JP2006156658A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006156658A
JP2006156658A JP2004344338A JP2004344338A JP2006156658A JP 2006156658 A JP2006156658 A JP 2006156658A JP 2004344338 A JP2004344338 A JP 2004344338A JP 2004344338 A JP2004344338 A JP 2004344338A JP 2006156658 A JP2006156658 A JP 2006156658A
Authority
JP
Japan
Prior art keywords
substrate
electrode
layer
sic
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004344338A
Other languages
Japanese (ja)
Inventor
Makoto Mizukami
誠 水上
Takashi Shinohe
孝 四戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004344338A priority Critical patent/JP2006156658A/en
Publication of JP2006156658A publication Critical patent/JP2006156658A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which is capable of reducing the ON-state resistance, while keeping its substrate high in strength. <P>SOLUTION: The semiconductor device is equipped with a support 21, which has two or more recesses formed through reticulate projections provided on its rear side and is formed of semiconductor having first impurity concentration, a semiconductor layer 3 which is formed on the surface of the support 21 opposite to its rear side and has a second impurity concentration lower than the first impurity concentration, and a semiconductor element formed on the semiconductor layer 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体装置に関し、特に基板抵抗を構造的に低減させ、低オン抵抗を実現可能とする半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device that can reduce substrate resistance structurally and realize low on-resistance.

半導体装置において、素子内の電流経路が、素子の第一の主面から第二の主面に向かって流れる縦型の半導体装置が知られている。この種の半導体装置の性能は、主として基板表面に形成されたエピタキシャル層に形成された素子構造により決定され、基板は上記エピタキシャル層を保持し、強度を保つ役割を担っている。   As a semiconductor device, a vertical semiconductor device in which a current path in an element flows from a first main surface to a second main surface of the element is known. The performance of this type of semiconductor device is mainly determined by the element structure formed in the epitaxial layer formed on the substrate surface, and the substrate holds the epitaxial layer and plays the role of maintaining the strength.

縦型半導体装置の電流経路の抵抗は、大別してエピタキシャル面と電極とのコンタクト抵抗、エピタキシャル層抵抗、基板抵抗、基板面と電極とのコンタクト抵抗を合わせた直列抵抗で構成されるが、エピタキシャル層に強度を付与するための基板の抵抗が非常に大きく、全体の抵抗を下げるためには、基板抵抗を下げなければならない。   The resistance of the current path of the vertical semiconductor device is roughly divided into the contact resistance between the epitaxial surface and the electrode, the epitaxial layer resistance, the substrate resistance, and the series resistance that combines the contact resistance between the substrate surface and the electrode. The resistance of the substrate for imparting strength is very large, and in order to reduce the overall resistance, the substrate resistance must be lowered.

シリコンの縦型半導体装置では、基板抵抗を極力小さくするために、エピタキシャル層表面に素子構造を形成した後、基板を数10〜100μm程度に研削し、裏面電極とのコンタクト抵抗を下げるために、裏面にイオン注入をした後に、レーザーアニールにより注入したイオンを活性化させ、コンタクト抵抗を下げている。   In the vertical semiconductor device of silicon, in order to reduce the substrate resistance as much as possible, after forming the element structure on the surface of the epitaxial layer, the substrate is ground to about several tens to 100 μm to reduce the contact resistance with the back electrode. After ion implantation on the back surface, the ions implanted by laser annealing are activated to lower the contact resistance.

ここで、基板裏面研削の前にエピタキシャル層表面に素子構造を形成している理由は、基板を数10〜100μm程度に研削したあとに、素子構造形成プロセス(熱工程、金属膜形成、酸化膜形成)を通してしまうと、歪みや熱膨張係数の違いにより、基板が割れてしまうという問題があるからである。   Here, the reason why the element structure is formed on the surface of the epitaxial layer before grinding the back surface of the substrate is that after the substrate is ground to about several tens to 100 μm, the element structure forming process (thermal process, metal film formation, oxide film) This is because the substrate is cracked due to differences in strain and thermal expansion coefficient.

同一の手法を炭化珪素(SiC)基板を用いた素子に適応させた場合、SiCの活性化アニール温度が1600℃程度であることから、表面に形成した酸化膜、電極などが損傷してしまう問題があった。   When the same technique is applied to an element using a silicon carbide (SiC) substrate, the activation annealing temperature of SiC is about 1600 ° C., so that the oxide film, electrode, etc. formed on the surface are damaged. was there.

また、レーザーアニール、パルスアニールのように基板最表面のみを加熱する手段を用いても、SiCの熱伝導係数が4.9W/cmKで銅(Cu)と同程度であり、対向する面(アニール面を裏面とした場合は“表面”)への熱損傷は不可避な問題であった。また、SiCにおいても、エピタキシャル層表面に素子構造を形成する前に、基板裏面研削を行うと、基板が割れてしまう問題がある。   Further, even when a means for heating only the uppermost surface of the substrate, such as laser annealing or pulse annealing, is used, the thermal conductivity coefficient of SiC is 4.9 W / cmK, which is similar to copper (Cu), and the opposite surface (annealing) When the surface was the back surface, thermal damage to the “front surface”) was an inevitable problem. Also, in SiC, there is a problem that if the substrate back surface grinding is performed before the element structure is formed on the surface of the epitaxial layer, the substrate is cracked.

上記の問題を解決するために、特許文献1では、シリコン基板上に縦型MOSFETとバイポーラトランジスタを混在させた半導体装置において、縦型MOSFET形成部分の半導体基板の裏面に凹部を設け、凹部底面にドレイン電極を設けてオン抵抗を下げている。この例では、縦型MOSFETとバイポーラトランジスタの混在基板の局所に凹部を設けるので、基板全体の強度は確保されると思われるが、縦型MOSFET単独の半導体装置を形成する場合、基板強度が低下する虞があった。   In order to solve the above problem, in Patent Document 1, in a semiconductor device in which a vertical MOSFET and a bipolar transistor are mixed on a silicon substrate, a recess is provided on the back surface of the semiconductor substrate in the vertical MOSFET forming portion, and the bottom surface of the recess is formed. A drain electrode is provided to lower the on-resistance. In this example, since the concave portion is provided locally on the mixed substrate of the vertical MOSFET and the bipolar transistor, it seems that the strength of the entire substrate is ensured, but the substrate strength is lowered when forming the semiconductor device of the vertical MOSFET alone. There was a fear.

また、特許文献2においては、炭化珪素基板を用いた縦型MOSFETにおいて、素子形成部の下部の基板裏面に凹部を設け、凹部底面にドレイン電極を形成して、オン抵抗を下げている。この例では、縦型MOSFET単独の半導体装置において、基板に凹部を設けているが、基板の厚さ400μmに対して200μm程度の深さの凹部を設けて基板強度を確保している。オン抵抗を充分に下げるために凹部の深さをさらに深くすると、基板強度が低下するという問題が予想される。
特開平9−102604号公報 特開2003−303966号公報
Further, in Patent Document 2, in a vertical MOSFET using a silicon carbide substrate, a concave portion is provided on the back surface of the substrate below the element forming portion, and a drain electrode is formed on the bottom surface of the concave portion to reduce the on-resistance. In this example, in the semiconductor device having a single vertical MOSFET, the substrate is provided with a recess, but the substrate strength is ensured by providing a recess having a depth of about 200 μm with respect to the thickness of the substrate of 400 μm. If the depth of the recess is further increased in order to sufficiently reduce the on-resistance, a problem that the strength of the substrate is lowered is expected.
JP-A-9-102604 JP 2003-303966 A

本発明は上記事情に鑑みて為されたもので、基板抵抗の高い基板を用いた場合でも、基板強度確保しながら、電極引出し部の抵抗を下げることができる半導体装置の構成を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a configuration of a semiconductor device capable of reducing the resistance of an electrode lead portion while ensuring the substrate strength even when a substrate having a high substrate resistance is used. Objective.

上記課題を解決するために、本発明の半導体装置は、網目状の凸部により形成された複数の凹部を裏面に有し、第1の不純物濃度を有する半導体からなる支持体と、前記支持体の前記裏面に対向する表面に形成され、前記第1の不純物濃度よりも低い第2の不純物濃度を有する半導体層と、前記半導体層に形成された半導体素子とを具備することを特徴とする。   In order to solve the above-described problems, a semiconductor device according to the present invention includes a support made of a semiconductor having a plurality of recesses formed on a back surface and having a first impurity concentration, and the support. And a semiconductor layer having a second impurity concentration lower than the first impurity concentration, and a semiconductor element formed in the semiconductor layer.

本発明では、網目状の凸部により形成された複数の凹部を基板裏面に設けて連続ワッフル状に加工し、裏面電極の少なくとも一部をワッフル凹部に形成する。網目状の凸部の壁面はお互いが繋がっているので、熱工程を通しても、あるいは基板(エピタキシャル層)表面に酸化膜、金属膜を形成しても、基板の反りを大幅に抑制することができる。これと同時に、ワッフル凹部はワッフル間凸部に比べ、エピタキシャル層までの厚みが薄い、若しくはゼロにできるので、基板抵抗を大幅に低減させることが可能となる。   In the present invention, a plurality of concave portions formed by mesh-like convex portions are provided on the back surface of the substrate and processed into a continuous waffle shape, and at least a part of the back surface electrode is formed in the waffle concave portion. Since the wall surfaces of the mesh-shaped convex portions are connected to each other, even if an oxide film or a metal film is formed on the surface of the substrate (epitaxial layer) through a thermal process, the warpage of the substrate can be greatly suppressed. . At the same time, the waffle recess can be made thinner or zero in thickness up to the epitaxial layer than the inter-waffle protrusion, so that the substrate resistance can be greatly reduced.

以下、本発明の実施の形態を図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る半導体装置(ショットキーバリアダイオード)の摸式的な断面図、図2はその底面図で、図2のA−A線に沿った断面図が図1に相当する。即ち裏面に複数の(この場合4個の)凹部(ワッフル部)が設けられた連続ワッフル基板を用いている。なお、上面図は矩形の基板中央に矩形の電極が形成されるだけなので省略する。
(First embodiment)
1 is a schematic cross-sectional view of a semiconductor device (Schottky barrier diode) according to a first embodiment of the present invention, FIG. 2 is a bottom view thereof, and a cross-sectional view along the line AA in FIG. Corresponds to FIG. That is, a continuous waffle substrate having a plurality of (in this case, four) concave portions (waffle portions) on the back surface is used. Note that the top view is omitted because only a rectangular electrode is formed at the center of the rectangular substrate.

より詳細には、図1に示すように、バルクSiCからなる支持体21の上にSiCエピタキシャル層(低濃度層)3がホモエピタキシャル成長で形成されている。このSiCエピタキシャル層3には、ショットキーバリアダイオード(SBD)素子構造が形成されている。本実施形態では、バルクSiCとエピタキシャル層3はn型である。エピタキシャル層3の裏面は、複数の凹部を有するSiC支持体21の平面部により支持されており、バルクSiC支持体とエピタキシャル層3からなる基板1は、全体として連続ワッフル状に形成されている。エピタキシャル層3の上面には、エピタキシャル層3とショットキー接触をする表面電極19が形成されており、裏面にはオーミックコンタクト層13を介して裏面電極17が形成されている。本実施形態では、オーミックコンタクト層13はn型であり、表面電極19と裏面電極17の間にショットキーバリアダイオードが形成されている。   More specifically, as shown in FIG. 1, a SiC epitaxial layer (low concentration layer) 3 is formed by homoepitaxial growth on a support 21 made of bulk SiC. In this SiC epitaxial layer 3, a Schottky barrier diode (SBD) element structure is formed. In this embodiment, the bulk SiC and the epitaxial layer 3 are n-type. The back surface of the epitaxial layer 3 is supported by a plane portion of the SiC support 21 having a plurality of recesses, and the substrate 1 composed of the bulk SiC support and the epitaxial layer 3 is formed in a continuous waffle shape as a whole. A surface electrode 19 that makes a Schottky contact with the epitaxial layer 3 is formed on the upper surface of the epitaxial layer 3, and a back electrode 17 is formed on the rear surface via an ohmic contact layer 13. In this embodiment, the ohmic contact layer 13 is n-type, and a Schottky barrier diode is formed between the front surface electrode 19 and the back surface electrode 17.

エピタキシャル層3の上面には、表面電極19との接触部を囲んで、終端構造であるリサーフ領域12、ガードリング14が形成されており、本実施形態では夫々p型で形成されている。エピタキシャル層3の上面はSi酸化層15で覆われており、表面電極19形成領域は選択的に開口され、ここに表面電極(第1の電極)19が形成されている。エピタキシャル層3の裏面では、オーミックコンタクト層13の上に裏面電極(第2の電極)17が形成されている。裏面電極17は、SiC支持体21の脚部底面にも形成されている。   On the upper surface of the epitaxial layer 3, a resurf region 12 and a guard ring 14, which are termination structures, are formed so as to surround a contact portion with the surface electrode 19, and each of them is formed in a p-type in this embodiment. The upper surface of the epitaxial layer 3 is covered with the Si oxide layer 15, the surface electrode 19 formation region is selectively opened, and the surface electrode (first electrode) 19 is formed here. On the back surface of the epitaxial layer 3, a back electrode (second electrode) 17 is formed on the ohmic contact layer 13. The back surface electrode 17 is also formed on the bottom surface of the leg portion of the SiC support 21.

第1の実施形態のショットキーバリアダイオードは、裏面に田の字型突起を有するバルクSiCの支持体21により強度が付与されており、エピタキシャル層3に形成されたダイオード素子は、裏面電極との距離が短いので、低オン抵抗が実現されている。   The Schottky barrier diode of the first embodiment is given strength by a bulk SiC support 21 having a U-shaped projection on the back surface, and the diode element formed in the epitaxial layer 3 is connected to the back electrode. Since the distance is short, low on-resistance is realized.

次に、第1の実施形態に係る半導体装置の製造方法を説明する。まず、図3に示すように、基板抵抗0.02ΩcmのSiC基板2(n型)上に、n型不純物濃度3.5×1015cm−3のエピタキシャル層3を10μm成長させた基板(以下基板1と称する)を用意する。この基板1を硫酸と過酸化水素水の混酸で基板1に付着した有機汚れを除去し、純水によりリンスする。ついで、希塩酸と過酸化水素水の混酸で基板1に付着した金属不純物を除去し、純水によりリンスする。そして、最後に希フッ酸により基板1表面の自然酸化膜を除去し、純水によりリンスする。 Next, a method for manufacturing the semiconductor device according to the first embodiment will be described. First, as shown in FIG. 3, a substrate obtained by growing 10 μm of an epitaxial layer 3 having an n-type impurity concentration of 3.5 × 10 15 cm −3 on an SiC substrate 2 (n-type) having a substrate resistance of 0.02 Ωcm (hereinafter referred to as “the substrate”). (Referred to as substrate 1). The substrate 1 is removed of organic stains adhering to the substrate 1 with a mixed acid of sulfuric acid and hydrogen peroxide solution, and rinsed with pure water. Next, metal impurities adhering to the substrate 1 are removed with a mixed acid of dilute hydrochloric acid and hydrogen peroxide, and rinsed with pure water. Finally, the natural oxide film on the surface of the substrate 1 is removed with dilute hydrofluoric acid and rinsed with pure water.

この基板1を酸素雰囲気で、1100℃において2時間加熱し、基板1表面を酸化し犠牲酸化膜5を形成する。この基板1の裏面にTi膜7を50nm成膜した後、Al膜9を2μm成膜する。ここでTi膜7はSiC基板2とAl膜9を密着させる密着層の役割を果たし、Al膜9は後のSiCエッチングのエッチングマスクの役割を果たす。   The substrate 1 is heated in an oxygen atmosphere at 1100 ° C. for 2 hours to oxidize the surface of the substrate 1 to form a sacrificial oxide film 5. After a Ti film 7 having a thickness of 50 nm is formed on the back surface of the substrate 1, an Al film 9 having a thickness of 2 μm is formed. Here, the Ti film 7 serves as an adhesion layer for bringing the SiC substrate 2 and the Al film 9 into close contact, and the Al film 9 serves as an etching mask for later SiC etching.

