JP2006156720A5 - - Google Patents

Download PDF

Info

Publication number
JP2006156720A5
JP2006156720A5 JP2004345364A JP2004345364A JP2006156720A5 JP 2006156720 A5 JP2006156720 A5 JP 2006156720A5 JP 2004345364 A JP2004345364 A JP 2004345364A JP 2004345364 A JP2004345364 A JP 2004345364A JP 2006156720 A5 JP2006156720 A5 JP 2006156720A5
Authority
JP
Japan
Prior art keywords
insulating resin
insulator
component unit
electronic component
kneaded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345364A
Other languages
Japanese (ja)
Other versions
JP4013945B2 (en
JP2006156720A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004345364A priority Critical patent/JP4013945B2/en
Priority claimed from JP2004345364A external-priority patent/JP4013945B2/en
Publication of JP2006156720A publication Critical patent/JP2006156720A/en
Publication of JP2006156720A5 publication Critical patent/JP2006156720A5/ja
Application granted granted Critical
Publication of JP4013945B2 publication Critical patent/JP4013945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

部品ユニットおよびその製造方法Component unit and manufacturing method thereof

本発明は、各種電子機器に用い、電子部品から生ずる熱を放熱する放熱板に、電子部品を装着した部品ユニットおよびその製造方法に関するものである。 The present invention relates to a component unit in which an electronic component is mounted on a heat radiating plate for radiating heat generated from the electronic component used in various electronic devices, and a manufacturing method thereof .

近年、電子機器の高性能化、小型化の要求に従い、電子部品の高密度、高機能化が一層叫ばれている。そのため、電子部品の小型化、高機能化、また高密度実装により、電子部品の温度上昇が大きな問題となり、電子部品の放熱を高める方法が重要となってきている。   In recent years, in accordance with demands for higher performance and smaller size of electronic devices, higher density and higher functionality of electronic components have been screamed. Therefore, due to the downsizing, high functionality, and high-density mounting of electronic components, the temperature rise of electronic components has become a major problem, and a method for increasing the heat dissipation of electronic components has become important.

電子部品の放熱を高める技術として、電子部品の背面にアルミ製の放熱板を装着し、電子部品の背面から熱を拡散する方式が知られている。   As a technique for increasing the heat dissipation of an electronic component, a method is known in which an aluminum heat sink is attached to the back of the electronic component and heat is diffused from the back of the electronic component.

図9は従来の放熱板に電子部品を装着した部品ユニットの斜視図である。図9において、従来の構成では、電子部品1を絶縁シート2で被覆し、金属製の放熱板3に取り付けている。取り付けは、絶縁シート2で被覆された電子部品1をバネ4で押さえ、放熱板3に開けた取り付け用の孔にネジ5を挿入してネジ止めすることにより行う。   FIG. 9 is a perspective view of a component unit in which electronic components are mounted on a conventional heat sink. In FIG. 9, in the conventional configuration, the electronic component 1 is covered with an insulating sheet 2 and attached to a metal heat sink 3. Attachment is performed by holding the electronic component 1 covered with the insulating sheet 2 with a spring 4, inserting a screw 5 into an attachment hole formed in the heat radiating plate 3, and screwing it.

これにより、電子部品1は、金属製の放熱板3との間で、絶縁性を確保しつつ、放熱を行うことができる。   Thus, the electronic component 1 can radiate heat while securing insulation between the electronic component 1 and the metal heat radiating plate 3.

なお、この出願の発明に関連する先行技術文献情報としては、例えば特許文献1や特許文献2が知られている。
特開平5−288873号公報 特開平8−45748号公報
For example, Patent Document 1 and Patent Document 2 are known as prior art document information related to the invention of this application.
JP-A-5-288873 JP-A-8-45748

上記従来の構成では、電子部品1を絶縁シート2で被覆して絶縁を行うので、電子部品1に対して、絶縁シート2の被覆位置がずれたり、絶縁距離が十分に取れなかったりして、高電圧のかかる回路において耐絶縁性が劣化するという問題点を有していた。   In the above conventional configuration, since the electronic component 1 is covered with the insulating sheet 2 for insulation, the covering position of the insulating sheet 2 is shifted with respect to the electronic component 1 or the insulation distance cannot be sufficiently obtained. In a circuit where high voltage is applied, the insulation resistance deteriorates.

また、放熱板3に電子部品1を装着する際は、絶縁シート2で被覆された電子部品1をバネ4で押さえ、放熱板3に開けた取り付け用の孔にネジ5を挿入してネジ止めするので、作業性が悪いという問題点を有していた。   Further, when the electronic component 1 is mounted on the heat sink 3, the electronic component 1 covered with the insulating sheet 2 is pressed by the spring 4, and the screw 5 is inserted into the mounting hole opened in the heat sink 3 and fixed with the screw. Therefore, there was a problem that workability was poor.

本発明は上記問題点を解決するもので、放熱板に電子部品を効率よく装着した部品ユニットにおいて、放熱性を損なわずに耐絶縁性を向上させることを目的としている。 SUMMARY OF THE INVENTION The present invention solves the above problems, and an object of the present invention is to improve insulation resistance without impairing heat dissipation in a component unit in which electronic components are efficiently mounted on a heat sink .

上記目的を達成するために本発明は、放熱板と、この放熱板に装着された電子部品とを備えた部品ユニットにおいて、放熱板は、金属製の基板と、この基板に積層され、無機フィラーおよび絶縁樹脂からなる絶縁体とを有し、この絶縁体の絶縁樹脂によって絶縁体と電子部品とは接着されているものとした。 In order to achieve the above object, the present invention provides a component unit comprising a heat sink and an electronic component mounted on the heat sink. The heat sink is laminated on a metal substrate and the substrate, and includes an inorganic filler. And an insulator made of an insulating resin, and the insulator and the electronic component are bonded by the insulating resin of the insulator.

上記構成により本発明は、絶縁樹脂が完全硬化する際に、絶縁体の絶縁樹脂によって電子部品が絶縁体に固定されるため、容易に効率よく放熱板に電子部品を装着できる。 With the above configuration, according to the present invention, since the electronic component is fixed to the insulator by the insulating resin when the insulating resin is completely cured , the electronic component can be easily and efficiently mounted on the heat sink.

