JPH09256105A - Bearing element parts and its production - Google Patents

Bearing element parts and its production

Info

Publication number
JPH09256105A
JPH09256105A JP6408196A JP6408196A JPH09256105A JP H09256105 A JPH09256105 A JP H09256105A JP 6408196 A JP6408196 A JP 6408196A JP 6408196 A JP6408196 A JP 6408196A JP H09256105 A JPH09256105 A JP H09256105A
Authority
JP
Japan
Prior art keywords
steel
retained austenite
content
rolling fatigue
bearing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6408196A
Other languages
Japanese (ja)
Inventor
Nobuhiro Murai
暢宏 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6408196A priority Critical patent/JPH09256105A/en
Publication of JPH09256105A publication Critical patent/JPH09256105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide bearing element parts prepared by the use of inexpensive steel, easy in forming into desired shape, reduced in dimensional change, and having a long rolling fatigue life and its production. SOLUTION: The bearing element parts have a base material constituted of a steel material which has a chemical composition consisting of, by weight, 0.7-1.2% C, >1.15-2.0% Mn, 0.3-1.6% Cr, 0-0.1% Nb, 0-0.2% V, <0.4% Si, <=0.02% P, <=0.02% S, >0.0005-0.0020% O, and the balance Fe with impurities and satisfying P+S=>0.01 to 0.04%, and further, a structure after quench-and- temper treatment is composed of martensite, spheroidal carbide, and retained austenite and the area ratio of the retained austenite is 5-15%. The steel having the chemical composition is subjected to spheroidizing, formed into parts, heated to 750-820 deg.C and hardened, and further tempered at 100-200 deg.C. By this procedure, a structure after quench-and-temper treatment is composed of martensite, spheroidal carbide, and retained austenite, and also the area ratio of the retained austenite can be regulated to 5-15%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軸受要素部品及び
その製造方法に関し、より詳しくは、各種の産業機械や
自動車などに使用される玉軸受やコロ軸受といった転が
り軸受、特に高面圧環境下で使用される転がり軸受の要
素部品及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing element component and a method for manufacturing the same, and more particularly, to rolling bearings such as ball bearings and roller bearings used in various industrial machines and automobiles, especially under a high surface pressure environment. TECHNICAL FIELD The present invention relates to an element part of a rolling bearing used in and a manufacturing method thereof.

【0002】[0002]

【従来の技術】各種の産業機械や自動車などに使用され
る玉軸受やコロ軸受といった転がり軸受には、高い面圧
が繰り返し作用する。そのため、軸受要素部品である
「外輪」、「内輪」及びこの両者の間で転がり接触する
「玉(ボール)」や「コロ」には、長い転動疲労寿命が
必要である。
2. Description of the Related Art High surface pressure is repeatedly applied to rolling bearings such as ball bearings and roller bearings used in various industrial machines and automobiles. Therefore, the bearing element parts "outer ring", "inner ring", and "balls" and "rollers" that make rolling contact between the two require long rolling contact fatigue life.

【0003】最近では、エンジンの高出力化や周辺部品
の小型化により、転がり軸受の使用環境はますます高面
圧化、高温化して過酷なものとなっており、転がり軸受
の要素部品には転動疲労に対する一層の長寿命化が要求
されている。
In recent years, due to higher engine output and smaller peripheral parts, the rolling bearing has become more and more difficult to use due to higher surface pressure and higher temperature. There is a demand for a longer service life against rolling fatigue.

【0004】上記した軸受要素部品は、従来、JIS G 48
05に規格化された高炭素クロム軸受鋼鋼材であるSUJ
1〜5、なかでもSUJ2を母材(以下、「素材鋼」と
もいう)として、熱間圧延などの手段で熱間加工した後
に球状化焼鈍し、次いで所望の形状に冷間鍛造で粗成形
し、その後焼入れと低温での焼戻しを行い、更に、仕上
げ加工としての研削や研磨を施して製造されてきた。し
かし、上記のJIS規格鋼を母材とした場合には、前記
した過酷な軸受使用環境下では、転動疲労による早期破
損を生じてしまう。
The above-mentioned bearing element parts are conventionally JIS G 48
SUJ which is a high carbon chrome bearing steel steel standardized to 05
1 to 5, in particular, SUJ2 as a base material (hereinafter also referred to as “raw steel”), hot-worked by means such as hot rolling, spheroidized and then cold-forged into a desired shape. Then, it is manufactured by quenching and tempering at a low temperature, and then grinding and polishing as a finishing process. However, when the above JIS standard steel is used as the base material, in the severe environment where the bearing is used, early damage due to rolling fatigue occurs.

【0005】そのため、JIS規格鋼に代わる新しい軸
受鋼が、例えば、特開平2−3073号公報、特開平6
−264186号公報、特開昭61−272349号公
報や特開平1−306542号公報などに提案されてい
る。
Therefore, new bearing steels replacing the JIS standard steels are disclosed in, for example, Japanese Patent Laid-Open Nos. 2-3073 and 6-3.
-264186, Japanese Patent Laid-Open No. 61-272349, Japanese Patent Laid-Open No. 1-306542, and the like.

【0006】特開平2−30733号公報には、重量%
で、1.0〜2.0%のNi、1.0〜2.0%のSi
を含有させ、更に、不純物元素であるPとSを重量%
で、0.015〜0.040%に制御して、転動疲労寿
命を向上させた「高炭素クロム系軸受鋼」が開示されて
いる。
In Japanese Patent Laid-Open No. 2-30733, the weight% is
1.0 to 2.0% Ni, 1.0 to 2.0% Si
And further contain P and S, which are impurity elements, by weight%.
In order to improve the rolling fatigue life, the "high carbon chromium bearing steel" is disclosed.

【0007】しかしながら、前記公報で提案された軸受
鋼には、SiとNiが重量%で、それぞれ1.0〜2.
0%も含有されており、特に、Siのこうした多量の添
加は冷間鍛造性の著しい劣化を招く。又、1.0〜2.
0%ものNiの含有は母材コストを大幅に上昇させてし
まい、軸受を低コストで製造したいとする産業界の要請
に応えることができない。更に、本発明者らが実験した
ところ、この公報に記載された鋼を母材として軸受要素
部品を製造しても、必ずしも長い転動疲労寿命を有する
軸受が得られるというものでもなかった。
However, in the bearing steel proposed in the above publication, Si and Ni are 1.0 to 2.% by weight, respectively.
It also contains 0%, and in particular, such a large amount of addition of Si causes a remarkable deterioration in cold forgeability. Moreover, 1.0-2.
The inclusion of 0% of Ni significantly increases the cost of the base material, and cannot meet the demand of the industry for manufacturing the bearing at low cost. Further, as a result of experiments conducted by the present inventors, it was not always possible to obtain a bearing having a long rolling contact fatigue life even if a bearing element component was manufactured by using the steel described in this publication as a base material.