このAl膜9の表面に、図4に示すように2μm程度のレジスト11をスピンコートし、ワッフル凹部を形成するためのパターンを、露光・現像により形成した後に、高温でハードベークをしてレジスト11を焼き固める。このレジスト11がパターニングされた基板1を塩素系ガスを用いるRIEチャンバーに導入し、図5に示すように、パターニングされたレジスト11をエッチングマスクとしてAl膜9、Ti膜7をドライエッチングする。   As shown in FIG. 4, a resist 11 having a thickness of about 2 μm is spin-coated on the surface of the Al film 9, and a pattern for forming a waffle recess is formed by exposure and development, followed by hard baking at a high temperature. 11 is baked and hardened. The substrate 1 on which the resist 11 is patterned is introduced into an RIE chamber using a chlorine-based gas, and the Al film 9 and the Ti film 7 are dry-etched using the patterned resist 11 as an etching mask as shown in FIG.

ついで、パターニングされたAl膜9をエッチングマスクとしてSiC基板2をCF4とO2の混合ガスによりドライエッチングする。このプロセスを繰り返すことにより、レジスト開口部がワッフル形状の凹部となり、SiC基板2が全てエッチングされ、図6に示すように、エピタキシャル層3が裏面に現れる。 Next, the SiC substrate 2 is dry-etched with a mixed gas of CF 4 and O 2 using the patterned Al film 9 as an etching mask. By repeating this process, the resist opening becomes a waffle-shaped recess, and the SiC substrate 2 is entirely etched, and the epitaxial layer 3 appears on the back surface as shown in FIG.

上記Al膜9の成膜方法は、電子銃蒸着法や、スパッタ、溶融めっきなどがあり、溶融めっきは、電子銃蒸着法やスパッタなどの真空蒸着法に比べ、厚膜のAlを得ることができる。溶融めっきの場合は、犠牲酸化膜により保護されたSiC基板裏面に鉄などを成膜し、溶融アルミ槽に基板を漬け込むことにより、SiC基板裏面にアルミニウムの溶融めっき被膜を得る。この工程で、熱酸化による犠牲酸化膜上にさらに化学蒸着による酸化膜を1μm程度成膜し、Ar雰囲気で1000℃、30分の酸化膜シンターを行って、蒸着した酸化膜を高密度化させると、保護膜としての機能を向上させることができる。   The Al film 9 can be formed by electron gun vapor deposition, sputtering, hot dipping, or the like, and hot dipping can obtain thicker Al than vacuum evaporation such as electron gun vapor deposition or sputtering. it can. In the case of hot dip plating, iron or the like is formed on the back surface of the SiC substrate protected by the sacrificial oxide film, and the hot dip plating film of aluminum is obtained on the back surface of the SiC substrate by immersing the substrate in a molten aluminum bath. In this step, an oxide film by chemical vapor deposition is further formed on the sacrificial oxide film by thermal oxidation to about 1 μm, and oxide film sintering is performed at 1000 ° C. for 30 minutes in an Ar atmosphere to increase the density of the deposited oxide film. And the function as a protective film can be improved.

この基板1を硫酸と過酸化水素水の混酸で洗浄し、基板1に付着したレジスト、金属を除去した後、純水によりリンスし、SiC支持体21の裏面に形成されていたAl層9、Ti層7も除去し、純水によりリンスする。   The substrate 1 is washed with a mixed acid of sulfuric acid and hydrogen peroxide solution, the resist and metal adhering to the substrate 1 are removed, rinsed with pure water, and the Al layer 9 formed on the back surface of the SiC support 21. The Ti layer 7 is also removed and rinsed with pure water.

次に、基板1裏面に総ドーズ量7×1015cm-2、最大加速エネルギー200keVにより、P(リン)イオンの多段注入を行い、図7に示すように裏面電極用のオーミックコンタクト領域13を形成する。 Next, multistage implantation of P (phosphorus) ions is performed on the back surface of the substrate 1 with a total dose of 7 × 10 15 cm −2 and a maximum acceleration energy of 200 keV, and an ohmic contact region 13 for the back electrode is formed as shown in FIG. Form.

ついで、エピタキシャル層3の上面に、犠牲酸化膜5を介してイオン注入用マスク層(不図示)を成膜し、その上にレジスト膜(不図示)を成膜し、終端構造となるリサーフ領域、ガードリング領域をパターニングする。このレジストパターンをもとに、イオン注入マスク層をパターニングする。このイオン注入マスクを用いて、総ドーズ量1.5×1013cm-2、最大加速エネルギー300keVによりアルミイオンの多段注入を行い、図8に示すように、リサーフ領域12、ガードリング14を形成する。 Next, a mask layer for ion implantation (not shown) is formed on the upper surface of the epitaxial layer 3 via the sacrificial oxide film 5, and a resist film (not shown) is formed thereon, so that a RESURF region serving as a termination structure is formed. The guard ring region is patterned. Based on this resist pattern, the ion implantation mask layer is patterned. Using this ion implantation mask, aluminum ions are subjected to multi-stage implantation with a total dose of 1.5 × 10 13 cm −2 and a maximum acceleration energy of 300 keV to form a resurf region 12 and a guard ring 14 as shown in FIG. To do.

この基板1を 硫酸と過酸化水素水の混酸で洗浄し、基板1に付着したレジスト、金属を除去した後、純水によりリンスする。ついで、希塩酸と過酸化水素水の混酸で基板に付着した微量の金属不純物を除去し、純水によりリンスする。そして、最後に希フッ酸により基板1表面の犠牲酸化膜5を除去し、純水によりリンスする。   The substrate 1 is washed with a mixed acid of sulfuric acid and hydrogen peroxide solution to remove the resist and metal adhering to the substrate 1 and then rinsed with pure water. Next, a trace amount of metal impurities adhering to the substrate is removed with a mixed acid of dilute hydrochloric acid and hydrogen peroxide, and rinsed with pure water. Finally, the sacrificial oxide film 5 on the surface of the substrate 1 is removed with dilute hydrofluoric acid and rinsed with pure water.

洗浄が終了した基板1を誘導加熱型の活性化アニール炉に導入し、到達真空度1×10-4Paまで真空にした後、不活性ガスであるArで満たし、1600℃、5分間の活性化アニールを行い図9に示す構造体を得る。 The cleaned substrate 1 is introduced into an induction heating type activation annealing furnace, evacuated to an ultimate vacuum of 1 × 10 −4 Pa, filled with Ar as an inert gas, and activated at 1600 ° C. for 5 minutes. An annealing process is performed to obtain the structure shown in FIG.

ついで、再び基板1表面を熱酸化した後に、図10に示すように、CVDにより基板1表面に1μmのSi酸化膜(SiO2)膜15を成膜し、Ar雰囲気中1000℃でSi酸化膜をシンターする。さらに、図11に示すように、基板1の裏面に裏面電極17となるNi膜を電子銃蒸着により成膜し、Ar雰囲気中1000℃、1分間のシンターを行い、オーミックコンタクト領域13と裏面電極17とをオーミックコンタクトさせる。 Next, after thermally oxidizing the surface of the substrate 1 again, as shown in FIG. 10, a 1 μm Si oxide film (SiO 2 ) film 15 is formed on the surface of the substrate 1 by CVD, and an Si oxide film is formed at 1000 ° C. in an Ar atmosphere. Sinter. Further, as shown in FIG. 11, a Ni film to be the back electrode 17 is formed on the back surface of the substrate 1 by electron gun vapor deposition, and sintering is performed in an Ar atmosphere at 1000 ° C. for 1 minute, so that the ohmic contact region 13 and the back electrode 17 is in ohmic contact.

ついで、基板1裏面をレジストにより保護した後、基板表面のSi酸化膜15表面にレジスト(不図示)を塗布し、表面電極形成領域上をパターニングにより開口させる。ついで、CF4とO2のRIEによりSi酸化膜15をエッチングし、さらに希フッ酸により基板最表面の自然酸化膜を除去し、表面電極19となるTi膜を成膜し、不要部分をレジストパターニングとRIEにより除去する。このプロセスにより、図1に示すような基板裏面が連続ワッフル状に加工されたSiCのショットキーバリアダイオード(SBD)が形成される。 Next, after protecting the back surface of the substrate 1 with a resist, a resist (not shown) is applied to the surface of the Si oxide film 15 on the surface of the substrate, and an opening is formed on the surface electrode formation region by patterning. Next, the Si oxide film 15 is etched by RIE of CF 4 and O 2 , the natural oxide film on the outermost surface of the substrate is removed by dilute hydrofluoric acid, a Ti film to be the surface electrode 19 is formed, and unnecessary portions are resisted. It is removed by patterning and RIE. Through this process, a SiC Schottky barrier diode (SBD) is formed in which the back surface of the substrate is processed into a continuous waffle shape as shown in FIG.

本実施形態のSBD素子のオン抵抗は1.2Ωcm2であり、耐圧は1000Vであった。裏面基板がワッフル状でない普通の基板の場合、耐圧は同様に1000Vであるが、オン抵抗は2mΩcm2であり、これに比べてワッフル状に加工した素子のオン抵抗は40%低減していることがわかった。 The on-resistance of the SBD element of this embodiment was 1.2 Ωcm 2 and the withstand voltage was 1000V. When the back substrate is a normal substrate that is not waffle-shaped, the withstand voltage is similarly 1000 V, but the on-resistance is 2 mΩcm 2. Compared with this, the on-resistance of the element processed into a waffle is reduced by 40%. I understood.

さらに、図12に示すように、1素子に対し、ワッフル凹部が1つである(つまり、ダイシングライン23に沿ってワッフル凸部21が形成されているのみ)であると、ダイシングの際に凸部21が欠けてしまい、素子全体が壊れてしまう危険性がある。そこで、本実施例の如く、図13に示すように1素子に対しワッフル凹部を2つ以上にすると、素子の破壊を防止することができる。本実施例では基板裏面凸部を田の字型としたが、本発明はこれに限らず、裏面凸部の形状を“日の字”、“田の字”、“囲の字”のようにし、ダイシングライン23よりも内側にワッフル凸部21を多数形成し、補強すると更によい。図14にワッフル凸部21を多数形成した場合の模式的な斜視図を示す。また、図13に示すようにダイシングラインより内側の面積で規定される素子面積(A)とワッフルの凹部面積の総計(B)の関係は、ワッフル凹部の総計平面積(B)≦素子面積(A)である。これらの事項は、第2の実施形態以降についても適用される。なお、図12,13で凸部21の形状をテーパー形状としたが、これについては第2の実施形態で説明する。   Furthermore, as shown in FIG. 12, if one element has one waffle concave portion (that is, only the waffle convex portion 21 is formed along the dicing line 23), the convex portion is formed during dicing. There is a risk that the part 21 is missing and the entire device is broken. Thus, as in this embodiment, if two or more waffle recesses are provided for one element as shown in FIG. 13, the element can be prevented from being destroyed. In the present embodiment, the convex portion on the back surface of the substrate has a square shape, but the present invention is not limited to this, and the shape of the convex portion on the back surface is such as “day letter”, “field letter”, “enclosed letter”. It is further preferable to form a large number of waffle projections 21 inside the dicing line 23 and reinforce them. FIG. 14 shows a schematic perspective view when a large number of waffle convex portions 21 are formed. Moreover, as shown in FIG. 13, the relationship between the element area (A) defined by the area inside the dicing line and the total of the concave area of the waffle (B) is as follows. A). These items are also applied to the second and subsequent embodiments. In addition, although the shape of the convex part 21 was made into the taper shape in FIG. 12, 13, this is demonstrated in 2nd Embodiment.

また、本実施形態ではワッフル凹部はSiC基板2の全てをエッチングにより取り除いたが、図15に示すように、SiC基板2部分が一部残っていても構わない。図15(a)は、第1の実施形態の変形例であり、図15(b)は後述の第2の実施形態でSiC支持体21の凹部にテーパを設けた場合の変形例である。凹部底面のコンタクト層13がSiC基板2に設けられる他は、図1と基本的に同じである。この場合、基板の残り量と基板抵抗はリニアの関係にあり、残り量が多いほど基板抵抗が上がってしまうが、基板強度がその分上がる利点がある。素子の設計および、要求性能により、使用者が凹部の残し量を勘案することができる。これは、第2〜第6の実施形態についても適用されるものである。   Further, in this embodiment, the waffle concave portion is formed by removing all of the SiC substrate 2 by etching, but a part of the SiC substrate 2 may remain as shown in FIG. FIG. 15A is a modification of the first embodiment, and FIG. 15B is a modification in the case where a taper is provided in the concave portion of the SiC support 21 in the second embodiment described later. 1 is basically the same as that of FIG. 1 except that the contact layer 13 on the bottom surface of the recess is provided on the SiC substrate 2. In this case, the remaining amount of the substrate and the substrate resistance are in a linear relationship, and as the remaining amount increases, the substrate resistance increases, but there is an advantage that the substrate strength increases accordingly. Depending on the design of the element and the required performance, the user can consider the remaining amount of the recess. This is also applied to the second to sixth embodiments.

また、第1の実施形態では、SiCエッチングのマスク材としてアルミニウムの例を挙げたが、SiCとのエッチングレートに充分な差があればよく、材料、成膜方法には依存しない。アルミニウム以外では、例えば厚膜レジストでパターニングしたSiC基板裏面に、無電解めっき法でNiやCuを成膜し、アセトンによりレジスト部分とその上のNi(Cu)をリフトオフすることで、ワッフルを形成するエッチングマスクを形成し、CF4 等のエッチングガスでRIEしても構わない。 In the first embodiment, aluminum is used as an example of a mask material for SiC etching. However, it is sufficient that there is a sufficient difference in etching rate with SiC, and it does not depend on the material and the film forming method. Other than aluminum, for example, Ni or Cu is formed by electroless plating on the back side of a SiC substrate patterned with a thick film resist, and waffles are formed by lifting off the resist portion and Ni (Cu) thereon using acetone. An etching mask to be formed may be formed, and RIE may be performed with an etching gas such as CF 4 .

(第2の実施形態)
図16は、本発明の第2の実施形態に係るショットキバリアダイオード(SBD)の断面図である。第2の実施形態が第1の実施形態と異なる点は、SiC支持体21の凹部側面がテーパを持って形成されていることである。このように形成することにより、SiC支持体21の強度を増加させることができるとともに、裏面コンタクト面積を増やすことができる。
(Second Embodiment)
FIG. 16 is a cross-sectional view of a Schottky barrier diode (SBD) according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that the side surface of the concave portion of the SiC support 21 is formed with a taper. By forming in this way, the strength of the SiC support 21 can be increased and the back contact area can be increased.

次に、第2の実施形態のSBDの製造方法を説明する。第1の実施形態と同一部分には同一番号を付し、重複する説明を省略する。まず、第1の実施形態の図3乃至図5までの工程を同一条件で実施する。ついで、図17に示すように、パターニングされたAl膜9をエッチングマスクとしてSiC基板2をCF4とO2の混合ガスによりドライエッチングする。このプロセスにより、レジストパターニングで開口した部分がワッフル形状の凹部となり、SiC基板2が全てエッチングされ、エピタキシャル層が表面に現れる。本実施形態ではテーパ形状のワッフル凹部を形成するが、エッチャントガスのガス圧を高くすると、横方向のエッチング量が増加する性質を利用して、ワッフル凹部にテーパ形状を形成することができる。この基板1を硫酸と過酸化水素水の混酸で洗浄し、基板1に付着したレジスト、金属を除去した後、純水によりリンスし、SiC支持体21の裏面に形成されていたAl層9、Ti層7も除去し、純水によりリンスする。 Next, a method for manufacturing the SBD of the second embodiment will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. First, the steps from FIG. 3 to FIG. 5 of the first embodiment are performed under the same conditions. Next, as shown in FIG. 17, the SiC substrate 2 is dry-etched with a mixed gas of CF 4 and O 2 using the patterned Al film 9 as an etching mask. By this process, a portion opened by resist patterning becomes a waffle-shaped recess, and the SiC substrate 2 is entirely etched, and an epitaxial layer appears on the surface. In the present embodiment, the tapered waffle recess is formed. However, when the gas pressure of the etchant gas is increased, the tapered shape can be formed in the waffle recess by utilizing the property that the etching amount in the lateral direction increases. The substrate 1 is washed with a mixed acid of sulfuric acid and hydrogen peroxide solution, the resist and metal adhering to the substrate 1 are removed, rinsed with pure water, and the Al layer 9 formed on the back surface of the SiC support 21. The Ti layer 7 is also removed and rinsed with pure water.

