JPH11347673A - Roller bearing, and its manufacture - Google Patents

Roller bearing, and its manufacture

Info

Publication number
JPH11347673A
JPH11347673A JP15177198A JP15177198A JPH11347673A JP H11347673 A JPH11347673 A JP H11347673A JP 15177198 A JP15177198 A JP 15177198A JP 15177198 A JP15177198 A JP 15177198A JP H11347673 A JPH11347673 A JP H11347673A
Authority
JP
Japan
Prior art keywords
ring
carbide
rolling
carbides
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15177198A
Other languages
Japanese (ja)
Inventor
Shigeru Okita
滋 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP15177198A priority Critical patent/JPH11347673A/en
Publication of JPH11347673A publication Critical patent/JPH11347673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the cost by hot-forging a round bar stock to form coarse rings of inner and outer rings, and effecting the hot ring rolling of the coarse rings without spheroidizing annealing to roll into the inner and other rings to omit the softening annealing and to reduce a turning margin. SOLUTION: A stock is hot forged to form coarse rings, and not CRF working but the WRF working is effected to the coarse rings to form inner and outer rings of a bearing. Annealing can be omitted, and the decarburizing quantity can be reduced to greatly reduce the turning margin 13d by the subsequent turning. After the hot forging of the stock, the WRF working is effected. Since the carbide is grain refined by the heating in a high temperature range, the spheroidizing speed of the carbide is remarkably increased, and when the heating to the specified working temperature is completed, the ring rolling is immediately started, and due to the subsequent gradual cooling, the conventional long annealing time can be reduced by half including the ring rolling time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば二輪車,自
動車,農業機械,建設機械等、様々の所に使用される転
がり軸受及びその製造方法に関し、特に、ローリング加
工を利用して製造される玉軸受や自動調心軸受などの転
がり軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing used in various places such as a motorcycle, an automobile, an agricultural machine, a construction machine and the like, and a method of manufacturing the rolling bearing. Related to rolling bearings such as bearings and self-aligning bearings.

【0002】[0002]

【従来の技術】熱処理後に研削加工を行う深溝玉軸受の
内外輪の製造方法に関して、製造コストを考慮して、従
来一般的に、冷間でのリングローリング加工(以下CR
F加工と呼ぶ)が採用されている。例えば、特公平6−
83872号公報にはCRF加工の前に全面旋削加工を
行ない形状や重量を一定にした後、精密なCRF加工で
深溝玉軸受として必要な軌道面溝やシール溝等の形状ま
で完全に仕上げることにより、その後の旋削加工を省略
してさらなるコストダウンを可能にするものが開示され
ている。
2. Description of the Related Art With regard to a method of manufacturing inner and outer rings of a deep groove ball bearing in which a grinding process is performed after a heat treatment, a ring rolling process (hereinafter referred to as CR) in a cold state is conventionally generally performed in consideration of a manufacturing cost.
F processing). For example,
No. 83872 discloses that by performing full-scale turning before CRF processing to make the shape and weight constant, and then to complete the shape of raceway surface grooves and seal grooves necessary for a deep groove ball bearing by precise CRF processing. There is disclosed an apparatus which can omit subsequent turning to further reduce the cost.

【0003】また、特許公報第2524156号では、
リングを加熱して熱間転造加工で粗加工を行ない、その
まま温度が低下したら続いて精密温間転造鍛造を施すこ
とで、加工性が良く、割れの発生も無い、寸法精度が良
好なリングが得られるとしている。さらに、温間加工時
の加工歪により、続けて行なう焼入加熱時に組織が微細
化して高靭性となるものが開示されている。
[0003] Also, in Japanese Patent Publication No. 2524156,
The ring is heated and subjected to roughing by hot rolling, and when the temperature drops as it is, precision warm rolling and forging are performed, resulting in good workability, no cracking, and good dimensional accuracy. The ring is said to be obtained. Further, there is disclosed a structure in which the structure is refined during subsequent quenching and heating to increase the toughness due to processing strain during warm working.

【0004】また、特開平9−176740号公報に
は、リング状素材を熱間でのリングローリング加工によ
り玉溝を形成しながら拡径し、直ちに焼入温度に加熱調
整して外径(サイジング型に圧入)又は内径を拘束して
焼入れする、つまり、寸法精度が低い熱間加工に矯正焼
入を組合わせることで、工程省略によるコストダウン効
果が得られるものが開示されている。
Japanese Patent Application Laid-Open No. Hei 9-176740 discloses that a ring-shaped material is expanded while forming ball grooves by hot ring rolling, and is immediately heated to a quenching temperature to adjust the outer diameter (sizing). There is disclosed a method in which quenching is performed by restricting the inner diameter of the mold or by restricting the inner diameter, that is, by combining corrective quenching with hot working with low dimensional accuracy, thereby achieving a cost reduction effect by omitting steps.

【0005】[0005]

【発明が解決しようとする課題】ここで、リングローリ
ング加工について図5の簡略図を参照して簡単に説明す
ると、成形ロール11とマンドレル12に挟まれた粗形
リング13を、荷重Wにより圧延すると断面は肉薄にな
り、一方、リング径は拡大する。かくして鍛造リングや
旋削リング等の粗形リングを拡径して、圧延リングとす
るものである。従って、肉厚や拡径量は調整可能である
が、幅方向には拘束されないので横方向の寸法制御はで
きない。そのため、図6に示すリングローリング加工さ
れた被圧延リング13の断面図のように、リング幅方向
にはみ出し13a(網目線で示した部分)ができる。な
お、図6中、13nはその後の機械加工による取代分を
含む被圧延リングの内径面である。また、二点鎖線は機
械加工後の形状を示したもので、13bは内外輪のレー
ス溝,13cはシール溝であり、リング内径面13nと
前記二点鎖線の形状との間が機械加工時の取代分13d
である。
Here, the ring rolling process will be briefly described with reference to the simplified diagram of FIG. 5. The rough ring 13 sandwiched between the forming roll 11 and the mandrel 12 is rolled by a load W. Then, the cross section becomes thinner, while the ring diameter increases. Thus, the diameter of a rough ring such as a forged ring or a turning ring is increased to form a rolled ring. Therefore, the thickness and the diameter expansion amount can be adjusted, but they are not constrained in the width direction, so that the lateral dimension control cannot be performed. Therefore, as shown in the cross-sectional view of the rolled ring 13 subjected to the ring rolling shown in FIG. 6, a protrusion 13a (portion shown by a mesh line) is formed in the ring width direction. In addition, in FIG. 6, 13n is an inner diameter surface of the ring to be rolled including a margin by the subsequent machining. The two-dot chain line shows the shape after machining, 13b is a race groove of the inner and outer rings, 13c is a seal groove, and the space between the ring inner diameter surface 13n and the shape of the two-dot chain line is used during machining. 13d of allowance
It is.

【0006】このリングローリング加工を冷間で行って
いる前出の特公平6−83872号の場合は、こうした
幅方向のはみ出しと共に、複雑な形状を成形するシール
溝やレース溝の縁に冷間加工による微少な割れが発生し
易くなる。そこで、精密なCRF加工を行う前に予め寸
法を整え体積を一定にするために全面旋削を必要とする
うえ、更にCRF加工後にも割れ等を取り除くべく仕上
旋削が必要となってしまうという問題点がある。加え
て、複雑な形状を精密にCRF加工する場合は加工時間
が長く必要になり、リングローリング加工コストが上が
る傾向にあるという問題点を有する。
In the case of Japanese Patent Publication No. 6-83872, in which the ring rolling is performed in a cold state, in addition to such protrusion in the width direction, the edge of a seal groove or a race groove for forming a complicated shape is formed in a cold state. Minute cracks due to processing are likely to occur. Therefore, there is a problem that, before performing the precise CRF processing, the entire surface must be turned in order to adjust the dimensions in advance and to keep the volume constant, and further, after the CRF processing, the finish turning is required to remove cracks and the like. There is. In addition, when a complicated shape is precisely subjected to CRF processing, a long processing time is required, and there is a problem that the cost of ring rolling tends to increase.

【0007】また、特許公報第2524156号では熱
間温度域での加工を行っているが、一般に、熱間温度域
では変形抵抗が小さくなる分素材への加工度は低く、加
工による組織微細化効果は小さいと考えられる。また、
一度熱間温度域まで十分に加熱されると、炭化物は溶け
て小さく球状化する。すると、その後に温間加工を行な
っても、特に炭化物の微細化には効果がなく、温間加工
の加工歪による焼入再加熱時の再結晶でオーステナイト
粒が微細化するだけである。つまり、この場合には、加
工により組織特に炭化物を微細化して軸受の長寿命化を
図ることはできず、その点にまだ改良の余地があった。
In Japanese Patent Publication No. 2524156, processing is performed in the hot temperature range. However, in the hot temperature range, the degree of deformation of the material is reduced due to the reduced deformation resistance, and the structure is refined by the processing. The effect is considered to be small. Also,
Once heated sufficiently to the hot temperature range, the carbides melt and become small and spherical. Then, even if the subsequent warm working is performed, there is no effect particularly on the refinement of carbides, but only the austenite grains are refined by recrystallization at the time of quenching and reheating due to the working strain of the warm working. That is, in this case, it is not possible to extend the life of the bearing by making the structure, particularly the carbides, finer by working, and there is still room for improvement in that respect.