【0008】特開平6−264186号公報には、Mn
を重量%で、2.0超〜5.0%含有させた「繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼」が開示されている。しかし、Mnを多量に添加した
前記公報の提案になる鋼を母材として用いると、焼入れ
・焼戻し後に多量のオーステナイトが残留するので、軸
受使用時の経時的な寸法変化が大きくなってしまう。更
に、軸受要素部品の製造工程である、研削や研磨の仕上
げ加工性が劣化するという問題もある。
Japanese Unexamined Patent Publication No. 6-264186 discloses Mn.
"Bearing steel excellent in retardation property of microstructure change due to repeated stress load" containing 2.0 to 5.0% by weight is disclosed. However, if the steel proposed in the above publication containing a large amount of Mn is used as a base material, a large amount of austenite remains after quenching and tempering, which results in a large dimensional change over time when the bearing is used. Further, there is a problem that the finish workability of grinding and polishing, which is a manufacturing process of the bearing element parts, deteriorates.

【0009】特開昭61−272349号公報には、重
量%で、C:0.8〜1.2%、S+P:0.010%
以下である高炭素クロム系の「軸受鋼」が提案されてい
る。しかしながら、S+P量の極端な低減は、軸受要素
部品の製造工程である研削や研磨の仕上げ加工性が劣化
するという問題を有する。
In JP-A-61-272349, C: 0.8 to 1.2% and S + P: 0.010% by weight.
The following high carbon chromium-based "bearing steels" have been proposed. However, the extreme reduction of the S + P amount has a problem that the finish workability of grinding and polishing, which is a manufacturing process of the bearing element parts, deteriorates.

【0010】特開平1−306542号公報には、重量
%で、O:0.0005%以下、Ti:0.002%以
下に規制し、鋼中の「介在物組成を制御した軸受用鋼」
が開示されている。しかしながら、介在物組成を制御す
る目的で、特に鋼中のO(酸素)を低減するためには、
高価な溶製設備の設置や従来設備の大幅な改造、更には
特殊な技術が必要であり、母材コストが嵩んでしまう。
In Japanese Patent Laid-Open No. 1-306542, it is regulated that O: 0.0005% or less and Ti: 0.002% or less by weight, and "bearing steel with controlled inclusion composition" in the steel.
Is disclosed. However, in order to control the composition of inclusions, particularly in order to reduce O (oxygen) in steel,
Installation of expensive melting equipment, drastic remodeling of conventional equipment, and special technology are required, which increases the cost of the base material.

【0011】[0011]

【発明が解決しようとする課題】本発明の課題は、廉価
な鋼を母材とし、所望形状への成形が容易で、且つ、使
用中の寸法変化が小さく、転動疲労による破損に対して
優れた耐久性を有する軸受要素部品とその製造方法を提
供することにある。
An object of the present invention is to use inexpensive steel as a base material, to easily form it into a desired shape, to reduce the dimensional change during use, and to prevent damage due to rolling fatigue. It is to provide a bearing element component having excellent durability and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】既に述べたように、軸受
要素部品には、主として、焼入れ後に低温で焼戻し処理
したJIS規格のSUJ2が使用されてきた。その組織
は、焼入れの加熱時に残留した球状炭化物(球状セメン
タイト)及びマルテンサイト、並びに焼入れ時に変態せ
ず、しかも焼戻し時に分解しなかったオーステナイト
(以下、単に「残留オーステナイト」という)で構成さ
れている。これらの組織のうち、残留オーステナイト
は、転動疲労寿命に大きな影響を及ぼし、その量のある
程度までの増加は転動疲労寿命を向上させることが知ら
れている。一方、熱処理17巻4号(1977年)の2
31〜235ページには、残留オーステナイトの量が増
加すると、軸受の使用時の寸法変化が大きくなって円滑
な回転運動ができなくなるなど、使用上での問題点が生
じることも報告されている。
As described above, for the bearing element parts, the JIS standard SUJ2 which has been tempered at a low temperature after quenching has been mainly used. Its structure is composed of spherical carbides (spherical cementite) and martensite remaining during heating during quenching, and austenite that did not transform during quenching and did not decompose during tempering (hereinafter simply referred to as "residual austenite"). . Of these structures, it is known that retained austenite has a great influence on rolling fatigue life, and an increase in the amount thereof up to a certain degree improves rolling fatigue life. On the other hand, heat treatment Vol. 17 No. 4 (1977) 2
It is also reported on pages 31 to 235 that when the amount of retained austenite increases, dimensional changes during use of the bearing become large and smooth rotational movement becomes impossible, resulting in problems in use.

【0013】本発明者らは、前記した課題を解決するた
めに、上記した既知の基礎的な知見をベースに、軸受要
素部品の母材となる鋼材の化学組成、並びに軸受要素部
品の組織及び熱処理方法について研究を行った結果、下
記の知見を得た。
In order to solve the above-mentioned problems, the inventors of the present invention have based on the above-mentioned known basic knowledge, the chemical composition of the steel material as the base material of the bearing element part, the structure of the bearing element part and As a result of research on the heat treatment method, the following findings were obtained.

【0014】特定の成分系の母材からなる軸受要素部
品においては、焼入れ、焼戻し後の組織をマルテンサイ
ト、球状炭化物及び残留オーステナイトからなるものと
なし、且つ、前記残留オーステナイトの面積比を5〜1
5%となした場合に限って、寸法安定性を劣化させるこ
となく、換言すれば、大きな寸法変化をもたらすことな
く、転動疲労に対する抵抗性を高めることができる。
In a bearing element component made of a base material of a specific component system, the structure after quenching and tempering is made of martensite, spherical carbide and retained austenite, and the area ratio of the retained austenite is 5 to 5. 1
Only in the case of 5%, resistance to rolling fatigue can be enhanced without deteriorating the dimensional stability, in other words, without causing a large dimensional change.

【0015】残留オーステナイトの面積比がの範囲
にある時、成分元素のうちでも特にMnの含有量を厳密
に調整すれば、不純物元素であるP、S及びOの含有量
を特別に低減せずとも、転動疲労に対する抵抗性を大き
く向上させることができる。
When the area ratio of retained austenite is in the range of, if the content of Mn among the constituent elements is strictly adjusted, the content of the impurity elements P, S and O is not particularly reduced. In addition, the resistance to rolling contact fatigue can be greatly improved.