また絶縁体は、無機フィラーと未硬化の絶縁樹脂とを有するので、この無機フィラーによって、放熱性を損なわず、かつ、絶縁樹脂によって、絶縁性を確保できる。そしてその結果、放熱板に電子部品を効率よく装着した部品ユニットにおいて、放熱性を損なわずに耐絶縁性を向上させることができる。 Moreover, since an insulator has an inorganic filler and uncured insulating resin, heat insulation is not impaired by this inorganic filler, and insulation can be ensured by insulating resin. As a result, in the component unit in which the electronic component is efficiently mounted on the heat sink, the insulation resistance can be improved without impairing the heat dissipation.

以下、実施の形態を用いて、本発明の全請求項に記載の発明について、図面を参照しながら説明する。   Hereinafter, the invention described in all claims of the present invention will be described using embodiments with reference to the drawings.

図1は本発明の放熱基板に電子部品を装着した部品ユニットの斜視図、図2は無機フィラーの充填率に対する混練物の熱伝導率の変化を示す特性図、図3は筐体に同ユニットを取り付けた際の取付状態を示す斜視図である。   FIG. 1 is a perspective view of a component unit in which electronic components are mounted on a heat dissipation board of the present invention, FIG. 2 is a characteristic diagram showing a change in thermal conductivity of a kneaded material with respect to a filling rate of an inorganic filler, and FIG. It is a perspective view which shows the attachment state at the time of attaching.

図1において、放熱板10は、金属製の基板12と、この基板12に積層した絶縁体14とを備えており、特に、この絶縁体14は、無機フィラーとプレゲル材とを含有した絶縁樹脂からなるとともに、この無機フィラーの熱伝導率を絶縁樹脂の熱伝導率よりも大きくしたものである。   In FIG. 1, a heat sink 10 includes a metal substrate 12 and an insulator 14 laminated on the substrate 12. In particular, the insulator 14 is an insulating resin containing an inorganic filler and a pregel material. The thermal conductivity of the inorganic filler is made larger than that of the insulating resin.

無機フィラーは、Al23、MgO、SiO2、BNおよびAlNから選ばれる少なくとも一つを含んでいる。無機フィラーを用いると、放熱性が優れるが、特に、MgOを用いると線膨張係数を大きくでき、SiO2を用いると誘電率を小さくでき、BNを用いると線膨張係数を小さくできる。 The inorganic filler contains at least one selected from Al 2 O 3 , MgO, SiO 2 , BN, and AlN. When an inorganic filler is used, heat dissipation is excellent. In particular, the use of MgO can increase the linear expansion coefficient, the use of SiO 2 can reduce the dielectric constant, and the use of BN can reduce the linear expansion coefficient.

無機フィラーは略球形状で、その直径は0.1〜100μmであるが、粒径が小さいほど絶縁樹脂への充填率を向上できる。絶縁体14に占める無機フィラーの充填量は、熱伝導率を上げるために、70〜95重量%と高濃度に充填している。特に、本実施の形態では、無機フィラーは、平均粒径3μmと平均粒径12μmの2種類のAl23を混合したものを用いている。この大小2種類の粒径のAl23を用いることによって、大きな粒径のAl23の隙間に小さな粒径のAl23を充填できるので、Al23を90重量%近くまで高濃度に充填できるものである。この場合、絶縁体14の熱伝導率は3W/mK程度となる。 The inorganic filler has a substantially spherical shape and a diameter of 0.1 to 100 μm. The smaller the particle size, the better the filling rate into the insulating resin. The filling amount of the inorganic filler in the insulator 14 is filled at a high concentration of 70 to 95% by weight in order to increase the thermal conductivity. In particular, in the present embodiment, the inorganic filler is a mixture of two types of Al 2 O 3 having an average particle diameter of 3 μm and an average particle diameter of 12 μm. By using the Al 2 O 3 of the large and small two types of particle size, it is possible to fill the Al 2 O 3 of small particle size in the gap Al 2 O 3 of large particle size, Al 2 O 3 90 wt% near Can be filled to a high concentration. In this case, the thermal conductivity of the insulator 14 is about 3 W / mK.

図2に示すように、混練物24に占める無機フィラーの充填率を上げていくと熱伝導率も比例して増加していく。これが充填率70重量%を超えると、熱伝導率は急激に増加することから、充填率は70重量%以上とする。これは、ある充填率を超えると、充填される熱伝導性のよい無機フィラーの粒子間の距離が短くなり、混練物24としての熱伝導率が急に高くなる領域が存在するからだと考えられる。本発明では、この領域を利用することで混練物24の熱伝導率を高くすることができるというものである。   As shown in FIG. 2, as the filling rate of the inorganic filler in the kneaded material 24 is increased, the thermal conductivity also increases in proportion. If this exceeds 70% by weight, the thermal conductivity increases rapidly, so the filling rate is 70% by weight or more. This is considered to be because when the filling rate exceeds a certain filling rate, the distance between the particles of the inorganic filler to be filled becomes short, and there is a region where the heat conductivity as the kneaded material 24 suddenly increases. . In the present invention, the heat conductivity of the kneaded material 24 can be increased by utilizing this region.

また、無機フィラーの充填率をさらに上げていくと、熱伝導率は増加するが、95重量%を超えると、混練物24として形状を保持できなくなってしまうため、充填率は70〜95重量%とするものである。   Further, if the filling rate of the inorganic filler is further increased, the thermal conductivity increases, but if it exceeds 95% by weight, the shape cannot be maintained as the kneaded material 24, so the filling rate is 70 to 95% by weight. It is what.

熱硬化性の絶縁樹脂は、エポキシ樹脂、フェノール樹脂およびシアネート樹脂の内、少なくとも1種類の樹脂を含んでいる。これらの樹脂は耐熱性や電気絶縁性に優れている。   The thermosetting insulating resin contains at least one resin among epoxy resin, phenol resin, and cyanate resin. These resins are excellent in heat resistance and electrical insulation.