【0008】特開平9−176740号でも前記同様に
熱間域での加工を行なっているため、加工による組織微
細化効果は小さいと考えられる。また、熱間加工後にそ
のまま焼入れする方法が開示されているが、その場合組
織はむしろ粗大化し、また炭化物の球状化が不十分にな
る恐れがある。さらに、素材リングを熱間でリングロー
リング加工すると共に矯正焼入して得られた被圧延リン
グは、その後一個ずつ旋削仕上加工しなければならず、
コスト低減の点にもまだ改良の余地がある。
In Japanese Patent Application Laid-Open No. Hei 9-176740, since the working is performed in the hot region in the same manner as described above, it is considered that the effect of making the structure fine is small. Further, a method is disclosed in which quenching is performed as it is after hot working, but in that case, the structure is rather coarsened, and the spheroidization of the carbide may be insufficient. In addition, the rolling ring obtained by hot rolling and straightening and quenching the material ring must then be turned and finished one by one,
There is still room for improvement in terms of cost reduction.

【0009】本発明は、熱処理後に研削加工を行う高炭
素鋼の軸受の特に内外輪の製造法に関する上記従来の未
解決の課題に着目してなされたものであり、温間加工で
のリングローリング加工(以下、WRF加工という)で
炭化物を微細化することにより、軸受の機能に優れると
ともに、従来よりも製造コスト低減が可能な転がり軸受
及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional unsolved problem relating to a method of manufacturing a bearing made of high carbon steel, which is subjected to grinding after heat treatment, and particularly to a method of manufacturing inner and outer rings. It is an object of the present invention to provide a rolling bearing and a method of manufacturing the rolling bearing, in which the carbide is refined by processing (hereinafter, referred to as WRF processing) to thereby excel in the function of the bearing and to reduce the manufacturing cost as compared with the related art.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る軸受製造方法の発明は、高炭素鋼
を硬化熱処理して研削加工を行う転がり軸受の特に内外
輪の製造において、丸棒素材から熱間鍛造して内輪と外
輪に加工される粗形リングを作り、その後球状化焼鈍を
行なわずにそのまま当該粗形リングを温間でのリングロ
ーリング加工により成形圧延して内輪と外輪とすること
を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the invention of a bearing manufacturing method according to the first aspect of the present invention is directed to a method of manufacturing a rolling bearing in which high carbon steel is hardened and heat-treated for grinding. In, to make a rough ring to be processed into an inner ring and an outer ring by hot forging from a round bar material, and then form and roll the crude ring as it is by warm ring rolling without spheroidizing annealing It is characterized by an inner ring and an outer ring.

【0011】また、請求項2に係る転がり軸受の発明
は、前記請求項1の製造方法により作られた内輪と外輪
との完成品表面の炭化物が、面積率で5%以上15%以
下の範囲で存在し、かつ平均粒径0.5μm以下の炭化
物が全炭化物に対して、面積率で50%以上で、かつ平
均粒径lμm以上の炭化物が全炭化物に対して、面積率
で2%以下であり、かつ表面硬さがHV730以上90
0以下であることを特徴とする。
According to a second aspect of the present invention, there is provided a rolling bearing, wherein the carbide on the surface of the finished product of the inner ring and the outer ring produced by the manufacturing method of the first aspect has an area ratio of 5% or more and 15% or less. And carbides having an average particle size of 0.5 μm or less with respect to the total carbides have an area ratio of 50% or more, and carbides having an average particle size of 1 μm or more have a total area ratio of 2% or less with respect to the total carbides. And the surface hardness is HV730 or more and 90.
0 or less.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。 (1)球状炭化物の微細化について:本願発明者らは、
SUJ2材のように炭素を1.0重量%前後含有する高
炭素鋼を、熱間加工後にそのまま温間加工すると、高炭
素鋼を球状化焼鈍した場合と異なり、球状炭化物のほと
んどが0.5μm以下に微細化されることを見出して本
発明をなすに至った。
Embodiments of the present invention will be described below with reference to the drawings. (1) Regarding miniaturization of spherical carbides:
When high-carbon steel containing about 1.0% by weight of carbon, such as SUJ2 material, is hot-worked as it is after hot-working, most of the spherical carbide is 0.5 μm unlike the case where the high-carbon steel is spheroidized and annealed. The present inventors have found that the present invention is miniaturized, and have accomplished the present invention.

【0013】すなわち、従来から軸受内外輪の素材とし
て最も多く使用されているSUJ2材のように、炭素を
1.0重量%前後含有する高炭素鋼にあっては、周知の
ように熱間圧延後に冷却されると網状セメンタイト(炭
化物)とパーライト組織になり、この状態では硬くて加
工しにくいため、その後の旋削等の機械加工工程に悪影
響を与える。そこで、機械加工の前に軟化焼鈍を行って
硬さを下げると共に、ミクロ組織を改善する。SUJ2
材の場合の軟化焼鈍は、一般に球状化焼鈍を行なってい
る。例えば、深溝玉軸受の内外輪を製造する場合、従来
は1100〜1200℃で熱間鍛造して成形した粗形リ
ングを、N2 ガス雰囲気下760〜820℃で、10〜
20時間という長時間にわたり焼鈍する。この一般的な
球状化焼鈍処理でA1変態点前後に加熱されると、前記
網状炭化物は一部が溶解し、パーライトの層状組織は破
壊されて炭化物が球状化していく。これにより、当該処
理終了後の高炭素鋼はフェライト素地中に球状炭化物が
存在する組織となるのであるが、炭化物は面積率で半分
以上が平均粒径で0.5μm以上、場合によっては2μ
m以下のものも存在する。そして粗形リングの表面には
酸化層や脱炭層が生成される。
That is, in the case of high carbon steel containing about 1.0% by weight of carbon, such as SUJ2 material, which has been conventionally most frequently used as a material for bearing inner and outer rings, it is known that hot rolling is performed. If it is cooled later, it becomes a network cementite (carbide) and a pearlite structure. In this state, it is hard and difficult to work, so that it adversely affects subsequent machining processes such as turning. Therefore, softening annealing is performed before machining to lower the hardness and improve the microstructure. SUJ2
In the case of soft annealing in the case of a material, spheroidizing annealing is generally performed. For example, when manufacturing the inner and outer rings of a deep groove ball bearing, conventionally, a rough ring formed by hot forging at 1100 to 1200 ° C is formed at 760 to 820 ° C in an N 2 gas atmosphere at 10 to 10 ° C.
Anneal for as long as 20 hours. When heated around the A1 transformation point in this general spheroidizing annealing treatment, a part of the network carbide is dissolved, the layered structure of pearlite is broken, and the carbide is spheroidized. As a result, the high carbon steel after the completion of the treatment has a structure in which spherical carbides are present in the ferrite base, and the carbides have an area ratio of at least half of which has an average particle size of 0.5 μm or more, and in some cases, 2 μm or more.
m or less. An oxide layer and a decarburized layer are generated on the surface of the rough ring.

【0014】このように、高炭素鋼素材は熱間圧延や熱
間鍛造(熱間加工)後に球状化焼鈍をしてから、リング
ローリング加工のような温間加工や冷間加工を行なうの
が普通であるが、その場合の温間又は冷間加工中に炭化
物が微細化することは殆どない。また、熱間圧延や熱間
鍛造後に球状化焼鈍なしでそのまま冷間加工を施した
り、あるいは熱間加工を繰り返しても、その効果はほと
んどない。しかも、リングローリング加工された圧延リ
ング表面には、粗形リングの表面に前述のように発生し
ていた酸化層や脱炭層が殆どそのまま残留する。これら
酸化層や脱炭層が軸受表面に残ると、寿命や摩耗などの
軸受機能が低下してしまう恐れがあるため、圧延加工リ
ングの全面を旋削して脱炭層を除去しなければならな
い。
As described above, the high carbon steel material is subjected to spheroidizing annealing after hot rolling or hot forging (hot working), and then to warm working or cold working such as ring rolling. Normally, carbides hardly become fine during the warm or cold working in that case. Further, even if cold working is performed without spheroidizing annealing or hot working is repeated after hot rolling or hot forging, the effect is hardly obtained. In addition, the oxidized layer and the decarburized layer generated on the surface of the rough ring remain as they are on the surface of the rolling ring subjected to the ring rolling. If the oxidized layer and the decarburized layer remain on the bearing surface, the bearing function such as life and wear may be deteriorated. Therefore, it is necessary to turn the entire surface of the rolling ring to remove the decarburized layer.