次に、図18に示すように、基板1裏面に総ドーズ量7×1015cm-2、最大加速エネルギー200keVにより、P(リン)イオンの多段注入を行い、裏面電極のオーミックコンタクト層13を形成する。この時、ワッフル凹部がテーパー形状となっていることにより、オーミックコンタクト層13がワッフルの側壁にも成膜され、基板最底部(裏面最表面)までオーミックコンタクト層13が連続して成膜されることになる。 Next, as shown in FIG. 18, multistage implantation of P (phosphorus) ions is performed on the back surface of the substrate 1 with a total dose of 7 × 10 15 cm −2 and a maximum acceleration energy of 200 keV, and the ohmic contact layer 13 of the back electrode is formed. Form. At this time, since the waffle recess has a tapered shape, the ohmic contact layer 13 is also formed on the side wall of the waffle, and the ohmic contact layer 13 is continuously formed to the bottom of the substrate (back surface). It will be.

次に、第1の実施形態と同様に、エピタキシャル層3の上面に、図19に示すように、リサーフ領域12、ガードリング14を形成する。ついで、この基板1を第1の実施形態と同様な表面処理・洗浄工程に供し、洗浄が終了した基板1を誘導加熱型の活性化アニール炉中で活性化アニールを行い、図20に示す構造体を得る。   Next, as in the first embodiment, the RESURF region 12 and the guard ring 14 are formed on the upper surface of the epitaxial layer 3 as shown in FIG. Next, the substrate 1 is subjected to the same surface treatment / cleaning process as in the first embodiment, and the substrate 1 that has been cleaned is subjected to activation annealing in an induction heating type activation annealing furnace, and the structure shown in FIG. Get the body.

ついで、図21に示すように、再び基板1表面にSi酸化膜(SiO2)膜15を成膜し、このSi酸化膜をシンターする。さらに、図22に示すように、基板1の裏面に裏面電極17となるNi膜を電子銃蒸着により成膜し、シンターを行ってオーミックコンタクト領域13と裏面電極17とをオーミックコンタクトさせる。この時、ワッフル凹部がテーパ形状となっていることで、裏面オーミックコンタクト層13にコンタクトしたNi膜がワッフルの側壁にも成膜され、基板最底部(裏面最表面)まで裏面電極17が連続して成膜されることになる。この形状を取ることにより、裏面電極17との接続を基板最底部で行うことができる。 Next, as shown in FIG. 21, an Si oxide film (SiO 2 ) film 15 is again formed on the surface of the substrate 1, and this Si oxide film is sintered. Further, as shown in FIG. 22, a Ni film to be the back electrode 17 is formed on the back surface of the substrate 1 by electron gun vapor deposition, and the ohmic contact region 13 and the back electrode 17 are brought into ohmic contact by sintering. At this time, since the waffle recess has a tapered shape, the Ni film in contact with the back ohmic contact layer 13 is also formed on the side wall of the waffle, and the back electrode 17 continues to the bottom of the substrate (back surface top surface). The film is formed. By adopting this shape, connection to the back electrode 17 can be performed at the bottom of the substrate.

ついで、裏面をレジストにより保護した後、表面のSi酸化膜15表面を選択的に開口させ、基板最表面の自然酸化膜を除去し、ショットキー電極であるTiを成膜し、不要部分をパターニングとRIEにより除去する。このプロセスにより、図16に示すような基板裏面が連続ワッフル状に加工されたSiCのショットキーバリアダイオードが形成される。   Next, after protecting the back surface with a resist, the surface of the Si oxide film 15 on the front surface is selectively opened, the natural oxide film on the outermost surface of the substrate is removed, Ti that is a Schottky electrode is formed, and unnecessary portions are patterned. And removed by RIE. By this process, a SiC Schottky barrier diode in which the back surface of the substrate is processed into a continuous waffle shape as shown in FIG. 16 is formed.

本素子のオン抵抗は1.2mΩcm2であり、耐圧は1000Vであった。参考として、裏面基板がワッフル状でない、普通の基板の場合、耐圧は同様に1000Vであるが、オン抵抗は2mΩcm2であり、これに対しワッフル状に加工した素子のオン抵抗が40%低減していることがわかった。 The on-resistance of this element was 1.2 mΩcm 2 and the withstand voltage was 1000V. For reference, in the case of a normal substrate where the back substrate is not waffle, the withstand voltage is similarly 1000 V, but the on-resistance is 2 mΩcm 2. On the other hand, the on-resistance of the element processed into a waffle is reduced by 40%. I found out.

(第3の実施形態)
図23は、本発明の第3の実施形態に係る静電誘導型トランジスタ(SIT)の断面図で、図24に示す上面図のB−B線に沿った断面図である。なお、底面図は、テーパ部分を除いて図2と同様となるので省略する。また、本実施例は接合型電界効果トランジスタ(JFET)にも、略そのまま適用することができる。
(Third embodiment)
FIG. 23 is a cross-sectional view of the electrostatic induction transistor (SIT) according to the third embodiment of the present invention, and is a cross-sectional view taken along line BB of the top view shown in FIG. Note that the bottom view is the same as FIG. Further, the present embodiment can be applied almost directly to a junction field effect transistor (JFET).

より詳細には、図23において、バルクSiCからなる支持体21の上に形成されたSiCエピタキシャル層(低濃度層)3にSIT若しくはJFETの複数のユニット素子が並列に形成されている。本実施形態では、バルクSiCとエピタキシャル層3はn型である。エピタキシャル層3の裏面は、複数の凹部を有するSiC支持体21により支持されており、バルクSiC支持体21とエピタキシャル層3からなる基板1には、複数のワッフルが連続的に形成されている。エピタキシャル層3の上面には、ソース領域25、ゲート領域27が形成されており、裏面にはオーミックコンタクト層13を介してドレイン電極となる裏面電極17が形成されている。本実施形態では、ソース領域25はn型であり、ゲート領域27はp型である。   More specifically, in FIG. 23, a plurality of SIT or JFET unit elements are formed in parallel on a SiC epitaxial layer (low concentration layer) 3 formed on a support 21 made of bulk SiC. In this embodiment, the bulk SiC and the epitaxial layer 3 are n-type. The back surface of the epitaxial layer 3 is supported by a SiC support 21 having a plurality of recesses, and a plurality of waffles are continuously formed on the substrate 1 composed of the bulk SiC support 21 and the epitaxial layer 3. A source region 25 and a gate region 27 are formed on the upper surface of the epitaxial layer 3, and a back electrode 17 serving as a drain electrode is formed on the back surface via an ohmic contact layer 13. In the present embodiment, the source region 25 is n-type and the gate region 27 is p-type.

エピタキシャル層3の上面には、ゲート領域27を囲んで、終端構造であるリサーフ層12、ガードリング14が形成されており、本実施形態では夫々p型で形成されている。エピタキシャル層3の上面はSi酸化層15で覆われており、表面電極であるソース電極19s、ゲート電極19gが、Si酸化膜15に選択的に形成された開口部に夫々設けられている。エピタキシャル層3の裏面には、オーミックコンタクト層13の上に裏面電極(ドレイン電極)17が形成されている。裏面電極17は、SiC支持体21の内部側面傾斜部及び底面にも形成されている。   On the upper surface of the epitaxial layer 3, the RESURF layer 12 and the guard ring 14, which are termination structures, are formed so as to surround the gate region 27, and in this embodiment, each is formed of a p-type. The upper surface of the epitaxial layer 3 is covered with a Si oxide layer 15, and a source electrode 19 s and a gate electrode 19 g as surface electrodes are provided in openings selectively formed in the Si oxide film 15, respectively. A back electrode (drain electrode) 17 is formed on the ohmic contact layer 13 on the back surface of the epitaxial layer 3. The back electrode 17 is also formed on the inner side inclined portion and the bottom surface of the SiC support 21.

第3の実施形態のSIT若しくはJFETは、バルクSiCの支持体21により強度が付与されており、アクティブ領域はエピタキシャル層3に形成され、裏面電極17との距離が短いので、低オン抵抗が実現されている。   In the SIT or JFET of the third embodiment, the strength is given by the bulk SiC support 21, the active region is formed in the epitaxial layer 3, and the distance from the back electrode 17 is short, so low on-resistance is realized. Has been.

次に、第3の実施形態のSIT(JFET)の製造方法を説明する。第1および第2の実施形態と同一部分には同一番号を付し、重複する説明を省略する。第2の実施形態の図19の工程までを同様に実施する。ついで、図25に示すように、表面のソース領域25、をイオン注入により形成するために、イオン注入用マスク(不図示)を形成し、イオン注入を行なう。ソース領域25には、総ドーズ量7×1015cm-2、最大加速エネルギー200keVのP(リン)の多段注入によりボックスプロファイルを持たせる。同様にして、ゲート領域27にはAlイオンを注入するが、ソース領域より高エネルギーでイオン注入し、ソース領域より深くゲート領域を形成する。ここでは、イオン注入用マスクに酸化膜を用い、この酸化膜をRIEによりエッチングする。 Next, a method for manufacturing the SIT (JFET) of the third embodiment will be described. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted. The process up to the process of FIG. 19 of the second embodiment is similarly performed. Next, as shown in FIG. 25, in order to form the source region 25 on the surface by ion implantation, an ion implantation mask (not shown) is formed and ion implantation is performed. The source region 25 is given a box profile by multistage implantation of P (phosphorus) with a total dose of 7 × 10 15 cm −2 and a maximum acceleration energy of 200 keV. Similarly, Al ions are implanted into the gate region 27, but ions are implanted with higher energy than the source region to form a gate region deeper than the source region. Here, an oxide film is used as an ion implantation mask, and this oxide film is etched by RIE.

表面の終端領域12,14、ソース領域25、ゲート領域27のイオン注入が終了した後、図26に示すように、SiC支持体21裏面のAl膜9、Ti膜7を除去し、硫酸と過酸化水素水の混酸により基板表面に付着したイオン注入用マスクを除去した後、希フッ酸により基板表面の犠牲酸化膜5等を除去し水洗する。   After the ion implantation of the termination regions 12 and 14 on the surface, the source region 25, and the gate region 27 is completed, as shown in FIG. 26, the Al film 9 and the Ti film 7 on the back surface of the SiC support 21 are removed, After removing the ion implantation mask attached to the substrate surface with a mixed acid of hydrogen oxide water, the sacrificial oxide film 5 and the like on the substrate surface are removed with diluted hydrofluoric acid and washed with water.

洗浄が終了した基板を誘導加熱型の活性化アニール炉に導入し、到達真空度1×10-4Paまで真空にした後、不活性ガスであるArで満たし、1600℃、5分間の活性化アニールを行う。 The substrate after cleaning is introduced into an induction heating type activation annealing furnace, evacuated to an ultimate vacuum of 1 × 10 −4 Pa, filled with Ar as an inert gas, and activated at 1600 ° C. for 5 minutes. Annealing is performed.

再び基板表面を熱酸化した後に、図27に示すように、CVDにより基板表面に1μmのSi酸化膜15を成膜し、Ar雰囲気中で1000℃でSi酸化膜15をシンターする。   After the substrate surface is thermally oxidized again, as shown in FIG. 27, a 1 μm Si oxide film 15 is formed on the substrate surface by CVD, and the Si oxide film 15 is sintered at 1000 ° C. in an Ar atmosphere.

この基板の表面のソースコンタクト部分およびゲートコンタクト部分にあたるSi酸化膜15を、図28に示すようにエッチングにより除去し、電子銃蒸着によりソースコンタクト部分に選択的にNi膜を成膜してソース電極19sを形成し、ゲートコンタクト部分にはNi膜を成膜してゲート電極19gを形成する。さらに裏面にNi膜を電子銃蒸着により成膜して裏面電極(ドレイン電極)17を形成し、Ar雰囲気中、1000℃、1分間のシンターを行い、ソース電極19s、ゲート電極19g、裏面電極17を夫々のコンタクト領域にオーミックコンタクトさせる。このプロセスにより、図23に示すような基板裏面が連続ワッフル状に加工されたSiCのSIT(あるいはJFET)が形成される。ここでは、ソース電極、ゲート電極、ドレイン電極ともにNiを成膜したが、ゲート電極にAlを用いると、ゲートコンタクト抵抗がさらに下がり、スイッチングスピードが向上する。   The Si oxide film 15 corresponding to the source contact portion and the gate contact portion on the surface of the substrate is removed by etching as shown in FIG. 28, and a Ni film is selectively formed on the source contact portion by electron gun evaporation to form a source electrode. 19s is formed, and a Ni film is formed on the gate contact portion to form a gate electrode 19g. Further, a Ni film is formed on the back surface by electron gun vapor deposition to form a back electrode (drain electrode) 17, and sintering is performed at 1000 ° C. for 1 minute in an Ar atmosphere. The source electrode 19s, the gate electrode 19g, and the back electrode 17 Are brought into ohmic contact with the respective contact regions. By this process, an SIT (or JFET) of SiC in which the back surface of the substrate is processed into a continuous waffle shape as shown in FIG. 23 is formed. Here, Ni is formed on the source electrode, the gate electrode, and the drain electrode. However, when Al is used for the gate electrode, the gate contact resistance is further lowered and the switching speed is improved.

本素子のオン抵抗は5mΩcm2であり、耐圧は1000Vであった。参考のため、裏面基板がワッフル状でない、普通の基板の場合、耐圧は同様に1000Vであるものの、オン抵抗は5.8mΩcm2であり、ワッフル状に加工した素子のオン抵抗が0.8mΩcm2低減していることがわかる。 The on-resistance of this element was 5 mΩcm 2 and the withstand voltage was 1000V. For reference, in the case of a normal substrate in which the back substrate is not waffle, the withstand voltage is similarly 1000 V, but the on-resistance is 5.8 mΩcm 2 , and the on-resistance of the element processed into the waffle is 0.8 mΩcm 2. It can be seen that there is a reduction.

(第4の実施形態)
図29は、本発明の第4の実施形態に係るMOSFETの断面図で、図30に示す上面図のC−C線に沿った断面図である。底面図は第1の実施形態の図2とテーパ部分を除いて同じになるので省略する。
(Fourth embodiment)
FIG. 29 is a cross-sectional view of the MOSFET according to the fourth embodiment of the present invention, and is a cross-sectional view taken along line CC in the top view shown in FIG. Since the bottom view is the same as FIG. 2 of the first embodiment except for the tapered portion, it is omitted.

本実施形態のMOSFETは、バルクSiCからなる支持体21の上に形成されたSiCエピタキシャル層(低濃度層)3にMOSFETの複数のユニット素子が並列に形成されている。本実施形態では、バルクSiCとエピタキシャル層3はn型である。エピタキシャル層3の裏面は、複数の凹部を備えたSiC支持体21により支持されたており、バルクSiC支持体21とエピタキシャル層3からなる基板1には複数のワッフルが連続的に形成されている。エピタキシャル層3の上面には、p型ウェル29に形成されたn型のソース領域25、ゲート絶縁膜31を介して形成されたゲート電極19gが形成されており、裏面にはオーミックコンタクト層13を介してドレイン電極となる裏面電極17が形成されている。   In the MOSFET of this embodiment, a plurality of unit elements of the MOSFET are formed in parallel on a SiC epitaxial layer (low concentration layer) 3 formed on a support 21 made of bulk SiC. In this embodiment, the bulk SiC and the epitaxial layer 3 are n-type. The back surface of the epitaxial layer 3 is supported by a SiC support 21 having a plurality of recesses, and a plurality of waffles are continuously formed on the substrate 1 composed of the bulk SiC support 21 and the epitaxial layer 3. . An n-type source region 25 formed in a p-type well 29 and a gate electrode 19g formed through a gate insulating film 31 are formed on the upper surface of the epitaxial layer 3, and an ohmic contact layer 13 is formed on the rear surface. A back electrode 17 serving as a drain electrode is formed therebetween.

エピタキシャル層3の上面には、p型ウェル29を囲んで、終端構造であるリサーフ層12、ガードリング14が形成されており、本実施形態では夫々p型で形成されている。エピタキシャル層3の上面はSi酸化層15で覆われており、表面電極であるソース電極19s、ゲート電極19g形成領域は選択的に開口され、ここに夫々の電極が形成されている。エピタキシャル層3の裏面では、オーミックコンタクト層13の上に裏面電極(ドレイン電極)17が形成されている。裏面電極17は、SiC支持体21の内部側面及び底面にも形成されている。   On the upper surface of the epitaxial layer 3, the RESURF layer 12 and the guard ring 14, which are termination structures, are formed so as to surround the p-type well 29, and in this embodiment, each is formed of p-type. The upper surface of the epitaxial layer 3 is covered with a Si oxide layer 15, and the source electrode 19s and gate electrode 19g forming regions which are surface electrodes are selectively opened, and the respective electrodes are formed therein. On the back surface of the epitaxial layer 3, a back electrode (drain electrode) 17 is formed on the ohmic contact layer 13. The back electrode 17 is also formed on the inner side surface and the bottom surface of the SiC support 21.