プレゲル材は、熱可塑性樹脂パウダーであり、未硬化の熱硬化性の絶縁樹脂の液状成分を吸収して膨張し、未硬化の絶縁樹脂がゲルとなるように作用する働きをする。   The pregel material is a thermoplastic resin powder, and functions to act by absorbing the liquid component of the uncured thermosetting insulating resin and expanding the uncured insulating resin into a gel.

絶縁体14の厚さは、薄くすれば、放熱板10に装着した電子部品16に生じる熱を基板12に伝えやすいが、逆に絶縁耐圧が問題となり、厚すぎると、熱抵抗が大きくなるので、絶縁耐圧と熱抵抗を考慮して最適な厚さに設定すれば良い。強化絶縁耐圧を考慮すれば、絶縁体14の厚さを0.4mmより厚く、また、熱抵抗を考慮すれば、2mm以下にするのが望ましい。特に、本実施の形態では、絶縁体14の厚さを0.6mmとしている。   If the thickness of the insulator 14 is reduced, the heat generated in the electronic component 16 mounted on the heat sink 10 can be easily transferred to the substrate 12, but conversely, the withstand voltage becomes a problem, and if it is too thick, the thermal resistance increases. The optimum thickness may be set in consideration of withstand voltage and thermal resistance. Considering the reinforced dielectric strength, it is desirable that the thickness of the insulator 14 is greater than 0.4 mm, and considering the thermal resistance, it is preferably 2 mm or less. In particular, in the present embodiment, the thickness of the insulator 14 is 0.6 mm.

金属製の基板12としては、熱伝導の良いアルミニウム、銅またはそれらを主成分とする合金からできている。特に、本実施の形態では、基板12の厚みを1mmとしている。また、基板12としては、単なる板状のものだけでなく、より放熱性を高めるため、絶縁体14を積層した面とは反対側の面に、表面積を広げるためにフィン部を形成しても良い。全膨張係数は8×10-6/℃〜20×10-6/℃としており、基板12や半導体部品等の電子部品16の線膨張係数に近づけることにより、放熱板10の反りや歪みを小さくできる。 The metal substrate 12 is made of aluminum, copper, or an alloy containing them as a main component, which has good thermal conductivity. In particular, in the present embodiment, the thickness of the substrate 12 is 1 mm. Further, the substrate 12 is not limited to a simple plate-like one, and a fin portion may be formed on the surface opposite to the surface on which the insulator 14 is laminated in order to increase the surface area in order to further improve heat dissipation. good. The total expansion coefficient is set to 8 × 10 −6 / ° C. to 20 × 10 −6 / ° C., and the warpage and distortion of the heat sink 10 are reduced by being close to the linear expansion coefficient of the electronic component 16 such as the substrate 12 or the semiconductor component. it can.

この放熱板10は図3に示すように、機器の筐体18やシャーシに取り付けることができる。取り付けはネジ止めや接着等により行う。また、放熱板10に装着された電子部品16の接続端子20を回路基板に接続すれば、回路基板上に放熱板10付きの電子部品16を実装することができる。   As shown in FIG. 3, the heat radiating plate 10 can be attached to a casing 18 or a chassis of the device. Installation is performed by screwing or bonding. Further, if the connection terminal 20 of the electronic component 16 mounted on the heat sink 10 is connected to the circuit board, the electronic component 16 with the heat sink 10 can be mounted on the circuit board.

このような放熱板10の製造工程は次の通りである。   The manufacturing process of such a heat sink 10 is as follows.

放熱板10の製造工程では、無機フィラーと未硬化の絶縁樹脂とを混練して形成した混練物24を金属製の基板12に積層する積層工程と、未硬化の絶縁樹脂を硬化させて混練物24を絶縁体14に形成する硬化工程とを備えている。さらに、硬化工程では、未硬化の絶縁樹脂を半硬化させて混練物24を半硬化する半硬化工程と、半硬化の絶縁樹脂を完全硬化させて混練物24を絶縁体14に形成する完全硬化工程を設けている。   In the manufacturing process of the heat radiating plate 10, a kneaded product is formed by laminating the kneaded material 24 formed by kneading the inorganic filler and the uncured insulating resin on the metal substrate 12, and curing the uncured insulating resin. And a curing step of forming 24 on the insulator 14. Furthermore, in the curing step, a semi-curing step in which the uncured insulating resin is semi-cured to semi-cure the kneaded product 24, and a complete curing in which the semi-cured insulating resin is completely cured to form the kneaded material 24 on the insulator 14. A process is provided.

具体的には、図4(A)において、混練物24をフィルム26上に所定の厚みになるようにシート化して積層する。シート化することにより容易に混練物24を放熱板10の形状にすることができ、低コストで生産性を良くすることができる。   Specifically, in FIG. 4A, the kneaded material 24 is formed into a sheet and laminated on the film 26 so as to have a predetermined thickness. By making it into a sheet, the kneaded material 24 can be easily formed into the shape of the radiator plate 10, and the productivity can be improved at low cost.

混練物24をシート化する方法としては、ドクターブレード法、コーター法、押し出し成形法、圧延法等がある。本実施の形態では、押し出し成形法にて、ポリエチレンテレフタレート(PET)からなるフィルム26上に混練物24を積層している。混練物24の厚さは、0.6mmとしている。   As a method for forming the kneaded material 24 into a sheet, there are a doctor blade method, a coater method, an extrusion method, a rolling method, and the like. In the present embodiment, the kneaded material 24 is laminated on the film 26 made of polyethylene terephthalate (PET) by an extrusion molding method. The thickness of the kneaded material 24 is 0.6 mm.

混練物24は、無機フィラーと未硬化の絶縁樹脂と熱可塑性樹脂パウダーのプレゲル材を有している。この熱可塑性樹脂パウダーは、未硬化の絶縁樹脂に含有される液状成分を吸収し、未硬化の絶縁樹脂を半硬化させる作用がある。   The kneaded material 24 has a pregel material of an inorganic filler, an uncured insulating resin, and a thermoplastic resin powder. This thermoplastic resin powder has the effect of absorbing the liquid component contained in the uncured insulating resin and semi-curing the uncured insulating resin.