【0015】これに対して、本発明に係る軸受製造方法
にあっては、素材の熱間加工後に、球状化焼鈍を行わず
にそのまま温間加工を行なうことを特徴とする。この温
間加工によって炭化物の球状化が進行するのと同時に強
加工が加わるので、網状セメンタイト(炭化物)とパー
ライト組織中の板状セメンタイトが微細化しながら球状
化し、冷却後には炭化物が微細球状化した組織となる。
つまり、すでに球状化した組織を加工しても炭化物はほ
とんど微細化せず、その後に軟化のための球状化焼鈍を
行なっても、単にほぼ通常の球状化組織になるに過ぎな
いし、またパーライト組織を冷間加工しても微細化しな
いが、しかし本発明の如くパーライト組織を温間圧延す
ると、炭化物を細かく微細にして球状化することができ
るのである。
On the other hand, the bearing manufacturing method according to the present invention is characterized in that after hot working of a material, warm working is performed without performing spheroidizing annealing. This warm working promotes spheroidization of carbides and at the same time adds strong working, so that network cementite (carbide) and plate-like cementite in the pearlite structure are spheroidized while being refined, and after cooling, the carbide is finely spheroidized. Become an organization.
In other words, even if the already spheroidized structure is processed, the carbides hardly become finer, and even if spheroidizing annealing for softening is subsequently performed, the spheroidized structure is merely almost a normal spheroidized structure. Does not become fine even when cold-worked, but when the pearlite structure is warm-rolled as in the present invention, carbides can be made finer and finer and spheroidized.

【0016】かくして、本発明の軸受製造方法にあって
は、素材の熱間加工後にそのまま温間加工を行なうにあ
たり、加熱条件やその後の冷却速度を徐冷制御すること
で、再度昇温しなくても徐冷温度を適宜に保持すれば足
りるから、従来の熱間加工後に行っている軟化焼鈍を省
略することが可能になる。ここでまず、鋼組織の球状化
率を高めるため、温間加工の加熱条件の設定が必要であ
る。未溶解のパーライトを残留させないためには600
℃以上で温間加工する必要があり、一方、温度の上げす
ぎでオーステナイト変態量が多くなりすぎてパーライト
を再生させるような事態を防止するためには、820℃
以下で温間加工する必要がある。よりよく軟化させるた
めには、炭化物の球状化率が高い680℃以上800℃
以下が好ましい。さらに、冷却後の硬さを下げるために
は、温間加工後の冷却速度を徐冷制御することが必要で
ある。当該冷却速度はできるだけ遅いほうが好ましく、
十分軟化させるためには5℃/Sec以下に設定する必
要がある。しかし、生産性やコストを考慮すると1℃/
Sec以上にする必要があるから、結局適切な冷却速度
は1℃/Sec以上5℃/Sec以下の範囲とする。よ
りよく軟化させるためには3℃/Sec以下が望まし
い。
Thus, in the bearing manufacturing method of the present invention, when performing the hot working as it is after the hot working of the material, the heating condition and the subsequent cooling rate are gradually cooled so that the temperature does not rise again. However, since it is sufficient to appropriately maintain the annealing temperature, it is possible to omit the conventional softening annealing performed after hot working. Here, first, in order to increase the spheroidization ratio of the steel structure, it is necessary to set heating conditions for warm working. 600 to prevent undissolved pearlite from remaining
On the other hand, in order to prevent a situation in which the austenite transformation amount becomes too large when the temperature is too high and pearlite is regenerated, it is necessary to carry out 820 ° C.
It is necessary to warm work below. For better softening, the spheroidization rate of the carbide is high, 680 ° C. or higher and 800 ° C.
The following is preferred. Furthermore, in order to lower the hardness after cooling, it is necessary to gradually control the cooling rate after warm working. The cooling rate is preferably as low as possible,
It is necessary to set the temperature to 5 ° C./Sec or less in order to sufficiently soften. However, considering the productivity and cost, 1 ° C /
Since it is necessary to set the cooling rate to Sec or higher, an appropriate cooling rate is in the range of 1 ° C./Sec to 5 ° C./Sec. For better softening, 3 ° C./Sec or less is desirable.

【0017】(2)リング表面の脱炭について:また、
本願発明者らは、従来の一般的なCRF加工で圧延リン
グ面に残留している前記酸化層や脱炭層の除去について
も検討する必要があると考え、一般的な深溝玉軸受のリ
ングローリング加工を取り入れた製造法における各製造
工程での脱炭量を詳しく調査した。素材は、軸受に最も
多用され、特に深溝玉軸受ではそのほとんどに使用され
ている軸受鋼(SUJ2)とした。脱炭量の調査方法
は、断面をX線解析して炭素の特性X線を測定するもの
とした。なお、測定には島津製作所製のX線測定器(商
品名:EPMA−1600)を用いた。素材として、一
般的に素材コストが有利な圧延したままの丸棒鋼材を使
用したため、製鋼から圧延工程で既にある程度の脱炭が
発生している。
(2) Decarburization of the ring surface:
The inventors of the present application believe that it is necessary to consider the removal of the oxidized layer and the decarburized layer remaining on the rolling ring surface by the conventional general CRF processing, and therefore, the ring rolling processing of the general deep groove ball bearing is considered. The amount of decarburization in each production process in the production method incorporating the method was investigated in detail. The material used was bearing steel (SUJ2) which is most frequently used for bearings, and particularly used for most of deep groove ball bearings. The method for examining the decarburization amount was to measure the characteristic X-ray of carbon by X-ray analysis of the cross section. Note that an X-ray measuring device (trade name: EPMA-1600) manufactured by Shimadzu Corporation was used for the measurement. Since a rolled round bar material, which is generally advantageous in terms of material cost, is used as the material, a certain degree of decarburization has already occurred in the rolling process from steelmaking.

【0018】熱間鍛造後の最大脱炭量の測定結果を図7
に示す。図7において、横軸は表面からの距離(mm)
を示し、縦軸は炭素濃度(重量%)を示す(後述する図
8〜図10も同様)。熱間鍛造時におよそ1100〜1
200℃に加熱されて据え込み成形される間に表面付近
が若干脱炭していることがわかる。図8に、一般的に行
われている窒素(N2 )雰囲気での焼鈍後の脱炭量測定
結果を示す。後述するように焼鈍工程は、加熱温度こそ
760〜820℃程度と低いが、全工程ではおよそ10
〜20時間に及ぶ長時間の軟化焼鈍処理を行なうため、
最大脱炭量が大幅に増加していた。この結果から、脱炭
の主原因は焼鈍工程にあることが明確となった。図9
に、熱間圧延の次工程でCRF圧延を施した後の脱炭量
測定結果を示す。CRFで圧延された分、若干深さが浅
くはなっているが図8に示した焼鈍後の最大脱炭量とほ
ぼ同じ脱炭結果が表れている。これらの結果から、熱間
鍛造により製造された鍛造リングは、従来行っているそ
の後の10〜20時間に及ぶ長時間の焼鈍工程で大きく
脱炭が増加してしまい、その脱炭層を取り除くためには
十分な旋削量での全面旋削が不可避といえる。
FIG. 7 shows the measurement results of the maximum decarburization amount after hot forging.
Shown in In FIG. 7, the horizontal axis is the distance from the surface (mm).
The vertical axis indicates the carbon concentration (% by weight) (the same applies to FIGS. 8 to 10 described later). About 1100-1 during hot forging
It can be seen that the surface was slightly decarburized during upsetting by heating to 200 ° C. FIG. 8 shows the results of measurement of the amount of decarburization after annealing in a generally performed nitrogen (N 2 ) atmosphere. As will be described later, in the annealing step, the heating temperature is as low as about 760 to 820 ° C.
In order to perform a long-time soft annealing treatment up to 20 hours,
The maximum decarburization amount had increased significantly. From this result, it became clear that the main cause of decarburization was the annealing process. FIG.
Fig. 7 shows the measurement results of the amount of decarburization after CRF rolling in the next step of hot rolling. Although the depth becomes slightly shallower due to the rolling by the CRF, the decarburization result which is almost the same as the maximum decarburization amount after annealing shown in FIG. 8 appears. From these results, in the forged ring manufactured by hot forging, the decarburization greatly increases in the subsequent long annealing process of 10 to 20 hours, which is conventionally performed. It can be said that full turning with a sufficient turning amount is inevitable.

【0019】これに対して、本発明に係る軸受製造方法
にあっては、素材を熱間鍛造して粗形リングを作り、そ
の粗形リングに対してCRF加工ではなくWRF加工を
施して軸受内外輪を成形することにより、焼鈍を省略し
て脱炭量を減らすことができ、前記図6に相当する図1
0に示したように、その後の旋削加工による旋削取代1
3dを従来のそれより大幅に削減することが可能とな
る。
On the other hand, in the bearing manufacturing method according to the present invention, the raw material is hot forged to form a rough ring, and the rough ring is subjected to WRF processing instead of CRF processing. By forming the inner and outer rings, annealing can be omitted to reduce the amount of decarburization.
As shown in FIG. 0, the turning allowance 1 by the subsequent turning process
3d can be greatly reduced compared to the conventional one.