【0016】Mnは、CやNiと同様に、焼入れ、焼戻
し後の残留オーステナイトの量(面積比)を増加させる
元素であるが、転動疲労寿命の向上は、この残留オース
テナイト量の上昇に基づくばかりでなく、Mnそれ自体
による効果が大きい。すなわち、本発明者らは、重量%
で、C:1.0%、Si:0.2%、Cr:1.0%を
ベース成分とする鋼を用いて、熱処理条件とMn含有量
を種々変化させて、組織がマルテンサイト、球状炭化物
及び残留オーステナイトで、且つ、残留オーステナイト
の量(面積比)がほぼ等しくなるように調整して、後の
実施例で詳述する条件で転動疲労試験を実施した。その
結果、Mn含有量が重量%で、1.15%を超えて2.
0%までの鋼は、Mn含有量がこの範囲から外れた鋼よ
りも転動疲労寿命が優れていることが明らかになった。
Like C and Ni, Mn is an element that increases the amount (area ratio) of retained austenite after quenching and tempering, but the improvement in rolling contact fatigue life is based on this increase in the amount of retained austenite. Not only that, but the effect of Mn itself is great. That is, the inventors
Then, using a steel having C: 1.0%, Si: 0.2%, and Cr: 1.0% as base components, the heat treatment conditions and the Mn content are variously changed, and the structure is martensite or spherical. The rolling fatigue test was carried out under the conditions described in detail in later examples, with the carbide and the retained austenite being adjusted so that the amounts (area ratio) of the retained austenite were almost equal. As a result, the Mn content was more than 1.15% by weight and 2.
It has been found that steels up to 0% have better rolling fatigue life than steels with Mn content outside this range.

【0017】Mn含有量が1.15超〜2.0重量%
の鋼において、前記の残留オーステナイト量(面積
比)とするには、焼入れのための加熱温度域及び焼戻し
の温度域を制御すれば良い。
Mn content exceeds 1.15 to 2.0% by weight
In the steel No. 1, the amount of retained austenite (area ratio) may be controlled by controlling the heating temperature range for quenching and the tempering temperature range.

【0018】上記知見に基づく本発明は、下記(1)の
軸受要素部品及び(2)のその製造方法を要旨とする。
The present invention based on the above-mentioned findings has the gist of the following bearing element component (1) and its manufacturing method (2).

【0019】(1)母材が、重量%で、C:0.7〜
1.2%、Mn:1.15%を超え2.0%まで、C
r:0.3〜1.6%、Nb:0〜0.1%、V:0〜
0.2%、Si:0.4%未満、P:0.02%以下、
S:0.02%以下で、且つP+S:0.01%を超え
0.04%まで、O:0.0005%を超え0.002
0%まで、残部Fe及び不可避不純物の化学組成の鋼
で、焼入れ、焼戻し後の組織が、マルテンサイト、球状
炭化物及び残留オーステナイトからなり、且つ、前記残
留オーステナイトの面積比が5〜15%であることを特
徴とする軸受要素部品。
(1) The base material, in% by weight, C: 0.7 to
1.2%, Mn: 1.15% over 2.0%, C
r: 0.3 to 1.6%, Nb: 0 to 0.1%, V: 0
0.2%, Si: less than 0.4%, P: 0.02% or less,
S: 0.02% or less, P + S: 0.01% to 0.04%, O: 0.0005% to 0.002
A steel having a chemical composition of 0% to the balance Fe and unavoidable impurities, the structure after quenching and tempering is composed of martensite, spherical carbides and retained austenite, and the area ratio of the retained austenite is 5 to 15%. Bearing element parts characterized in that

【0020】(2)上記(1)に記載の化学組成の鋼を
球状化焼鈍してから部品に成形し、次いで、750〜8
20℃に加熱して焼入れし、更に、100〜200℃の
温度で焼戻して、焼入れ・焼戻し後の組織をマルテンサ
イト、球状炭化物及び残留オーステナイトで、且つ、前
記残留オーステナイトの面積比を5〜15%となすこと
を特徴とする上記(1)に記載の軸受要素部品の製造方
法。
(2) Steel having the chemical composition described in (1) above is spheroidized and annealed, and then formed into parts, and then 750 to 8
It is heated to 20 ° C. and quenched, and further tempered at a temperature of 100 to 200 ° C., and the structure after quenching and tempering is martensite, spherical carbide and retained austenite, and the area ratio of the retained austenite is 5 to 15 %, And the method for manufacturing a bearing element component according to (1) above.

【0021】[0021]

【発明の実施の形態】以下に本発明の各要件について詳
しく説明する。なお、成分含有量の「%」は「重量%」
を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Each requirement of the present invention will be described in detail below. In addition, “%” of the component content is “% by weight”.
Means

【0022】(A)母材(素材鋼)の化学組成 C:Cは、マルテンサイト、球状炭化物及び残留オース
テナイトの混合組織におけるマルテンサイトの硬度を上
昇させるとともに、残留オーステナイトの量を適正化し
て、転動疲労寿命を向上させる作用がある。しかし、C
の含有量が0.7%未満では、添加効果に乏しい。一
方、1.2%を超えると、鋼塊鋳造時の冷却中、更に
は、熱間圧延や熱間鍛造など熱間加工後の鋼片の冷却中
に(以下、「鋼塊」、「鋼片」を併せて単に「鋼材」と
いう)、網目状の炭化物(主としてセメンタイト)がオ
ーステナイト粒界に生成してしまう。この網目状炭化物
は、鋼材を均熱(ソーキング)したり、焼準したりして
も容易に除去できず、最終製品(軸受)の転動疲労寿命
を劣化させてしまう。加えて、C含有量が1.2%を超
えると、後述の球状化焼鈍における炭化物の球状化が困
難となって、製品の転動疲労寿命が劣化してしまう。し
たがって、Cの含有量を0.7〜1.2%とした。な
お、Cの含有量は0.9〜1.1%とすることが好まし
い。
(A) Chemical Composition of Base Material (Steel) C: C increases the hardness of martensite in the mixed structure of martensite, spheroidal carbide and retained austenite, and optimizes the amount of retained austenite, It has the effect of improving rolling fatigue life. But C
If the content of is less than 0.7%, the effect of addition is poor. On the other hand, if it exceeds 1.2%, during cooling during steel ingot casting, and further during cooling of the steel slab after hot working such as hot rolling or hot forging (hereinafter, referred to as “steel ingot”, “steel ingot”). The "piece" is also referred to simply as "steel material", and mesh-like carbides (mainly cementite) are generated at the austenite grain boundaries. This network carbide cannot be easily removed even if the steel material is subjected to soaking or normalizing, which deteriorates the rolling fatigue life of the final product (bearing). In addition, if the C content exceeds 1.2%, it becomes difficult to spheroidize the carbide in the spheroidizing annealing described later, and the rolling fatigue life of the product deteriorates. Therefore, the content of C is set to 0.7 to 1.2%. The C content is preferably 0.9 to 1.1%.

