hv375ポイント減/10mm深さ増、(750−500)Hv/(8−13)mm=Hv500ポイント減/10mm深さ増、(750−500)Hv/(7.5−12.5)mm=Hv500ポイント減/10mm深さ増}となっており、また、この裏打領域が硬さ推移曲線全体の中の硬さ減少勾配最大部であり、云わば、硬さ急変部に準じた領域となっている。
Incidentally, in the conventional powder metallurgy roll B1, the melt roll B2, and the melt roll B3, the hardness decreasing gradient in the backing region is regarded as the backing region in the range up to Hv500, respectively (800-500). Hv / (10-18) mm = Hv 375 point decrease / 10 mm depth increase, (750-500) Hv / (8-13) mm = Hv500 point decrease / 10 mm depth increase, (750-500) Hv / (7 .5−12.5) mm = Hv 500 points decreased / 10 mm depth increased}, and this backing region is the maximum hardness decreasing gradient portion in the entire hardness transition curve. It is an area according to the sudden change part.
さて、本発明の粉末冶金製ロールA1の上記硬さ推移パターンは、細長い形状ゆえに繰返し屈曲疲労の負荷が大きいスケールブレーカー用ロールにとって、耐疲労損壊性を高位に確保する観点から極めて好ましいパターンであると云える。
即ち、上記A1,B1,B2,B3のロールでは、いずれも80mmφ(半径40mm)の中実ロールであって、半径方向に関するロール断面積2等分位置は、ロール中心からロール半径rの(1/√2)の距離、ロールの表面からはロール半径rの1−(1/√2)の距離≒0.3r深さ≒12mm深さの位置にある。
The above-mentioned hardness transition pattern of the powder metallurgy roll A1 of the present invention is a very preferable pattern from the viewpoint of ensuring high fatigue damage resistance for a roll for a scale breaker having a long and repeated bending fatigue load due to its elongated shape. It can be said.
That is, the rolls of A1, B1, B2, and B3 are all solid rolls of 80 mmφ (radius 40 mm), and the roll sectional area bisected position in the radial direction is (1 / √2), a distance of 1− (1 / √2) of the roll radius r from the surface of the roll ≈0.3r depth≈12 mm depth.
そして、深さ方向の硬さ減少勾配といった、疲労損壊にとってプラスでない(硬さ減少勾配が大きい部位ほど応力集中しやすいと考えてよいであろう)特性は、特に上記ロール断面積2等分位置よりもロール表面側において極力小さいことが望まれるものである。何故なら、前記繰返し屈曲変形における変形量(延いては変形応力)はロール表面側ほど比例的に大であって、表面側ほど負荷される損壊エネルギーが大きく(ロール半径の2乗に比例)、ついては、硬さ勾配を上記断面積2等分位置よりもロール表面側においては極力小さくするという要請が生じるものであり、云い換えれば、断面積2等分位置よりもロール中心側の硬さ減少勾配は逆に高位となることを許容して上記要請が成立つのである。本発明の粉末冶金製ロールA1では、硬さ急変部が、前述の通りロール表面から17mmの位置の内側にあって、ロール表面から12mmの深さに位置する断面積2等分位置よりも十分奥寄りに位置しており、上記要請が満たされている。更には、20mm以深の芯部(即ち、ロールの1/2太さの領域)が高靱性の未硬化状態に確保されており、堅牢な躯幹部を構成している。 Further, characteristics that are not positive for fatigue damage, such as a hardness decreasing gradient in the depth direction (it may be considered that stress concentration is more likely to occur in a portion where the hardness decreasing gradient is larger), in particular, from the above-mentioned bisecting position of the roll cross-sectional area. Also, it is desirable that the surface of the roll be as small as possible. This is because the amount of deformation (and hence deformation stress) in the repeated bending deformation is proportionally larger on the roll surface side, and the damage energy loaded on the surface side is larger (proportional to the square of the roll radius), Therefore, there is a demand for the hardness gradient to be as small as possible on the roll surface side from the above-mentioned bisected position of the cross-sectional area. In other words, the hardness is reduced on the roll center side from the bisected position of the cross-sectional area. On the contrary, the above request is established by allowing the gradient to be higher. In the powder metallurgical roll A1 of the present invention, the hardness suddenly changing portion is inside the position of 17 mm from the roll surface as described above, and is sufficiently larger than the position of the halved cross-sectional area located at a depth of 12 mm from the roll surface. Located in the back, the above requirements are met. Furthermore, the core part (namely, the area | region of 1/2 thickness of a roll) 20 mm or more deep is ensured in the unhardened state of high toughness, and comprises the robust trunk part.
また、本発明のスケールブレーカー用ロール(請求項3)にあっては、基地金属相のCr分を高位にしたことにより、必要な耐食性が確保されている。そのことを図面を引用して確認する。図6は、浸漬腐食試験の結果を示し、(a)が試験条件、(b)が本発明ロール(高C−13Cr鋼)の図面代用写真、(c)が比較材(SKH51)の図面代用写真である。また、図7は、本発明ロールの試験材のCr分のEDX(エネルギー分散X線分光)分析結果を示す表である。 Moreover, in the scale breaker roll of the present invention (Claim 3), the necessary corrosion resistance is ensured by increasing the Cr content of the base metal phase. Confirm that with reference to the drawings. FIG. 6 shows the results of the immersion corrosion test, (a) is the test condition, (b) is a drawing substitute photograph of the roll of the present invention (high C-13Cr steel), and (c) is a drawing substitute of the comparative material (SKH51). It is a photograph. Moreover, FIG. 7 is a table | surface which shows the EDX (energy dispersive X ray spectroscopy) analysis result of the Cr content of the test material of this invention roll.
図7の分析結果に見られる通り、本発明ロールにあっては、C量が大であるにも拘わらず、基地金属相に全含量の4〜7割に亘る高含量を以てCr分が存在しており、これは、スケールブレーカー用ロールに必要とされる一定の耐食性を悠にもたらすものとなっている(図6参照)。 As can be seen from the analysis results in FIG. 7, in the roll of the present invention, despite the large amount of C, the base metal phase has a Cr content with a high content of 40 to 70% of the total content. This provides a certain level of corrosion resistance required for scale breaker rolls (see FIG. 6).