【0020】図1は本発明の転がり軸受の製造方法の工
程図を示したもので、素材の熱間鍛造後にそのままWR
F加工を行う。当該加工における温間温度領域での加熱
で炭化物が微細化するため、炭化物の球状化速度も格段
に速くなり、所定加工温度に加熱が完了すれば直ちにリ
ングローリング加工を開始し、その後に徐冷するから、
従来の軟化焼鈍における長時間の焼鈍処理を、リングを
圧延成形する加工時間も含め半減することが可能とな
る。かくして本発明の転がり軸受の製造方法によれば、
球状化焼鈍処理工程を焼鈍処理時間を半減すると共にリ
ングローリング加工を同時に完了することが可能とな
る。比較のために、図2に従来のCRF加工を行う工程
図を示す。
FIG. 1 shows a process diagram of a method for manufacturing a rolling bearing according to the present invention.
Perform F processing. Since the carbides are refined by heating in the warm temperature range in the processing, the spheroidizing speed of the carbides is remarkably increased, and as soon as the heating to the predetermined processing temperature is completed, the ring rolling processing is started, and thereafter, the cooling is gradually performed. Because
It is possible to halve the long-time annealing treatment in the conventional softening annealing, including the processing time for rolling and forming the ring. Thus, according to the method for manufacturing a rolling bearing of the present invention,
In the spheroidizing annealing process, the annealing time can be reduced by half and the ring rolling can be completed at the same time. For comparison, FIG. 2 shows a process chart for performing conventional CRF processing.

【0021】本発明工程では図2における軟化焼鈍工程
を省略するので、焼鈍時の長時間保持により脱炭が増加
する事態は生じない。本発明のWRF加工後の脱炭量測
定結果を図11に示す。図7の熱間鍛造後の最大脱炭量
とほとんど同等であり、WRF加工では脱炭増加を極端
に抑えることができる。また、温間での加工は冷間に比
較して変形能が高くなり、比較的精密な加工が短時間で
可能であり、特に軸受の溝形状を割れが発生することな
く精密に成形が可能となることにより、旋削加工で加工
時間が長い溝部分の加工を極端に減らすことも可能とな
る。
In the process of the present invention, since the soft annealing step in FIG. 2 is omitted, a situation in which decarburization increases due to long-time holding during annealing does not occur. FIG. 11 shows the measurement results of the decarburization amount after the WRF processing of the present invention. It is almost equal to the maximum decarburization amount after hot forging in FIG. 7, and the increase in decarburization can be extremely suppressed in the WRF processing. In addition, hot working has higher deformability than cold working, and relatively precise working can be performed in a short period of time. Especially, it is possible to form the bearing groove precisely without cracking. Accordingly, it becomes possible to extremely reduce the machining of the groove portion where the machining time is long in the turning process.

【0022】さらに、図7で示した脱炭量は最大となる
外輪外径部であり、溝部ではその脱炭量が更に減少する
ので、場合によっては溝部を旋削せず熱処理後の研削加
工だけで仕上げることも可能となる。 (3)製造コストについて:近年、転がり軸受は高速・
高荷重・軽量化の要求が強く且つその使用環境も厳しく
なる一方で、低コストの要求も高まりつつある。そこ
で、本願発明者らは、使用環境が比較的厳しい条件を想
定した機能評価に加えて、コストに重要な関連をもつ加
工性評価を行なった。本願発明者らが行った「熱処理後
に研削加工を行う鋼製の軸受内外輪の製造コスト」の検
討に関して説明する。
Further, the decarburization amount shown in FIG. 7 is the outer diameter portion of the outer ring which is the maximum, and the decarburization amount is further reduced in the groove portion. In some cases, only the grinding after the heat treatment is performed without turning the groove portion. It is also possible to finish with. (3) Manufacturing costs: In recent years, rolling bearings
While demands for high load and light weight are strong and the use environment is severe, demand for low cost is also increasing. Therefore, the inventors of the present application performed a workability evaluation that has an important relationship with cost, in addition to a function evaluation assuming a condition in which a use environment is relatively severe. A description will be given of a study performed by the inventors of the present invention on “the manufacturing cost of a steel bearing inner and outer ring in which grinding is performed after heat treatment”.

【0023】すなわち、本願発明者らは、従来の種々の
製造方法で鋼素材から製造した軸受の内外輪について、
各製造工程を詳しく調査し以下の結果を得た。 一般的に、いわゆる並径と呼ばれる外輪外径がおよそ
20mm前後から200mm前後までの軸受は、大量に
低コストで量産を行なっている。そのために、一度に多
くの軸受が同時に処理できる熱処理やその後のショット
ピーニング工程等に比べて、熱処理後の軸受を一つ一つ
処理する研削加工や旋削加工の工数低減の方がコストダ
ウン効果が大きい。
That is, the inventors of the present application have described the inner and outer rings of a bearing manufactured from a steel material by various conventional manufacturing methods.
Each manufacturing process was investigated in detail and the following results were obtained. Generally, bearings having an outer ring outer diameter of about 20 mm to about 200 mm, which is a so-called parallel diameter, are mass-produced in large quantities at low cost. Therefore, compared to heat treatment that can process many bearings at once at the same time or subsequent shot peening process, reducing the number of grinding and turning processes to process each bearing after heat treatment is more cost effective. large.

【0024】大量生産を行なっているため、材料歩留
によるコストダウン効果も重要であり、リングローリン
グ加工を利用して鍛造ブランクを小さくする(スクラッ
プを少なくする)ことや、内外輪軌道面に溝形状等を付
けて旋削取代を減らすことが有効である。
Since mass production is performed, it is also important to reduce the cost by reducing the material yield. Forging blanks can be made smaller (reduce scrap) by ring rolling, and grooves can be formed on the inner and outer raceway surfaces. It is effective to add a shape or the like to reduce the turning allowance.

【0025】レース溝やシール溝形状を全部、精密な
リングローリング加工で完全に仕上げるのは、ローリン
グ加工前の全面旋削のコストや割れ問題、また精密に加
工するための時間延長によるコストアップ等を考慮する
とあまり有利ではない。むしろ、リングローリング加工
後に旋削加工を行なう方が低コストとなる。つまり、製
造コストを突詰めると、ブランクを一定にするリングロ
ーリング加工前には旋削加工を行わず、リングローリン
グ加工後の旋削工数を極力減らすことが最適であること
を見出した。
The complete finishing of the race grooves and seal groove shapes by precise ring rolling processing involves the cost and cracking problem of full-turning before rolling processing, and the cost increase due to prolonged time for precision processing. Not very advantageous when considered. Rather, turning after ring rolling is less costly. In other words, it has been found that when manufacturing costs are reduced, it is optimal to reduce the number of turning steps after ring rolling as much as possible without performing turning before ring rolling to make the blank constant.

【0026】以下、本発明の方法で製造した転がり軸受
の内外輪における数値限定の臨界的意義について説明す
る。 (a)[完成品表面の炭化物面積率;5%以上15%以
下]:玉軸受や特に自動調心ころ軸受では潤滑不足や転
動体の滑り等による接触摩耗が内外輪に発生する.一般
に表面の硬さが高い方が、さらに、摩耗面に存在する炭
化物量が多い方が、耐摩耗性に効果があることが知られ
ている。そこで潤滑不良状態を想定した耐摩耗性に関し
て炭化物の面積率との関係を図3に示す。表面の炭化物
面積率が5%以上になると耐摩耗性が向上している。一
方、内外輪はWRF加工で圧延成形しているが先に示し
た図5におけるマンドレル12が摩耗又は損傷する。そ
の加工性に関して、炭化物の面積率との関係を図4に示
す。表面の炭化物面積率が15%以上になるとマンドレ
ル寿命が低下してしまう。以上のことから、完成品表面
の炭化物面積率は5%以上15%以下とする。ただし、
耐摩耗性と加工性を共に十分得るには、完成品表面の炭
化物面積率は9%以上12%以下が望ましい。 (b)[完成品表面に平均粒径0.5μm以下の炭化物
の面積率;50%以上] 潤滑不良や摩耗分混入等が原因で軸受に発生する、滑り
摩耗やピーリングのような表面損傷は、軸受使用中に油
膜不足により内外輪と転動体が金属接触することが原因
と考えられている。摩耗の場合は前述したように、単純
に炭化物の面積率によって決ってくるが、表面損傷の場
合は、摩耗特性が良ければ良い傾向にはあるが、それだ
けでは解決できない。本発明者らは、軸受試験での表面
損傷状態を観察した結果、ころの滑り接触により表面に
微細き裂が発生し、そのき裂が進行して表面層がハクリ
している状態を確認した。
The critical significance of limiting the numerical values of the inner and outer rings of the rolling bearing manufactured by the method of the present invention will be described below. (A) [Carbide area ratio on finished product surface: 5% or more and 15% or less]: In ball bearings and especially spherical roller bearings, contact wear occurs on the inner and outer races due to insufficient lubrication and sliding of rolling elements. It is generally known that the higher the hardness of the surface, and the greater the amount of carbide present on the wear surface, the more effective the wear resistance. FIG. 3 shows the relationship between the wear resistance assuming a poor lubrication state and the area ratio of carbide. When the area ratio of carbide on the surface is 5% or more, the wear resistance is improved. On the other hand, the inner and outer rings are roll-formed by WRF processing, but the mandrel 12 shown in FIG. 5 shown above is worn or damaged. FIG. 4 shows the relationship between the workability and the area ratio of carbide. When the area ratio of carbide on the surface is 15% or more, the life of the mandrel is reduced. From the above, the carbide area ratio on the surface of the finished product is set to 5% or more and 15% or less. However,
In order to sufficiently obtain both wear resistance and workability, the carbide area ratio on the surface of the finished product is desirably from 9% to 12%. (B) [Area ratio of carbide having an average particle diameter of 0.5 μm or less on the surface of the finished product; 50% or more] Surface damage such as sliding wear and peeling that occurs on bearings due to poor lubrication or abrasion is included. It is considered that the cause is that the inner and outer races and the rolling elements come into metallic contact due to a shortage of an oil film during use of the bearing. As described above, in the case of abrasion, it is simply determined by the area ratio of the carbide. In the case of surface damage, there is a tendency that good wear characteristics are sufficient, but it cannot be solved by itself. The present inventors have observed a state of surface damage in a bearing test, and as a result, confirmed a state in which fine cracks were generated on the surface due to sliding contact of the rollers, and the cracks were advanced and the surface layer was scuffed. .