第4の実施形態のMOSFETは、バルクSiCの支持体21により強度が付与されており、アクティブ領域は低抵抗のエピタキシャル層3に形成され、裏面電極17との距離が短いので、低オン抵抗が実現されている。   In the MOSFET of the fourth embodiment, the strength is given by the bulk SiC support 21, the active region is formed in the low-resistance epitaxial layer 3, and the distance from the back electrode 17 is short, so that the low on-resistance is low. It has been realized.

次に、第4の実施形態のMOSFETの製造方法を説明する。第1および第2の実施形態と同一部分には同一番号を付し、重複する説明を省略する。第2の実施形態の図19の工程までを同様に実施する。   Next, a method for manufacturing the MOSFET of the fourth embodiment will be described. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted. The process up to the process of FIG. 19 of the second embodiment is similarly performed.

ついで、表面のp型ウェル領域29をイオン注入により形成するために、イオン注入用マスク(不図示)を成膜し、その表面にレジストを塗布、パターニングする。このパターンが転写されたレジストをイオン注入用マスクのエッチングマスクとして用いてイオン注入用マスクをエッチングする。次に、図31に示すように、ウェル領域29にp型の導電性を持たせるために、Alイオンを注入する。   Next, in order to form the p-type well region 29 on the surface by ion implantation, an ion implantation mask (not shown) is formed, and a resist is applied to the surface and patterned. The ion implantation mask is etched using the resist to which this pattern is transferred as an etching mask for the ion implantation mask. Next, as shown in FIG. 31, Al ions are implanted to make the well region 29 have p-type conductivity.

さらに、表面のp型コンタクト領域30をイオン注入により形成するために、イオン注入用マスクを成膜し、その表面にレジストを塗布、パターニングする。このパターンが転写されたレジストを、イオン注入用マスクのエッチングマスクとして用いて、イオン注入用マスクをエッチングで作成する。このコンタクト領域30はp型の導電性を持たせるためにAlイオンを注入し、ウェル領域よりも高濃度に形成される。   Further, in order to form the p-type contact region 30 on the surface by ion implantation, an ion implantation mask is formed, and a resist is applied to the surface and patterned. Using the resist to which this pattern is transferred as an etching mask for the ion implantation mask, an ion implantation mask is formed by etching. This contact region 30 is formed at a higher concentration than the well region by implanting Al ions to provide p-type conductivity.

同様に、ソース領域25にはP(リン)イオンを注入する。ソース領域25はp型ウェル領域29よりも浅い領域に形成されている。ここでは、イオン注入用マスクに酸化膜を用い、この酸化膜をエッチングするためにCF4とO2の混合ガスによるRIEを用いる。 Similarly, P (phosphorus) ions are implanted into the source region 25. The source region 25 is formed in a region shallower than the p-type well region 29. Here, an oxide film is used as an ion implantation mask, and RIE using a mixed gas of CF 4 and O 2 is used to etch the oxide film.

表面の終端領域、p型ウェル領域29、ソース領域25のイオン注入が終了した後、SiC支持体21の裏面に形成されたAl膜9、Ti膜7を除去し、硫酸と過酸化水素水の混酸により基板表面に付着したイオン注入用マスク(Mo)を除去した後、希フッ酸により犠牲酸化膜5等を除去し水洗する。   After ion implantation of the surface termination region, p-type well region 29, and source region 25 is completed, the Al film 9 and Ti film 7 formed on the back surface of the SiC support 21 are removed, and sulfuric acid and hydrogen peroxide solution are removed. After removing the ion implantation mask (Mo) adhering to the substrate surface by the mixed acid, the sacrificial oxide film 5 and the like are removed by dilute hydrofluoric acid and washed with water.

洗浄が終了した基板を誘導加熱型の活性化アニール炉に導入し、到達真空度1×10-4Paまで真空とした後、不活性ガスであるArで満たし、1600℃、5分間の活性化アニールを行い、図32に示す構造体を得る。 The substrate after cleaning is introduced into an induction heating type activation annealing furnace, evacuated to an ultimate vacuum of 1 × 10 −4 Pa, filled with Ar as an inert gas, and activated at 1600 ° C. for 5 minutes. Annealing is performed to obtain the structure shown in FIG.

再び基板表面を熱酸化した後に、図33に示すようにCVDにより基板表面に1μmのSi酸化膜15を成膜し、Ar雰囲気中1000℃でSi酸化膜15をシンターする。ついで図34に示すように、この基板の表面のソースコンタクト部分および、ゲート領域にあたるSi酸化膜15をエッチングにより除去する。   After thermally oxidizing the substrate surface again, as shown in FIG. 33, a 1 μm Si oxide film 15 is formed on the substrate surface by CVD, and the Si oxide film 15 is sintered at 1000 ° C. in an Ar atmosphere. Next, as shown in FIG. 34, the source contact portion on the surface of the substrate and the Si oxide film 15 corresponding to the gate region are removed by etching.

ついで、図35に示すように、この基板を再び熱酸化させたのち、CVD酸化膜を成膜し、パターニングによりゲート絶縁膜31を形成する。次に、ソース領域にあるSi酸化膜15を除去し、ソース領域および絶縁ゲート領域に選択的にNi膜を成膜し、ソース電極19s、ゲート電極19gを形成する。さらに裏面にNi膜を電子銃蒸着により成膜して裏面電極(ドレイン電極)17を形成し、Ar雰囲気中1000℃で1分間のシンターを行い、ソース電極19s、ゲート電極19g、裏面電極17を夫々のコンタクト領域にオーミックコンタクトさせる。このプロセスにより、図29に示したような、基板の裏面がワッフル状に加工されたSiCのMOSFETが完成する。   Next, as shown in FIG. 35, the substrate is thermally oxidized again, a CVD oxide film is formed, and a gate insulating film 31 is formed by patterning. Next, the Si oxide film 15 in the source region is removed, a Ni film is selectively formed in the source region and the insulated gate region, and a source electrode 19s and a gate electrode 19g are formed. Further, a Ni film is formed on the back surface by electron gun vapor deposition to form a back electrode (drain electrode) 17, and sintering is performed at 1000 ° C. for 1 minute in an Ar atmosphere so that the source electrode 19s, the gate electrode 19g, and the back electrode 17 are Make ohmic contact with each contact area. By this process, a SiC MOSFET in which the back surface of the substrate is processed into a waffle shape as shown in FIG. 29 is completed.

本素子のオン抵抗は10mΩcm2であり、耐圧は1000Vであった。参考のため、基板の裏面がワッフル状でない、普通の基板の場合、耐圧は同様に1000Vであるものの、オン抵抗は10.8mΩcm2であり、ワッフル状に加工した素子のオン抵抗がこれより0.8mΩcm2低減していることがわかる。 The on-resistance of this device was 10 mΩcm 2 and the withstand voltage was 1000V. For reference, in the case of a normal substrate in which the back surface of the substrate is not waffle, the withstand voltage is similarly 1000 V, but the on-resistance is 10.8 mΩcm 2 , and the on-resistance of the element processed into a waffle is 0 It can be seen that it is reduced by .8 mΩcm 2 .

(第5の実施形態)
図36は、本発明の第5の実施形態に係るpinダイオードの断面図である。上面図は矩形基板の中央に矩形電極が形成されているだけなので省略する。底面図はテーパが形成されている点を除き、図2と同様である。
(Fifth embodiment)
FIG. 36 is a cross-sectional view of a pin diode according to the fifth embodiment of the present invention. The top view is omitted because the rectangular electrode is only formed at the center of the rectangular substrate. The bottom view is the same as FIG. 2 except that a taper is formed.

バルクSiCからなるSiC支持体21の上に形成されたSiCエピタキシャル層3にダイオード素子構造が形成されている。本実施形態では、バルクSiCとエピタキシャル層3はp型である。エピタキシャル層3の裏面は、複数の凹部が形成されたSiC支持体21により支持されており、基板1は連続ワッフル状に形成されている。エピタキシャル層3の上面と裏面には第1のコンタクト層33と第2のコンタクト層13が夫々形成されている。本実施形態では、第1のコンタクト層33はn型、第2のコンタクト層13がp型であり、低濃度p型エピタキシャル層3をi型と考えると、これを挟んでpinダイオードが形成されている。   A diode element structure is formed in SiC epitaxial layer 3 formed on SiC support 21 made of bulk SiC. In this embodiment, the bulk SiC and the epitaxial layer 3 are p-type. The back surface of the epitaxial layer 3 is supported by a SiC support 21 having a plurality of recesses, and the substrate 1 is formed in a continuous waffle shape. A first contact layer 33 and a second contact layer 13 are formed on the upper surface and the back surface of the epitaxial layer 3, respectively. In the present embodiment, when the first contact layer 33 is n-type, the second contact layer 13 is p-type, and the low-concentration p-type epitaxial layer 3 is considered i-type, a pin diode is formed sandwiching this. ing.

エピタキシャル層3の上面には、第1のコンタクト層33を囲んで、終端構造であるリサーフ層12、ガードリング14が形成されており、本実施形態では夫々n型で形成されている。エピタキシャル層3の上面はSi酸化層15で覆われており、第1のコンタクト層33の上部は選択的に開口され、ここに表面電極(第1の電極)19が形成されている。エピタキシャル層3の裏面には、第2のコンタクト層13の上に裏面電極(第2の電極)35が形成されている。裏面電極(第2の電極)17は、凹部底面からSiC支持体21のテーパ状の側部内面、SiC支持体21の脚部底面にかけて延在して形成されている。   On the upper surface of the epitaxial layer 3, the RESURF layer 12 and the guard ring 14, which are termination structures, are formed so as to surround the first contact layer 33, and in this embodiment, each is formed in an n-type. The upper surface of the epitaxial layer 3 is covered with a Si oxide layer 15, and the upper portion of the first contact layer 33 is selectively opened, and a surface electrode (first electrode) 19 is formed there. On the back surface of the epitaxial layer 3, a back surface electrode (second electrode) 35 is formed on the second contact layer 13. The back electrode (second electrode) 17 is formed to extend from the bottom surface of the recess to the tapered inner side surface of the SiC support 21 and the bottom surface of the leg portion of the SiC support 21.

第5の実施形態のpinダイオードは、SiC支持体21により強度が付与されており、ダイオード素子はエピタキシャル層3に形成され、裏面電極17との距離が短いので、低オン抵抗が実現されている。   The pin diode of the fifth embodiment is given strength by the SiC support 21, and the diode element is formed in the epitaxial layer 3, and since the distance from the back electrode 17 is short, a low on-resistance is realized. .

次に、第5の実施形態のpinダイオードの製造方法を説明する。第1および第2の実施形態と同一部分には同一番号を付し、重複する説明を省略する。また、同一形状を示す図面は、第1若しくは第2の実施形態の図を参照することにする。   Next, a manufacturing method of the pin diode of the fifth embodiment will be described. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted. The drawings showing the same shape refer to the drawings of the first or second embodiment.

第5の実施形態が第1の実施形態と異なる点の1つは、基板比抵抗5ΩcmのSiC基板2(但しp型)上にp導電型の不純物濃度が3.5×1015cm-3のエピタキシャル層3を10μm成長させた基板1を用意することである。断面構造としては、第1の実施形態の図2と同様になる。この基板1を第1の実施形態と同様な条件の洗浄工程を通し、図3と同様に、基板上面に犠牲酸化膜5を形成し、基板裏面にTi層7、Al層9、レジスト層11を順次形成する。 One of the differences of the fifth embodiment from the first embodiment is that the p-conductivity type impurity concentration is 3.5 × 10 15 cm −3 on the SiC substrate 2 (p-type) having a substrate resistivity of 5 Ωcm. The substrate 1 is prepared by growing the epitaxial layer 3 of 10 μm. The cross-sectional structure is the same as that in FIG. 2 of the first embodiment. The substrate 1 is subjected to a cleaning process under the same conditions as in the first embodiment, a sacrificial oxide film 5 is formed on the upper surface of the substrate, and a Ti layer 7, an Al layer 9, and a resist layer 11 are formed on the rear surface of the substrate, as in FIG. Are sequentially formed.

続いて、レジスト層11にワッフル凹部を形成するためのレジストパターンを形成し、塩素系ガスによるRIEチャンバーに導入し、レジストパターンをエッチングマスクとして、図4と同様に、Al層9、Ti層7をドライエッチングする。   Subsequently, a resist pattern for forming a waffle recess is formed in the resist layer 11 and introduced into an RIE chamber using a chlorine-based gas. Using the resist pattern as an etching mask, an Al layer 9 and a Ti layer 7 are formed as in FIG. Is dry-etched.

ついで、パターニングされたAl層9をエッチングマスクとして、第2の実施形態の図17と同様に、SiC基板2をCF4とO2の混合ガスによりドライエッチングする。本実施形態においてもテーパ形状のワッフル凹部を形成する。この基板を硫酸と過酸化水素水の混酸で洗浄し、基板に付着したレジスト、金属を除去した後、純水によりリンスし、SiC支持体21の裏面に形成されたAl層9、Ti層7も除去し、純水によりリンスする。 Next, using the patterned Al layer 9 as an etching mask, the SiC substrate 2 is dry-etched with a mixed gas of CF 4 and O 2 as in FIG. 17 of the second embodiment. Also in this embodiment, a tapered waffle recess is formed. This substrate is washed with a mixed acid of sulfuric acid and hydrogen peroxide solution, the resist and metal adhering to the substrate are removed, rinsed with pure water, and the Al layer 9 and Ti layer 7 formed on the back surface of the SiC support 21. Also rinse with pure water.

次に、第2の実施形態の図18と同様に、基板裏面に総ドーズ量7×1015cm-2、最大加速エネルギー200keVにより、Alイオンの多段注入を行い、裏面電極用のオーミックコンタクト領域13を形成する。 Next, similarly to FIG. 18 of the second embodiment, Al ion multi-stage implantation is performed on the back surface of the substrate with a total dose of 7 × 10 15 cm −2 and a maximum acceleration energy of 200 keV, and an ohmic contact region for the back electrode 13 is formed.

ついで、エピタキシャル層3の上面に、終端構造となるリサーフ領域12、ガードリング領域14を形成するためのイオン注入マスクを形成する。そのマスク形成面に、総ドーズ量1.5×1013cm-2、最大加速エネルギー300keVによりP(リン)イオンの多段注入を行い、図19に示すようなリサーフ領域12、ガードリング14を形成する。 Next, an ion implantation mask for forming the RESURF region 12 and the guard ring region 14 serving as termination structures is formed on the upper surface of the epitaxial layer 3. A multi-stage implantation of P (phosphorus) ions is performed on the mask formation surface with a total dose of 1.5 × 10 13 cm −2 and a maximum acceleration energy of 300 keV to form a resurf region 12 and a guard ring 14 as shown in FIG. To do.

続いて、図37に示すように、リサーフ層12の内側部分に選択的に表面電極用のオーミックコンタクト領域33を形成するために、基板上面に総ドーズ量7×1015cm-2、最大加速エネルギー200keVでP(リン)イオンの多段注入を行う。 Subsequently, as shown in FIG. 37, in order to selectively form the ohmic contact region 33 for the surface electrode in the inner portion of the RESURF layer 12, the total dose amount is 7 × 10 15 cm −2 and the maximum acceleration is formed on the upper surface of the substrate. Multistage implantation of P (phosphorus) ions is performed at an energy of 200 keV.

この基板を 硫酸と過酸化水素水の混酸で洗浄し、基板に付着したレジスト、金属を除去した後、純水によりリンスする。ついで、希塩酸と過酸化水素水の混酸で基板に付着した微量の金属不純物を除去し、純水によりリンスする。そして、最後に希フッ酸により基板表面の犠牲酸化膜5等を除去し、純水によりリンスする。   The substrate is washed with a mixed acid of sulfuric acid and hydrogen peroxide solution to remove the resist and metal adhering to the substrate, and then rinsed with pure water. Next, a trace amount of metal impurities adhering to the substrate is removed with a mixed acid of dilute hydrochloric acid and hydrogen peroxide, and rinsed with pure water. Finally, the sacrificial oxide film 5 and the like on the substrate surface are removed with dilute hydrofluoric acid, and rinsed with pure water.