また、本発明のスケールブレーカー用ロールの製造方法(請求項4)によれば、スケールブレーカー用ロールに係る前記諸要請に応えることのできる上記ロール製品が得られて前記課題が解決される。すなわち、この請求項4の製造方法は、CrとCを極く高位に且つMoとVを高目に含有する粉末冶金製の工具鋼系鋼材を素材とし、炭化物を、高含量ではあるが極微粒形態で存在させている。そして、硬化に必要な最小限の加熱時間による焼入れを施すことで(図1(c)参照)、ロール表面に炭化物微粒子を極く高位の断面占積率を以て露呈させて、表層部硬さを抑制しつつ、高耐摩耗性を実現したものである。 Moreover, according to the manufacturing method of the roll for scale breakers of this invention (Claim 4), the said roll product which can meet the said request | requirement regarding the roll for scale breakers is obtained, and the said subject is solved. That is, the manufacturing method according to claim 4 is made of a powder metallurgy-made tool steel material containing Cr and C at a very high level and Mo and V at a high level, and contains carbide in a very high content. It exists in the form of fine particles. Then, by applying quenching with a minimum heating time necessary for curing (see FIG. 1 (c)), the carbide surface is exposed to the roll surface with a very high cross-sectional space factor, and the surface layer hardness is increased. High wear resistance is realized while suppressing.
本発明のスケールブレーカー用ロール10は(図1参照)、ロール表面からロール中心まで粉末冶金法にて一体成形したロール状賦形体11に焼入れを含む熱処理を施して製造される硬化ロールであり、鋼板を機械的に繰返し屈曲させるためにバックアップロール付きワークロールとして用いられる。その使用態様については特許文献1第1図や,特許文献2第1図,特許文献3図1等に開示され、ロール状賦形体11を一体成形する粉末冶金法については、一般の技術書で解説されているのに加えて、特許文献3にガスアトマイズ法と加圧成形と熱間押出との結合手法が開示されているので、以下、本発明に特徴的な事項を述べる。 The roll for scale breaker 10 of the present invention (see FIG. 1) is a hardening roll manufactured by subjecting a roll shaped body 11 integrally formed by powder metallurgy from the roll surface to the center of the roll to heat treatment including quenching, It is used as a work roll with a backup roll to mechanically repeatedly bend a steel plate. About the use aspect, it is disclosed by patent document 1 FIG. 1, patent document 2 FIG. 1, patent document 3 FIG. 1, etc., and about the powder metallurgy method which integrally forms the roll-shaped shaped object 11, it is a general technical document. In addition to being described, Patent Document 3 discloses a gas atomizing method, a pressure molding method, and a hot extrusion method. Therefore, the characteristic features of the present invention will be described below.
粉末原料に焼結を行ってロール状賦形体11を形成する工程(粉末冶金法)については、粉末原料として、硬質炭化物形成元素を主成分として含有する高炭素高合金鋼組成のものが用いられる。上記ロール状賦形体11にはC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%が含有されている。Cは、金属炭化物を形成して耐摩耗性を向上させるととともに、焼入れ性の増加に寄与するが、上記組成の下で1.7%未満では炭化物が少なく特に基地中の炭素量が少なくなりすぎてHv700(Hs80強)以上の硬度が得られず、耐摩耗性が十分でない。一方、3.5%を超えると、脆いセメンタイト組織も現れ、また残留オーステナイト量も多くなるので、好ましくない。残留オーステナイトは、使用中の加工硬化や耐スポーリング性の低下を招くので、15%以下に抑えることが望まれる。 About the process (powder metallurgy method) which sinters a powder raw material and forms the roll-shaped shaped body 11, the thing of the high carbon high alloy steel composition which contains a hard carbide forming element as a main component is used as a powder raw material. . The roll shaped article 11 contains C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass%. C forms a metal carbide to improve wear resistance and contributes to an increase in hardenability. However, under the above composition, if less than 1.7%, there is less carbide, especially less carbon in the matrix. Thus, a hardness of Hv700 (high Hs80) or higher cannot be obtained, and the wear resistance is not sufficient. On the other hand, if it exceeds 3.5%, a brittle cementite structure also appears and the amount of retained austenite increases, which is not preferable. Residual austenite invites work hardening during use and a decrease in spalling resistance, so it is desired to suppress it to 15% or less.
Crは、Cr炭化物を形成して耐摩耗性を向上させるばかりでなく、基地中に固溶して耐食性を向上させ、かつ焼入れ性を増加するのに寄与するが、上記組成の下で10%未満だと炭化物量が少なくて耐摩耗性が減少する。一方、20%を超えると、脆くなって靱性が低下し、耐スポーリング性の減少を招きやすいので、Crは10〜20%の範囲内が良い。また、特に腐食環境が厳しいライン等では、Crは15〜20%であることが望ましい。Moは、Mo炭化物を形成して焼入れ性を増して耐摩耗性を向上させ、また、加熱の際に結晶粒の成長を抑制するので、靱性を付与し、耐スポーリング性を向上させるものであるが、このMoが0.5%未満であれば、焼入れ硬さが低くなって耐摩耗性を減少させる。一方、Moが5%を超えると、加熱時の変態点を下げ、脱炭層が増大する傾向を示すので、Moは0.5〜5%の範囲内が良い。 Cr not only improves the wear resistance by forming Cr carbide, but also contributes to the solid solution in the matrix to improve the corrosion resistance and increase the hardenability. If it is less, the amount of carbide is small and wear resistance is reduced. On the other hand, if it exceeds 20%, it becomes brittle and the toughness is lowered, and the spalling resistance is likely to be reduced, so Cr is preferably in the range of 10 to 20%. Further, especially in a line having a severe corrosive environment, Cr is preferably 15 to 20%. Mo forms Mo carbide to increase hardenability and improve wear resistance, and also suppresses the growth of crystal grains during heating, thereby providing toughness and improving spalling resistance. However, if the Mo content is less than 0.5%, the quenching hardness decreases and the wear resistance decreases. On the other hand, if Mo exceeds 5%, the transformation point at the time of heating is lowered and the decarburized layer tends to increase, so Mo is preferably in the range of 0.5 to 5%.
Vは、V炭化物を形成して耐摩耗性を向上させるばかりでなく、基地中に固溶して結晶粒を微細にし、加熱時の結晶粒の粗大化を抑制することができるが、上記組成の下でVの量が1%より少ないと、炭化物量が少なくて耐摩耗性が減少する。一方、上記組成の下でVの量が10%より多くなると、V炭化物が多くなって基地中に固溶するCの量が低くなり、焼入れ硬さが低くなって耐摩耗性が減少するので、Vは1〜10%の範囲内が良い。また、特に使用環境の厳しいライン等では、Vは3〜10%であることが望ましい。 V can not only improve the wear resistance by forming V carbide, but can also be dissolved in the matrix to make the crystal grains fine and suppress the coarsening of the crystal grains during heating. If the amount of V is less than 1%, the amount of carbide is small and wear resistance is reduced. On the other hand, if the amount of V exceeds 10% under the above composition, the amount of V carbide increases and the amount of C dissolved in the matrix decreases, quenching hardness decreases and wear resistance decreases. , V is preferably in the range of 1 to 10%. In addition, V is preferably 3 to 10% particularly in a line where the use environment is severe.