【0023】Mn:Mnは、本発明において極めて重要
な元素である。すなわち、Mnは適正量を含有させる
と、転動疲労に対する抵抗性を高める作用がある。この
適正量とは、既に述べた1.15超〜2.0%で、これ
以下の含有量でも、逆に上回る含有量でも、充分な転動
疲労抵抗性が確保できない。更に、Mnの含有量が2.
0%を超えると、特に、C含有量が1.1%を超えるよ
うな高炭素の鋼の場合、残留オーステナイト量が顕著に
多くなり、製品寸法の経時変化が大きくなる。更に、軸
受要素部品の製造工程である、研削や研磨の仕上げ加工
性が劣化する。このため、Mn含有量を1.15%を超
え2.0%までとした。なお、Mnの好ましい含有量
は、1.2〜1.9%である。
Mn: Mn is an extremely important element in the present invention. That is, when Mn is contained in an appropriate amount, it has an effect of increasing resistance to rolling contact fatigue. The appropriate amount is more than 1.15 to 2.0% as described above, and sufficient rolling contact fatigue resistance cannot be ensured even if the content is less than this amount or the content is more than that. Furthermore, the Mn content is 2.
If it exceeds 0%, especially in the case of a high carbon steel having a C content of more than 1.1%, the amount of retained austenite becomes remarkably large, and the change in product dimensions with time becomes large. Further, the finish workability of grinding and polishing, which is a manufacturing process of the bearing element parts, deteriorates. Therefore, the Mn content is set to more than 1.15% and up to 2.0%. The preferable content of Mn is 1.2 to 1.9%.

【0024】Cr:Crは、鋼の焼入れ性を高めて所望
の組織となすのに有効な元素である。しかし、その含有
量が0.3%未満では添加効果に乏しい。一方、1.6
%を超えて含有させてもその効果は飽和してコストが嵩
む。更に、炭化物を安定化させてしまうので、均熱処理
(ソーキング)を行っても網目状に析出した炭化物を除
去できず、このために転動疲労特性の劣化をもたらす場
合さえある。したがって、Crの含有量を0.3〜1.
6%とした。なお、Cr含有量は0.5〜1.5%とす
ることが好ましい。
Cr: Cr is an element effective for enhancing the hardenability of steel and forming a desired structure. However, if the content is less than 0.3%, the effect of addition is poor. On the other hand, 1.6
Even if it is contained in excess of%, the effect is saturated and the cost increases. Further, since the carbide is stabilized, the carbide precipitated in the mesh shape cannot be removed even by soaking (soaking), which sometimes causes deterioration of rolling contact fatigue characteristics. Therefore, the content of Cr is 0.3 to 1.
6%. The Cr content is preferably 0.5 to 1.5%.

【0025】Nb:Nbは添加しなくても良い。添加す
れば炭窒化物を形成して焼入れ加熱時のオーステナイト
結晶粒の成長を抑制し、焼入れ後の組織を微細化して転
動疲労寿命を向上させる作用を有する。この効果を確実
に得るには、Nbは0.01%以上の含有量とすること
が好ましい。しかし、その含有量が0.1%を超える
と、炭窒化物の形成量が多くなりすぎて基地の固溶C量
が低下するので、残留オーステナイト量が減少して所望
の量を確保できなくなり、却って転動疲労特性の低下を
招く。したがって、Nbの含有量を0〜0.1%とし
た。
Nb: Nb may not be added. If added, it has a function of forming a carbonitride and suppressing the growth of austenite crystal grains during heating during quenching, and refining the structure after quenching to improve the rolling fatigue life. In order to surely obtain this effect, the content of Nb is preferably set to 0.01% or more. However, if the content exceeds 0.1%, the amount of carbonitrides formed becomes too large and the amount of dissolved C in the matrix decreases, so the amount of retained austenite decreases and it becomes impossible to secure the desired amount. On the contrary, the rolling fatigue characteristics are deteriorated. Therefore, the content of Nb was set to 0 to 0.1%.

【0026】V:Vは添加しなくても良い。添加すれば
上記のNbと同様に、炭窒化物を形成して焼入れ加熱時
のオーステナイト結晶粒の成長を抑制し、焼入れ後の組
織を微細化して転動疲労寿命を向上させる作用を有す
る。この効果を確実に得るには、Vは0.05%以上の
含有量とすることが好ましい。しかし、その含有量が
0.2%を超えると、炭窒化物の形成量が多くなりすぎ
て基地の固溶C量が低下するので、残留オーステナイト
量が減少して所望の量を確保できなくなり、却って転動
疲労特性の低下を招く。したがって、Vの含有量を0〜
0.2%とした。
V: V may not be added. If added, similar to the above Nb, it has the effect of forming a carbonitride and suppressing the growth of austenite crystal grains during quenching and heating, and refining the structure after quenching to improve the rolling fatigue life. In order to ensure this effect, it is preferable that the content of V is 0.05% or more. However, if the content exceeds 0.2%, the amount of carbonitrides formed becomes too large and the amount of solid solution C in the matrix decreases, so the amount of retained austenite decreases and it becomes impossible to secure the desired amount. On the contrary, the rolling fatigue characteristics are deteriorated. Therefore, the content of V is 0 to
It was set to 0.2%.

【0027】Si:Si、は基地に固溶して硬度を上昇
させ、軸受要素部品の製造工程である冷間鍛造時の変形
抵抗を大きくして、冷間鍛造性を低下させてしまう。特
に、0.4%以上含有させると、冷間鍛造性の大きな低
下をきたして、金型の寿命低下が著しくなる。したがっ
て、Siの含有量を0.4%未満とした。なお、Siの
好ましい含有量は、0.3%以下である。
Si: Si, which is solid-dissolved in the matrix, increases the hardness, increases the deformation resistance during cold forging which is a manufacturing process of bearing element parts, and deteriorates cold forgeability. In particular, if the content is 0.4% or more, the cold forgeability is greatly reduced, and the life of the die is significantly reduced. Therefore, the Si content is set to less than 0.4%. The preferable Si content is 0.3% or less.

【0028】P:Pは、鋼の靭性を低下させ、加えて転
動疲労寿命を縮めてしまう。特に、その含有量が0.0
2%を超えると、靭性及び転動疲労特性の劣化が著し
い。したがって、P含有量の上限を0.02%とした。
なお、Pの含有量は0.015%以下とすることが好ま
しい。但し、微少量のPには、鋼の研削や研磨による仕
上げ加工を容易にするという好ましい作用もある。
P: P lowers the toughness of the steel and shortens the rolling fatigue life. In particular, its content is 0.0
If it exceeds 2%, the toughness and rolling fatigue properties are significantly deteriorated. Therefore, the upper limit of the P content is set to 0.02%.
The P content is preferably 0.015% or less. However, the small amount of P also has a preferable effect of facilitating finish processing by grinding or polishing steel.

【0029】S:Sも鋼の靭性を低下させ、更に転動疲
労寿命を縮めてしまう。特に、その含有量が0.02%
を超えると、靭性及び転動疲労特性の劣化が著しい。し
たがって、S含有量の上限を0.02%とした。なお、
Sの含有量は0.015%以下とすることが好ましい。
但し、微少量のSには、鋼の研削や研磨による仕上げ加
工を容易にするという好ましい作用もある。
S: S also lowers the toughness of steel and shortens the rolling fatigue life. Especially, its content is 0.02%
If it exceeds, the toughness and rolling fatigue characteristics are significantly deteriorated. Therefore, the upper limit of the S content is set to 0.02%. In addition,
The S content is preferably 0.015% or less.
However, the small amount of S also has a preferable effect of facilitating finish processing by grinding or polishing steel.