【0027】炭化物を微細析出させることは、組織の微
細化等、マトリックスを強化するだけでなく、炭化物の
析出していない素地のすき間を小さくできる。また、ビ
ッカ−ス硬さ等の硬さ測定機は加圧する被測定物の塑性
変形能を硬さに換算しているが、その硬さは、素地に炭
化物が析出した状態を測定している。しかし、表面損傷
はミクロな金属接触によって発生しているため、炭化物
の析出していない素地のすき間と接触する場合があり、
そのミクロな部分では、耐摩耗性や耐ピーリング性が低
く、微細なき裂の発生する可能性が高くなってしまう。
Fine precipitation of carbides not only strengthens the matrix, such as micronizing the structure, but can also reduce the gap in the base material on which no carbides are precipitated. In addition, a hardness measuring device such as Vickers hardness converts the plastic deformability of an object to be pressed into hardness, and the hardness measures a state in which carbides are precipitated on a substrate. . However, since the surface damage is caused by micro metal contact, it may come into contact with the gap of the base material where carbide is not precipitated,
The wear resistance and peeling resistance are low in the microscopic part, and the possibility of generation of a fine crack increases.

【0028】つまり、本発明では炭化物の微細析出によ
って、表面損傷が発生しやすいすき間を、限りなく小さ
くすることで、長寿命を達成した。このように表面損傷
に対して長寿命効果を出すためには、完成品表面に平均
粒径0.5μm以下の微細炭化物面積率を、全炭化物面
積率の50%以上にする必要がある。さらに十分な長寿
命効果を得るためには、70%以上が望ましい。 (c)[完成品表面に平均粒径1μm以上の炭化物の面
積率;2%以下] 平均粒径0.5μm以下の微細炭化物面積率を、全炭化
物面積率の50%以上にすることで、表面損傷が発生し
やすいすき間を、限りなく小さくしているが焼入条件に
よっては、微細炭化物が部分的に凝集し比較的大きな炭
化物となってしまう場合があり、その部分は表面損物に
たいして、急激に寿命が低下してしまう。表面損傷に対
して長寿命を得るためには焼入条件を調整し、完成品表
面に平均粒径1μm以上の炭化物面積率を、全炭化物面
積率の2%以下にする必要がある。さらに十分な長寿命
効果を得るためには、1%以下が望ましい。 (d)[表面硬さがHV730以上900以下] 炭化物の微細析出は、組織の微細化等、マトリックスを
強化するので表面硬さを上げる傾向にあり、通常軸受と
同一熱処理を行なっても、本発明軸受の方が硬さが高く
なる。本発明軸受では、炭化物の微細化と硬さ上昇を同
時に得ることができる。一方、耐摩耗性や耐ピーリング
特性に対して、表面の硬さは重要なファクターであり、
炭化物を微細析出させても、全体の表面硬さが低下する
と、軸受寿命が極端に低下してしまう。潤滑不良と摩耗
分混入を想定した寿命試験では、表面硬さがHV730
未満では長寿命が得られない。そのため、表面硬さはH
Vス730以上必要である。しかしながら、熱処理条件
(例えば急速加熱、高周波加熱)や冷却方法(例えば水
焼入、サブゼロ処理)等で、炭化物の微細析出組織を保
持したままで硬さを高くすることは長寿命傾向を示す
が、HV900を越える硬さになると、素地の靭性が急
激に低下し軸受寿命が低下してしまう。そのため表面硬
さはHV900以下にする必要がある。また、素地の強
化を安定して得るためには、HV770以上HV850
以下が好ましい。
That is, in the present invention, a long service life is achieved by minimizing the gap in which surface damage is likely to occur due to fine precipitation of carbide. In order to achieve a long life effect against surface damage as described above, the area ratio of fine carbide having an average particle size of 0.5 μm or less on the surface of the finished product needs to be 50% or more of the total carbide area ratio. In order to obtain a further sufficient long-life effect, 70% or more is desirable. (C) [Area ratio of carbide having an average particle size of 1 μm or more on the finished product surface: 2% or less] By making the area ratio of fine carbide having an average particle size of 0.5 μm or less 50% or more of the total carbide area ratio, The gap where surface damage is likely to occur is made as small as possible, but depending on the quenching conditions, fine carbides may partially aggregate and become relatively large carbides. The life will be rapidly reduced. In order to obtain a long service life against surface damage, it is necessary to adjust the quenching conditions so that the area ratio of carbide having an average particle diameter of 1 μm or more on the surface of the finished product is 2% or less of the total carbide area ratio. In order to further obtain a sufficient long life effect, the content is preferably 1% or less. (D) [Surface hardness is HV730 or more and 900 or less] Fine precipitation of carbides tends to increase the surface hardness because the matrix is strengthened, such as finer structure. Inventive bearings have higher hardness. In the bearing of the present invention, it is possible to simultaneously reduce the size of the carbide and increase the hardness. On the other hand, the surface hardness is an important factor for abrasion resistance and peeling resistance,
Even if carbide is finely precipitated, if the overall surface hardness is reduced, the bearing life will be extremely reduced. In a life test assuming poor lubrication and mixing of wear, the surface hardness was HV730.
If less than this, a long life cannot be obtained. Therefore, the surface hardness is H
Vs 730 or more is required. However, increasing the hardness while maintaining the fine precipitate structure of carbides under heat treatment conditions (for example, rapid heating, high-frequency heating), cooling methods (for example, water quenching, sub-zero treatment), and the like tend to have a long life. When the hardness exceeds HV900, the toughness of the base material is rapidly reduced and the life of the bearing is reduced. Therefore, the surface hardness needs to be HV900 or less. In addition, in order to stably obtain the strengthening of the base, HV 770 or more and HV 850
The following is preferred.

【0029】本発明では、素材にSUJ2を用いた基礎
実験を行っているが、焼入,焼戻処理により軸受として
必要な品質が得られれば、その限りではない。その成分
としては以下の通りとする。
In the present invention, a basic experiment using SUJ2 as a material is performed. However, the present invention is not limited to this as long as the required quality as a bearing is obtained by quenching and tempering. The components are as follows.

【0030】[C:0.8〜1.2重量%]炭素は軸受
に必要な硬さと炭化物を得るための重要な元素であり、
寿命に必要な十分な硬さと炭化物の面積率を得るために
は最低でも0.8重量%以上は必要である。しかし、
1.2重量%を越えると製鋼時に巨大炭化物の発生や偏
析が強くなり、通常SUJ2材で行なっている。ソーキ
ング処理では巨大炭化物や偏析を十分に調整できなくな
る場合がででくるため、その後の温間圧延での炭化物微
細化が不十分になる。以上の理由から、素材の炭素量は
0.8%重量%以上1.2重量%以下とする。
[C: 0.8 to 1.2% by weight] Carbon is an important element for obtaining hardness and carbide necessary for bearings.
At least 0.8% by weight or more is required to obtain sufficient hardness and carbide area ratio necessary for the life. But,
If the content exceeds 1.2% by weight, the generation and segregation of giant carbides during steelmaking become strong. In the case of soaking treatment, giant carbides and segregation may not be sufficiently controlled, and therefore, carbide refinement in subsequent warm rolling becomes insufficient. For the above reasons, the carbon content of the material is set to 0.8% by weight or more and 1.2% by weight or less.

【0031】[Si:0.1〜0.5重量%]ケイ素は
素材の製鋼時に脱酸剤として作用し、焼入性を向上させ
るとともに基地マルテンサイトを強化するので、軸受の
寿命を延長するのに有効な元素であり、その効果を出す
ためには最低0.1重量%は必要である。しかし、Si
含有量が多すぎると、被削性や鍛造性を含めた加工性を
劣化させるので上限を0.5重量%以下とした。以上の
理由から、素材のSi量は0・1%重量%以上0.5重
量%以下とする。
[Si: 0.1 to 0.5% by weight] Silicon acts as a deoxidizing agent during steelmaking of the material, improving hardenability and strengthening the base martensite, thereby extending the life of the bearing. Is an effective element, and at least 0.1% by weight is necessary to obtain the effect. However, Si
If the content is too large, the workability including machinability and forgeability deteriorates, so the upper limit was made 0.5% by weight or less. For the above reasons, the Si content of the material is set to 0.1% by weight or more and 0.5% by weight or less.