ロール状賦形体11は(図1(a),(b)参照)、スケールブレーカー用ロール10の要求仕様(直径80〜100mm×長さ1600〜2400mm程度)に僅かな仕上げ代を加えた寸法の円柱状の胴部を有する形状にされるが、焼結の際、両端の小径端部12,13も含めて一体形成されてもよく、円柱状の焼結体に補助的な熱間成形や切削加工を施して小径端部を設けるようにしても良い。即ち、溶湯の鋳造によらずに形成できるため、スケールブレーカー用ロール10の組成分布が偏析等を伴わずに全域で一様になる。上記特質は、熱処理後のスケールブレーカー用ロール10にも引き継がれる。 The roll-shaped shaped body 11 (see FIGS. 1 (a) and 1 (b)) is a dimension obtained by adding a slight finishing allowance to the required specifications (diameter 80 to 100 mm × length 1600 to 2400 mm) of the scale breaker roll 10. Although it is formed into a shape having a cylindrical body portion, it may be integrally formed including the small-diameter end portions 12 and 13 at both ends at the time of sintering, and auxiliary hot forming or You may make it provide a small diameter edge part by giving a cutting process. That is, since it can form without casting of a molten metal, the composition distribution of the roll 10 for scale breakers becomes uniform in the whole region, without segregation etc. The above characteristics are inherited by the scale breaker roll 10 after the heat treatment.
ロール状賦形体11に熱処理を施す工程では、高周波誘導加熱方式の焼入れ装置20を用いた焼入れに加えて、適宜な焼き戻し等が行われる。
焼入れ装置20は(図1(a),(b)参照)、昇降手段21と上端支持具22と誘導コイル23と空冷ジャケット24と回転手段25と下端支持具26とを要部として具えている。ロール状賦形体11の小径端部13を支承する下端支持具26と、それに対向して上からロール状賦形体11の小径端部12を挟持する上端支持具22は、ロール状賦形体11の軸線を鉛直方向に配向させた姿勢でロール状賦形体11を支持するワーク支持機構となっている。
In the process of heat-treating the roll-shaped shaped body 11, appropriate tempering or the like is performed in addition to quenching using the high-frequency induction heating quenching apparatus 20.
The quenching apparatus 20 (see FIGS. 1A and 1B) includes an elevating means 21, an upper end support tool 22, an induction coil 23, an air cooling jacket 24, a rotating means 25, and a lower end support tool 26 as main parts. . The lower end support 26 that supports the small-diameter end 13 of the roll-shaped shaped body 11 and the upper end support 22 that sandwiches the small-diameter end 12 of the roll-shaped shaped body 11 from above are opposed to the roll-shaped shaped body 11. It is a work support mechanism that supports the roll shaped body 11 in a posture in which the axis is oriented in the vertical direction.
このワーク支持機構には回転手段25が付設されていて、ロール状賦形体11を軸心回転させるワーク支持回転装置となっている。また、そのワーク支持機構には昇降手段21も付設されていて、ワーク支持回転装置を鉛直方向走行させるワーク対加熱冷却ユニット相対走行機構となっている。なお、ワーク対加熱冷却ユニット相対走行機構は、誘導コイル23と空冷ジャケット24とからなる加熱冷却ユニットを上下に移動させるようにしても良く、両者を同時に上下動させるようにしても良く、定速で或いは可変速で安定走行できるものであれば良い。 The work support mechanism is provided with a rotating means 25, which is a work support rotating device for rotating the roll shaped body 11 axially. Further, the work support mechanism is also provided with lifting means 21, which is a work-to-heating / cooling unit relative travel mechanism that causes the work support rotating device to travel in the vertical direction. The workpiece-to-heating / cooling unit relative travel mechanism may move the heating / cooling unit composed of the induction coil 23 and the air cooling jacket 24 up and down, or may move both up and down at the same time. Or any other vehicle that can stably run at a variable speed.
加熱冷却ユニットは、誘導コイル23も、空冷ジャケット24も、環状に形成されていて、ロール状賦形体11を遊挿しうるようになっている。誘導コイル23の配された加熱ゾーンと空冷ジャケット24の配された冷却ゾーンとの相対距離は固定されていても調整可能になっていても良いが、焼入れ時の相対走行中は誘導コイル23が先行し空冷ジャケット24が後に続いて追随するようになっている。誘導コイル23には図示しない高周波電源装置から出た給電ケーブルが接続されており、誘導コイル23は、高周波通電時にロール状賦形体11の軸線方向の短区間を誘導加熱するようになっている。空冷ジャケット24には図示しない送風源から延びてきたホースが連結されており、空冷ジャケット24は、空気を吹き付けてロール状賦形体11における誘導コイル23による加熱部を追随冷却するようになっている。空冷ジャケット24による強制空冷だけでは冷却能力が不足する場合、水冷等を併用するようにしても良い。 In the heating / cooling unit, both the induction coil 23 and the air cooling jacket 24 are formed in an annular shape so that the roll-shaped shaped body 11 can be loosely inserted. Although the relative distance between the heating zone in which the induction coil 23 is arranged and the cooling zone in which the air cooling jacket 24 is arranged may be fixed or adjustable, the induction coil 23 may be adjusted during relative running during quenching. The air cooling jacket 24 is preceded and followed. The induction coil 23 is connected to a power supply cable from a high-frequency power supply device (not shown), and the induction coil 23 induction-heats a short section in the axial direction of the roll-shaped shaped body 11 during high-frequency energization. A hose extending from an air source (not shown) is connected to the air cooling jacket 24, and the air cooling jacket 24 blows air to follow and cool the heating part by the induction coil 23 in the roll shaped body 11. . If the cooling capacity is insufficient only by forced air cooling with the air cooling jacket 24, water cooling or the like may be used in combination.
このような焼入れ装置20を用いてロール状賦形体11に対して誘導加熱による焼入れを施すとき、その焼入れ条件は(図1(c)参照)、先ず、次の範囲から選定される。即ち、ロール状賦形体11を50〜200℃/sの昇温速度で焼入れ温度に加熱してから5〜30s温度保持し更に5〜50℃/sの降温速度にて冷却させるよう、誘導コイル23の通電や,空冷ジャケット24の送風,ロール状賦形体11の走行などの制御条件が設定される。そして、その選定条件でロール状賦形体11に焼入れを施し、さらに、適宜な焼戻し等も施してから、断面について硬さと炭化物状態とCr分布割合とを確認する。 When quenching by induction heating is performed on the roll shaped article 11 using such a quenching apparatus 20, the quenching conditions (see FIG. 1C) are first selected from the following range. That is, the induction coil 11 is heated so that the roll-shaped shaped body 11 is heated to the quenching temperature at a temperature rising rate of 50 to 200 ° C./s, maintained at a temperature of 5 to 30 s, and further cooled at a temperature decreasing rate of 5 to 50 ° C./s. Control conditions such as energization 23, air blowing of the air cooling jacket 24, and travel of the roll shaped body 11 are set. And after hardening the roll-shaped shaped object 11 on the selection conditions, and also giving appropriate tempering etc., hardness, a carbide | carbonized_material state, and Cr distribution ratio are confirmed about a cross section.