【0030】P+S:不純物元素としてのPとSの含有
量の和であるP+S量は、鋼の靭性や転動疲労寿命に影
響を及ぼすばかりでなく、軸受要素部品の製造工程であ
る研削や研磨の仕上げ加工性に影響する。すなわち、こ
の値が0.01%以下になると、研削や研磨の仕上げ加
工性が大きく劣化してしまう。一方、0.04%を超え
ると、靭性及び転動疲労特性の劣化が著しい。したがっ
て、P+Sの量を0.01%を超え0.04%までとし
た。なお、P+S量は0.01%を超え0.03%まで
とすることが好ましい。
P + S: The amount of P + S, which is the sum of the contents of P and S as impurity elements, not only affects the toughness and rolling fatigue life of steel, but also grinding and polishing, which are manufacturing processes of bearing element parts. Affects the finishing processability of. That is, if this value is 0.01% or less, the finish workability of grinding or polishing is greatly deteriorated. On the other hand, if it exceeds 0.04%, the toughness and rolling fatigue characteristics are significantly deteriorated. Therefore, the amount of P + S is set to more than 0.01% and 0.04%. The P + S amount is preferably more than 0.01% and 0.03%.

【0031】O:Oは、アルミナ系の介在物を形成し、
転動疲労特性を低下させてしまう。特に、その含有量が
0.0020%を超えると、転動疲労寿命の低下が著し
い。一方、O含有量を極めて低くするためには、高価な
溶製設備の設置や従来設備の大幅な改造、更には特殊な
技術が必要であり、母材コストが嵩んでしまう。通常の
技術と設備で低減可能なO含有量は0.0005%を超
えるものである。したがって、O含有量を0.0005
%を超え0.0020%までとした。なお、O含有量の
上限は0.0015%に制限することが好ましい。
O: O forms an alumina-based inclusion,
Rolling fatigue characteristics are deteriorated. In particular, when the content exceeds 0.0020%, the rolling fatigue life is significantly reduced. On the other hand, in order to make the O content extremely low, it is necessary to install expensive melting equipment, to drastically modify the conventional equipment, and to use a special technique, which increases the cost of the base material. The O content that can be reduced by ordinary techniques and equipment is more than 0.0005%. Therefore, the O content should be 0.0005.
% To 0.0020%. The upper limit of the O content is preferably limited to 0.0015%.

【0032】上記の化学組成を有する母材(素材鋼)
は、例えば、均熱処理、熱間での圧延又は鍛造を受けた
後、球状化焼鈍され、冷間鍛造によって所望の形状に粗
成形され、次いで、焼入れと焼戻しを施され、更に、研
削や研磨など機械加工されて所望の精密な要素部品形状
に仕上げられる。
Base metal (material steel) having the above chemical composition
Is, for example, subjected to soaking, hot rolling or forging, then spheroidizing annealed, is roughly formed into a desired shape by cold forging, is then subjected to quenching and tempering, and is further ground or polished. It is machined and finished into the desired precise element part shape.

【0033】(B)焼入れ、焼戻し後の組織 転がり軸受に長い転動疲労寿命を付与するには、軸受要
素部品の素材鋼の化学組成の調整だけでなく、組織を高
い接触面圧による塑性変形に耐え得るものとする必要が
ある。更に、転がり軸受は精密機械部品であるため、寸
法安定性に優れた組織とする必要がある。一方、精密な
仕上げ加工のためには、焼入れ及び低温での焼戻し後に
行う機械加工に際して、被削性の高い組織とすることも
必要である。
(B) Microstructure after quenching and tempering In order to impart a long rolling contact fatigue life to a rolling bearing, not only the chemical composition of the material steel of the bearing element parts is adjusted, but also the microstructure is plastically deformed by a high contact surface pressure. Must be able to withstand. Further, since the rolling bearing is a precision machine part, it is necessary to have a structure excellent in dimensional stability. On the other hand, for precise finishing, it is also necessary to have a structure with high machinability during machining performed after quenching and tempering at low temperature.

【0034】すなわち、素材鋼の化学組成を厳密に調整
し、軸受要素部品の組織を規定することで、精密機械部
品である転がり軸受に長い転動疲労寿命を付与できる。
That is, by strictly adjusting the chemical composition of the raw steel and defining the structure of the bearing element parts, it is possible to impart a long rolling contact fatigue life to the rolling bearing which is a precision machine part.

【0035】したがって、本発明では、上記(A)の母
材の化学組成に加えて、焼入れ、焼戻し後の組織を、マ
ルテンサイト、球状炭化物及び残留オーステナイトの混
合組織と規定する。これは、前記(A)に記載した化学
組成の母材からなる軸受要素部品においては、焼入れ、
焼戻し後の組織をマルテンサイト、球状炭化物及び残留
オーステナイトからなるものとし、且つ、前記残留オー
ステナイトの面積比を5〜15%とした場合に限って、
寸法安定性を劣化させることなしに、換言すれば、大き
な寸法変化をもたらすことなしに、転動疲労に対する抵
抗性を高めることができ、更に良好な被削性が得られる
からである。
Therefore, in the present invention, in addition to the chemical composition of the base material (A), the structure after quenching and tempering is defined as a mixed structure of martensite, spheroidal carbide and retained austenite. This is because in the bearing element component made of the base material having the chemical composition described in (A) above, quenching,
Only when the structure after tempering is composed of martensite, spheroidal carbide and retained austenite, and the area ratio of the retained austenite is 5 to 15%,
This is because the resistance to rolling fatigue can be increased without deteriorating the dimensional stability, in other words, without causing a large dimensional change, and more favorable machinability can be obtained.

【0036】上記の混合組織中、特に、残留オーステナ
イトの量(面積比)のみ厳密に規定したのは、残留オー
ステナイトの面積比が5%を下回ると転動疲労寿命の低
下が著しく、一方、15%を超えると大きな経時的寸法
変化を生じ、JIS規格の寸法公差を超えてしまうから
である。
In the above-mentioned mixed structure, particularly, only the amount (area ratio) of retained austenite is strictly defined. The reason is that if the area ratio of retained austenite is less than 5%, rolling fatigue life is remarkably reduced, while This is because if it exceeds%, a large dimensional change with time occurs, and the dimensional tolerance of the JIS standard is exceeded.

【0037】なお、マルテンサイトと球状炭化物の量
(面積比)に関しては、特に制限する必要はない。
The amount (area ratio) of martensite and spheroidal carbide need not be particularly limited.

【0038】(C)熱処理 球状化焼鈍は、軸受要素部品の製造工程である冷間鍛造
における冷間鍛造性や、精密仕上げのための機械加工時
の被削性を確保するのに不可欠の処理である。この球状
化焼鈍には特に制限はなく、通常の方法によるもので良
い。
(C) Heat treatment Spheroidizing annealing is an essential treatment for ensuring cold forgeability in cold forging, which is a manufacturing process of bearing element parts, and machinability during machining for precision finishing. Is. The spheroidizing annealing is not particularly limited and may be a usual method.