他の方法としては、ディスペンサー、モーノポンプ、または押し出し成形機等により、基板12上に混練物24を必要量塗布し、表面を平坦にするように、混練物24をローラー28で押圧して形成する方法でも良い。   As another method, a necessary amount of the kneaded material 24 is applied onto the substrate 12 by a dispenser, a mono pump, an extrusion molding machine, or the like, and the kneaded material 24 is pressed with a roller 28 so as to flatten the surface. The method is fine.

また、予め、混練物24をシート化しておいて、基板12に積層しても良い。   Alternatively, the kneaded material 24 may be formed into a sheet in advance and laminated on the substrate 12.

次に、図4(B)において、ローラー28を用いて、フィルム26上から混練物24を基板12に押し付けるように、フィルム26の端から順に押圧し、基板12に混練物24を積層する(積層工程)。この際、基板12と混練物24との間には、空気を挟まないように押し付けている。特に、50000Pa以下の圧力の真空雰囲気中で行うと、基板12と混練物24との間に空気が噛みこんでボイドが発生するのを防ぐことができる。   Next, in FIG. 4B, using the roller 28, the kneaded material 24 is pressed from the end of the film 26 in order to press the kneaded material 24 against the substrate 12, and the kneaded material 24 is laminated on the substrate 12 ( Lamination process). At this time, the substrate 12 and the kneaded material 24 are pressed so as not to sandwich air. In particular, when performed in a vacuum atmosphere at a pressure of 50000 Pa or less, it is possible to prevent air from being caught between the substrate 12 and the kneaded material 24 and generating voids.

次に、図4(C)において、混練物24からフィルム26を剥離し、フィルム26上に積層した混練物24を基板12に転写する。   Next, in FIG. 4C, the film 26 is peeled from the kneaded material 24, and the kneaded material 24 laminated on the film 26 is transferred to the substrate 12.

最後に、混練物24に含まれる熱硬化性の絶縁樹脂を熱硬化させることにより(硬化工程)、未硬化の絶縁樹脂が硬化して絶縁体14が形成され、放熱板10を得ることができる。   Finally, by thermally curing the thermosetting insulating resin contained in the kneaded material 24 (curing step), the uncured insulating resin is cured to form the insulator 14, and the heat sink 10 can be obtained. .

この際、硬化工程では、未硬化の絶縁樹脂を半硬化させて混練物24を半硬化する半硬化工程と、半硬化の絶縁樹脂を完全硬化させて混練物24を絶縁体14に形成する完全硬化工程に分かれている。   At this time, in the curing step, a semi-curing step in which the uncured insulating resin is semi-cured to semi-cure the kneaded product 24 and a semi-cured insulating resin is completely cured to form the kneaded material 24 on the insulator 14. It is divided into a curing process.

プレゲル材を用いる場合は次の通りである。   When a pregel material is used, it is as follows.

混練物24に含まれるプレゲル材の熱可塑性樹脂パウダーは、未硬化の絶縁樹脂に含有される液状成分を吸収し、未硬化の絶縁樹脂を半硬化させる作用がある。   The thermoplastic resin powder of the pregel material contained in the kneaded material 24 has an action of absorbing the liquid component contained in the uncured insulating resin and semi-curing the uncured insulating resin.

半硬化工程では、80℃〜120℃で1〜10分間加熱することにより、プレゲル材を反応させて、未硬化の絶縁樹脂に含有される液状成分をプレゲル材の熱可塑性樹脂パウダーに吸収させ、未硬化の絶縁樹脂を半硬化させて混練物24を半硬化する。   In the semi-curing step, the pregel material is reacted by heating at 80 ° C. to 120 ° C. for 1 to 10 minutes, and the liquid component contained in the uncured insulating resin is absorbed by the thermoplastic resin powder of the pregel material, The kneaded material 24 is semi-cured by semi-curing the uncured insulating resin.

その後、完全硬化工程を施す。   Thereafter, a complete curing step is performed.

完全硬化工程では、加熱条件として熱硬化性の絶縁樹脂をCステージまで硬化させるため、150℃から200℃で1時間から6時間加熱する。本実施の形態では、170℃で3時間加熱した。   In the complete curing step, heating is performed at 150 to 200 ° C. for 1 to 6 hours in order to cure the thermosetting insulating resin to the C stage as a heating condition. In this embodiment mode, heating is performed at 170 ° C. for 3 hours.

プレゲル材を用いない場合は次の通りである。   When not using a pregel material, it is as follows.

基板12に混練物24を積層し、熱硬化性の絶縁樹脂の硬化度合いがBステージになるまで硬化させ(半硬化工程)、さらに、Cステージまで硬化する(完全硬化工程)。このように2段階で硬化させる。   The kneaded material 24 is laminated on the substrate 12 and cured until the degree of curing of the thermosetting insulating resin reaches the B stage (semi-curing process), and further cured to the C stage (complete curing process). Thus, it is cured in two stages.

プレゲル材を用いる場合も、用いない場合も、半硬化工程後、電子部品16を装着するための位置決め穴を形成したり、不必要な混練物24を除去したり、所望の形状になるように混練物24を加工できる。また、電子部品16を混練物24上に装着した後、加熱すれば、熱硬化性の絶縁樹脂が一度溶融するため、接着剤を用いずに電子部品16を固定することができる。半硬化させることにより、熱硬化性の絶縁樹脂がある程度の硬度を有することになり、電子部品16が自重で混練物24に沈み込むことも防げる。   Whether a pregel material is used or not, after the semi-curing process, a positioning hole for mounting the electronic component 16 is formed, an unnecessary kneaded material 24 is removed, or a desired shape is obtained. The kneaded material 24 can be processed. Further, if the electronic component 16 is mounted on the kneaded material 24 and then heated, the thermosetting insulating resin is once melted, so that the electronic component 16 can be fixed without using an adhesive. By semi-curing, the thermosetting insulating resin has a certain degree of hardness, and the electronic component 16 can be prevented from sinking into the kneaded material 24 by its own weight.