具体的には、硬度に関し(図5参照)、ロール表面から深さ20mm以上に及ぶ範囲について硬度測定を行ってロール表面からロール中心に向かう硬さ推移曲線を得、この硬さ推移曲線について、ロール表面側の耐摩耗層の確認と、それよりロール中心寄りの硬さ勾配の確認を行う。耐摩耗層については、表面から少なくとも深さ5mmまでに亘る表層部の硬さが熱処理によりHv700〜850(Hs80強〜90強)の範囲にあることを確認する。硬さ勾配については、硬さ急変部が前記断面積2等分位置よりもロール中心側に位置していることや、Hv700〜500間の勾配よりもHv500〜300間の勾配が急であることを確認する。ロール芯部(ロール中心とその近傍)がHv300以下の未硬化状態であることも確認する。 Specifically, regarding hardness (see FIG. 5), hardness measurement is performed for a range extending from the roll surface to a depth of 20 mm or more to obtain a hardness transition curve from the roll surface toward the roll center. Check the wear-resistant layer on the roll surface side, and check the hardness gradient closer to the roll center. For the wear-resistant layer, it is confirmed that the hardness of the surface layer portion extending from the surface to a depth of at least 5 mm is in the range of Hv 700 to 850 (Hs 80 strong to 90 strong) by heat treatment. Regarding the hardness gradient, the hardness suddenly changing portion is located closer to the roll center than the bisection position of the cross-sectional area, and the gradient between Hv500 and 300 is steeper than the gradient between Hv700 and 500. Confirm. It is also confirmed that the roll core (the roll center and its vicinity) is in an uncured state of Hv300 or less.
断面における炭化物状態については(図4参照)、耐摩耗層の断面を光学顕微鏡や電子顕微鏡で撮影して、その画像をコンピュータに取込み、更に画像解析を行って、炭化物の粒径,面積率,及び間隔を測定する。そして、硬質炭化物が断面見掛け粒径0.1〜10μmの略球状微粒子の形で分散していることと、硬質炭化物が10〜30断面見掛け面積%の高い占積率を以て分布していること、硬質炭化物同士の間隔が10μ以下になっていることを確認する。金属炭化物(硬質炭化物)は、高硬度であるため耐摩耗性の向上に寄与するが、粒径が0.1μmを下回ると耐摩耗性が減少し、粒径が10μmを超えると脆くなって靱性が低下する。また、硬質炭化物の占める面積率が10%に満たないと耐摩耗性が不足し、面積率が30%を超えると脆くなって靱性が低下し、耐スポーリング性が減少する。さらに、硬質炭化物同士の間隔が10μmを超えると耐摩耗性が減少する。特にロールにかかる摩耗負荷の厳しいライン等では硬質炭化物同士の間隔が5μm以下であることが望ましい。 Regarding the carbide state in the cross section (see FIG. 4), the cross section of the wear-resistant layer is photographed with an optical microscope or an electron microscope, the image is taken into a computer, and further image analysis is performed to determine the carbide particle size, area ratio, And measure the spacing. And that the hard carbide is dispersed in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 0.1 to 10 μm, and that the hard carbide is distributed with a high space factor of 10-30 cross-sectional apparent area%, It is confirmed that the interval between the hard carbides is 10 μm or less. Metal carbide (hard carbide) contributes to the improvement of wear resistance because of its high hardness, but wear resistance decreases when the particle size is less than 0.1 μm, and becomes brittle when the particle size exceeds 10 μm. Decreases. Further, if the area ratio occupied by the hard carbide is less than 10%, the wear resistance is insufficient, and if the area ratio exceeds 30%, it becomes brittle, the toughness is lowered, and the spalling resistance is reduced. Furthermore, if the distance between the hard carbides exceeds 10 μm, the wear resistance decreases. In particular, the line between the hard carbides is preferably 5 μm or less in a line having a severe wear load on the roll.
Cr分布の割合については(図7参照)、例えばEDX(エネルギー分散X線分光)分析等を行って、基地金属相のCr量(A)と全体のCr量(B)とを測定し、それらの比を算出することで基地金属相のCr割合(A/B)を得、この割合値が0.4〜0.7になっていることを確認する。Cr全量に対する基地金属相のCr割合が4割を下回ると耐食性が減少するので、硬質炭化物形成元素のうちのCr分は、全体的に見て高含量なばかりか、基地金属相だけを見ても高含量になっていることが望ましい。一方、基地金属相のCr割合が7割を上回った状態では、炭化物の減少が同時に起っていて耐摩耗性の低下傾向が現われ、また、基地金属相の靱性低下が無視できなくなる。 For the ratio of the Cr distribution (see FIG. 7), for example, EDX (energy dispersive X-ray spectroscopy) analysis is performed to measure the Cr amount (A) of the base metal phase and the entire Cr amount (B). By calculating the ratio, the Cr ratio (A / B) of the base metal phase is obtained, and it is confirmed that this ratio value is 0.4 to 0.7. When the Cr ratio of the base metal phase with respect to the total amount of Cr is less than 40%, the corrosion resistance decreases, so the Cr content of the hard carbide-forming elements is not only high in total, but also only the base metal phase is seen. It is also desirable that the content is high. On the other hand, in a state where the Cr ratio of the base metal phase exceeds 70%, carbides are reduced at the same time, and the wear resistance tends to decrease, and the toughness of the base metal phase cannot be ignored.
このような硬さと炭化物状態とCr分布割合の確認を行って、それらが適正範囲から外れている場合は組成や焼入れ条件を修正して遣り直し、総て適正であることが確認できたら、組成や焼入れ条件を確定・固定する。そして、その条件で、必要本数のスケールブレーカー用ロール10を製造する。
組成の修正指針は上述したので、焼入れ条件の修正指針について述べると、耐摩耗層の硬さは、耐摩耗性と靱性や耐スポーリング性との兼ね合いからHv700〜850が好適な範囲になっているが、その深さが5mmを下回ると、「深さ−α」に比例してもたらされる摩耗寿命が十分高位に確保されず、本発明の実施に伴うコスト増に見合わないこととなる。一方、耐摩耗層の深さが10mmを超えると、スケールブレーキング時の曲げ応力や衝撃に対する靱性が不足するケースが生じ得るので、耐摩耗層の深さ具体的には硬度Hv700部位の深さは、5〜10mmの範囲内が望ましい。
After confirming such hardness, carbide state and Cr distribution ratio, if they are out of the proper range, modify the composition and quenching conditions and start again, Confirm and fix the quenching conditions. And the required number of scale breaker rolls 10 are manufactured under the conditions.