【0039】焼入れの加熱温度は、750〜820℃と
する必要がある。焼入れ加熱温度が750℃を下回る
と、焼入れ前組織(球状化焼鈍後の組織)中のフェライ
トが基地に残留するため、(B)項で述べた所望の組織
とならず、転動疲労寿命が著しく低下する。一方、焼入
れ加熱温度が820℃を超えると、焼入れ前組織中の球
状炭化物の基地への固溶が多くなりすぎ、固溶C量が増
えすぎるため、残留オーステナイトの面積比が(B)で
規定した量を大きく上回ってしまう。
The heating temperature for quenching must be 750 to 820 ° C. When the quenching heating temperature is lower than 750 ° C., ferrite in the structure before quenching (structure after spheroidizing annealing) remains in the matrix, so that the desired structure described in (B) is not obtained, and the rolling fatigue life is reduced. Markedly reduced. On the other hand, if the quenching heating temperature exceeds 820 ° C., the solid solution of the spherical carbide in the structure before quenching will be too much in the matrix, and the amount of solid solution C will be too much. Therefore, the area ratio of retained austenite is defined by (B) It greatly exceeds the amount that I did.

【0040】焼戻しは100〜200℃の所謂「低温焼
戻し」とする必要がある。焼戻し温度が100℃未満で
は、マルテンサイトの靭性の回復が不十分で衝撃的な強
度が低くなってしまう。一方、200℃を超えると、残
留オーステナイトの分解が進み、加えて硬度が低下して
しまう。このため、転動疲労寿命が著しく低下してしま
う。
The tempering must be so-called "low temperature tempering" at 100 to 200 ° C. If the tempering temperature is less than 100 ° C, the recovery of the toughness of martensite is insufficient and the impact strength becomes low. On the other hand, if the temperature exceeds 200 ° C., the decomposition of the retained austenite proceeds, and the hardness also decreases. For this reason, the rolling fatigue life is significantly reduced.

【0041】[0041]

【実施例】表1、2に示す化学組成の鋼を通常の方法に
よって150kg真空溶製した。表1における鋼A1〜A9
は、本発明対象鋼(以下、本発明鋼という)である。一
方、表2における鋼B1〜C2は成分のいずれかが本発明で
規定する範囲から外れた比較鋼である。比較鋼のうち鋼
C1はJIS規格のSUJ2に相当するもので、鋼C2は転
動疲労寿命が長いといわれている高Si−高Niの従来
鋼である。
EXAMPLE Steels having the chemical compositions shown in Tables 1 and 2 were vacuum-melted by 150 kg by a usual method. Steels A1 to A9 in Table 1
Is a steel of the present invention (hereinafter referred to as the present invention steel). On the other hand, the steels B1 to C2 in Table 2 are comparative steels in which any of the components is out of the range specified by the present invention. Steel among comparison steels
C1 is equivalent to JIS standard SUJ2, and steel C2 is a conventional high Si-high Ni steel that is said to have a long rolling contact fatigue life.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】次いで、これらの鋼の鋼材を1250℃で
均熱処理した後、通常の方法によって1250〜100
0℃の温度域で熱間鍛造し、直径が65mmと20mm
の丸棒とした。
Next, the steel materials of these steels are soaked at 1250 ° C., and then 1250-100.
Hot forged in the temperature range of 0 ℃, diameter 65mm and 20mm
It was a round bar.

【0045】更に、通常の方法によって球状化焼鈍を行
い、直径が65mmの丸棒からは直径60mmで厚さが
6mmの、又、直径が20mmの丸棒からは直径11m
mで長さが110mmの素形材を切り出した。
Further, spheroidizing annealing is performed by a usual method. A round bar having a diameter of 65 mm has a diameter of 60 mm and a thickness of 6 mm, and a round bar having a diameter of 20 mm has a diameter of 11 m.
A blank having a length of 110 mm and a length of 110 mm was cut out.

【0046】(実施例1)本発明鋼である鋼A3〜A5を母
材とする前記の直径が60mmと11mmの素形材を、
740〜860℃に加熱してから油焼入れし、その後1
80℃で2時間の焼戻しを行った。
(Example 1) Using the steels A3 to A5 which are steels of the present invention as base materials, the above-mentioned raw materials having diameters of 60 mm and 11 mm were prepared.
Heat to 740-860 ° C and then oil quench, then 1
Tempering was performed at 80 ° C. for 2 hours.

【0047】上記の熱処理を施した直径60mmの素形
材から直径が60mmで厚さが5mmの転動疲労試験片
を、又、直径11mmの素形材からは図1に示した寸法
変化測定用試験片を作製して、それぞれ転動疲労試験と
寸法変化試験に供した。
A rolling fatigue test piece having a diameter of 60 mm and a thickness of 5 mm was obtained from the heat-treated raw material having a diameter of 60 mm, and the dimensional change measurement shown in FIG. 1 was made from the raw material having a diameter of 11 mm. Test pieces were prepared and subjected to a rolling fatigue test and a dimensional change test, respectively.

【0048】転動疲労試験は、スラスト型の転動疲労試
験機を用いて、最大接触面圧560kgf/mm2 、回
転数1200rpmの負荷条件で行った。表3に転動疲
労試験の詳細条件を示す。なお、転動疲労試験結果は、
ワイブル分布確率紙上にプロットし、50%累積破損確
率を示すL50寿命を「転動疲労寿命」とした。
The rolling fatigue test was conducted using a thrust type rolling fatigue tester under load conditions with a maximum contact surface pressure of 560 kgf / mm 2 and a rotation speed of 1200 rpm. Table 3 shows the detailed conditions of the rolling fatigue test. The rolling fatigue test results are
The L 50 life, which was plotted on a Weibull distribution probability paper and showed a 50% cumulative failure probability, was defined as “rolling fatigue life”.

【0049】[0049]

【表3】 [Table 3]

【0050】一方、寸法変化試験は、前記試験片を15
0℃の炉中に2500時間保持し、万能測長機で処理前
後の長さを測定して、変化率を求めた。
On the other hand, in the dimensional change test, the test piece
The rate of change was determined by holding the sample in a furnace at 0 ° C. for 2500 hours and measuring the length before and after the treatment with a universal length measuring machine.

【0051】又、転動疲労試験片を用いて、通常のX線
回折法によってその表面残留オーステナイト量(面積
比)を測定した。又、光学顕微鏡観察による組織調査も
実施した。
Further, the rolling fatigue test piece was used to measure the amount of surface retained austenite (area ratio) by a usual X-ray diffraction method. In addition, a microstructure observation by optical microscope observation was also carried out.

【0052】表4に試験結果を示す。なお、表4の組織
に関し、残留オーステナイト以外の部分(面積比)はマ
ルテンサイトと球状炭化物であることを意味する。
Table 4 shows the test results. In addition, regarding the structure of Table 4, it is meant that the portion (area ratio) other than the retained austenite is martensite and spherical carbide.