特に、プレゲル材を用いる場合、基板12に積層する混練物24を金型で形成しても、金型からの混練物24の離型性を良くできる。また、熱硬化性の絶縁樹脂が未硬化の状態(絶縁樹脂の全量が未硬化)なので、熱硬化のために加熱する際、絶縁樹脂の全量が反応することになり、電子部品16と混練物24との接着力を向上できる。   In particular, when a pregel material is used, the releasability of the kneaded material 24 from the mold can be improved even if the kneaded material 24 laminated on the substrate 12 is formed by a mold. In addition, since the thermosetting insulating resin is in an uncured state (the entire amount of the insulating resin is uncured), the entire amount of the insulating resin reacts when heated for thermosetting, and the electronic component 16 and the kneaded product. Adhesive strength with 24 can be improved.

また、プレゲル材を用いない場合は、Bステージに硬化させる前でも混練物24を加工することができるが、上記方法の方が形状変化の少ない放熱板10にできる。フィルム26をつけたまま熱硬化性の絶縁樹脂を加熱した場合は、BあるいはCステージになってからフィルム26を除去してもよい。   Further, when the pregel material is not used, the kneaded material 24 can be processed even before being cured to the B stage, but the above method can make the heat sink 10 with less shape change. When the thermosetting insulating resin is heated with the film 26 attached, the film 26 may be removed after the B or C stage is reached.

次に、本発明の他の実施の形態における放熱板10の製造工程について説明する。   Next, the manufacturing process of the heat sink 10 according to another embodiment of the present invention will be described.

この放熱板10の製造工程は次の通りである。   The manufacturing process of this heat sink 10 is as follows.

図5(A)、図5(B)において、基板12に混練物24を積層する積層工程は前述の本実施の形態の製造工程と同様であるが、混練物24を完全にシート化せず、また、混練物24の表面を完全に平坦にせずに、次の工程で許容できる状態にしておいてもよい。   5A and 5B, the laminating process for laminating the kneaded product 24 on the substrate 12 is the same as the manufacturing process of the present embodiment described above, but the kneaded product 24 is not completely formed into a sheet. Further, the surface of the kneaded material 24 may be allowed to be acceptable in the next step without being completely flattened.

図5(C)において、基板12に積層した混練物24は、熱盤30で挟んで加圧と加熱を行い、未硬化の熱硬化性の絶縁樹脂を硬化する。この際、本実施の形態のように、半硬化工程と完全硬化工程を施す。   In FIG. 5C, the kneaded material 24 stacked on the substrate 12 is pressed and heated by being sandwiched by a hot platen 30, and the uncured thermosetting insulating resin is cured. At this time, as in the present embodiment, a semi-curing process and a complete curing process are performed.

図5(D)において、熱盤30をはずせば、混練物24は絶縁体14として形成される。 In FIG. 5D, the kneaded material 24 is formed as the insulator 14 when the hot platen 30 is removed.

この方法では加圧により混練物24の厚みは薄くなるため、熱盤30に挟み込む前の混練物24の厚さは、熱盤30で挟み込んだ後の欲しい厚さに対して、予め厚くしておく必要がある。本工程では、最終的な基板12に形成される絶縁体14の厚みを0.6mmにするため、基板12に積層した時点の混練物24の厚みを1mmにしている。   In this method, since the thickness of the kneaded material 24 is reduced by pressurization, the thickness of the kneaded material 24 before being sandwiched by the hot platen 30 is previously increased with respect to the desired thickness after being sandwiched by the hot platen 30. It is necessary to keep. In this step, in order to set the thickness of the insulator 14 formed on the final substrate 12 to 0.6 mm, the thickness of the kneaded material 24 when it is laminated on the substrate 12 is set to 1 mm.

また、この硬化工程では、混練物24と熱盤30との間に混練物24と金型とを離型し易くするために、混練物24の表面に耐熱性のあるPETからなるフィルム26を付けた状態で、熱盤30に挟み込んでもよい。これにより、混練物24が熱盤30に付着することを防ぐことができる。熱盤30で挟み込んだ後は、フィルム26を剥離する。   In this curing step, a film 26 made of heat-resistant PET is formed on the surface of the kneaded material 24 so that the kneaded material 24 and the mold are easily released between the kneaded material 24 and the hot platen 30. It may be sandwiched between the hot plates 30 in the attached state. Thereby, the kneaded material 24 can be prevented from adhering to the hot platen 30. After being sandwiched by the hot platen 30, the film 26 is peeled off.

さらに、本発明の他の実施の形態における放熱板10の製造工程について説明する。   Furthermore, the manufacturing process of the heat sink 10 in other embodiment of this invention is demonstrated.

図6(A)、図6(B)において、基板12に混練物24を積層する積層工程は前述の本実施の形態の製造工程と同様であるが、混練物24を完全にシート化せず、また、混練物24の表面を完全に平坦にせずに、次の工程で許容できる状態にしておいてもよい。   6A and 6B, the laminating process for laminating the kneaded material 24 on the substrate 12 is the same as the manufacturing process of the above-described embodiment, but the kneaded material 24 is not completely formed into a sheet. Further, the surface of the kneaded material 24 may be allowed to be acceptable in the next step without being completely flattened.

図6(C)において、混練物24を積層した基板12を上金型32と下金型34内に設置する。   In FIG. 6C, the substrate 12 on which the kneaded material 24 is laminated is placed in an upper mold 32 and a lower mold 34.

上金型32には混練物24を所定の形状に成形するための凹凸が設けられている。   The upper mold 32 is provided with irregularities for forming the kneaded material 24 into a predetermined shape.

図6(D)において、上金型32と下金型34を閉じて混練物24を加圧・加熱して成形を行う。   In FIG. 6D, the upper mold 32 and the lower mold 34 are closed and the kneaded material 24 is pressurized and heated to perform molding.

この時、上金型32と下金型34は、150℃程度に昇温されており、混練物24を加熱してBあるいはCステージにする。この場合、加熱時間が5分程度と短い場合はBステージであるが、それ以上の時間ではCステージになる。この際、本実施の形態のように、半硬化工程と完全硬化工程を施す。   At this time, the upper mold 32 and the lower mold 34 are heated to about 150 ° C., and the kneaded material 24 is heated to the B or C stage. In this case, when the heating time is as short as about 5 minutes, the B stage is used, but when the heating time is longer than that, the C stage is used. At this time, as in the present embodiment, a semi-curing process and a complete curing process are performed.