洗浄が終了した基板を誘導加熱型の活性化アニール炉に導入し、到達真空度1×10-4Paまで真空にした後、不活性ガスであるArで満たし、1600℃、5分間の活性化アニールを行い、図38に示した構造体を得る。 The substrate after cleaning is introduced into an induction heating type activation annealing furnace, evacuated to an ultimate vacuum of 1 × 10 −4 Pa, filled with Ar as an inert gas, and activated at 1600 ° C. for 5 minutes. Annealing is performed to obtain the structure shown in FIG.

ついで、再び基板の表面を熱酸化した後に、図39に示すように、CVDにより基板表面1μmのSi酸化膜15を成膜し、Ar雰囲気中1000℃でSi酸化膜15をシンターする。   Next, after the surface of the substrate is thermally oxidized again, as shown in FIG. 39, a Si oxide film 15 having a substrate surface of 1 μm is formed by CVD, and the Si oxide film 15 is sintered at 1000 ° C. in an Ar atmosphere.

この基板1の表面のSi酸化膜15上にレジストを塗布、パターニングして、オーミックコンタクト領域33上の領域を選択的に開口させる。ついで、CF4とO2のRIEによりSi酸化膜15をエッチングし、さらに希フッ酸により基板最表面の自然酸化膜を除去し、Ni層を電子銃蒸着により成膜する。ついで、図40に示すように、開口部分に選択的にNiを残し、残りの部分を除去して表面電極19を形成する。その後、Ar雰囲気中、1000℃、1分間のシンターを行い、表面電極19とオーミックコンタクト領域33の間のオーミックコンタクトを実現する。 A resist is applied and patterned on the Si oxide film 15 on the surface of the substrate 1 to selectively open a region on the ohmic contact region 33. Next, the Si oxide film 15 is etched by RIE of CF 4 and O 2 , the natural oxide film on the outermost surface of the substrate is removed by dilute hydrofluoric acid, and a Ni layer is formed by electron gun evaporation. Next, as shown in FIG. 40, Ni is selectively left in the opening portion, and the remaining portion is removed to form the surface electrode 19. Thereafter, sintering is performed in an Ar atmosphere at 1000 ° C. for 1 minute to realize ohmic contact between the surface electrode 19 and the ohmic contact region 33.

ついで、裏面のオーミック電極であるAl膜17を成膜し、Ar雰囲気でシンターする。このプロセスにより、図36に示すような、基板裏面が連続ワッフル状に加工されたSiCのpinダイオードが完成する。   Next, an Al film 17 which is an ohmic electrode on the back surface is formed and sintered in an Ar atmosphere. This process completes a SiC pin diode as shown in FIG. 36 in which the back surface of the substrate is processed into a continuous waffle shape.

本実施形態ではp型SiC基板上に低不純物濃度のp型エピタキシャル層を成長させて素子を形成したが、n型SiC基板と同程度の低基板抵抗p型SiC基板を得ることは困難であり、現状での基板比抵抗は概ね5Ωcm以上である。この場合2Ωcm2以上もの大きな基板抵抗がシリーズ抵抗として残ってしまうが、本実施形態を使用することで、この大きな基板抵抗を無くすことができる。 In this embodiment, a device is formed by growing a p-type epitaxial layer having a low impurity concentration on a p-type SiC substrate. However, it is difficult to obtain a p-type SiC substrate having a low substrate resistance comparable to that of an n-type SiC substrate. The current substrate resistivity is approximately 5 Ωcm or more. In this case, a large substrate resistance of 2 Ωcm 2 or more remains as a series resistance, but this large substrate resistance can be eliminated by using this embodiment.

(第6の実施形態)
第5の実施形態は、p型SiC基板にp型エピタキシャル層を成長させた基板を用いて形成されたpinダイオードであったが、第6の実施形態では、n型SiC基板にn型エピタキシャル層を成長させた基板を用いてpinダイオードを形成する実施形態を説明する。導電型や使用する材料は第5の実施形態と異なるが、構造としては第5の実施形態と同じになるので、第5の実施形態で参照した図36乃至40を援用して説明する。また、第1および第2の実施形態と同一部分には同一番号を付し、重複する説明を省略する。
(Sixth embodiment)
Although the fifth embodiment is a pin diode formed using a substrate obtained by growing a p-type epitaxial layer on a p-type SiC substrate, in the sixth embodiment, an n-type epitaxial layer is formed on an n-type SiC substrate. An embodiment will be described in which a pin diode is formed using a substrate on which is grown. Although the conductivity type and the material used are different from those of the fifth embodiment, the structure is the same as that of the fifth embodiment. Therefore, description will be made with reference to FIGS. 36 to 40 referred to in the fifth embodiment. Further, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.

第6の実施形態に係るpinダイオードの断面図も図36のようになる。但し、本実施形態では、SiC支持体21とエピタキシャル層3はn型である。また、第1のオーミックコンタクト層33はp型、第2のオーミックコンタクト層13がn型であり、第1のオーミックコンタクト層33と第2のオーミックコンタクト層13の間にn型低不純物濃度エピタキシャル層3を挟んだpinダイオードが形成されている。   A cross-sectional view of the pin diode according to the sixth embodiment is as shown in FIG. However, in the present embodiment, the SiC support 21 and the epitaxial layer 3 are n-type. The first ohmic contact layer 33 is p-type, and the second ohmic contact layer 13 is n-type. An n-type low impurity concentration epitaxial layer is provided between the first ohmic contact layer 33 and the second ohmic contact layer 13. A pin diode sandwiching the layer 3 is formed.

エピタキシャル層3の上面には、第1のコンタクト層33を囲んで、終端構造であるリサーフ層12、ガードリング14が形成されており、本実施形態では夫々p型である。   On the upper surface of the epitaxial layer 3, the RESURF layer 12 and the guard ring 14, which are termination structures, are formed so as to surround the first contact layer 33, and each is p-type in this embodiment.

第6の実施形態のpinダイオードも、バルクSiCの支持体21により強度が付与されており、ダイオード素子はエピタキシャル層3に形成されているので、低オン抵抗が実現されている。   The pin diode of the sixth embodiment is also given strength by the bulk SiC support 21, and the diode element is formed in the epitaxial layer 3, so that a low on-resistance is realized.

次に、第6の実施形態に係るpin型ダイオードの製造方法を説明する。同一形態を示す図面は、第1若しくは第2の実施形態の図を参照することにする。第2の実施形態の図19の工程までを同様に実施する。   Next, a manufacturing method of the pin type diode according to the sixth embodiment will be described. For the drawings showing the same form, reference is made to the drawings of the first or second embodiment. The process up to the process of FIG. 19 of the second embodiment is similarly performed.

ついで、リサーフ領域12の内側部分に選択的に表面電極のオーミックコンタクト領域33を形成するために、図37に示すように、基板表面に総ドーズ量7×1015cm-2、最大加速エネルギー200keVのAlイオンの多段注入を行う。この基板を第1の実施形態と同様の条件で洗浄、活性化アニールを行い、図38に示すような構造体を得る。 Next, in order to selectively form the ohmic contact region 33 of the surface electrode in the inner portion of the RESURF region 12, as shown in FIG. 37, the total dose amount is 7 × 10 15 cm −2 and the maximum acceleration energy is 200 keV on the substrate surface. Multi-stage implantation of Al ions is performed. This substrate is subjected to cleaning and activation annealing under the same conditions as in the first embodiment to obtain a structure as shown in FIG.

ついで、図39に示すように、再び基板の上面を熱酸化した後に、CVDにより基板上面に1μmのSi酸化膜15を成膜し、Ar雰囲気中、1000℃でSi酸化膜15をシンターする。   Next, as shown in FIG. 39, after thermally oxidizing the upper surface of the substrate again, a 1 μm Si oxide film 15 is formed on the upper surface of the substrate by CVD, and the Si oxide film 15 is sintered at 1000 ° C. in an Ar atmosphere.

その後、第5の実施形態と同様にして、Si酸化膜15のオーミックコンタクト領域33上の領域を選択的に開口させ、Alを成膜した後、開口部分のAlを選択的に残し、残りの部分を選択的に除去して上部電極19を形成する。その後、Ar雰囲気中、1000℃、1分間のシンターを行い、表面電極19とオーミックコンタクト領域33のオーミックコンタクトを実現させる。   Thereafter, in the same manner as in the fifth embodiment, a region on the ohmic contact region 33 of the Si oxide film 15 is selectively opened, and after Al is formed, Al in the opening is selectively left, and the remaining The portion is selectively removed to form the upper electrode 19. Thereafter, sintering is performed in an Ar atmosphere at 1000 ° C. for 1 minute to realize ohmic contact between the surface electrode 19 and the ohmic contact region 33.

ついで、第5の実施形態と同様にして裏面電極35をNiで形成し、シンターしてオーミックコンタクトを形成して、図36に示すような、基板裏面がワッフル状に加工されたSiCのpinダイオードが完成する。   Next, as in the fifth embodiment, a back electrode 35 is formed of Ni and sintered to form an ohmic contact. As shown in FIG. 36, an SiC pin diode whose back surface is processed into a waffle shape is formed. Is completed.

一般的にはp型の導電性の基板上に、低不純物濃度のn型エピタキシャル層を成長させ、裏面にAl、表面にP(リン)をイオン注入してpinダイオードを形成させるが、本実施形態では0.02Ωcmのn型基板上に、低不純物濃度のn型エピタキシャル層を成長させ、裏面基板をワッフル状に加工した後、表面にp型の導電性の不純物イオン(Al)をイオン注入して表面のオーミック電極をコンタクトさせた後、裏面にn型の導電性となる不純物イオン(P)をイオン注入してpinダイオードを形成させた。   In general, an n-type epitaxial layer having a low impurity concentration is grown on a p-type conductive substrate, and a pin diode is formed by ion implantation of Al on the back surface and P (phosphorus) on the front surface. In this embodiment, an n-type epitaxial layer with a low impurity concentration is grown on an n-type substrate of 0.02 Ωcm, the back substrate is processed into a waffle shape, and then p-type conductive impurity ions (Al) are implanted into the surface. Then, after contacting the ohmic electrode on the surface, impurity ions (P) that become n-type conductivity are ion-implanted on the back surface to form a pin diode.

p型基板の基板比抵抗は概ね5Ωcm以上であり、通常のpinダイオード製作方法を用いた場合2Ωcm2以上もの大きな基板抵抗がシリーズ抵抗として残ってしまうが、本発明を使用することで、この大きな基板抵抗をなくすことができる。 The substrate specific resistance of the p-type substrate is approximately 5 Ωcm or more, and a large substrate resistance of 2 Ωcm 2 or more remains as a series resistance when a normal pin diode manufacturing method is used. Substrate resistance can be eliminated.

また、p型基板上のn型エピタキシャル成長は品質の良い膜を成長させるのが困難であり、結晶欠陥による素子性能の劣化が問題とされていたが、本実施形態によればn型エピタキシャル成長はn型基板上に作ることができるので、エピタキシャル膜の結晶欠陥を大幅に抑制することができる。   In addition, n-type epitaxial growth on a p-type substrate is difficult to grow a high-quality film, and degradation of device performance due to crystal defects has been a problem. According to this embodiment, n-type epitaxial growth is n Since it can be formed on a mold substrate, crystal defects in the epitaxial film can be greatly suppressed.

(第7の実施形態)
図41は、本発明の第7の実施形態に係る絶縁ゲートバイポーラトランジスタ(IGBT)の断面図である。上面図は第4の実施形態のMOSFETの図30に同じになり、底面図は第1の実施形態とテーパ部分を除き同じになるので省略する。
(Seventh embodiment)
FIG. 41 is a cross-sectional view of an insulated gate bipolar transistor (IGBT) according to the seventh embodiment of the present invention. The top view is the same as that of the MOSFET of the fourth embodiment shown in FIG. 30, and the bottom view is the same as that of the first embodiment except for the taper portion, and is omitted.

本実施形態のIGBTは、バルクSiCからなる支持体21の上に形成されたSiCエピタキシャル層(低濃度層)3にIGBTの複数のユニット素子が並列に形成されている。本実施形態では、バルクSiCとエピタキシャル層3はn型である。エピタキシャル層3の裏面は、複数の凹部を備えたSiC支持体21により支持されており、バルクSiC支持体21とエピタキシャル層3からなる基板1には複数のワッフルが連続的に形成されている。エピタキシャル層3の上面には、p型ウェル29に形成されたn型のソース領域25、ゲート絶縁膜31を介して形成されたゲート電極19gが形成されており、裏面にはp型オーミックコンタクト層13を介してドレイン電極となる裏面電極17が形成されている。なお、SiC支持体21はn型なので、これと裏面電極17の間には絶縁膜35が形成され、p型オーミックコンタクト層13に接続される裏面電極17との間を絶縁している。   In the IGBT of this embodiment, a plurality of IGBT unit elements are formed in parallel on a SiC epitaxial layer (low concentration layer) 3 formed on a support 21 made of bulk SiC. In this embodiment, the bulk SiC and the epitaxial layer 3 are n-type. The back surface of the epitaxial layer 3 is supported by a SiC support 21 having a plurality of recesses, and a plurality of waffles are continuously formed on the substrate 1 composed of the bulk SiC support 21 and the epitaxial layer 3. An n-type source region 25 formed in a p-type well 29 and a gate electrode 19g formed through a gate insulating film 31 are formed on the upper surface of the epitaxial layer 3, and a p-type ohmic contact layer is formed on the rear surface. A back electrode 17 serving as a drain electrode is formed via 13. Since the SiC support 21 is n-type, an insulating film 35 is formed between the SiC support 21 and the back electrode 17 to insulate the back electrode 17 connected to the p-type ohmic contact layer 13.

エピタキシャル層3の上面には、p型ウェル29を囲んで、終端構造であるリサーフ層12、ガードリング14が形成されており、本実施形態では夫々p型で形成されている。エピタキシャル層3の上面はSi酸化層15で覆われており、表面電極であるソース電極19s、ゲート電極19g形成領域は選択的に開口され、ここに夫々の電極が形成されている。   On the upper surface of the epitaxial layer 3, the RESURF layer 12 and the guard ring 14, which are termination structures, are formed so as to surround the p-type well 29, and in this embodiment, each is formed of p-type. The upper surface of the epitaxial layer 3 is covered with a Si oxide layer 15, and the source electrode 19s and gate electrode 19g forming regions which are surface electrodes are selectively opened, and the respective electrodes are formed therein.

第7の実施形態のIGBTは、バルクSiCの支持体21により強度が付与されており、アクティブ領域は低抵抗のエピタキシャル層3に形成され、裏面電極17との距離が短いので、低オン抵抗が実現されている。   The strength of the IGBT according to the seventh embodiment is given by the bulk SiC support 21, the active region is formed in the low-resistance epitaxial layer 3, and the distance from the back electrode 17 is short. It has been realized.

次に、第7の実施形態のIGBTの製造方法を説明する。第1および第2の実施形態と同一部分には同一番号を付し、重複する説明を省略する。また、同一形態を示す図面は、第1若しくは第2の実施形態の図を参照することにする。第2の実施形態の図17の工程までは同様に実施する。ついで、図18に示すように、裏面コンタクト領域13を形成するが、本実施例では基板裏面に総ドーズ量7×1017cm-3、最大加速エネルギー200keVにて、Alイオンの多段注入を行い、裏面電極のオーミックコンタクト領域13ともなるp型領域を形成する。ついで、図19の工程を第2の実施形態と同様に実施し、さらに第4の実施形態(MOSFET)の図31,32の工程を同様に実施する。   Next, the manufacturing method of IGBT of 7th Embodiment is demonstrated. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted. For the drawings showing the same form, refer to the drawings of the first or second embodiment. The steps up to the process of FIG. 17 of the second embodiment are similarly performed. Next, as shown in FIG. 18, a back contact region 13 is formed. In this embodiment, Al ions are multi-stage implanted into the back surface of the substrate at a total dose of 7 × 10 17 cm −3 and a maximum acceleration energy of 200 keV. A p-type region that also serves as an ohmic contact region 13 of the electrode is formed. Next, the process of FIG. 19 is performed similarly to the second embodiment, and the processes of FIGS. 31 and 32 of the fourth embodiment (MOSFET) are performed similarly.