【0053】表4から、A3〜A5の本発明鋼を母材とする
場合であっても、焼入れの加熱温度が本発明の規定から
外れたものでは特性が劣っている。すなわち、焼入れ加
熱温度が740℃と低い場合には、残留オーステナイト
量が面積比で0〜3%しかなく、したがって、転動疲労
寿命が短い。一方、焼入れ加熱温度が860℃と高い場
合には、転動疲労寿命は向上しているが、残留オーステ
ナイト量が18〜21%と高いために、寸法変化が大き
くなっている。
From Table 4, even when the steels of the present invention of A3 to A5 are used as the base material, the properties are inferior if the heating temperature for quenching is out of the regulation of the present invention. That is, when the quenching heating temperature is as low as 740 ° C., the amount of retained austenite is only 0 to 3% in area ratio, and therefore the rolling fatigue life is short. On the other hand, when the quenching heating temperature is as high as 860 ° C., the rolling fatigue life is improved, but the dimensional change is large because the retained austenite amount is as high as 18 to 21%.

【0054】これに対して、焼入れの加熱温度が本発明
で規定した範囲にある780℃と820℃で処理した場
合には、転動疲労寿命は5.1×107 以上と長く、寸
法変化は0.008%以下と小さい。
On the other hand, when the heating temperature for quenching is 780 ° C. and 820 ° C., which are within the ranges specified in the present invention, the rolling fatigue life is as long as 5.1 × 10 7 or more and the dimensional change is large. Is as small as 0.008% or less.

【0055】[0055]

【表4】 [Table 4]

【0056】(実施例2)本発明鋼である鋼A1〜A9と、
比較鋼である鋼B1〜C2を母材とする前記の直径が60m
mと11mmの素形材を、820℃に加熱してから油焼
入れし、その後180℃で2時間の焼戻しを行った。
(Example 2) Steels A1 to A9 which are steels of the present invention,
Based on steels B1 to C2 which are comparative steels, the diameter is 60m.
The m and 11 mm blanks were heated to 820 ° C., oil-quenched, and then tempered at 180 ° C. for 2 hours.

【0057】この後、前記寸法の転動疲労試験片と図1
に示した寸法変化測定用試験片を作製して、上記の実施
例1と同じ条件で転動疲労試験と寸法変化試験を行っ
た。X線回折法による残留オーステナイト量(面積比)
の測定と、光学顕微鏡観察による組織調査も併せて実施
した。
After that, the rolling fatigue test piece having the above-mentioned dimensions and FIG.
A test piece for dimensional change measurement shown in 1 was prepared, and a rolling fatigue test and a dimensional change test were performed under the same conditions as in Example 1 above. Amount of retained austenite by X-ray diffraction method (area ratio)
And the microstructure observation by optical microscope observation.

【0058】表5に結果を示す。なお、表5の組織に関
し、残留オーステナイト以外の部分(面積比)は鋼B2を
除いて、マルテンサイトと球状炭化物であった。一方、
鋼B2には球状化していない炭化物も認められた。又、L
50寿命を「転動疲労寿命」として記載した。
Table 5 shows the results. Regarding the structure shown in Table 5, the parts (area ratio) other than the retained austenite were martensite and spheroidal carbide except for the steel B2. on the other hand,
Non-spheroidized carbides were also found in Steel B2. Also, L
The 50 life is described as "rolling fatigue life".

【0059】本発明鋼を母材とする場合には、いずれも
本発明で規定する残留オーステナイト量であり、転動疲
労寿命は5.0×107 を超え、従来鋼である鋼C1やC2
を母材とするものよりも長い。Nb及び/又はVを添加
した本発明鋼にあっては、転動疲労寿命が向上する傾向
も認められる。更に、本発明鋼を母材とする場合には寸
法変化も0.009%以下の小さい値である。
In the case where the steel of the present invention is used as the base material, the amount of retained austenite specified in the present invention is used in all cases, the rolling fatigue life exceeds 5.0 × 10 7 , and the conventional steels C1 and C2 are used.
It is longer than the base material. In the steel of the present invention containing Nb and / or V, the rolling fatigue life tends to be improved. Further, when the steel of the present invention is used as the base material, the dimensional change is a small value of 0.009% or less.

【0060】これに対して、比較鋼である鋼B1〜 B10を
母材とする場合には、本発明鋼を母材とする場合に比べ
て、転動疲労寿命と寸法安定性のいずれか、あるいは双
方が劣る。
On the other hand, when steels B1 to B10, which are comparative steels, are used as the base metal, one of rolling fatigue life and dimensional stability, as compared with the case where the steel of the present invention is used as the base metal, Or both are inferior.

【0061】鋼B1は、C含有量が本発明で規定する値よ
りも低いため、これを母材とした場合には転動疲労寿命
が短い。
Steel B1 has a C content lower than the value specified in the present invention, and therefore, when this is used as the base material, the rolling fatigue life is short.

【0062】鋼B2は、C含有量が本発明で規定する値よ
りも高く、球状化していない炭化物が存在し、これを母
材とした場合には転動疲労寿命が短い。
Steel B2 has a C content higher than the value specified in the present invention, and non-spheroidized carbides are present. When this is used as a base material, rolling fatigue life is short.

【0063】鋼B3は、本発明で規定する値よりもMn含
有量が高く、Cr含有量が低い。しかも残留オーステナ
イト量が22%と大きい。このため、これを母材とした
場合には寸法安定性に欠けるとともに転動疲労寿命も短
い。
Steel B3 has a higher Mn content and a lower Cr content than the values specified in the present invention. Moreover, the amount of retained austenite is as large as 22%. Therefore, when this is used as the base material, the dimensional stability is poor and the rolling fatigue life is short.

【0064】鋼B4では、逆に本発明で規定する値よりも
Mn含有量が低く、Cr含有量が高い。このため、これ
を母材とした場合には転動疲労寿命が短い。
On the contrary, in steel B4, the Mn content is lower and the Cr content is higher than the values specified in the present invention. Therefore, when this is used as the base material, the rolling fatigue life is short.

【0065】鋼B5は、本発明で規定する値よりもP、
S、P+S及びO含有量が高めである。したがって、こ
れを母材とした場合には転動疲労寿命が短い。
Steel B5 has P, which is higher than the value specified in the present invention.
Higher S, P + S and O contents. Therefore, when this is used as the base material, the rolling fatigue life is short.

【0066】鋼B6は、本発明で規定する値よりもVとN
bの含有量が高い。このため残留オーステナイト量が本
発明で規定する値に達せず、これを母材とした場合には
転動疲労寿命が短い。
Steel B6 has V and N higher than the values specified in the present invention.
The content of b is high. Therefore, the amount of retained austenite does not reach the value specified in the present invention, and when this is used as the base material, the rolling fatigue life is short.

【0067】鋼B7とB8はそれぞれ、本発明で規定する値
よりもNbとVの含有量が高く、残留オーステナイト量
が本発明で規定する値に達していない。このため、これ
らの鋼を母材とした場合には転動疲労寿命が短い。
Steels B7 and B8 each have a higher Nb and V content than the values specified in the present invention, and the residual austenite amount does not reach the value specified in the present invention. Therefore, rolling fatigue life is short when these steels are used as base materials.