図6(E)において、加圧・加熱を経て、混練物24は絶縁体14として形成される。   In FIG. 6E, the kneaded material 24 is formed as the insulator 14 through pressurization and heating.

この放熱板10の絶縁体14には、凹部36が形成されるので、図7に示すように、この凹部36に電子部品16を装着すれば装着が容易となる。   Since the concave portion 36 is formed in the insulator 14 of the heat sink 10, as shown in FIG.

この電子部品16の装着方法としては、例えば、Cステージまで硬化させた状態で、接着剤で装着する方法があるが、次のような装着方法でもよい。   As a method for mounting the electronic component 16, for example, there is a method of mounting with an adhesive in a state of being cured to the C stage, but the following mounting method may be used.

Bステージの状態で電子部品16を凹部36に置いて150℃前後で加熱し、熱硬化性の絶縁樹脂が一度溶融して電子部品16と混練物24とを熱硬化性の絶縁樹脂で接着してから、Cステージまで硬化させてもよい。より接着力を上げる場合には、電子部品16を混練物24に向かって加圧しながら加熱すると良い。   In the state of B stage, the electronic component 16 is placed in the recess 36 and heated at around 150 ° C., the thermosetting insulating resin is once melted, and the electronic component 16 and the kneaded material 24 are bonded with the thermosetting insulating resin. Then, it may be cured up to the C stage. In order to further increase the adhesive force, the electronic component 16 may be heated while being pressed toward the kneaded material 24.

このように本実施の形態では、半硬化させた混練物24上に電子部品を配置し、その後、絶縁樹脂を完全硬化するので、絶縁樹脂が完全硬化する際に、絶縁樹脂と混練物24とが接着され、容易に効率よく絶縁体14に電子部品を装着できる。   As described above, in this embodiment, the electronic component is disposed on the semi-cured kneaded material 24, and then the insulating resin is completely cured. Therefore, when the insulating resin is completely cured, the insulating resin and the kneaded material 24 are Can be easily and efficiently mounted on the insulator 14.

特に、この混練物24は、無機フィラーと未硬化の絶縁樹脂とを有するので、この無機フィラーによって、放熱性を損なわず、かつ、絶縁樹脂によって、絶縁性を確保できる。   In particular, since the kneaded material 24 has an inorganic filler and an uncured insulating resin, the insulating property can be ensured by the insulating resin without impairing the heat dissipation property.

放熱性や絶縁性の必要度に応じて、基板12に積層する混練物24の面積を変えたり、無機フィラーの材質を選択したり、基板12の材質を選択すれば、所望の特性を自由に得ることができる。   If the area of the kneaded material 24 laminated on the substrate 12 is changed, the material of the inorganic filler is selected, or the material of the substrate 12 is selected according to the necessity of heat dissipation or insulation, desired characteristics can be freely set. Obtainable.

特に、硬化工程には、未硬化の絶縁樹脂を半硬化させる半硬化工程と、半硬化の絶縁樹脂を完全硬化する完全硬化工程とを設けているので、半硬化の絶縁樹脂を電子部品16の形状に合うように所定形状に加工すれば、電子部品16の装着性を向上でき、また、半硬化の絶縁樹脂に電子部品16を装着し、その後、完全硬化すれば、絶縁樹脂と電子部品16とが直接接着されるので、放熱性を向上できる。   In particular, the curing process includes a semi-curing process for semi-curing an uncured insulating resin and a complete curing process for completely curing the semi-cured insulating resin. If it is processed into a predetermined shape so as to match the shape, the mounting property of the electronic component 16 can be improved, and if the electronic component 16 is mounted on a semi-cured insulating resin and then completely cured, then the insulating resin and the electronic component 16 are fixed. Can be directly adhered to each other, so that heat dissipation can be improved.

なお、本発明の実施の形態では、基板12の一方の面にしか絶縁樹脂を積層せず、基板12の一方の面にのみ絶縁体14を形成したが、基板12の他方の面にも絶縁樹脂を積層して絶縁体14を形成したり、基板12の端面にも絶縁樹脂を塗布し基板12を絶縁樹脂で被覆して絶縁体14を形成したりしてもよい。これによると、絶縁体14は基板12の主平面の両側に形成されるので、両側に電子部品16を装着でき、機器の小型化を行うことができる。また、基板12の端面にも絶縁体14を形成すれば、より絶縁を確保できるため、絶縁距離を短くでき機器の小型化を行うことができる。   In the embodiment of the present invention, the insulating resin is laminated only on one surface of the substrate 12 and the insulator 14 is formed only on one surface of the substrate 12, but the other surface of the substrate 12 is also insulated. The insulator 14 may be formed by laminating a resin, or the insulator 14 may be applied to the end surface of the substrate 12 and the substrate 12 may be covered with the insulating resin to form the insulator 14. According to this, since the insulator 14 is formed on both sides of the main plane of the substrate 12, the electronic component 16 can be mounted on both sides, and the device can be downsized. Further, if the insulator 14 is also formed on the end face of the substrate 12, insulation can be further ensured, so that the insulation distance can be shortened and the device can be downsized.

さらに、図8に示すように、基板12に積層する絶縁体14は、基板12の一部に形成しても、全面に形成しても良く、また、電子部品16に要求される絶縁耐圧によって、電子部品16が装着される部分のみに絶縁体14を積層したり、電子部品16の装着される部分のみに絶縁体14を積層せずに、その周囲に積層したりしても良い。   Further, as shown in FIG. 8, the insulator 14 laminated on the substrate 12 may be formed on a part of the substrate 12 or on the entire surface, and depending on the withstand voltage required for the electronic component 16. Alternatively, the insulator 14 may be stacked only on a portion where the electronic component 16 is mounted, or may be stacked around the insulator 14 instead of only on a portion where the electronic component 16 is mounted.