ついで、再び基板表面を熱酸化した後に、図42に示すように、CVDにより基板表面に1μmのSi酸化膜15、基板裏面に1μmのSi酸化膜35を成膜し、Ar雰囲気中、1000℃でSiO2膜をシンターする。   Next, after the substrate surface is thermally oxidized again, as shown in FIG. 42, a 1 μm Si oxide film 15 is formed on the substrate surface by CVD and a 1 μm Si oxide film 35 is formed on the back surface of the substrate, and is 1000 ° C. in Ar atmosphere. Then, the SiO2 film is sintered.

続いて、図43に示すように、この基板の表面のソースコンタクト部分および、ゲート領域にあたる酸化膜をエッチングにより除去する。ついで、図44に示すように、この基板を再び熱酸化させたのち、CVD酸化膜を成膜し、パターニングによりゲート絶縁膜31を形成する。   Subsequently, as shown in FIG. 43, the source contact portion on the surface of the substrate and the oxide film corresponding to the gate region are removed by etching. Next, as shown in FIG. 44, the substrate is thermally oxidized again, a CVD oxide film is formed, and a gate insulating film 31 is formed by patterning.

次に、ソース領域25に形成された自然酸化膜を除去し、ソース領域25およびゲート絶縁膜31上に選択的にNiを成膜する。Ar雰囲気中、1000℃、1分間のシンターを行い、表面電極をオーミックコンタクトさせる。   Next, the natural oxide film formed in the source region 25 is removed, and Ni is selectively formed on the source region 25 and the gate insulating film 31. Sintering is performed at 1000 ° C. for 1 minute in an Ar atmosphere to make ohmic contact with the surface electrode.

ついで、表面をレジストにより保護した後、裏面のSi酸化膜35表面にレジストを塗布し、厚膜レジストによるパターニングで裏面電極部(p型コンタクト領域13の直下)をパターニングにより開口させる。ついで、CF4とO2のRIEによりSi酸化膜35をエッチングし、さらに希フッ酸により基板最表面の酸化膜を除去し、裏面のオーミック電極であるAl膜を成膜し、Ar雰囲気でシンターする。このプロセスにより、図41に示すような、基板裏面がワッフル状に加工されたSiCのIGBTが形成される。 Next, after protecting the surface with a resist, a resist is applied to the surface of the Si oxide film 35 on the back surface, and the back electrode portion (directly under the p-type contact region 13) is opened by patterning by patterning with a thick film resist. Next, the Si oxide film 35 is etched by RIE of CF 4 and O 2 , the oxide film on the outermost surface of the substrate is removed by dilute hydrofluoric acid, and an Al film that is an ohmic electrode on the back surface is formed, and sintered in an Ar atmosphere. To do. By this process, as shown in FIG. 41, a SiC IGBT whose back surface is processed into a waffle shape is formed.

本実施形態では0.02Ωcmのn型SiC基板2上に、低不純物濃度のn型エピタキシャル層3を成長させ、基板裏面をワッフル状に加工した後、裏面にp型の導電性の不純物イオン(Al)をイオン注入して裏面のオーミック領域13を形成した後、表面に終端構造12,14、p型ウェル領域29、ソース領域25、p型コンタクト領域30を形成し、IGBTを作ったが、p型基板上にn型のエピタキシャル層を成長させたのち、基板裏面をワッフル状に加工してIGBTを作ってもかまわない。   In this embodiment, an n-type epitaxial layer 3 having a low impurity concentration is grown on an n-type SiC substrate 2 of 0.02 Ωcm, the back surface of the substrate is processed into a waffle shape, and then p-type conductive impurity ions ( After forming the ohmic region 13 on the back surface by ion implantation of Al), the termination structures 12, 14, the p-type well region 29, the source region 25, and the p-type contact region 30 are formed on the front surface to make an IGBT. After growing an n-type epitaxial layer on a p-type substrate, the back surface of the substrate may be processed into a waffle to make an IGBT.

p型基板を用いた場合、現状での基板比抵抗は概ね5Ωcm以上である。この場合2Ωcm2以上もの大きな基板抵抗がシリーズ抵抗として残ってしまうが、本発明を使用することで、この大きな基板抵抗をなくすことができる。 When a p-type substrate is used, the current substrate specific resistance is approximately 5 Ωcm or more. In this case, a large substrate resistance of 2 Ωcm 2 or more remains as a series resistance, but this large substrate resistance can be eliminated by using the present invention.

また、本実施形態ではn型基板上にn型のエピタキシャル膜を成長させ、基板をワッフル状に加工する際、ワッフル凹部は基板全てをエッチングにより取り除き、裏面にp型の導電型となる不純物イオン(Al)をイオン注入したが、p型基板上にn型のエピタキシャル膜を成長させてIGBTを作る場合は、基板部分が一部残っていても構わない。この場合、基板の残り量と基板抵抗はリニアの関係にあり、残り量が多いほど基板抵抗が上がってしまうが、基板強度がその分上がる利点がある。素子の設計および、要求性能により、使用者が凹部の残し量を勘案することができる。   Further, in this embodiment, when an n-type epitaxial film is grown on an n-type substrate and the substrate is processed into a waffle shape, the waffle recess is removed by etching all the substrate, and impurity ions that become p-type conductivity are formed on the back surface. (Al) is ion-implanted, but when making an IGBT by growing an n-type epitaxial film on a p-type substrate, a part of the substrate may be left. In this case, the remaining amount of the substrate and the substrate resistance are in a linear relationship, and as the remaining amount increases, the substrate resistance increases, but there is an advantage that the substrate strength increases accordingly. Depending on the design of the element and the required performance, the user can consider the remaining amount of the recess.

一方、p型基板上のn型エピタキシャル成長は品質の良い膜を成長させるのが困難であり、結晶欠陥による素子性能の劣化が問題とされているが、本発明によればn型エピタキシャル成長をn型基板上に成長させた後に、n型基板裏面をワッフル状に加工した上でIGBTを作成することができるので、エピタキシャル膜の結晶欠陥を大幅に抑制することができる。   On the other hand, n-type epitaxial growth on a p-type substrate makes it difficult to grow a high-quality film, and degradation of device performance due to crystal defects is a problem. After growing on the substrate, the back surface of the n-type substrate is processed into a waffle shape, and thus an IGBT can be created, so that crystal defects in the epitaxial film can be greatly suppressed.

(第8の実施形態)
SiCと同様にワイドバンドギャップ半導体であるGaNのパワーデバイスへの応用が注目されている。GaNの場合、AlGaNと組み合わせてAlGaN/GaNヘテロ構造を形成すると二次元電子ガスチャネルが得られ、チャネル移動度が非常に高くなり、低オン抵抗が実現することが知られている。このAlGaN/GaNを応用したHEMTでは、最上層のAlGaN層上にソース・ゲート・ドレインが横方向に形成される横型素子が一般的であるが、チップ面積縮小、回路配線の短縮などの目的で、ドレイン電極を基板の下面より取り出す構造が望ましい場合も有る。第8の実施形態では、本発明をこのような縦形GaNHEMTに応用した例を説明する。
(Eighth embodiment)
Similar to SiC, attention is focused on the application of GaN, which is a wide bandgap semiconductor, to power devices. In the case of GaN, it is known that when an AlGaN / GaN heterostructure is formed in combination with AlGaN, a two-dimensional electron gas channel is obtained, the channel mobility is very high, and low on-resistance is realized. In this HEMT using AlGaN / GaN, a horizontal element in which a source, a gate, and a drain are formed laterally on the uppermost AlGaN layer is generally used. However, for the purpose of reducing the chip area and circuit wiring, etc. In some cases, a structure in which the drain electrode is taken out from the lower surface of the substrate is desirable. In the eighth embodiment, an example in which the present invention is applied to such a vertical GaN HEMT will be described.

図45は、第8の実施形態に係るGaNスイッチング素子(MEMT)の断面図である。裏面がワッフル状に形成されたn型SiC基板41上にAlN緩衝層43が100nm形成されている。さらにその上にアンドープGaN層45(3μm)、アンドープAlGaN層47(3nm)、n型AlGaN層49(10nm)、アンドープAlGaN層51(5nm)が順次形成されている。アンドープAlGaN層51を貫通し、n型AlGaN層49上には選択的にソース領域53か形成されている。アンドープAlGaN層51上には選択的にゲート電極55が形成されている。アンドープAlGaN層51からSiC基板41に達するコンタクトホールが形成され、これを埋め込むようにドレイン領域59が形成されている。この構造体の上面にはSiN膜59を介してSi酸化膜51が形成され、その上にフィールドプレート63が選択的に形成されている。SiC基板41の裏面には、裏面電極65が形成されている。上記の構成により、ドレイン領域59が裏面電極65に取り出されたGaNスイッチング素子が実現されている。   FIG. 45 is a cross-sectional view of a GaN switching element (MEMT) according to the eighth embodiment. An AlN buffer layer 43 having a thickness of 100 nm is formed on an n-type SiC substrate 41 whose back surface is formed in a waffle shape. Further thereon, an undoped GaN layer 45 (3 μm), an undoped AlGaN layer 47 (3 nm), an n-type AlGaN layer 49 (10 nm), and an undoped AlGaN layer 51 (5 nm) are sequentially formed. A source region 53 is selectively formed on the n-type AlGaN layer 49 through the undoped AlGaN layer 51. A gate electrode 55 is selectively formed on the undoped AlGaN layer 51. A contact hole reaching the SiC substrate 41 from the undoped AlGaN layer 51 is formed, and a drain region 59 is formed so as to fill the contact hole. A Si oxide film 51 is formed on the upper surface of this structure via a SiN film 59, and a field plate 63 is selectively formed thereon. A back electrode 65 is formed on the back surface of the SiC substrate 41. With the above configuration, a GaN switching element in which the drain region 59 is extracted to the back electrode 65 is realized.

次に、本実施形態のスイッチング素子の形成方法を説明する。まず、基板抵抗0.02Ωcmのn型SiC基板(基板)を硫酸と過酸化水素水の混酸で基板に付着した有機汚れを除去し、純水によりリンスする。ついで、希塩酸と過酸化水素水の混酸で基板に付着した金属不純物を除去し、純水によりリンスする。そして、最後に希フッ酸により基板表面の自然酸化膜を除去し、純水によりリンスする。   Next, a method for forming the switching element of this embodiment will be described. First, an organic stain adhering to a substrate is removed from a n-type SiC substrate (substrate) having a substrate resistance of 0.02 Ωcm with a mixed acid of sulfuric acid and hydrogen peroxide, and rinsed with pure water. Next, metal impurities adhering to the substrate are removed with a mixed acid of dilute hydrochloric acid and hydrogen peroxide, and rinsed with pure water. Finally, the natural oxide film on the substrate surface is removed with dilute hydrofluoric acid and rinsed with pure water.

この基板を、図示は省略するが第1の実施形態と同様に、酸素雰囲気、1100℃、2時間加熱し、基板表面を酸化し犠牲酸化膜を形成する。この基板裏面にTiを50nm成膜した後、Alを2μm成膜する。ここでTiはSiCとAlを密着させる密着層の役割を果たし、Alは後のSiCエッチングのエッチングマスクの役割を果たす。このAl表面に2μm程度のレジストをスピンコートし、ワッフル凹部を形成するためのパターンを露光・現像した後にハードベークをしてレジストを焼き固める。このレジストがパターニングされた基板を塩素系ガスによるRIEチャンバーに導入し、パターニングされたレジストをエッチングマスクとしてAlをドライエッチングする。   Although not shown, this substrate is heated in an oxygen atmosphere at 1100 ° C. for 2 hours to oxidize the substrate surface and form a sacrificial oxide film, as in the first embodiment. After a Ti film having a thickness of 50 nm is formed on the back surface of the substrate, an Al film having a thickness of 2 μm is formed. Here, Ti serves as an adhesion layer for bringing SiC and Al into close contact, and Al serves as an etching mask for later SiC etching. A resist of about 2 μm is spin-coated on the Al surface, a pattern for forming a waffle recess is exposed and developed, and then hard-baked to harden the resist. The substrate on which the resist is patterned is introduced into an RIE chamber using a chlorine-based gas, and Al is dry etched using the patterned resist as an etching mask.

ついで、パターニングされたAlをエッチングマスクとしてSiCをCF4とO2の混合ガスによりドライエッチングする。このプロセスにより、SiC基板41の裏面が選択的にエッチングされ、ワッフル形状の凹部が形成される。 Then, SiC is dry-etched with a mixed gas of CF 4 and O 2 using the patterned Al as an etching mask. By this process, the back surface of the SiC substrate 41 is selectively etched to form a waffle-shaped recess.

次に、基板裏面に総ドーズ量7×1015cm-2、最大加速エネルギー200keVにより、P(リン)イオンの多段注入を行い、裏面電極のオーミックコンタクト領域(不図示)を形成する。 Next, multistage implantation of P (phosphorus) ions is performed on the back surface of the substrate with a total dose of 7 × 10 15 cm −2 and a maximum acceleration energy of 200 keV, thereby forming an ohmic contact region (not shown) of the back electrode.

この基板を再び 硫酸と過酸化水素水の混酸で洗浄し、裏面のTi/Alおよび有機物を除去し、純水によりリンスする。ついで、希塩酸と過酸化水素水の混酸で基板に付着した金属不純物を更に除去し、純水によりリンスする。そして、最後に希フッ酸により基板表面の犠牲酸化膜を除去し、純水によりリンスし、ワッフル基板41を形成する。   This substrate is again washed with a mixed acid of sulfuric acid and hydrogen peroxide solution to remove Ti / Al and organic substances on the back surface and rinse with pure water. Next, metal impurities adhering to the substrate are further removed with a mixed acid of dilute hydrochloric acid and hydrogen peroxide, and rinsed with pure water. Finally, the sacrificial oxide film on the substrate surface is removed with dilute hydrofluoric acid, and rinsed with pure water to form a waffle substrate 41.

この基板41をMO−CVD(有機金属化学気相成長)装置に搬送し、図46に示すように、AlN緩衝層43を100nm、アンドープGaN層45を3μm、アンドープAlGaN層47を3nm、n型AlGaN層49を10nm、アンドープAlGaN層51を5nm、順次ヘテロエピタキシャル成長させる。ここで、AlGaN層49,51のAl含有量は30%であり、n型AlGaN層49のドーピング濃度は5×1018cm-3である。また、SiC基板41を用いているのは、上層のGaN層の格子ミスマッチが少なく、エピタキシャル成長をさせ易いからである。 The substrate 41 is transferred to an MO-CVD (metal organic chemical vapor deposition) apparatus, and as shown in FIG. 46, the AlN buffer layer 43 is 100 nm, the undoped GaN layer 45 is 3 μm, the undoped AlGaN layer 47 is 3 nm, and the n-type. The AlGaN layer 49 is 10 nm and the undoped AlGaN layer 51 is sequentially heteroepitaxially grown. Here, the Al content of the AlGaN layers 49 and 51 is 30%, and the doping concentration of the n-type AlGaN layer 49 is 5 × 10 18 cm −3 . Also, the SiC substrate 41 is used because there is little lattice mismatch of the upper GaN layer and it is easy to perform epitaxial growth.

その後、図47に示すように、リソグラフィ法及び異方性エッチング法等により基板表面からn型AlGaN層49に到達するソースコンタクト領域67を設ける。ついで、図48に示すように、リソグラフィ法及び異方性エッチング法等により基板表面からSiC基板41に到達する内部コンタクトホール69を設ける。   Thereafter, as shown in FIG. 47, a source contact region 67 reaching the n-type AlGaN layer 49 from the substrate surface is provided by lithography or anisotropic etching. Next, as shown in FIG. 48, an internal contact hole 69 that reaches the SiC substrate 41 from the substrate surface is provided by lithography or anisotropic etching.

その後、パターニングマスクおよび、エッチングマスクを除去し、基板表面にレジストをスピンコートさせた後、再びパターニングでソースコンタクト領域および、コンタクトホール領域を開口させ、MO−CVD、スパッタ、電子蒸着法などでTi/Alで表面電極を成膜し、裏面電極65もTi/Alで成膜する。その後、表面の電極非成膜部分はレジスト除去と同時にリフトオフにより除去し、図49に示すように、ソース領域(電極)53、ドレイン領域59を形成する。このあと、Ar雰囲気でシンターを行い、電極部分をオーミックコンタクトさせる。   Thereafter, the patterning mask and the etching mask are removed, and a resist is spin-coated on the substrate surface. Then, the source contact region and the contact hole region are opened again by patterning, and Ti is formed by MO-CVD, sputtering, electron evaporation, or the like. The front electrode is formed with / Al, and the back electrode 65 is also formed with Ti / Al. Thereafter, the electrode non-film forming portion on the surface is removed by lift-off simultaneously with the resist removal, and a source region (electrode) 53 and a drain region 59 are formed as shown in FIG. Thereafter, sintering is performed in an Ar atmosphere to make ohmic contact between the electrode portions.