【0032】[Mn:0.2〜0.8重量%]マンガン
は焼入性を向上させる元素であるが、その効果を出すた
めには最低0.2重量%は必要である。しかし、Mnは
素材のフェライトを強化する元素でもあり、特に素材の
炭素量が0.8重量%以上の場合は、Mnの含有量がを
1.1重量%を越えると冷間加工性が著しく低下するた
め上限を1.1重量%とする。
[Mn: 0.2-0.8% by weight] Manganese is an element for improving the hardenability, but at least 0.2% by weight is necessary to obtain its effect. However, Mn is also an element that strengthens the ferrite of the material, and particularly when the carbon content of the material is 0.8% by weight or more, the cold workability becomes remarkable when the content of Mn exceeds 1.1% by weight. The lower limit is set to 1.1% by weight.

【0033】[Cr:0.1〜1.8重量%]クロムは
焼入性向上、焼戻軟化抵抗性向上など基地を強化する元
素であり、その効果を出すためには最低0.1重量%が
必要である。しかし、1.8重量%を超えると、製鋼時
に巨大炭化物の発生や偏析が強くなり、通常SUJ2材
で行なっているソーキング処理では巨大炭化物や偏析を
十分に調整できなくなる場合がででくるため、その後の
温間圧延での炭化物微細化が不十分になる。以上の理由
から、素材のCr量は1.0%重量%以上1.8重量%
以下とする。
[Cr: 0.1 to 1.8% by weight] Chromium is an element that strengthens the matrix, such as improving hardenability and resistance to tempering softening. %is necessary. However, when the content exceeds 1.8% by weight, the generation and segregation of giant carbides are increased during steelmaking, and the giant carbides and segregation cannot be sufficiently adjusted by the soaking process usually performed with SUJ2 material. Carbide refinement in the subsequent warm rolling becomes insufficient. For the above reasons, the Cr content of the material is 1.0% by weight or more and 1.8% by weight.
The following is assumed.

【0034】ここで、本発明の成分範囲で特に炭素量や
Cr量等炭化物の生成や変態温度に大きく影響する成分
を調整した場合は、最適温間加工域に微妙な変化が当然
に表れる。 <実施例>続いて、本発明の効果を具体的に説明するた
めに行った実施例と比較例との比較実験について述べ
る。
Here, when components that greatly affect the formation of carbides and the transformation temperature, such as the carbon content and the Cr content, are adjusted in the component range of the present invention, a subtle change naturally appears in the optimum warm working region. <Example> Subsequently, a comparative experiment between an example and a comparative example, which was performed to specifically explain the effect of the present invention, will be described.

【0035】この実験では、試料として、熱間鍛造した
高炭素鋼よりなる軸受内外輪素材に対し、軟化焼鈍を省
略してWRF加工を行なうことで炭化物を微細化したも
のを用いた。そして、その内外輪完成品表面における炭
化物の面積率の差異により、実施例と比較例とに区分し
て比較検討した。当該炭化物の面積率を直接測定するた
めに、軸受表面の組織を電子顕微鏡で撮影し、画像解析
装置によって、その電子顕微鏡画像の素地から炭化物だ
けを取り出し、さらにその形状、面積、個数等を測定し
て面積率を算出した。
In this experiment, as a sample, a material obtained by miniaturizing a carbide by performing WRF processing on a bearing inner / outer ring material made of a hot-forged high-carbon steel without performing softening annealing was used. Then, according to the difference in the area ratio of the carbide on the surface of the finished inner and outer rings, a comparative study was conducted by classifying into Examples and Comparative Examples. In order to directly measure the area ratio of the carbide, the structure of the bearing surface is photographed with an electron microscope, and only the carbide is taken out of the electron microscope image base material by an image analyzer, and the shape, area, number, etc. are further measured. Then, the area ratio was calculated.

【0036】 電子顕微鏡:日本電子社製、JSM−T220A 画像解析装置:カールツァイス社製、IBAS2000 〔A:摩耗特性試験〕摩耗特性についての試験方法を示
す。摩耗試験は二円筒式摩耗試験機(図12)を用いて
行ない、上下に対向させた一対の円筒10にそれぞれ供
試片Sを装着して、上から荷重Pを負荷しながら互いに
接触状態で逆方向に低速で回転させ、お互いの回転数の
違いによって滑り率を設定し、両試験片Sの摩耗率(g
/m)の平均値を求めた。特に、潤滑不良状態での摩耗
特性を再現させるため、回転中は油膜が切れやすい低粘
度の潤滑油を使用した。
Electron microscope: JSM-T220A, manufactured by JEOL Ltd. Image analyzer: IBAS2000, manufactured by Carl Zeiss [A: Abrasion characteristic test] A test method for abrasion characteristics is shown. The abrasion test was performed using a two-cylinder abrasion tester (FIG. 12), and a test piece S was mounted on each of a pair of cylinders 10 facing each other up and down. The test pieces S were rotated at a low speed in the opposite direction, the slip rate was set according to the difference in the number of revolutions, and the wear rates (g
/ M). Particularly, in order to reproduce the wear characteristics in a poor lubrication state, a low-viscosity lubricating oil that easily breaks the oil film during rotation was used.

【0037】(摩耗試験条件) 試験機:二円筒式摩耗試験機 荷重:100kgf 回転数:10rpm 滑り率:30% 潤滑油:SIO 油温:60℃ 〔B:WRF加工性試験〕WRF加工に関する加工性の
試験方法を示す。耐摩耗性を向上させるために、表面の
炭化物面積を高くする必要がある。しかしながら、素材
の炭化物面積率は炭化物が素地に固溶していない分、熱
処理後の完成品の炭化物面積率よりさらに高くなり、素
材の炭化物面積率が高くなると当然加工性は低下する。
WRF加工では図5に示すマンドレル12が摩耗損傷し
易く、消耗部品として加工コストに大きく反映してい
る。
(Abrasion test conditions) Test machine: Two-cylindrical abrasion test machine Load: 100 kgf Rotation speed: 10 rpm Slip ratio: 30% Lubricating oil: SIO Oil temperature: 60 ° C [B: WRF workability test] Processing related to WRF processing This shows the test method for sex. In order to improve the wear resistance, it is necessary to increase the carbide area on the surface. However, the carbide area ratio of the raw material is higher than the carbide area ratio of the finished product after the heat treatment, because the carbide is not dissolved in the base material. If the carbide area ratio of the raw material is higher, the workability naturally declines.
In the WRF processing, the mandrel 12 shown in FIG. 5 is easily worn and damaged, and is largely reflected on the processing cost as a consumable part.

【0038】(WRF工具寿命評価条件) 加工機:共栄精工製CRF70 加工荷重:5〜7ton 潤滑剤:三工化学製プレスホーマーPZ13 拡径率:外輪=1.4〜2.0倍,内輪=1.1〜1.
4倍 加工速度:500〜700個/時間 試験軸受加工開始温度:720〜780℃ 評価はマンドレルの摩耗が0.2mm以上となり、内輪
の場合はマンドレルに段差が付き内径の形状が波打つ場
合を寿命とした。また、外輪の場合は溝形状が摩耗で崩
れてしまうか、マンドレルが熱疲労により亀裂が発生し
たり損傷してしまう場合を寿命とした。表1及び図3,
図4に、完成品表面の炭化物面積率と摩耗試験による摩
耗率及び素材でのWRF加工性の試験結果を示す。
(WRF tool life evaluation conditions) Processing machine: KRF70 manufactured by Kyoei Seiko Processing load: 5-7 ton Lubricants: Press former PZ13 manufactured by Sanko Chemical Co., Ltd. Diameter expansion ratio: outer ring = 1.4-2.0 times, inner ring = 1.1-1.
4 times Processing speed: 500-700 parts / hour Test bearing processing start temperature: 720-780 ° C Evaluation: Wear of the mandrel is 0.2 mm or more, and in the case of the inner ring, the mandrel has a step and the inner diameter is wavy when the shape is wavy. And Further, in the case of the outer ring, the life was defined as the case where the groove shape collapsed due to wear or the mandrel was cracked or damaged due to thermal fatigue. Table 1 and FIG. 3,
FIG. 4 shows the carbide area ratio of the finished product surface, the wear rate by a wear test, and the test results of the WRF workability of the material.