絶縁体14の積層面積に応じて、絶縁樹脂の使用量を減らすこともでき、コストダウンも行える。また、絶縁体14を積層していない部分では(金属製の基板12が露出する部分では)、放熱板10を各種の機器の筐体18に取り付けるためのネジ等を取り付けることができ、絶縁体14にクラック等も発生させずに取り付けることもできる。   Depending on the laminated area of the insulator 14, the amount of insulating resin used can be reduced, and the cost can be reduced. Further, in a portion where the insulator 14 is not laminated (in a portion where the metal substrate 12 is exposed), a screw or the like for attaching the heat radiating plate 10 to the casing 18 of various devices can be attached. It can also be attached to 14 without causing cracks or the like.

以上のように本発明は、絶縁体の絶縁樹脂によって絶縁体と電子部品とは接着されているものであり、絶縁樹脂が完全硬化する際に、絶縁体の絶縁樹脂によって電子部品が絶縁体に固定されるため、容易に効率よく放熱板に電子部品を装着できる。また絶縁体は、無機フィラーと未硬化の絶縁樹脂とを有するので、この無機フィラーによって、放熱性を損なわず、かつ、絶縁樹脂によって、絶縁性を確保できる。そしてその結果、放熱板に電子部品を効率よく装着した部品ユニットにおいて、放熱性を損なわずに耐絶縁性を向上させることができる。As described above, according to the present invention, the insulator and the electronic component are bonded to each other by the insulating resin of the insulator. Since it is fixed, electronic components can be easily and efficiently mounted on the heat sink. Moreover, since an insulator has an inorganic filler and uncured insulating resin, heat insulation is not impaired by this inorganic filler, and insulation can be ensured by insulating resin. As a result, in the component unit in which the electronic component is efficiently mounted on the heat sink, the insulation resistance can be improved without impairing the heat dissipation.

以上のように本発明の電子部品の装着方法は、絶縁樹脂が完全硬化する際に、絶縁樹脂と混練物とが接着され、容易に効率よく放熱板に電子部品を装着できるので、各種の電子機器の製造工程に用いることができる。   As described above, the electronic component mounting method of the present invention allows the insulating resin and the kneaded material to adhere to each other when the insulating resin is completely cured, so that the electronic component can be easily and efficiently mounted on the heat sink. It can be used in the manufacturing process of equipment.

本発明の放熱基板に電子部品を装着した部品ユニットの斜視図The perspective view of the component unit which mounted the electronic component on the heat sink of this invention 無機フィラーの充填率に対する混練物の熱伝導率の変化を示す特性図Characteristic diagram showing the change in thermal conductivity of the kneaded material with respect to the filling rate of the inorganic filler 筐体に同部品ユニットを取り付けた際の取付状態を示す斜視図The perspective view which shows the attachment state at the time of attaching the component unit to a housing | casing 本発明の実施の形態における同放熱板の製造工程図Manufacturing process diagram of the heat sink in the embodiment of the present invention 他の実施の形態における同放熱板の製造工程図Manufacturing process diagram of the heat sink in other embodiments 他の実施の形態における同放熱板の製造工程図Manufacturing process diagram of the heat sink in other embodiments 他の実施の形態における部品ユニットの断面図Sectional drawing of the component unit in other embodiment 他の実施の形態における部品ユニットの斜視図The perspective view of the component unit in other embodiment 従来の放熱板に電子部品を装着した部品ユニットの斜視図Perspective view of a component unit with electronic components mounted on a conventional heat sink

符号の説明Explanation of symbols

10 放熱板
12 基板
14 絶縁体
16 電子部品
18 筐体
20 接続端子
24 混練物
26 フィルム
28 ローラー
30 熱盤
32 上金型
34 下金型
36 凹部
DESCRIPTION OF SYMBOLS 10 Heat sink 12 Board | substrate 14 Insulator 16 Electronic component 18 Case 20 Connection terminal 24 Kneaded material 26 Film 28 Roller 30 Heating board 32 Upper die 34 Lower die 36 Recessed part

Claims (11)