Since the correction guideline for the composition has been described above, when describing the correction guideline for the quenching conditions, the hardness of the wear-resistant layer is in a suitable range of Hv 700 to 850 in view of the balance between wear resistance, toughness and spalling resistance. However, if the depth is less than 5 mm, the wear life provided in proportion to “depth−α” is not secured sufficiently high, and the cost increase associated with the implementation of the present invention is not met. On the other hand, when the depth of the wear-resistant layer exceeds 10 mm, there may be a case where the toughness against bending stress or impact during scale braking is insufficient, so the depth of the wear-resistant layer, specifically the depth of the hardness Hv700 region. Is preferably in the range of 5 to 10 mm.
また、焼入れ時の昇温速度が50℃/sを下回ると、炭化物の固溶量が大きくなるため、炭化物の粒径が小さくなるとともに炭化物の面積率も減少して、耐摩耗性が低下する。そして、昇温速度が大きくなるほど上記炭化物の存在形態が好転して耐摩耗性が向上するが、200℃/sを上回ると、上記効果が飽和する上、高周波電源装置の設備コストも法外に大きくなる。
さらに、焼入れ温度での保持時間が5sより短くなると、十分な硬さが得られない。一方、焼入れ温度での保持時間が30sより長くなると、炭化物の粒径が小さくなるとともに炭化物の面積率も減少して、耐摩耗性が低下する。
そして、上記の好適昇温,温度保持条件は、炭化物の存在形態を左右するα→γ変態点以上の温度にある、いわば有効加熱時間の好適化をもたらすこととなる。因みに、上記有効加熱時間は、10〜40sとすることが望ましい。
In addition, when the rate of temperature rise during quenching is less than 50 ° C./s, the amount of carbide solid solution increases, so the particle size of the carbide decreases and the area ratio of the carbide decreases, resulting in a decrease in wear resistance. . And, the higher the rate of temperature rise, the better the presence of the carbide and the better the wear resistance. However, when the temperature exceeds 200 ° C./s, the above effect is saturated and the equipment cost of the high frequency power supply device is prohibitive. growing.
Furthermore, if the holding time at the quenching temperature is shorter than 5 s, sufficient hardness cannot be obtained. On the other hand, when the holding time at the quenching temperature is longer than 30 s, the particle size of the carbide is reduced and the area ratio of the carbide is also reduced, so that the wear resistance is lowered.
The above-mentioned preferable temperature rise and temperature holding conditions result in the optimization of the effective heating time, that is, the temperature above the α → γ transformation point that affects the existence form of carbides. Incidentally, the effective heating time is desirably 10 to 40 seconds.
直径80mmのスケールブレーカー用ロール相当物を試作し(図1参照)、この試験材に、摩耗試験と(図2,図3参照)、断面画像解析と(図4参照)、硬度分布測定と(図5参照)、浸漬腐食試験と(図6参照)、Cr含量測定と(図7参照)を行った。
粉末原料は、真空溶解後ガスアトマイズ法で製造され、素材が高C−13Cr鋼である。これは、硬質炭化物形成元素としてC:2.3mass%,Cr:13mass%,Mo:1mass%,V:4mass%を含有しており、残りがFe(鉄)及び不可避不純物である。
An equivalent of a roll for scale breaker having a diameter of 80 mm was produced (see FIG. 1), and the test material was subjected to a wear test (see FIGS. 2 and 3), cross-sectional image analysis (see FIG. 4), hardness distribution measurement ( 5), immersion corrosion test (see FIG. 6), Cr content measurement (see FIG. 7).
The powder raw material is manufactured by gas atomization after vacuum melting, and the material is high C-13Cr steel. This contains C: 2.3 mass%, Cr: 13 mass%, Mo: 1 mass%, and V: 4 mass% as hard carbide forming elements, with the remainder being Fe (iron) and inevitable impurities.
焼入れは(図1(a),(b)参照)、上述した焼入れ装置20を用いて誘導加熱にて行った。そのときの焼入れ条件は(図1(c)参照)、昇温速度が100℃/s、焼入れ温度が1150℃、その保持時間が10s、降温速度が10℃/sというものであった。
焼戻しは、電気炉で実施し、焼戻し温度530℃、保持4時間の条件で、2回実施した。
Quenching (see FIGS. 1A and 1B) was performed by induction heating using the quenching apparatus 20 described above. The quenching conditions at that time (see FIG. 1C) were a temperature rising rate of 100 ° C./s, a quenching temperature of 1150 ° C., a holding time of 10 s, and a temperature falling rate of 10 ° C./s.
Tempering was performed in an electric furnace, and was performed twice under the conditions of a tempering temperature of 530 ° C. and a holding time of 4 hours.
摩耗試験は(図2,図3参照)、φ30×8tの円板状に切り出した試験材14について西原式摩耗試験を行った。具体的には(図3参照)、SUJ2の焼入れ焼戻し材からなる相手材30と試験材14とをすべり度30%で滑らせながら且つ1470Nの荷重をかけながら800rpmで回転させるのを、湿式環境下で20Hr継続した。
その試験の結果(図2参照)、本発明の粉末冶金製ロールA1は摩耗量が4mgしかなく、同条件で試験した従来品より優れている。具体的には、粉末冶金製ロールB1の19mgや,溶製ロールB2の75mg,溶製ロールB3の31mg,鍛鋼ロールB4の195mgに比べて、摩耗量が少なかった。
In the abrasion test (see FIGS. 2 and 3), a Nishihara type abrasion test was performed on the test material 14 cut out in a disk shape of φ30 × 8t. More specifically (see FIG. 3), it is possible to rotate the mating material 30 made of the quenching and tempering material of SUJ2 and the test material 14 at 800 rpm while sliding at a sliding degree of 30% and applying a load of 1470 N. Continued for 20 hours under.
As a result of the test (see FIG. 2), the powder metallurgy roll A1 of the present invention has an abrasion amount of only 4 mg, which is superior to the conventional product tested under the same conditions. Specifically, the amount of wear was less than 19 mg of powder metallurgy roll B1, 75 mg of melt roll B2, 31 mg of melt roll B3, and 195 mg of forged steel roll B4.