【0039】[0039]

【表1】 [Table 1]

【0040】炭化物面積率の増加に従って、摩耗率は低
くなる傾向にあり摩耗特性は向上している。逆にWRF
加工性は低下する。比較例でNo.7,8,9は炭化物
面積率が5%未満のため、摩耗率が急激に上がり、耐摩
耗性が低下している。一方、比較例NO.10,11は
炭化物面積率が15%を超えてWRF加工性が著しく低
下している。実施例の中では、特に炭化物面積率が9%
以上12%以下であるNo.3,4が耐摩耗性とWRF
加工性と両立している。
As the carbide area ratio increases, the wear rate tends to decrease, and the wear characteristics are improved. Conversely, WRF
Workability decreases. No. in the comparative example. In Nos. 7, 8, and 9, the carbide area ratio is less than 5%, so that the wear rate sharply increases and the wear resistance decreases. On the other hand, in Comparative Example NO. In Nos. 10 and 11, the carbide area ratio exceeds 15%, and the WRF processability is remarkably reduced. Among the examples, the carbide area ratio is particularly 9%.
No. of not less than 12% or more. 3 and 4 are wear resistance and WRF
Compatible with workability.

【0041】(熱処理条件)熱処理は、通常SUJ2で
行なわれる焼入,焼戻処理の条件でおこなった。焼入,
焼戻処理条件:温度830℃以上〜860℃以下で0.
5〜1時間保持した後、焼入れを行い、次いで160〜
200℃で2時間の焼戻しを行った。
(Heat treatment conditions) The heat treatment was carried out under the conditions of quenching and tempering treatments usually performed in SUJ2. quenching,
Tempering treatment conditions: 0.1 at temperatures from 830 ° C to 860 ° C.
After holding for 5 to 1 hour, quenching is performed, and then 160 to
Tempering was performed at 200 ° C. for 2 hours.

【0042】〔C:完成品軸受の寿命試験〕軸受での寿
命試験方法を示す。本寿命試験は玉軸受や自動調心ころ
軸受等で潤滑不良による転動体と内外輪との金属接触
や、転動体の滑りによる表面損傷を再現するために微細
な異物を混入した試験を行なって評価した。
[C: Life Test of Finished Bearing] A life test method for a bearing is shown below. This service life test is conducted with ball bearings and spherical roller bearings, etc., in which fine foreign substances are mixed to reproduce metal contact between the rolling element and inner and outer rings due to poor lubrication and surface damage due to sliding of the rolling element. evaluated.

【0043】被試験体は呼び番号6206の深溝玉軸受
とし、転動体はSUJ2ボールを用い、荷重負荷位置で
振動を測定。初期振動値に対して、3倍以上の振動が発
生した場合に試験軸受を調査し、剥離や異常摩耗があれ
ば寿命としてその耐久時間でワイブルプロットを作成
し、そのワイブル分布の結果から各々のL10寿命を求め
た。
The test object was a deep groove ball bearing having a nominal number of 6206, and the rolling element was a SUJ2 ball, and the vibration was measured at the load position. When vibrations more than three times the initial vibration value occur, test bearings are examined, and if there is peeling or abnormal wear, a Weibull plot is created based on the endurance time as the life, and each result is obtained from the results of the Weibull distribution. to determine the L 10 life.

【0044】(ピーリング寿命条件) 試験面圧:最大260 MPa 回転数:3000 rPm 潤滑油:68番タービン油 混入異物: 組成 :ステンレス系粉 硬さ:HRC52 粒径 :30μm以下 混入量:潤滑油中に500ppm 平均粒径1μm以上の炭化物の面積率、平均粒径0.5
um以下の炭化物の面積率や表面硬さに対する完成品軸
受での寿命評価結果を表2に示す。
(Peeling life condition) Test surface pressure: Max. 260 MPa Rotational speed: 3000 rPm Lubricating oil: No. 68 turbine oil Contaminant foreign matter: Composition: Stainless steel powder Hardness: HRC52 Particle size: 30 μm or less Mixed amount: in lubricating oil To 500 ppm area ratio of carbide having an average particle size of 1 μm or more, average particle size of 0.5
Table 2 shows the life evaluation results of the finished bearings with respect to the area ratio and the surface hardness of carbides of um or less.

【0045】[0045]

【表2】 [Table 2]

【0046】本発明の内外輪を有する実施例12〜22
では、SUJ2特有の粒状炭化物を均一に微細化するこ
とで、表面損傷に対して長寿命傾向を示した。一方、比
較例のNo.23,25では、平均粒径1μm以上の炭
化物の面積率が2%を越えてしまい、部分的に炭化物が
粒状に凝集した部分が増加してしまい、その部分ではミ
クロ的に微細炭化物がほとんどないために、表面損傷に
たいして急激に寿命が低下している。また、平均粒径
0.5μm以下の炭化物の面積率は表面損傷に対して大
きな効果があるが、比較例No.24,25では平均粒
径0.5μm以下の炭化物の面積率が50%未満となっ
てしまい、そのため表面損傷が発生しやすい部分が増加
してしまい、急激に寿命が低下している。
Embodiments 12 to 22 having inner and outer rings of the present invention
Showed a long life tendency against surface damage by uniformly refining granular carbide unique to SUJ2. On the other hand, in Comparative Example No. In Nos. 23 and 25, the area ratio of the carbide having an average particle diameter of 1 μm or more exceeds 2%, the portion where the carbide is partially agglomerated increases, and there is almost no microscopic fine carbide in the portion. Therefore, the life is sharply shortened against surface damage. Further, the area ratio of carbide having an average particle size of 0.5 μm or less has a large effect on surface damage. In Nos. 24 and 25, the area ratio of carbide having an average particle size of 0.5 μm or less is less than 50%, so that the portion where surface damage is likely to occur increases, and the life is sharply reduced.

【0047】また、表面硬さも表面損傷に対して効果が
あるが、炭化物の微細化による硬さ向上が表面損傷に対
して効果を発揮している。しかし比較例No.26は、
熱処理条件等で硬さだけを低減させた場合であるが、表
面硬がHV750未満になると表面損傷にたいして、急
激に寿命が低下している。比較例No.27は炭化物の
微細化のまま硬さをあげたが、HV900を越えると素
地の靭性が低下し、表面損傷に対して逆に寿命が低下し
てしまう。
Although the surface hardness is also effective against surface damage, the improvement in hardness due to finer carbides is effective against surface damage. However, in Comparative Example No. 26 is
This is the case where only the hardness is reduced by the heat treatment condition or the like. However, when the surface hardness is less than HV750, the life is sharply reduced with respect to the surface damage. Comparative Example No. No. 27 increased the hardness as the carbide was refined, but when the hardness exceeded HV900, the toughness of the base material was reduced, and the life was conversely reduced with respect to surface damage.

【0048】本発明の転がり軸受である実施例の中で
も、平均粒径1μm以上の炭化物の面積率が1%以下の
もの(実施例No.12〜16)、平均粒径0.5μm
以下の炭化物の面積率が70%以上のもの(実施例N
o.12〜14及び17〜19)、及び表面硬さがHV
750以上HV850以下のもの(実施例No.12,
13,15〜17及び19〜21)はより長寿命の傾向
を示し、特に3項目とも長寿命傾向を含むNo.12が
最も長寿命を示した。
Among the rolling bearings of the present invention, those having an area ratio of carbides having an average particle diameter of 1 μm or more and 1% or less (Examples Nos. 12 to 16), an average particle diameter of 0.5 μm
The following carbides have an area ratio of 70% or more (Example N
o. 12-14 and 17-19), and the surface hardness is HV
750 or more and HV850 or less (Example No. 12,
13, 15 to 17 and 19 to 21) show a tendency to have a longer life. 12 showed the longest life.

【0049】[0049]

【発明の効果】以上説明したように、本発明に係る転が
り軸受は、その内外輪を、素材の熱間鍛造後に冷間でロ
ーリング加工で圧延拡径して製造した内外輪を有する従
来のものとは異なり、熱間鍛造後に温間でリングローリ
ング加工(WRF加工)を行なって製造した内外輪を用
いるために、内外輪に対する軟化焼鈍を省略できると共
に脱炭量を削減することで旋削取代を削減することがで
きて、低コストに提供できるという効果を奏する。しか
も、内外輪の素材である高炭素軸受鋼特有の粒状炭化物
が均一に微細化し、表面損傷に対しても高機能化でき
て、その結果転がり軸受の長寿命が得られるという効果
を奏する。
As described above, the rolling bearing according to the present invention is a conventional rolling bearing having an inner and outer ring manufactured by rolling and expanding the inner and outer rings by cold rolling after hot forging of the material. Unlike the hot forging, the inner and outer rings manufactured by performing a ring rolling process (WRF process) warm after hot forging can be used, so that the softening annealing for the inner and outer rings can be omitted and the amount of decarburization is reduced to reduce the machining allowance. This has the effect of being able to reduce the cost and providing it at low cost. In addition, the granular carbide specific to the high carbon bearing steel, which is the material of the inner and outer rings, is uniformly refined, and it is possible to enhance the function against surface damage, thereby providing a long rolling bearing life.