【0068】鋼B9と B10はそれぞれ、本発明で規定する
値よりもPとSの含有量が高い。このため、これらの鋼
を母材とした場合には転動疲労寿命が短い。
Steels B9 and B10 respectively have higher P and S contents than the values specified in the present invention. Therefore, rolling fatigue life is short when these steels are used as base materials.

【0069】[0069]

【表5】 [Table 5]

【0070】[0070]

【発明の効果】本発明の軸受要素部品は、廉価な鋼を母
材とし、所望形状に容易に成形され、且つ、使用中の寸
法変化が小さく、転動疲労寿命が長いことから、各種の
産業機械や自動車などに使用される玉軸受やコロ軸受と
いった転がり軸受の要素部品として利用することができ
る。この軸受要素部品は、前述の本発明法によって比較
的容易に製造することができる。
INDUSTRIAL APPLICABILITY The bearing element component of the present invention is made of inexpensive steel as a base material, is easily formed into a desired shape, has a small dimensional change during use, and has a long rolling contact fatigue life. It can be used as an element component of rolling bearings such as ball bearings and roller bearings used in industrial machines and automobiles. This bearing element component can be manufactured relatively easily by the method of the invention described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で使用した寸法変化測定用試験片を示す
図である。
FIG. 1 is a view showing a dimensional change measuring test piece used in Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】母材が、重量%で、C:0.7〜1.2
%、Mn:1.15%を超え2.0%まで、Cr:0.
3〜1.6%、Nb:0〜0.1%、V:0〜0.2
%、Si:0.4%未満、P:0.02%以下、S:
0.02%以下で、且つP+S:0.01%を超え0.
04%まで、O:0.0005%を超え0.0020%
まで、残部Fe及び不可避不純物の化学組成の鋼で、焼
入れ、焼戻し後の組織が、マルテンサイト、球状炭化物
及び残留オーステナイトからなり、且つ、前記残留オー
ステナイトの面積比が5〜15%であることを特徴とす
る軸受要素部品。
1. A base material, in% by weight, C: 0.7 to 1.2.
%, Mn: 1.15% to 2.0%, Cr: 0.
3 to 1.6%, Nb: 0 to 0.1%, V: 0 to 0.2
%, Si: less than 0.4%, P: 0.02% or less, S:
0.02% or less, and P + S: more than 0.01% and 0.
Up to 04%, O: 0.0005% over 0.0020%
In the steel having a chemical composition of residual Fe and unavoidable impurities, the structure after quenching and tempering is composed of martensite, spherical carbide and retained austenite, and the area ratio of the retained austenite is 5 to 15%. Characteristic bearing element parts.
【請求項2】請求項1に記載の化学組成の鋼を球状化焼
鈍してから部品に成形し、次いで、750〜820℃に
加熱して焼入れし、更に、100〜200℃の温度で焼
戻して、焼入れ・焼戻し後の組織をマルテンサイト、球
状炭化物及び残留オーステナイトで、且つ、前記残留オ
ーステナイトの面積比を5〜15%となすことを特徴と
する請求項1に記載の軸受要素部品の製造方法。
2. A steel having the chemical composition according to claim 1 is spheroidized and annealed, then formed into a component, then heated to 750 to 820 ° C. to be quenched, and further tempered at a temperature of 100 to 200 ° C. The manufacturing of a bearing element component according to claim 1, wherein the structure after quenching / tempering is martensite, spherical carbide and retained austenite, and the area ratio of the retained austenite is 5 to 15%. Method.
JP6408196A 1996-03-21 1996-03-21 Bearing element parts and its production Pending JPH09256105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6408196A JPH09256105A (en) 1996-03-21 1996-03-21 Bearing element parts and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6408196A JPH09256105A (en) 1996-03-21 1996-03-21 Bearing element parts and its production

Publications (1)

Publication Number Publication Date
JPH09256105A true JPH09256105A (en) 1997-09-30

Family

ID=13247786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6408196A Pending JPH09256105A (en) 1996-03-21 1996-03-21 Bearing element parts and its production

Country Status (1)

Country Link
JP (1) JPH09256105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070760A2 (en) * 1999-07-21 2001-01-24 Nissan Motor Co., Ltd. High bearing pressure-resistant member and production process therefor
WO2001016390A1 (en) * 1999-08-27 2001-03-08 Koyo Seiko Co., Ltd. Law material for bearing parts
JP2008101235A (en) * 2006-10-17 2008-05-01 Denki Kogyo Co Ltd Heat treatment method
US8845831B2 (en) 2009-02-02 2014-09-30 Denki Kogyo Co., Ltd. Heat treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070760A2 (en) * 1999-07-21 2001-01-24 Nissan Motor Co., Ltd. High bearing pressure-resistant member and production process therefor
EP1070760A3 (en) * 1999-07-21 2004-03-24 Nissan Motor Co., Ltd. High bearing pressure-resistant member and production process therefor
WO2001016390A1 (en) * 1999-08-27 2001-03-08 Koyo Seiko Co., Ltd. Law material for bearing parts
US6652672B1 (en) 1999-08-27 2003-11-25 Koyo Seiko Co., Ltd. Material for bearing parts
JP2008101235A (en) * 2006-10-17 2008-05-01 Denki Kogyo Co Ltd Heat treatment method
US8845831B2 (en) 2009-02-02 2014-09-30 Denki Kogyo Co., Ltd. Heat treatment method

Similar Documents

Publication Publication Date Title
KR101113575B1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
EP0933440B1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
CN113862576B (en) Non-quenched and tempered steel, crankshaft and production method thereof
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
CN112292471B (en) Mechanical component
KR100428581B1 (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
JP2001049388A (en) Steel wire bar steel, and steel tube for bearing element parts, excellent in machinability
CN113227424A (en) Steel material as material for carbonitrided bearing member
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP3279230B2 (en) Bearing element part and method of manufacturing the same
JP2002212672A (en) Steel member
WO2019244504A1 (en) Method for producing machine components
JPH0617224A (en) Carburized bearing parts excellent in high temperature rolling fatigue property
JPH09256105A (en) Bearing element parts and its production
JP2018197371A (en) Bearing steel and bearing component
WO2013018893A1 (en) Untempered steel for hot casting, hot-casted untempered article and method for producing same
JP3724142B2 (en) Method for producing coarse grain-resistant case-hardened steel
JP4821582B2 (en) Steel for vacuum carburized gear
WO2023248556A1 (en) Steel for high-frequency hardening
CN115335544B (en) Steel material and carburized steel part
JP7460884B2 (en) bearing steel
JP7469596B2 (en) Bearing Steel
JPH11347673A (en) Roller bearing, and its manufacture
JP2024002995A (en) Steel for induction hardening
KR100501680B1 (en) Heat treatment method of boron alloys for gear