断面画像解析は(図4参照)、試験材のうち表面から1mm深さの断面部位をSEM(走査型電子顕微鏡)で撮影して、2000倍のミクロ組織の画像を得、これをコンピュータに取り込んで行った。それによると、硬質炭化物は、大部分が粒径1〜4μmの微粒子であり、基地金属中にほぼ一様な状態で分散しており、何れの形状も略球状になっていた。また、硬質炭化物の面積率は、断面見掛け面積%で20%という高い占積率になっている。 For cross-sectional image analysis (see FIG. 4), a cross-sectional part 1 mm deep from the surface of the test material is photographed with an SEM (scanning electron microscope) to obtain a 2000-fold microstructure image, which is taken into a computer. I went there. According to this, most of the hard carbides are fine particles having a particle diameter of 1 to 4 μm, and are dispersed in a substantially uniform state in the base metal, and each shape is substantially spherical. Further, the area ratio of the hard carbide is a high space factor of 20% in terms of the apparent area% of the cross section.
硬度分布測定は(図5参照)、表面から深さ24mmまで1mm間隔で行った。それによると、表面硬さはHv850で、硬さHv700は深さ約8mmの部位にあり、この深さまでが耐摩耗層となる。硬さHv500は深さ約17mmの部位にあり、硬さ急変部はそれより深い方にあり具体的には深さ約17〜20mmの範囲にある。硬さ勾配は、Hv700〜500間が概ね220Hv/10mmであり、Hv500〜300間が概ね670Hv/10mmであり、明らかにHv700〜500間の勾配よりHv500〜300間の勾配の方が急である。更には、ロールの1/2太さの芯部領域が未硬化と見なせるHv300以下となっている。このような硬さ推移曲線における硬さ急変部や勾配に関する特徴は、本発明の粉末冶金製ロールA1にだけ有り、従来の粉末冶金製ロールB1や,溶製ロールB2,B3には無い。 The hardness distribution measurement (see FIG. 5) was performed at 1 mm intervals from the surface to a depth of 24 mm. According to this, the surface hardness is Hv850, and the hardness Hv700 is in a portion having a depth of about 8 mm, and the depth up to this depth becomes the wear-resistant layer. The hardness Hv500 is at a site having a depth of about 17 mm, and the hardness sudden change portion is at a deeper side, specifically, a depth of about 17 to 20 mm. The hardness gradient is approximately 220 Hv / 10 mm between Hv 700 and 500, approximately 670 Hv / 10 mm between Hv 500 and 300, and apparently the gradient between Hv 500 and 300 is steeper than the gradient between Hv 700 and 500. . Furthermore, the core part region of 1/2 thickness of the roll is Hv300 or less that can be regarded as uncured. The characteristic regarding the hardness sudden change part and gradient in such a hardness transition curve exists only in the powder metallurgy roll A1 of the present invention, and does not exist in the conventional powder metallurgy roll B1 and the melt rolls B2 and B3.
浸漬腐食試験は(図6参照)、溶存酸素量8ppmの水道水を25℃に保ち、それに168Hrに亘って浸漬することで行った(図6(a)参照)。本発明の粉末冶金製ロール(高C−13Cr鋼)の腐食状態(図6(b)参照)と、同時に浸漬したSKH51材の腐食状態(図6(c)参照)とを比較すると、差は歴然としており、本発明の粉末冶金製ロールが高い耐食性を示している。 The immersion corrosion test (see FIG. 6) was performed by keeping tap water having a dissolved oxygen amount of 8 ppm at 25 ° C. and immersing it in 168 Hr (see FIG. 6A). When comparing the corrosion state (see FIG. 6 (b)) of the powder metallurgy roll (high C-13Cr steel) of the present invention and the corrosion state of the SKH51 material immersed simultaneously (see FIG. 6 (c)), the difference is Obviously, the powder metallurgy roll of the present invention shows high corrosion resistance.
Cr含量測定は(図7参照)、EDXによる定性分析および簡易定量分析で行った。析出物(硬質炭化物)や基地金属(マトリックス)について成分分析等を行って、そのうちのCr量を集計したところ、基地金属相のCr量(A)は6%、全体のCr量(B)は13%で、基地金属相のCr割合(A/B)は0.46であった。これは、Cr割合の適正範囲0.4〜0.7に入っている。 The Cr content was measured (see FIG. 7) by qualitative analysis by EDX and simple quantitative analysis. Component analysis, etc. was performed on precipitates (hard carbide) and base metal (matrix), and the amount of Cr was tabulated. The Cr amount (A) of the base metal phase was 6%, and the total Cr amount (B) was At 13%, the Cr ratio (A / B) of the base metal phase was 0.46. This is in an appropriate range of 0.4 to 0.7 for the Cr ratio.
10 スケールブレーカー用ロール(硬化ロール)
11 ロール状賦形体
12,13 小径端部
14 試験材
20 焼入れ装置
21 昇降手段(ワーク対加熱冷却ユニット相対走行機構)
22 上端支持具(ワーク支持機構、ワーク支持回転装置)
23 誘導コイル(短区間加熱ユニット、加熱冷却ユニット)
24 空冷ジャケット(冷却ゾーン冷却ユニット、加熱冷却ユニット)
25 回転手段(ワーク回転機構、ワーク支持回転装置)
26 下端支持具(ワーク支持機構、ワーク支持回転装置)
30 相手材
10 Scale breaker roll (curing roll)
DESCRIPTION OF SYMBOLS 11 Roll-shaped shaped object 12, 13 Small diameter edge part 14 Test material 20 Quenching apparatus 21 Lifting means (work | work vs. heating / cooling unit relative travel mechanism)
22 Upper end support (work support mechanism, work support rotation device)
23 Induction coil (short section heating unit, heating / cooling unit)
24 Air cooling jacket (cooling zone cooling unit, heating cooling unit)
25 Rotating means (work rotating mechanism, work supporting rotating device)
26 Lower end support (work support mechanism, work support rotation device)
30 Counterpart material
Claims (5)
前記素材は、主成分元素としてC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%を含有し、前記耐摩耗層には、前記主成分元素で構成される硬質の炭化物が、断面見掛け粒径10μm以下の略球状微粒子の形で且つ10〜30断面見掛け面積%という高い占積率で分布していて、該耐摩耗層の硬さがHv700〜850の範囲にあり、また、該耐摩耗層の内側には、有効硬化状態の裏打領域と未硬化状態まで硬さが急落する硬さ急変部と未硬化状態の芯部領域とがこの順に連なっていて、該裏打領域の深さ方向の硬さ減少勾配は深さ増10mm当りのHv値減少が200ポイント台という緩勾配であり、且つ、該硬さ急変部は、ロール中心からロール半径の(1/√2)の距離に在る、半径方向に関するロール断面積2等分位置よりもロール中心側に位置しており、更には、該芯部領域の硬さがHv300以下である、ことを特徴とするスケールブレーカー用ロール。 A roll-shaped shaped body made of powder metallurgy made of powder metallurgy containing a hard carbide forming element as a main component is used as a raw material, and a surface layer portion at least 5 mm deep from the surface by heat treatment is a wear-resistant layer having a high hardness. In the roll for the scale breaker,
The material contains C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass% as main component elements, and the wear-resistant layer. The hard carbide composed of the main component element is distributed in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 10 μm or less and with a high space factor of 10-30 cross-sectional apparent area%, and the wear resistance The hardness of the layer is in the range of Hv 700 to 850, and inside the wear-resistant layer, there is a backing region in an effective cured state, a hardness suddenly changing portion where the hardness suddenly drops to an uncured state, and an uncured core The hardness decreasing gradient in the depth direction of the backing region is a gentle gradient with the Hv value decrease per 10 mm depth increase being on the order of 200 points, and the hardness suddenly changing portion is , Radial direction at a distance of (1 / √2) of the roll radius from the roll center Located in the roll center side than the roll cross section bisecting position related, further, scale breaker rolls the hardness of the core region is Hv300 or less, and wherein the.