【0050】本発明に係る転がり軸受は、その構成材料
の組織や炭化物の量や分布を制御することで機能を向上
したものであり、これに浸炭や浸炭窒化等の表面処理、
及びバレルやショットピーニング等の表面加工を施し、
表面硬さ,表面圧縮残留応力や表面粗さを調整すること
で、その効果は上積みされる。そのため、従来の素材に
それらを施した物より良好な結果が得られる。
The function of the rolling bearing according to the present invention is improved by controlling the structure and the amount and distribution of carbides of the constituent materials. The rolling bearing includes surface treatments such as carburizing and carbonitriding.
And surface treatment such as barrel and shot peening,
By adjusting the surface hardness, the surface compressive residual stress, and the surface roughness, the effect is added. Therefore, better results can be obtained than those obtained by applying them to conventional materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る転がり軸受の内外輪の製
造工程のブロック図、(b)はその熱間鍛造工程におけ
る温度の経時変化のグラフ、(c)はWRF加工工程に
おける温度の経時変化のグラフである。
FIG. 1A is a block diagram of a manufacturing process of the inner and outer races of the rolling bearing according to the present invention, FIG. 1B is a graph showing a change in temperature with time in the hot forging process, and FIG. 5 is a graph of the change over time.

【図2】(a)は図1と対比される従来の転がり軸受の
内外輪の製造工程のブロック図、(b)はその熱間鍛造
工程における温度の経時変化のグラフ、(c)はその軟
化焼鈍工程における温度の経時変化のグラフ、(d)は
そのCRF加工工程における温度のグラフである。
2 (a) is a block diagram of a manufacturing process of the inner and outer races of the conventional rolling bearing as compared with FIG. 1, (b) is a graph of a change over time in temperature in the hot forging process, and (c) is a graph thereof. FIG. 4 is a graph showing a change in temperature over time in the soft annealing step, and FIG. 4D is a graph showing the temperature in the CRF processing step.

【図3】内外輪の摩耗試験における炭化物面積率と摩耗
率との関係を表したグラフである。
FIG. 3 is a graph showing a relationship between a carbide area ratio and a wear rate in a wear test of inner and outer rings.

【図4】素材のWRF加工性試験における炭化物面積率
と工具(マンドレル)寿命との関係を表したグラフであ
る。
FIG. 4 is a graph showing a relationship between a carbide area ratio and a tool (mandrel) life in a WRF workability test of a material.

【図5】リングローリング加工を説明する概略図であ
る。
FIG. 5 is a schematic diagram illustrating ring rolling processing.

【図6】従来のCRF加工を施した拡径リングの径方向
断面図であり、網目は加工によるはみ出し部分である。
FIG. 6 is a radial cross-sectional view of a conventional CRF-processed enlarged-diameter ring, in which a mesh is a protruding portion formed by the process.

【図7】従来の転がり軸受の内外輪製造方法における熱
間鍛造後の素材の脱炭状態を示したグラフである。
FIG. 7 is a graph showing a decarburized state of a raw material after hot forging in a conventional method for manufacturing an inner and outer ring of a rolling bearing.

【図8】図7の熱間鍛造を施した素材に対し行った一般
的な窒素雰囲気下での焼鈍後の脱炭状態を示したグラフ
である。
8 is a graph showing a decarburized state after annealing in a general nitrogen atmosphere performed on the hot forged material of FIG. 7;

【図9】従来のCRF加工を施した拡径リングの脱炭状
態を示したグラフである。
FIG. 9 is a graph showing a decarburized state of a conventional enlarged ring subjected to CRF processing.

【図10】本発明におけるWRF加工を施した拡径リン
グの径方向断面図であり、網目は加工によるはみ出し部
分である。
FIG. 10 is a radial cross-sectional view of a WRF-processed enlarged ring according to the present invention, in which a mesh is a protruding portion formed by the process.

【図11】本発明におけるWRF加工後の拡径リングの
脱炭状態を示したグラフである。
FIG. 11 is a graph showing a decarburized state of the expanded ring after WRF processing in the present invention.

【図12】二円筒式摩耗試験機の概要説明図で、(a)
は正面図、(b)は側面図である。
FIG. 12 is a schematic explanatory view of a two-cylinder abrasion tester, in which (a)
Is a front view, and (b) is a side view.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炭素鋼を硬化熱処理して研削加工を行
う転がり軸受の特に内外輪の製造において、丸棒素材か
ら熱間鍛造して内輪と外輪に加工される粗形リングを作
り、その後球状化焼鈍を行なわずにそのまま当該粗形リ
ングを温間でのリングローリング加工により成形圧延し
て内輪と外輪とすることを特徴とする軸受製造方法。
1. In the production of rolling bearings, especially inner and outer rings, which are made by hardening and heat-treating high-carbon steel for grinding, a rough ring is formed by hot forging from a round bar material and processed into inner and outer rings. A method of manufacturing a bearing, comprising forming and rolling an inner ring and an outer ring by subjecting the rough ring to ring rolling in a warm state without performing spheroidizing annealing.
【請求項2】 前記請求項1の製造方法により作られた
内輪と外輪との完成品表面の炭化物が、面積率で5%以
上15%以下の範囲で存在し、かつ平均粒径0.5μm
以下の炭化物が全炭化物に対して面積率で50%以上
で、かつ平均粒径lμm以上の炭化物が全炭化物に対し
て面積率で2%以下であり、かつ表面硬さがHV730
以上900以下であることを特徴とする転がり軸受。
2. The carbide on the surface of the finished product of the inner ring and the outer ring produced by the method of claim 1 is present in an area ratio of 5% or more and 15% or less, and has an average particle size of 0.5 μm.
The following carbides have an area ratio of 50% or more with respect to all carbides, and the carbides having an average particle size of 1 μm or more have an area ratio of 2% or less with respect to all carbides, and have a surface hardness of HV730.
A rolling bearing having a value of not less than 900 and not more than 900.
JP15177198A 1998-06-01 1998-06-01 Roller bearing, and its manufacture Pending JPH11347673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15177198A JPH11347673A (en) 1998-06-01 1998-06-01 Roller bearing, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15177198A JPH11347673A (en) 1998-06-01 1998-06-01 Roller bearing, and its manufacture

Publications (1)

Publication Number Publication Date
JPH11347673A true JPH11347673A (en) 1999-12-21

Family

ID=15525943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15177198A Pending JPH11347673A (en) 1998-06-01 1998-06-01 Roller bearing, and its manufacture

Country Status (1)

Country Link
JP (1) JPH11347673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065226A (en) * 2001-08-30 2003-03-05 Ntn Corp Thrust needle bearing for swash plate type compressor
EP1358953A1 (en) * 2002-05-02 2003-11-05 Aktiebolaget SKF A method for producing ring members and a device for performing the method
DE112007001325T5 (en) 2006-06-01 2009-04-23 Ntn Corporation Method for producing a rolling contact element, method for producing a rolling bearing, raceway element of a rolling bearing and rolling bearing
CN114606374A (en) * 2022-03-10 2022-06-10 西北工业大学 Method for refining carbide of inner C-shaped high-temperature bearing ring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065226A (en) * 2001-08-30 2003-03-05 Ntn Corp Thrust needle bearing for swash plate type compressor
EP1358953A1 (en) * 2002-05-02 2003-11-05 Aktiebolaget SKF A method for producing ring members and a device for performing the method
DE112007001325T5 (en) 2006-06-01 2009-04-23 Ntn Corporation Method for producing a rolling contact element, method for producing a rolling bearing, raceway element of a rolling bearing and rolling bearing
US9346097B2 (en) 2006-06-01 2016-05-24 Ntn Corporation Process for manufacturing rolling contact member, process for manufacturing rolling bearing, raceway member of rolling bearing and rolling bearing
DE112007001325B4 (en) * 2006-06-01 2021-07-01 Ntn Corporation Method for manufacturing a rolling contact element, method for manufacturing a rolling bearing, raceway element of a rolling bearing and rolling bearing
CN114606374A (en) * 2022-03-10 2022-06-10 西北工业大学 Method for refining carbide of inner C-shaped high-temperature bearing ring
CN114606374B (en) * 2022-03-10 2023-01-24 西北工业大学 Method for refining carbide of inner C-shaped high-temperature bearing ring

Similar Documents

Publication Publication Date Title
US6620262B1 (en) Method of manufacturing inner and outer races of deep groove ball bearing in continuous annealing furnace
JP3538995B2 (en) Rolling bearing
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP4540351B2 (en) Steel heat treatment method and bearing part manufacturing method
EP0933440A1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
KR20070110397A (en) Hot forged products excellent in fatigue strength, process for production thereof, and machine structural parts
US20120222778A1 (en) Rolling/sliding part and production method thereof
US7083688B2 (en) High-strength race and method of producing the same
US6051082A (en) Rolling bearing
JP2005256897A (en) Machine element and its manufacturing method
JP4102866B2 (en) Gear manufacturing method
JP3279230B2 (en) Bearing element part and method of manufacturing the same
JPH07188857A (en) Bearing parts
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
JPH11347673A (en) Roller bearing, and its manufacture
US20230304528A1 (en) Crankshaft
JP4269349B2 (en) Rolling bearing race
WO2016158375A1 (en) Steel for carbonitriding and carbonitrided component
JP2003194072A (en) Rolling device
JPH0853711A (en) Surface hardening treating method
JPH02209452A (en) Steel for rolling parts and rolling parts using the steel
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JPH09256105A (en) Bearing element parts and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070809

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304