放熱板と、A heat sink,
この放熱板に装着された電子部品とを備えた部品ユニットにおいて、In a component unit comprising an electronic component mounted on this heat sink,
前記放熱板は、The heat sink is
金属製の基板と、A metal substrate;
この基板に積層され、無機フィラーおよび絶縁樹脂からなる絶縁体とを有し、It is laminated on this substrate and has an insulator made of an inorganic filler and an insulating resin,
この絶縁体の絶縁樹脂によって前記絶縁体と前記電子部品とは接着されている部品ユニット。A component unit in which the insulator and the electronic component are bonded by the insulating resin of the insulator.
前記絶縁体の絶縁樹脂は硬化されている請求項1に記載の部品ユニット。The component unit according to claim 1, wherein the insulating resin of the insulator is cured. 前記絶縁体には凹部が形成され、A recess is formed in the insulator,
この凹部には、In this recess,
前記絶縁体の絶縁樹脂によって、By the insulating resin of the insulator,
前記電子部品が接着されている請求項1または2に記載の部品ユニット。The component unit according to claim 1, wherein the electronic component is bonded.
前記凹部の形状は、The shape of the recess is
前記電子部品の形状に合わせたものとする請求項3に記載の部品ユニット。The component unit according to claim 3, wherein the component unit is adapted to a shape of the electronic component.
前記絶縁体の厚さは0.4mmより厚く2mm以下である請求項1から4のいずれか一つに記載の部品ユニット。The component unit according to claim 1, wherein a thickness of the insulator is greater than 0.4 mm and equal to or less than 2 mm. 前記絶縁体は、The insulator is
熱可塑性樹脂からなるプレゲル材を含む請求項1から5のいずれか一つに記載の部品ユニット。The component unit according to claim 1, comprising a pregel material made of a thermoplastic resin.
前記絶縁体に占める前記無機フィラーの充填率は、The filling rate of the inorganic filler in the insulator is
70〜95重量%とした請求項1から6のいずれか一つに記載の部品ユニット。The component unit according to any one of claims 1 to 6, wherein the component unit is 70 to 95% by weight.
基板に無機フィラーと未硬化の絶縁樹脂とを有する混練物を積層し、Laminating a kneaded material having an inorganic filler and an uncured insulating resin on a substrate,
次に前記未硬化の絶縁樹脂を半硬化させ、Next, the uncured insulating resin is semi-cured,
その後前記混練物上に電子部品を配置し、After that, electronic components are placed on the kneaded product,
次に前記混練物を加熱して、前記半硬化の絶縁樹脂を溶融させ、Next, the kneaded product is heated to melt the semi-cured insulating resin,
この溶融した絶縁樹脂によって、前記混練物と電子部品とを接着し、By the molten insulating resin, the kneaded product and the electronic component are bonded,
その後この半硬化の絶縁樹脂を完全硬化させて絶縁体とする部品ユニットの製造方法。Thereafter, the semi-cured insulating resin is completely cured to produce a component unit.
前記絶縁樹脂を半硬化させる工程で、In the step of semi-curing the insulating resin,
前記混練物に所定形状の凹部を加工する請求項8に記載の部品ユニットの製造方法。The manufacturing method of the component unit of Claim 8 which processes the recessed part of a predetermined shape to the said kneaded material.
基板に無機フィラーと未硬化の絶縁樹脂と熱可塑性樹脂からなるプレゲル材とを有する混練物を積層し、Laminating a kneaded material having a pregel material composed of an inorganic filler, an uncured insulating resin and a thermoplastic resin on a substrate,
次にこの混練物を加熱して、前記未硬化の絶縁樹脂に含有される液状成分を前記プレゲル材に吸収させ、前記絶縁樹脂をゲルに形成し、Next, this kneaded product is heated, the pregel material absorbs the liquid component contained in the uncured insulating resin, and the insulating resin is formed into a gel.
その後前記混練物上に電子部品を配置し、After that, electronic components are placed on the kneaded product,
次に前記混練物を加熱して、前記絶縁樹脂を溶融させ、Next, the kneaded product is heated to melt the insulating resin,
この溶融した絶縁樹脂によって、前記混練物と前記電子部品とを接着し、With the molten insulating resin, the kneaded product and the electronic component are bonded,
その後前記絶縁樹脂を完全硬化させて絶縁体とする部品ユニットの製造方法。Thereafter, a method of manufacturing a component unit in which the insulating resin is completely cured to form an insulator.
前記混練物を加熱して、前記未硬化の絶縁樹脂に含有される液状成分を前記プレゲル材に吸収させ、前記絶縁樹脂をゲルに形成する工程で、In the step of heating the kneaded product, causing the pregel material to absorb the liquid component contained in the uncured insulating resin, and forming the insulating resin into a gel,
前記混練物に所定形状の凹部を加工する請求項10に記載の部品ユニットの製造方法。The manufacturing method of the component unit of Claim 10 which processes the recessed part of a predetermined shape to the said kneaded material.
JP2004345364A 2004-11-30 2004-11-30 Manufacturing method of component unit Expired - Fee Related JP4013945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345364A JP4013945B2 (en) 2004-11-30 2004-11-30 Manufacturing method of component unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345364A JP4013945B2 (en) 2004-11-30 2004-11-30 Manufacturing method of component unit

Publications (3)

Publication Number Publication Date
JP2006156720A JP2006156720A (en) 2006-06-15
JP2006156720A5 true JP2006156720A5 (en) 2007-07-05
JP4013945B2 JP4013945B2 (en) 2007-11-28

Family

ID=36634617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345364A Expired - Fee Related JP4013945B2 (en) 2004-11-30 2004-11-30 Manufacturing method of component unit

Country Status (1)

Country Link
JP (1) JP4013945B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153430A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Heatsink substrate and heat conductive sheet, and power module using these
JP2009081253A (en) * 2007-09-26 2009-04-16 Nitto Shinko Kk Insulation sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device
JP2001261722A (en) * 2000-03-22 2001-09-26 Jsr Corp Curable composition for thermal conductive sheet, semicured thermal conductive sheet and method for producing the same
JP2001284859A (en) * 2000-03-31 2001-10-12 Jsr Corp Heat-conductive sheet and application thereof
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2002146672A (en) * 2000-11-06 2002-05-22 Polymatech Co Ltd Heat conductive filler, heat conductive adhesive and semiconductor device
JP4268778B2 (en) * 2001-12-27 2009-05-27 ポリマテック株式会社 Heating electronic component cooling method and heat conductive sheet used therefor
JP2004104115A (en) * 2002-08-21 2004-04-02 Matsushita Electric Ind Co Ltd Power module and its manufacturing method
JP4075549B2 (en) * 2002-09-24 2008-04-16 松下電器産業株式会社 Heat dissipation substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7057896B2 (en) Power module and production method thereof
JP4046120B2 (en) Insulating sheet manufacturing method and power module manufacturing method
WO2013099545A1 (en) Electric power semiconductor device and method for producing same
KR101682761B1 (en) Thermally conductive dielectric interface
JP2002033558A (en) Circuit board and its manufacturing method
JP4261713B2 (en) Thermally conductive substrate and manufacturing method thereof
JP2006253354A (en) Circuit device and its manufacturing method
JP2010245563A (en) Component unit
JPWO2015132969A1 (en) Insulating substrate and semiconductor device
JP6031642B2 (en) Power module and manufacturing method thereof
JP2004104115A (en) Power module and its manufacturing method
JP4111187B2 (en) Manufacturing method of component unit
JP4013945B2 (en) Manufacturing method of component unit
JP2006156721A5 (en)
JP4581655B2 (en) Heat sink
JP2006156720A5 (en)
JP4636092B2 (en) Parts unit
JPH1146049A (en) Radiative resin substrate and its manufacturing method
JP2006156726A (en) Method for manufacturing heat dissipation plate
JP2006156725A (en) Method for manufacturing heat dissipation plate
JP2008181922A (en) Heat-conductive substrate and manufacturing method thereof, and semiconductor device using heat-conductive substrate
JP2007015325A (en) Molding method for thermally conductive substrate
JP4581656B2 (en) Manufacturing method of heat sink
JP4325329B2 (en) Heat dissipation package
JP2007243210A (en) Substrate for heat dissipation, and method of manufacturing same