ついで、ゲート電極55を形成するためにレジストパターニングを行い、電子銃蒸着などでNi/Auを成膜する。ここでも、図50に示すように、表面の電極非成膜部分はレジスト除去と同時にリフトオフにより除去しシンターをする。   Next, resist patterning is performed to form the gate electrode 55, and Ni / Au is deposited by electron gun evaporation or the like. Also here, as shown in FIG. 50, the electrode non-film formation portion on the surface is removed by lift-off and sintered simultaneously with the resist removal.

次に、図51に示すように、基板表面に絶縁膜のSiN膜59を成膜、ついで図52に示すように、その上にさらにSi酸化膜61を堆積する。最後に、フィールドプレート63を形成し、図45に示す高耐圧GaNスイッチング素子を完成させる。   Next, as shown in FIG. 51, a SiN film 59 as an insulating film is formed on the substrate surface, and then a Si oxide film 61 is further deposited thereon as shown in FIG. Finally, a field plate 63 is formed to complete the high breakdown voltage GaN switching element shown in FIG.

以上により、裏面にワッフル部を有する基板上にヘテロエピタキシャル成長させた半導体層に半導体素子が形成された半導体装置を得ることができ、裏面から取り出したドレイン領域の抵抗を下げることが可能になる。   As described above, a semiconductor device in which a semiconductor element is formed in a semiconductor layer heteroepitaxially grown on a substrate having a waffle portion on the back surface can be obtained, and the resistance of the drain region taken out from the back surface can be reduced.

(第9の実施形態)
第1〜第8の実施形態で説明した半導体装置(パワーデバイス)を、ヒートシンクに取り付けて使用する場合、裏面のドレイン電極を表面に取り出し、電極への配線を全て上面で行いたい場合がある。このような要求にも、本発明のワッフル型の半導体装置を容易に適用させることができる。第9の実施形態では、このような例を説明する。
(Ninth embodiment)
When the semiconductor device (power device) described in the first to eighth embodiments is used by being attached to a heat sink, there is a case where the drain electrode on the back surface is taken out to the front surface and all wiring to the electrode is desired to be performed on the top surface. The waffle type semiconductor device of the present invention can be easily applied to such a demand. In the ninth embodiment, such an example will be described.

図53は、第9の実施形態に係る半導体装置の実装形態を示す摸式的な斜視図である。半導体素子71は、例えば第1あるいは第2の実施形態で説明したSBDであるとする。参照番号19は表面電極(第1の電極)である。半導体装置71は、ヒートシンク73に絶縁膜75を介して接着されている。SBD71の裏面電極(17)は、後に説明する方法で第2の電極77に接続され、第1及び第2の電極への接続が半導体装置の上面で可能なように構成されている。   FIG. 53 is a schematic perspective view showing a mounting form of the semiconductor device according to the ninth embodiment. The semiconductor element 71 is assumed to be the SBD described in the first or second embodiment, for example. Reference numeral 19 is a surface electrode (first electrode). The semiconductor device 71 is bonded to the heat sink 73 via an insulating film 75. The back electrode (17) of the SBD 71 is connected to the second electrode 77 by a method described later, and is configured so that connection to the first and second electrodes is possible on the upper surface of the semiconductor device.

つぎに、この半導体構造の形成方法を説明する。まず、図54に示すように、SBD71形成用の基板裏面の複数のワッフル形成部を連結するように複数のストライプ状の段差79を設ける。基板上面には、図55に示すように、既に第1あるいは第2の実施形態で説明したと同様の方法で表面素子領域81を形成し、裏面にはコンタクトメタル17までを形成する。次に、図56に示すように、基板表面を厚膜レジスト(不図示)等で保護した後、基板裏面のワッフル凹部の段差79をAlやCuの導体83により埋め込む。   Next, a method for forming this semiconductor structure will be described. First, as shown in FIG. 54, a plurality of stripe-shaped steps 79 are provided so as to connect a plurality of waffle forming portions on the back surface of the substrate for forming the SBD 71. As shown in FIG. 55, the surface element region 81 is formed on the upper surface of the substrate by the same method as already described in the first or second embodiment, and the contact metal 17 is formed on the rear surface. Next, as shown in FIG. 56, after protecting the substrate surface with a thick film resist (not shown) or the like, the step 79 of the waffle recess on the back surface of the substrate is embedded with a conductor 83 of Al or Cu.

続いて、図57に示すように、表面保護膜(不図示)を除去した後、再び表面にレジスト(不図示)を塗布し、パターニングにより、素子領域より外周部分を開口させ、RIEなどにより裏面の埋め込み電極17が見えるまでエッチングをする。表面に現れた裏面埋め込み電極17はAlストラップなどで接続し、第2の電極79とする。   Subsequently, as shown in FIG. 57, after removing the surface protective film (not shown), a resist (not shown) is applied to the surface again, and the outer peripheral portion is opened from the element region by patterning, and the back surface is formed by RIE or the like. Etching is performed until the embedded electrode 17 is visible. The back-surface embedded electrode 17 that appears on the front surface is connected by an Al strap or the like to serve as the second electrode 79.

最後に、図53に示すように、表面に絶縁膜75の付いた冷却フィン73上に上記SBD71をマウントし、第1の電極19、第2の電極79をボンディングワイヤ85で所要の接続箇所とボンディングする。   Finally, as shown in FIG. 53, the SBD 71 is mounted on the cooling fin 73 with the insulating film 75 on the surface, and the first electrode 19 and the second electrode 79 are connected to the required connection locations by the bonding wires 85. Bond.

以上の工程で、ヒーシンクに取り付けられたワッフル型パワーデバイスが完成し、第1及び第2の電極の配線を、パワーデバイス(半導体装置)の上面で容易に行なうことができる。   Through the above steps, the waffle type power device attached to the heat sink is completed, and the wiring of the first and second electrodes can be easily performed on the upper surface of the power device (semiconductor device).

(変形例)
第1〜第8の実施形態では、裏面電極17をワッフル凹部の底面、若しくは凸部から凹部底面にかけての面に沿って形成したが、図58に示すように、凹部を導体83で埋め込んでも良い。この場合、導体83は第9の実施形態と同様にAlやCuを埋め込めばよい。
(Modification)
In the first to eighth embodiments, the back electrode 17 is formed along the bottom surface of the waffle recess or the surface from the projection to the bottom of the recess. However, the recess may be embedded with a conductor 83 as shown in FIG. . In this case, the conductor 83 may be embedded with Al or Cu as in the ninth embodiment.

また、第1〜第8の実施形態では、図59に示すようにダイシングライン23をワッフル凸部21に一致させたが、図60に示すように、ダイシングライン23がワッフル凹部を通るようにしてもよい。即ち、即ち、素子形成領域の直下に、ワッフル凹部の少なくとも一部が配置されればよい。なお、図59,60では、理解を容易にするために、ダイシングライン23を1素子分のみ模式的に表示している。   In the first to eighth embodiments, the dicing line 23 is made to coincide with the waffle convex portion 21 as shown in FIG. 59. However, as shown in FIG. 60, the dicing line 23 passes through the waffle concave portion. Also good. That is, at least a part of the waffle recess may be disposed immediately below the element formation region. In FIGS. 59 and 60, only one element of the dicing line 23 is schematically displayed for easy understanding.

さらに、本発明は上記実施形態、変形例に限らず、発明の要旨を逸脱しない範囲で、種々変更して実施することができる。   Furthermore, the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the invention.

本発明の第1の実施形態に係る半導体装置(SBD)の断面図。1 is a cross-sectional view of a semiconductor device (SBD) according to a first embodiment of the present invention. 第1の実施形態の半導体装置の底面図。The bottom view of the semiconductor device of a 1st embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 1st Embodiment. 凹部1個毎のダイシングを説明する断面図。Sectional drawing explaining the dicing for every recessed part. 凹部4個毎のダイシングを説明する断面図。Sectional drawing explaining the dicing for every four recessed parts. 本発明のワッフル基板を説明する模式的斜視図。The typical perspective view explaining the waffle board | substrate of this invention. 凹部形成の変形例を示す断面図。Sectional drawing which shows the modification of recessed part formation. 本発明の第2の実施形態に係る半導体装置(SBD)の断面図。Sectional drawing of the semiconductor device (SBD) which concerns on the 2nd Embodiment of this invention. 第2の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 2nd Embodiment. 本発明の第3の実施形態に係る半導体装置(SIT/JFET)の断面図。Sectional drawing of the semiconductor device (SIT / JFET) concerning the 3rd Embodiment of this invention. 第3の実施形態に係る半導体装置(SIT/JFET)の上面図。The top view of the semiconductor device (SIT / JFET) concerning a 3rd embodiment. 第3の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 3rd Embodiment. 第3の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 3rd Embodiment. 第3の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 3rd Embodiment. 第3の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 3rd Embodiment. 本発明の第4の実施形態に係る半導体装置(MOSFET)の断面図。Sectional drawing of the semiconductor device (MOSFET) based on the 4th Embodiment of this invention. 第4の実施形態に係る半導体装置(MOSFET)の上面図。The top view of the semiconductor device (MOSFET) concerning a 4th embodiment. 第4の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 4th Embodiment. 第4の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 4th Embodiment. 第4の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 4th Embodiment. 第4の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 4th Embodiment. 第4の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 4th Embodiment. 本発明の第5(第6)の実施形態に係る半導体装置(pinダイオード)の断面図。Sectional drawing of the semiconductor device (pin diode) which concerns on 5th (6th) embodiment of this invention. 第5(第6)の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 5th (6th) embodiment. 第5(第6)の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 5th (6th) embodiment. 第5(第6)の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 5th (6th) embodiment. 第5(第6)の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 5th (6th) embodiment. 本発明の第7の実施形態に係る半導体装置(IGBT)の断面図。Sectional drawing of the semiconductor device (IGBT) which concerns on the 7th Embodiment of this invention. 第7の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 7th Embodiment. 第7の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 7th Embodiment. 第7の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 7th Embodiment. 本発明の第8の実施形態に係る半導体装置(HEMT)の断面図。Sectional drawing of the semiconductor device (HEMT) which concerns on the 8th Embodiment of this invention. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 第8の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 8th Embodiment. 本発明の第9の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 9th Embodiment of this invention. 第9の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 9th Embodiment. 第9の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 9th Embodiment. 第9の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 9th Embodiment. 第9の実施形態の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of 9th Embodiment. 本発明の変形例を説明する断面図。Sectional drawing explaining the modification of this invention. 本発明のワッフル基板の凸部とダンシングラインの関係の一例を説明する図。The figure explaining an example of the relationship between the convex part of the waffle board | substrate of this invention, and a dancing line. 本発明のワッフル基板の凸部とダンシングラインの関係の他の例を説明する図。The figure explaining the other example of the relationship between the convex part of the waffle board | substrate of this invention, and a dancing line.

符号の説明Explanation of symbols

1…基板
2…SiC基板
3…エピタキシャル層
5…犠牲酸化膜
7…Ti層
9…Al層
11…レジスト
12…リサーフ領域
13…裏面電極用(第2の)オーミックコンタクト領域
14…ガードリング
15…Si酸化膜
17…裏面(第2の)電極
19…上面(第1の)電極
19g…ゲート電極
19s…ソース電極
21…SiC支持体
23…ダイシングライン
25…ソース領域
27…ゲート領域
29…p型ウェル
31…ゲート絶縁膜
33…上部電極用(第1の)オーミックコンタクト領域
35…絶縁膜
41…SiC基板
43…AlN緩衝層
45…アンドープGaN層
47…アンドープAlGaN層
49…n型AlGaN層
51…アンドープAlGaN層
53…ソース領域
55…ゲート電極
57…ドレイン領域
59…シリコン窒化膜
61…シリコン酸化膜
63…フィールドプレート
65…裏面電極
71…SBD素子
73…ヒートシンク
75…絶縁膜
77…第2の電極(ドレイン電極)
79…段差
81…SBD素子領域
83…導体
85…ボンディングワイヤ
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... SiC substrate 3 ... Epitaxial layer 5 ... Sacrificial oxide film 7 ... Ti layer 9 ... Al layer 11 ... Resist 12 ... RESURF region 13 ... (second) ohmic contact region 14 for back electrode ... Guard ring 15 ... Si oxide film 17 ... back surface (second) electrode 19 ... top surface (first) electrode 19g ... gate electrode 19s ... source electrode 21 ... SiC support 23 ... dicing line 25 ... source region 27 ... gate region 29 ... p-type Well 31 ... Gate insulating film 33 ... (first) ohmic contact region 35 for upper electrode ... Insulating film 41 ... SiC substrate 43 ... AlN buffer layer 45 ... Undoped GaN layer 47 ... Undoped AlGaN layer 49 ... n-type AlGaN layer 51 ... Undoped AlGaN layer 53 ... source region 55 ... gate electrode 57 ... drain region 59 ... silicon nitride film 61 ... silico Oxide film 63 ... field plate 65 ... back electrode 71 ... SBD device 73 ... heat sink 75 ... insulating film 77 ... second electrode (drain electrode)
79 ... Step 81 ... SBD element region 83 ... Conductor 85 ... Bonding wire

Claims (6)

網目状の凸部により形成された複数の凹部を裏面に有し、第1の不純物濃度を有する半導体からなる支持体と、
前記支持体の前記裏面に対向する表面に形成され、前記第1の不純物濃度よりも低い第2の不純物濃度を有する半導体層と、
前記半導体層に形成された半導体素子と、
を具備することを特徴とする半導体装置。
A support made of a semiconductor having a plurality of recesses formed by mesh-like protrusions on the back surface and having a first impurity concentration;
A semiconductor layer formed on a surface facing the back surface of the support and having a second impurity concentration lower than the first impurity concentration;
A semiconductor element formed in the semiconductor layer;
A semiconductor device comprising:
前記支持体の前記表面の面積は、前記複数の凹部の占有平面積の合計より大きいことを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein an area of the surface of the support is larger than a total area occupied by the plurality of recesses. 前記表面に第1の電極が形成され、前記裏面の少なくとも前記複数の凹部の底面に第2の電極が形成され、前記第1の電極の直下に前記第2の電極の少なくとも一部が配置されることを特徴とする請求項1または2に記載の半導体装置。   A first electrode is formed on the front surface, a second electrode is formed on at least the bottom surfaces of the plurality of recesses on the back surface, and at least a part of the second electrode is disposed directly below the first electrode. The semiconductor device according to claim 1, wherein: 前記半導体層は、前記支持体と同一元素で構成され、同一結晶方位を有することを特徴とする請求項1乃至3のいずれかに記載の半導体装置。   4. The semiconductor device according to claim 1, wherein the semiconductor layer is made of the same element as the support and has the same crystal orientation. 前記同一元素はSi,Cを含むことを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein the same element includes Si and C. 前記半導体層は、前記支持体と異種の元素を含んで構成され、同一結晶方位を有することを特徴とする請求項1乃至3のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor layer includes an element different from the support and has the same crystal orientation.
JP2004344338A 2004-11-29 2004-11-29 Semiconductor device Pending JP2006156658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344338A JP2006156658A (en) 2004-11-29 2004-11-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344338A JP2006156658A (en) 2004-11-29 2004-11-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2006156658A true JP2006156658A (en) 2006-06-15