前記ロール状賦形体は主成分元素としてC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%を含有する組成であって、前記焼入れのための加熱は、50〜200℃/sの昇温速度と焼入れ温度における5〜30sの温度保持という急速短時間加熱条件によっており、
前記耐摩耗層には、前記主成分元素で構成される硬質の炭化物が、断面見掛け粒径10μm以下の略球状微粒子の形で且つ10〜30断面見掛け面積%という高い占積率で分布していて、該耐摩耗層の硬さがHv700〜850の範囲にあり、また、該耐摩耗層の内側には、有効硬化状態の裏打領域と未硬化状態まで硬さが急落する硬さ急変部と未硬化状態の芯部領域とがこの順に連なっていて、該裏打領域内の深さ方向の硬さ減少勾配は深さ増10mm当りのHv値減少が200ポイント台という緩勾配であり、且つ、該硬さ急変部は、ロール中心からロール半径の(1/√2)の距離に在る、半径方向に関するロール断面積2等分位置よりもロール中心側に位置しており、更には、該芯部領域の硬さがHv300以下である、ことを特徴とするスケールブレーカー用ロール。 A roll-shaped shaped body having a high carbon and high alloy steel composition prepared through a step of sintering a powder raw material is subjected to a heat treatment step including quenching, and a surface layer portion having a depth of at least 5 mm from the surface is hard. In the scale breaker roll that is the wear-resistant layer,
The roll-shaped shaped body has a composition containing C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass% as main component elements. The heating for quenching is based on a rapid heating condition of a temperature rising rate of 50 to 200 ° C./s and a temperature holding of 5 to 30 s at the quenching temperature,
In the wear-resistant layer, hard carbides composed of the main component elements are distributed in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 10 μm or less and with a high space factor of 10-30 cross-sectional apparent area%. The wear-resistant layer has a hardness in the range of Hv 700 to 850, and on the inner side of the wear-resistant layer, there is an effective hardened backing region and a hardness suddenly changing portion where the hardness suddenly drops to an uncured state. The core region in the uncured state is connected in this order, and the hardness decreasing gradient in the depth direction in the backing region is a gentle gradient in which the Hv value decrease per 10 mm depth increase is on the order of 200 points, and The sudden hardness change portion is located on the roll center side from the roll cross-sectional area bisected position in the radial direction at a distance (1 / √2) of the roll radius from the roll center. The core region has a hardness of Hv300 or less. To scale breaker for the roll.
前記ロール状賦形体を、主成分元素としてC:1.7〜3.5mass%,Cr:10〜20mass%,Mo:0.5〜5mass%,V:1〜10mass%を含有する組成とした上で、前記焼入れを、誘導加熱によって50〜200℃/sの昇温速度で焼入れ温度に加熱し5〜30s温度保持してから5〜50℃/sの降温速度にて冷却させるという急速・短時間加熱−緩速冷却条件にて施すことにより、
前記硬化ロールとして、前記耐摩耗層に、前記主成分元素で構成される硬質の炭化物が、断面見掛け粒径10μm以下の略球状微粒子の形で且つ10〜30断面見掛け面積%という高い占積率で分布していて、該耐摩耗層の硬さがHv700〜850の範囲にあり、また、該耐摩耗層の内側には、有効硬化状態の裏打領域と未硬化状態まで硬さが急落する硬さ急変部と未硬化状態の芯部領域とがこの順に連なっていて、該裏打領域内の深さ方向の硬さ減少勾配は深さ増10mm当りのHv値減少が200ポイント台という緩勾配であり、且つ、該硬さ急変部が、ロール中心からロール半径の(1/√2)の距離に在る、半径方向に関するロール断面積2等分位置よりもロール中心側に位置しており、更には、該芯部領域の硬さがHv300以下であるロールを得る、ことを特徴とするスケールブレーカー用ロールの製造方法。 A high-carbon high-alloy steel composition roll-shaped body containing a hard carbide-forming element as a main component, prepared through a step of sintering a powder raw material, is subjected to a heat treatment step including quenching, and at least a depth from the surface In a method for producing a roll for a scale breaker, obtaining a curing roll having a surface layer portion of up to 5 mm with a high hardness wear-resistant layer,
The roll-shaped shaped product has a composition containing C: 1.7 to 3.5 mass%, Cr: 10 to 20 mass%, Mo: 0.5 to 5 mass%, and V: 1 to 10 mass% as main component elements. In the above, the quenching is rapidly performed by induction heating to a quenching temperature at a heating rate of 50 to 200 ° C./s, holding the temperature for 5 to 30 s, and then cooling at a cooling rate of 5 to 50 ° C./s. By applying under short heating and slow cooling conditions,
As the hardening roll, a hard carbide composed of the main component element in the wear-resistant layer is in the form of substantially spherical fine particles having a cross-sectional apparent particle size of 10 μm or less and a high space factor of 10-30 cross-sectional apparent area%. The hardness of the wear-resistant layer is in a range of Hv 700 to 850, and the hardness of the wear-resistant layer suddenly drops to the backing region in the effective cured state and the uncured state. The suddenly changing portion and the uncured core region are connected in this order, and the hardness decreasing gradient in the depth direction in the backing region is a gentle gradient in which the Hv value decrease per 10 mm depth increase is on the order of 200 points. And the hardness suddenly changing portion is located on the roll center side from the roll cross-sectional area bisected position in the radial direction at a distance of (1 / √2) of the roll radius from the roll center, Furthermore, the hardness of the core region is Hv300 or higher. Obtaining a roll is, the production method of roll scale breaker, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004357164A JP4628077B2 (en) | 2004-12-09 | 2004-12-09 | Roll for scale breaker, manufacturing method thereof, and quenching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004357164A JP4628077B2 (en) | 2004-12-09 | 2004-12-09 | Roll for scale breaker, manufacturing method thereof, and quenching device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006159269A true JP2006159269A (en) | 2006-06-22 |
JP4628077B2 JP4628077B2 (en) | 2011-02-09 |
Family
ID=36661839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004357164A Expired - Fee Related JP4628077B2 (en) | 2004-12-09 | 2004-12-09 | Roll for scale breaker, manufacturing method thereof, and quenching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4628077B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009126674A3 (en) * | 2008-04-08 | 2010-01-21 | Federal-Mogul Corporation | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