Family

ID=36634563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344338A Pending JP2006156658A (en) 2004-11-29 2004-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2006156658A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165179A (en) * 2004-12-06 2006-06-22 Denso Corp Semiconductor device and manufacturing method therefor
JP2007134521A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Schottky barrier diode, and method of manufacturing same
JP2007243080A (en) * 2006-03-13 2007-09-20 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2008124217A (en) * 2006-11-10 2008-05-29 Furukawa Electric Co Ltd:The Schottky barrier diode
WO2008096521A1 (en) * 2007-02-07 2008-08-14 Nec Corporation Semiconductor device
JP2008244056A (en) * 2007-03-27 2008-10-09 Mitsubishi Electric Corp Manufacturing method of silicon carbide semiconductor device
JP2009054659A (en) * 2007-08-24 2009-03-12 Fuji Electric Device Technology Co Ltd Manufacturing method of gallium nitride semiconductor device
WO2009031001A2 (en) * 2007-09-04 2009-03-12 Toyota Jidosha Kabushiki Kaisha Vertical igbt and method of manufacturing the same
JP2009088327A (en) * 2007-10-01 2009-04-23 Fuji Electric Device Technology Co Ltd Gallium nitride semiconductor device and method of manufacturing the same
JP2009130266A (en) * 2007-11-27 2009-06-11 Toshiba Corp Semiconductor substrate and semiconductor device, and method of manufacturing the same
JP2009135394A (en) * 2007-11-01 2009-06-18 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2009164301A (en) * 2007-12-28 2009-07-23 Fujitsu Ltd Nitride semiconductor device and its manufacturing method
JP2009182217A (en) * 2008-01-31 2009-08-13 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method
JP2009200343A (en) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Diamond electronic element
WO2009110254A1 (en) * 2008-03-04 2009-09-11 日本電気株式会社 Field effect transistor and method for manufacturing the same
EP2149154A2 (en) * 2007-05-31 2010-02-03 Cree, Inc. Methods of fabricating silicon carbide power devices by at least partially removing an n-type silicon carbide substrate, and silicon carbide power devices so fabricated
JP2010192491A (en) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp SiC SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP2011023478A (en) * 2009-07-14 2011-02-03 Fujitsu Ltd Semiconductor device, and method of manufacturing the same
JP2011061000A (en) * 2009-09-10 2011-03-24 Toshiba Corp Schottky barrier diode and method of manufacturing the same
EP2293335A3 (en) * 2009-09-08 2011-08-03 Kabushiki Kaisha Toshiba Semiconductor device including a field effect transistor
WO2011129443A1 (en) * 2010-04-15 2011-10-20 富士電機株式会社 Semiconductor device
CN102544084A (en) * 2012-03-15 2012-07-04 电子科技大学 Insulated gate bipolar translator (IGBT) device with two short-circuit positive electrodes
WO2013073042A1 (en) * 2011-11-17 2013-05-23 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2013110373A (en) * 2011-08-02 2013-06-06 Rohm Co Ltd Semiconductor device and manufacturing method of the same
DE102013203528A1 (en) 2012-03-09 2013-09-12 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method thereof
WO2013146444A1 (en) * 2012-03-30 2013-10-03 富士電機株式会社 Silicon carbide semiconductor element and method for producing same
JP2013201413A (en) * 2012-02-21 2013-10-03 Rohm Co Ltd Semiconductor device and method of manufacturing semiconductor device
JP2014039057A (en) * 2013-10-09 2014-02-27 Toshiba Corp Semiconductor device manufacturing method
WO2014083968A1 (en) * 2012-11-29 2014-06-05 住友電気工業株式会社 Silicon carbide semiconductor device, and manufacturing method for same
JP2014150226A (en) * 2013-02-04 2014-08-21 Lapis Semiconductor Co Ltd Semiconductor device and semiconductor device manufacturing method
US20150001688A1 (en) * 2012-05-18 2015-01-01 Fuji Electric Co., Ltd. Semiconductor device
JP2015002266A (en) * 2013-06-14 2015-01-05 新電元工業株式会社 Silicon carbide semiconductor device, and method for manufacturing the same
WO2015025625A1 (en) * 2013-08-20 2015-02-26 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method for same
EP2800137A4 (en) * 2011-12-29 2015-08-12 Sumitomo Electric Industries Method for manufacturing silicon carbide semiconductor device
US9362366B2 (en) 2013-05-13 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Semiconductor element, semiconductor element manufacturing method, semiconductor module, semiconductor module manufacturing method, and semiconductor package
JP2016526802A (en) * 2013-07-09 2016-09-05 ヴィシャイ ジェネラル セミコンダクター エルエルシーVishay General Semiconductor LLC Gallium nitride power semiconductor device with vertical structure
CN106960871A (en) * 2017-03-16 2017-07-18 浙江大学 A kind of silicon carbide substrates structure of with groove array and cavity
WO2018012510A1 (en) * 2016-07-15 2018-01-18 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
CN108140568A (en) * 2015-10-15 2018-06-08 威世通用半导体有限责任公司 Partial semiconductor chip skiving
US10121888B2 (en) 2016-09-23 2018-11-06 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
JP2019087689A (en) * 2017-11-09 2019-06-06 株式会社豊田中央研究所 Nitride semiconductor device and manufacturing method thereof
CN109923678A (en) * 2016-11-09 2019-06-21 Tdk株式会社 Schottky barrier diode and the electronic circuit for having it
JP2020043126A (en) * 2018-09-06 2020-03-19 住友電気工業株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor module
CN114141883A (en) * 2021-12-10 2022-03-04 富芯微电子有限公司 Fast recovery diode chip and manufacturing method thereof
WO2023173335A1 (en) * 2022-03-16 2023-09-21 华为技术有限公司 Silicon carbide power device and preparation method therefor, and power conversion module
WO2023181801A1 (en) * 2022-03-24 2023-09-28 ローム株式会社 Semiconductor device and method for manufacturing same
DE102023116381A1 (en) 2022-06-30 2024-01-04 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing a semiconductor device

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165179A (en) * 2004-12-06 2006-06-22 Denso Corp Semiconductor device and manufacturing method therefor
JP2007134521A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Schottky barrier diode, and method of manufacturing same
JP2007243080A (en) * 2006-03-13 2007-09-20 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2008124217A (en) * 2006-11-10 2008-05-29 Furukawa Electric Co Ltd:The Schottky barrier diode
WO2008096521A1 (en) * 2007-02-07 2008-08-14 Nec Corporation Semiconductor device
JP5386987B2 (en) * 2007-02-07 2014-01-15 日本電気株式会社 Semiconductor device
JP2008244056A (en) * 2007-03-27 2008-10-09 Mitsubishi Electric Corp Manufacturing method of silicon carbide semiconductor device
JP2010529646A (en) * 2007-05-31 2010-08-26 クリー インコーポレイテッド Method of making a silicon carbide power device by at least partially removing an n-type silicon carbide substrate, and a silicon carbide power device so produced
EP2149154B1 (en) * 2007-05-31 2018-04-25 Cree, Inc. Method of fabricating a silicon carbide power device and silicon carbide power device fabricated thereby
US8866150B2 (en) 2007-05-31 2014-10-21 Cree, Inc. Silicon carbide power devices including P-type epitaxial layers and direct ohmic contacts
EP2149154A2 (en) * 2007-05-31 2010-02-03 Cree, Inc. Methods of fabricating silicon carbide power devices by at least partially removing an n-type silicon carbide substrate, and silicon carbide power devices so fabricated
JP2009054659A (en) * 2007-08-24 2009-03-12 Fuji Electric Device Technology Co Ltd Manufacturing method of gallium nitride semiconductor device
WO2009031001A3 (en) * 2007-09-04 2009-06-04 Toyota Motor Co Ltd Vertical igbt and method of manufacturing the same
WO2009031001A2 (en) * 2007-09-04 2009-03-12 Toyota Jidosha Kabushiki Kaisha Vertical igbt and method of manufacturing the same
US8390027B2 (en) 2007-10-01 2013-03-05 Fuji Electric Co., Ltd. Gallium nitride semiconductor device and manufacturing method thereof
JP2009088327A (en) * 2007-10-01 2009-04-23 Fuji Electric Device Technology Co Ltd Gallium nitride semiconductor device and method of manufacturing the same
JP2009135394A (en) * 2007-11-01 2009-06-18 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2009130266A (en) * 2007-11-27 2009-06-11 Toshiba Corp Semiconductor substrate and semiconductor device, and method of manufacturing the same
JP2009164301A (en) * 2007-12-28 2009-07-23 Fujitsu Ltd Nitride semiconductor device and its manufacturing method
JP2009182217A (en) * 2008-01-31 2009-08-13 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method
JP2009200343A (en) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Diamond electronic element
US8378387B2 (en) 2008-03-04 2013-02-19 Nec Corporation Field effect transistor and method of manufacturing the same
WO2009110254A1 (en) * 2008-03-04 2009-09-11 日本電気株式会社 Field effect transistor and method for manufacturing the same
JP5383652B2 (en) * 2008-03-04 2014-01-08 ルネサスエレクトロニクス株式会社 Field effect transistor and manufacturing method thereof
JP2010192491A (en) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp SiC SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP2011023478A (en) * 2009-07-14 2011-02-03 Fujitsu Ltd Semiconductor device, and method of manufacturing the same
EP2293335A3 (en) * 2009-09-08 2011-08-03 Kabushiki Kaisha Toshiba Semiconductor device including a field effect transistor
JP2011061000A (en) * 2009-09-10 2011-03-24 Toshiba Corp Schottky barrier diode and method of manufacturing the same
US8786024B2 (en) 2010-04-15 2014-07-22 Yoshitaka Sugawara Semiconductor device comprising bipolar and unipolar transistors including a concave and convex portion
JP5638067B2 (en) * 2010-04-15 2014-12-10 良孝 菅原 Semiconductor device
JPWO2011129443A1 (en) * 2010-04-15 2013-07-18 良孝 菅原 Semiconductor device
WO2011129443A1 (en) * 2010-04-15 2011-10-20 富士電機株式会社 Semiconductor device
CN102782845A (en) * 2010-04-15 2012-11-14 菅原良孝 Semiconductor device
US9419117B2 (en) 2011-08-02 2016-08-16 Rohm Co., Ltd. Semiconductor device, and manufacturing method for same
US9620588B2 (en) 2011-08-02 2017-04-11 Rohm Co., Ltd. Semiconductor device
JP2013110373A (en) * 2011-08-02 2013-06-06 Rohm Co Ltd Semiconductor device and manufacturing method of the same
US10692861B2 (en) 2011-08-02 2020-06-23 Rohm Co., Ltd. Method of manufacturing a semiconductor device
US10461077B2 (en) 2011-08-02 2019-10-29 Rohm Co., Ltd. Method of manufacturing a semiconductor device
US10192865B2 (en) 2011-08-02 2019-01-29 Rohm Co., Ltd. Method of manufacturing a semiconductor device
WO2013073042A1 (en) * 2011-11-17 2013-05-23 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
EP2800137A4 (en) * 2011-12-29 2015-08-12 Sumitomo Electric Industries Method for manufacturing silicon carbide semiconductor device
JP2013201413A (en) * 2012-02-21 2013-10-03 Rohm Co Ltd Semiconductor device and method of manufacturing semiconductor device
US9263525B2 (en) 2012-03-09 2016-02-16 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method thereof
DE102013203528B4 (en) * 2012-03-09 2018-01-25 Mitsubishi Electric Corporation Silicon carbide semiconductor manufacturing process
DE102013203528A1 (en) 2012-03-09 2013-09-12 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method thereof
CN102544084A (en) * 2012-03-15 2012-07-04 电子科技大学 Insulated gate bipolar translator (IGBT) device with two short-circuit positive electrodes
US9728606B2 (en) 2012-03-30 2017-08-08 Fuji Electric Co., Ltd. Silicon carbide semiconductor element and fabrication method thereof
US20150076520A1 (en) * 2012-03-30 2015-03-19 Fuji Electric Co., Ltd. Silicon carbide semiconductor element and fabrication method thereof
WO2013146444A1 (en) * 2012-03-30 2013-10-03 富士電機株式会社 Silicon carbide semiconductor element and method for producing same
US9577032B2 (en) 2012-05-18 2017-02-21 Fuji Electric Co., Ltd. Semiconductor device
US20150001688A1 (en) * 2012-05-18 2015-01-01 Fuji Electric Co., Ltd. Semiconductor device
JPWO2013172140A1 (en) * 2012-05-18 2016-01-12 富士電機株式会社 Semiconductor device
CN104380470A (en) * 2012-05-18 2015-02-25 富士电机株式会社 Semiconductor device
US9224877B2 (en) 2012-11-29 2015-12-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
WO2014083968A1 (en) * 2012-11-29 2014-06-05 住友電気工業株式会社 Silicon carbide semiconductor device, and manufacturing method for same
JP2014150226A (en) * 2013-02-04 2014-08-21 Lapis Semiconductor Co Ltd Semiconductor device and semiconductor device manufacturing method
US9362366B2 (en) 2013-05-13 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Semiconductor element, semiconductor element manufacturing method, semiconductor module, semiconductor module manufacturing method, and semiconductor package
JP2015002266A (en) * 2013-06-14 2015-01-05 新電元工業株式会社 Silicon carbide semiconductor device, and method for manufacturing the same
JP2016526802A (en) * 2013-07-09 2016-09-05 ヴィシャイ ジェネラル セミコンダクター エルエルシーVishay General Semiconductor LLC Gallium nitride power semiconductor device with vertical structure
WO2015025625A1 (en) * 2013-08-20 2015-02-26 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method for same
JP2014039057A (en) * 2013-10-09 2014-02-27 Toshiba Corp Semiconductor device manufacturing method
JP7355496B2 (en) 2015-10-15 2023-10-03 ヴィシェイ ジェネラル セミコンダクター,エルエルシー Local semiconductor wafer thinning
CN108140568B (en) * 2015-10-15 2023-02-17 威世通用半导体有限责任公司 Local semiconductor wafer thinning
CN108140568A (en) * 2015-10-15 2018-06-08 威世通用半导体有限责任公司 Partial semiconductor chip skiving
JP2018533840A (en) * 2015-10-15 2018-11-15 ヴィシェイ ジェネラル セミコンダクター,エルエルシーVishay General Semiconductor,Llc Localized semiconductor wafer thinning
CN109478568A (en) * 2016-07-15 2019-03-15 罗姆股份有限公司 The manufacturing method of semiconductor device and semiconductor device
JPWO2018012510A1 (en) * 2016-07-15 2019-04-25 ローム株式会社 Semiconductor device and method of manufacturing semiconductor device
WO2018012510A1 (en) * 2016-07-15 2018-01-18 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
US10121888B2 (en) 2016-09-23 2018-11-06 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US10546952B2 (en) 2016-09-23 2020-01-28 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
EP3540784A4 (en) * 2016-11-09 2020-05-20 TDK Corporation Schottky barrier diode and electronic circuit provided with same
CN109923678A (en) * 2016-11-09 2019-06-21 Tdk株式会社 Schottky barrier diode and the electronic circuit for having it
CN106960871A (en) * 2017-03-16 2017-07-18 浙江大学 A kind of silicon carbide substrates structure of with groove array and cavity
JP2019087689A (en) * 2017-11-09 2019-06-06 株式会社豊田中央研究所 Nitride semiconductor device and manufacturing method thereof
JP2020043126A (en) * 2018-09-06 2020-03-19 住友電気工業株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor module
CN114141883A (en) * 2021-12-10 2022-03-04 富芯微电子有限公司 Fast recovery diode chip and manufacturing method thereof
WO2023173335A1 (en) * 2022-03-16 2023-09-21 华为技术有限公司 Silicon carbide power device and preparation method therefor, and power conversion module
WO2023181801A1 (en) * 2022-03-24 2023-09-28 ローム株式会社 Semiconductor device and method for manufacturing same
DE102023116381A1 (en) 2022-06-30 2024-01-04 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP2006156658A (en) Semiconductor device
JP4903439B2 (en) Field effect transistor
JP5525940B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7217954B2 (en) Silicon carbide semiconductor device and method for fabricating the same
US8846531B2 (en) Method of manufacturing an ohmic electrode containing titanium, aluminum and silicon on a silicon carbide surface
JP5619152B2 (en) Semiconductor device
JP6120756B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20150287598A1 (en) Semiconductor device and method for manufacturing same
JP6561759B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6120525B2 (en) Silicon carbide semiconductor device
JP2007324218A (en) Semiconductor rectifying device
CN110473911B (en) SiC MOSFET device and manufacturing method thereof
JP2018082055A (en) Semiconductor device and semiconductor device manufacturing method
JP2013084844A (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6946824B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP2011040431A (en) Semiconductor device and method of manufacturing the same
JP3759145B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4091931B2 (en) SiC semiconductor device and method of manufacturing SiC semiconductor device
US8802552B2 (en) Method for manufacturing semiconductor device
JP2009182217A (en) Semiconductor device and its manufacturing method
JP2015028994A (en) Method for manufacturing semiconductor device and semiconductor device
JP2008226997A (en) Semiconductor device and its manufacturing method
CN116247096A (en) Concave gate enhanced GaN HEMT resistant to reverse conduction current and manufacturing method
JP2008118082A (en) Nitride semiconductor device and method of manufacturing the same
JP7036001B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120