CN102363836A (en) * | 2011-11-11 | 2012-02-29 | 上海上大热处理有限公司 | Induction quenching method for Cr12MoV roller |
KR101514528B1 (en) | 2013-07-09 | 2015-04-22 | 주식회사 포스코 | Apparatus and method for removing scale on a surface of slab |
US9162285B2 (en) | 2008-04-08 | 2015-10-20 | Federal-Mogul Corporation | Powder metal compositions for wear and temperature resistance applications and method of producing same |
US9624568B2 (en) | 2008-04-08 | 2017-04-18 | Federal-Mogul Corporation | Thermal spray applications using iron based alloy powder |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6428344A (en) * | 1987-07-24 | 1989-01-30 | Dai Ichi High Frequency Co Ltd | Roll for scale breaker |
JPH02205633A (en) * | 1989-02-06 | 1990-08-15 | Hitachi Ltd | Method for hardening composite roll |
JPH0966305A (en) * | 1995-09-04 | 1997-03-11 | Kanto Special Steel Works Ltd | Work roll for cold rolling and its production |
JPH09302449A (en) * | 1996-05-13 | 1997-11-25 | Sanyo Special Steel Co Ltd | High toughness cold roll excellent in presistance to wear, peeling, and chatter mark under rusting environment |
JPH11310825A (en) * | 1998-04-28 | 1999-11-09 | Nippon Steel Corp | Manufacture of work roll for cold rolling |
JP2003039106A (en) * | 2001-07-27 | 2003-02-12 | Nippon Steel Corp | Method for manufacturing compound workroll for cold rolling and workroll |
-
2004
- 2004-12-09 JP JP2004357164A patent/JP4628077B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6428344A (en) * | 1987-07-24 | 1989-01-30 | Dai Ichi High Frequency Co Ltd | Roll for scale breaker |
JPH02205633A (en) * | 1989-02-06 | 1990-08-15 | Hitachi Ltd | Method for hardening composite roll |
JPH0966305A (en) * | 1995-09-04 | 1997-03-11 | Kanto Special Steel Works Ltd | Work roll for cold rolling and its production |
JPH09302449A (en) * | 1996-05-13 | 1997-11-25 | Sanyo Special Steel Co Ltd | High toughness cold roll excellent in presistance to wear, peeling, and chatter mark under rusting environment |
JPH11310825A (en) * | 1998-04-28 | 1999-11-09 | Nippon Steel Corp | Manufacture of work roll for cold rolling |
JP2003039106A (en) * | 2001-07-27 | 2003-02-12 | Nippon Steel Corp | Method for manufacturing compound workroll for cold rolling and workroll |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009126674A3 (en) * | 2008-04-08 | 2010-01-21 | Federal-Mogul Corporation | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
CN102057072A (en) * | 2008-04-08 | 2011-05-11 | 费德罗-莫格尔公司 | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
US9162285B2 (en) | 2008-04-08 | 2015-10-20 | Federal-Mogul Corporation | Powder metal compositions for wear and temperature resistance applications and method of producing same |
KR101608912B1 (en) * | 2008-04-08 | 2016-04-04 | 페더럴-모걸 코오포레이숀 | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
US9546412B2 (en) | 2008-04-08 | 2017-01-17 | Federal-Mogul Corporation | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
US9624568B2 (en) | 2008-04-08 | 2017-04-18 | Federal-Mogul Corporation | Thermal spray applications using iron based alloy powder |
US10124411B2 (en) | 2008-04-08 | 2018-11-13 | Federal-Mogul Llc | Method for producing powder metal compositions for wear and temperature resistance applications and method of producing same |
CN102363836A (en) * | 2011-11-11 | 2012-02-29 | 上海上大热处理有限公司 | Induction quenching method for Cr12MoV roller |
KR101514528B1 (en) | 2013-07-09 | 2015-04-22 | 주식회사 포스코 | Apparatus and method for removing scale on a surface of slab |
Also Published As
Publication number | Publication date |
---|---|
JP4628077B2 (en) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5895493B2 (en) | Rolling bearing manufacturing method, induction heat treatment apparatus | |
JP2014020538A (en) | Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment | |
WO2013108828A1 (en) | Rolled wire rod, and method for producing same | |
JP5400590B2 (en) | Steel material with excellent rolling fatigue life | |
JP5070824B2 (en) | Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same | |
JP5194454B2 (en) | Steel plate excellent in fine blanking workability and manufacturing method thereof | |
JP4628077B2 (en) | Roll for scale breaker, manufacturing method thereof, and quenching device | |
JP2008196033A (en) | Thrust bearing | |
JP2008174822A (en) | Thrust bearing | |
JP2019055419A (en) | Cold rolling roll | |
JP2008174821A (en) | Thrust bearing | |
EP3479915B1 (en) | Roll outer layer material for hot rolling and composite roll for hot rolling | |
JP6082342B2 (en) | Manufacturing method of high carbon steel wire | |
JP4462440B2 (en) | Method for producing hot-rolled bearing steel | |
JP2006241559A (en) | Rolling bearing unit for supporting wheel | |
JP2007239072A (en) | Rolling member manufacturing method, and rolling bearing manufacturing method | |
JP2006299313A (en) | Rolling supporter | |
JP2022170056A (en) | steel | |
WO2005033346A1 (en) | Thin-walled part producing method, bearing raceway ring, thrust needle roller bearing, rolling bearing raceway ring producing method, rolling bearing raceway ring, and rolling bearing | |
JPH11264049A (en) | High carbon steel strip and its production | |
JP2006002194A (en) | Method for manufacturing shaft | |
Danda | Effect of induction hardening on high carbon steel forgings | |
JP2002143909A (en) | Roll made of high speed tool steel having high spalling resistance and its production method | |
JPH11347673A (en) | Roller bearing, and its manufacture | |
JP4023224B2 (en) | Hot-rolled steel sheet and automotive parts with excellent rotary ironing workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4628077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |