JP2006156186A - Negative plate for alkaline secondary battery, and alkaline secondary battery with the negative plate applied - Google Patents
Negative plate for alkaline secondary battery, and alkaline secondary battery with the negative plate applied Download PDFInfo
- Publication number
- JP2006156186A JP2006156186A JP2004346329A JP2004346329A JP2006156186A JP 2006156186 A JP2006156186 A JP 2006156186A JP 2004346329 A JP2004346329 A JP 2004346329A JP 2004346329 A JP2004346329 A JP 2004346329A JP 2006156186 A JP2006156186 A JP 2006156186A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- negative electrode
- substrate
- thickness
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、捲回式極板群を備える円筒形のニッケル水素電池やニッケルカドミウム電池等に代表されるアルカリ二次電池用の負極板、およびその負極板を適用した捲回式極板群を備えるアルカリ二次電池に関するものである。 The present invention relates to a negative electrode plate for an alkaline secondary battery represented by a cylindrical nickel-metal hydride battery or a nickel cadmium battery having a wound electrode plate group, and a wound electrode plate group to which the negative electrode plate is applied. The present invention relates to an alkaline secondary battery provided.
円筒形のニッケル水素電池やニッケルカドミウム電池は、サイクル特性、耐過放電特性、耐過充電特性に優れるところから携帯形の電気機器、ハイブリッド形電気自動車(HEV)、電動工具などの電源として用いられている。なかでも、ニッケル水素電池は、低公害であり、高エネルギー密度を有するところから広く用いられている。これらの用途においては長期間の使用に耐える電源に対する要望が強く、さらに優れたサイクル特性を有する二次電池の開発が進められている。 Cylindrical nickel metal hydride batteries and nickel cadmium batteries are used as power sources for portable electric devices, hybrid electric vehicles (HEV), electric tools, etc. because of their excellent cycle characteristics, overdischarge resistance, and overcharge resistance. ing. Among these, nickel metal hydride batteries are widely used because of their low pollution and high energy density. In these applications, there is a strong demand for a power source that can withstand long-term use, and the development of secondary batteries having excellent cycle characteristics is underway.
捲回式極板群を構成する極板は、通常、正極板、負極板共に導電性基板(穿孔金属板や金属箔)の両面に活物質層を設け、且つ、導電性基板を極板の厚さ方向に対して極板の中心に配置しているのであるが、極板群の最外周に位置する負極板の外面は正極板と対向しないので該部分に配置した活物質は、高率放電においては殆ど起電反応に寄与しない。このような従来電池の欠点に鑑み、捲回式極板群を備える二次電池において、電池のさらなる高容量化を達成するために極板群の構造の改良が提案されている。例えば、極板群の最外周に位置する負極板の導電性基板の外面を露呈させた構造の捲回式極板群が提案されている。該提案によれば、極板群の最外周に位置する負極板の外面の起電反応に殆ど寄与しない活物質を除き、起電反応に寄与する活物質量を増やすことによって、高容量化が試みられている。(例えば特許文献1、特許文献2)。
しかし、該構成の極板群を作製するためには、1枚の負極板に活物質塗工部分と非塗工部分を設けなければならず、そのためには間歇塗工を行うか、塗工後に一部分活物質を取り除いて活物質非塗工部分を形成する必要があった。間歇塗工においては塗工装置に複雑な機構を付与しなければならず、また、塗工後の極板の厚さが一様でないために、一枚の極板のうち厚さの大きい部分と厚さの小さい部分とに分けて二段階のプレス加工を施す必要があった。他方一部活物質を除去する方式は、活物質の除去工程が複雑であり、生産性に劣る欠点があった。 However, in order to produce the electrode plate group having such a configuration, an active material coating portion and a non-coating portion must be provided on one negative electrode plate. For that purpose, intermittent coating or coating is performed. It was necessary to remove part of the active material later to form an active material non-coated part. In intermittent coating, a complicated mechanism must be given to the coating device, and since the thickness of the electrode plate after coating is not uniform, the thick part of one electrode plate It was necessary to perform a two-stage press work separately for parts with a small thickness. On the other hand, the method of removing a part of the active material has a drawback that the process of removing the active material is complicated and the productivity is inferior.
前記特許文献1、特許文献2に記載の極板群と別の構成を有するものとして、負極板を内周部分と該内周部分に比べて厚さの小さい最外周部分とに分割し、内周部分と最外周部分とを重ね合わせて接続した捲回式極板群が示されている。(例えば特許文献3)
本発明は、前記従来の密閉形アルカリ二次電池の欠点に鑑みてなされたものであって、捲回式極板群を備えるアルカリ二次電池(以下単に電池ともいう)であって生産性を低下させることなく、充放電サイクル特性に優れた電池を提供せんとするものである。 The present invention has been made in view of the disadvantages of the conventional sealed alkaline secondary battery, and is an alkaline secondary battery (hereinafter also simply referred to as a battery) provided with a wound electrode plate group. It is intended to provide a battery having excellent charge / discharge cycle characteristics without lowering.
本発明においては、電池の構成を以下の構成とすることによって前記課題を解決する。 In this invention, the said subject is solved by making the structure of a battery into the following structures.
本発明に係るアルカリ二次電池用負極板は、矩形状の正極板、セパレータおよび負極板を積層した捲回式極板群を備え、該捲回式極板群の最外周に負極板を配置したアルカリ二次電池用負極板であって、穿孔を有する金属板からなる基板の両面に活物質粉末を主構成物質とする合剤層を有し、厚さが一様であり、極板の幅方向(短辺に平行な方向)において極板の厚さ方向に対する基板の位置が変化しない負極板において、極板を長辺に平行な面で切断したときに、前記捲回式極板群の最外周側に位置する端部のみ、または、極板全体に亘り、基板を極板の切断面の中心に対して片側に偏心させたことを特徴とするアルカリ二次電池用負極板である。(請求項1)
なお、請求項1に記載の負極板のうち、前記捲回式極板群の最外周側に位置する端部のみ基板を極板の前記切断面の中心に対して片側に偏心させた負極板においては、該端部以外は基板を偏心させていない極板を指す。ここでいう基板を偏心させていないとは、基板を極板の前記切断面(以下、極板の切断面という)の中心に配置していることを意味する。
The negative electrode plate for an alkaline secondary battery according to the present invention includes a wound electrode plate group in which a rectangular positive electrode plate, a separator, and a negative electrode plate are laminated, and the negative electrode plate is disposed on the outermost periphery of the wound electrode plate group. A negative electrode plate for an alkaline secondary battery, having a mixture layer comprising active material powder as a main constituent material on both sides of a substrate made of a metal plate having perforations, having a uniform thickness, In the negative electrode plate in which the position of the substrate with respect to the thickness direction of the electrode plate does not change in the width direction (direction parallel to the short side), when the electrode plate is cut along a plane parallel to the long side, the wound electrode plate group A negative electrode plate for an alkaline secondary battery, wherein the substrate is decentered to one side with respect to the center of the cut surface of the electrode plate only over the end located on the outermost peripheral side of the electrode plate or over the entire electrode plate. . (Claim 1)
The negative electrode plate according to claim 1, wherein only the end located on the outermost peripheral side of the wound electrode plate group is decentered to one side with respect to the center of the cut surface of the electrode plate. In this case, the electrode plate other than the end portion does not decenter the substrate. Here, that the substrate is not decentered means that the substrate is disposed at the center of the cut surface of the electrode plate (hereinafter referred to as the electrode plate cut surface).
本発明に係るアルカリ二次電池用負極板は、前記基板を偏心させた部分の基板を境とした表裏2面の合剤層の厚さの比が1:9〜4:6であることを特徴とする請求項1に記載のアルカリ二次電池用負極板である。(請求項2)
本発明に係るアルカリ二次電池は、前記最外周側に位置する端部のみ基板を極板の前記切断面の中心に対して片側に偏心させた請求項1または請求項2に記載のアルカリ二次電池用負極板を適用した捲回式極板群であって、前記基板を偏心させることにより基板を境として厚さを大きくした負極板の合剤層を正極板に対向させた捲回式極板群を備えることを特徴とするアルカリ二次電池である。(請求項3)
本発明に係るアルカリ二次電池は、前記極板全体に亘り基板を極板の前記切断面の中心に対して片側に偏心させた請求項1または請求項2に記載のアルカリ二次電池用負極板を適用した捲回式極板群であって、前記基板を偏心させることにより基板を境として厚さを大きくした負極板の合剤層を内側に配置し、厚さを小さくした負極板の合剤層を外側に配置した捲回式極板群を備えることを特徴とするアルカリ二次電池である。(請求項4)
In the negative electrode plate for an alkaline secondary battery according to the present invention, the ratio of the thicknesses of the mixture layers on the front and back surfaces of the substrate where the substrate is decentered is 1: 9 to 4: 6. It is a negative electrode plate for alkaline secondary batteries of Claim 1 characterized by the above-mentioned. (Claim 2)
3. The alkaline secondary battery according to claim 1, wherein the alkaline secondary battery according to the present invention is configured such that the substrate is eccentric to one side only with respect to the center of the cut surface of the electrode plate at an end portion located on the outermost peripheral side. A winding type electrode plate group to which a negative electrode plate for a secondary battery is applied, wherein a negative electrode plate mixture layer whose thickness is increased by decentering the substrate is opposed to the positive electrode plate. An alkaline secondary battery comprising an electrode plate group. (Claim 3)
The alkaline secondary battery according to the present invention is the negative electrode for an alkaline secondary battery according to claim 1 or 2, wherein the substrate is eccentric to one side with respect to the center of the cut surface of the electrode plate over the entire electrode plate. A wound-type electrode plate group to which a plate is applied, wherein a mixture layer of a negative electrode plate whose thickness is increased from the substrate by decentering the substrate is arranged inside, and the negative electrode plate having a reduced thickness An alkaline secondary battery comprising a wound electrode plate group having a mixture layer disposed outside. (Claim 4)
前記請求項1によれば、従来の、極板全体に亘って基板を偏心させていないアルカリ二次電池用負極板に比べて、負極板の生産性を低下させることなく、負極板の活物質利用率の高いアルカリ二次電池用捲回式極板群の提供を可能にする。 According to the first aspect of the present invention, the active material of the negative electrode plate can be obtained without lowering the productivity of the negative electrode plate as compared with the conventional negative electrode plate for an alkaline secondary battery in which the substrate is not eccentric over the entire electrode plate. It is possible to provide a wound electrode plate group for alkaline secondary batteries having a high utilization rate.
請求項2によれば、負極板の活物質利用率の高く、充放電サイクル特性に優れたアルカリ二次電池用捲回式極板群の提供を可能にする。 According to the second aspect of the present invention, it is possible to provide a wound electrode plate group for an alkaline secondary battery having a high active material utilization rate of the negative electrode plate and excellent charge / discharge cycle characteristics.
前記請求項3および請求項4によれば、捲回式極群を備えたアルカリ二次電池において生産性を低下させることがなく、負極板の活物質利用率を高めることによって充放電サイクル特性に優れたアルカリ二次電池の提供を可能にする。
According to
本発明に係る電池は、穿孔を有する導電性基板の両面に合剤層を配置した負極板を備える。負極板の厚さは、特に限定されるものではないが、通常用いられている0.25〜0.40mmとすることが好ましい。該厚さが0.25mm未満では活物質充填量が少なくなる虞があり、逆に、厚さが0.40mmを超えると負極板の集電機能が低下して活物質の利用率が低下する虞がある。 The battery according to the present invention includes a negative electrode plate in which a mixture layer is disposed on both surfaces of a conductive substrate having perforations. Although the thickness of a negative electrode plate is not specifically limited, It is preferable to set it as 0.25-0.40 mm normally used. If the thickness is less than 0.25 mm, the active material filling amount may be reduced. Conversely, if the thickness exceeds 0.40 mm, the current collecting function of the negative electrode plate is lowered and the utilization rate of the active material is lowered. There is a fear.
負極板の基板には、ニッケルやニッケルメッキを施した鋼板からなる穿孔板が好適である。基板の厚さ、穿孔の形状とその大きさ、開口率は、特に限定されるものではないが、厚さは0.03〜0.06mmが好ましい。該厚さが0.03mm未満では抗張力が不足するために極板の製作の過程や捲回式極板群の製作の過程で基板が切断する虞があり、0.06mmを超えると活物質充填量が少なくなる虞がある。穿孔の形状は多角形、長円形、円形のいずれでも良いが、生産性の良い円形が好適である。円形の穿孔の場合、その直径が0.5〜2mmが好適である。該直径が0.5mm未満のものは製造が難しく生産性が劣り、2mmを超えると負極板の集電機能が低下したり、活物質が基板から脱落する虞が生じる。また、基板の開口率は35〜60%が好適であり、40〜55%がさらに好適である。該開口率が35%未満では、基板によって、負極坂内に含まれる電解液中のイオンの移動が阻害されて、負極板の表裏両面に配置した合剤層のうち、基板を偏心させたために厚さを大きくした合剤層に含まれる活物質の利用率が低下するためか、合剤層全体に含まれる活物質の利用率が低くなる虞があり、開口率が60%を超えると、負極板の集電機能が低下して活物質利用率が低下する虞がある。 A perforated plate made of nickel or a nickel-plated steel plate is suitable for the substrate of the negative electrode plate. The thickness of the substrate, the shape and size of the perforations, and the aperture ratio are not particularly limited, but the thickness is preferably 0.03 to 0.06 mm. If the thickness is less than 0.03 mm, the tensile strength is insufficient, so that there is a risk of the substrate being cut in the process of manufacturing the electrode plate or the wound electrode plate group. There is a risk that the amount will decrease. The shape of the perforations may be any of a polygon, an oval, and a circle, but a circle with good productivity is preferable. In the case of circular perforations, the diameter is preferably 0.5-2 mm. If the diameter is less than 0.5 mm, it is difficult to produce and the productivity is inferior. Further, the opening ratio of the substrate is preferably 35 to 60%, and more preferably 40 to 55%. When the opening ratio is less than 35%, the substrate inhibits the movement of ions in the electrolyte contained in the negative electrode slope, and the thickness of the mixture layer is shifted because of the eccentricity of the substrate among the mixture layers arranged on the front and back surfaces of the negative electrode plate. The utilization factor of the active material contained in the mixture layer with increased thickness may decrease, or the utilization factor of the active material contained in the entire mixture layer may be reduced. If the opening ratio exceeds 60%, the negative electrode There is a possibility that the current collecting function of the plate is lowered and the active material utilization rate is lowered.
(第1の実施の形態)
第1の実施の形態は、捲回式極板群の最外周側に位置する端部のみ負極板の基板を偏心させた実施形態である。図1は、本発明第1の実施形態に係り、プレス加工を施して極板の厚さを所定の厚さに調整した後のアルカリ二次電池用負極板1の長辺に平行な面で切断した断面を模式的に示す断面図である。図1において2は、例えばニッケルメッキを施した穿孔鋼板製の基板であり、3は、該基板の両面に担持させた水素吸蔵合金粉末やカドミウム粉末と水酸化カドミウム粉末の混合物からなる活物質粉末を主構成物質とする合剤層である。該合剤層は、前記活物質粉末の他にニッケル粉末などの導電剤粉末やスチレンブタジエンゴム(SBR)やポリテトラフロロエチレン(PTFE)のような合成樹脂を結着剤として含んでもよい。
(First embodiment)
The first embodiment is an embodiment in which the substrate of the negative electrode plate is eccentric only at the end located on the outermost peripheral side of the wound electrode plate group. FIG. 1 relates to the first embodiment of the present invention, and shows a plane parallel to the long side of the negative electrode plate 1 for an alkaline secondary battery after pressing to adjust the thickness of the electrode plate to a predetermined thickness. It is sectional drawing which shows the cut | disconnected cross section typically. In FIG. 1, 2 is a substrate made of perforated steel sheet, for example, plated with nickel, and 3 is an active material powder comprising a mixture of hydrogen storage alloy powder or cadmium powder and cadmium hydroxide powder carried on both sides of the substrate. It is a mixture layer containing as a main constituent material. In addition to the active material powder, the mixture layer may contain a conductive agent powder such as nickel powder, or a synthetic resin such as styrene butadiene rubber (SBR) or polytetrafluoroethylene (PTFE) as a binder.
図1に示すように、負極板1は、長手方向につなぎ目のない1枚ものの極板であって、且つ、一様な厚さを有する極板である。図1に示すように、極板のうち図のXから右側の部分(負極板のうち捲回式極板群の最外周側の端部に相当)において基板2を極板の中心(厚さ方向の中心)に対して図の上側に偏心させている。該負極板は、従来の基板を偏心させていない負極板と同様、少なくとも長手方向に対して一様の厚さを有している。該第1の実施の形態に係る負極板は、従来のように負極板を複数枚に分割して、途中で繋ぎ合わせたり、極板の長手方向の途中から合剤層の厚さを変えるために極板の厚さそのものを変化させた負極板に比べて、塗工工程が簡便であり、厚さが一様であるためにプレス加工も一段階の連続プレス加工が適用できるので製造が容易である。
As shown in FIG. 1, the negative electrode plate 1 is a single electrode plate that is seamless in the longitudinal direction and has a uniform thickness. As shown in FIG. 1, the
図2は、図1に示した負極板1をセパレータ6を介して正極板5を積層させ、渦巻き状に捲回した捲回式極群4の断面の構造を模式的に示した図である。本発明においては、図2に示したように、捲回式極群の最外周(巻き終わりの周)において負極板が正極板の外側に位置するように配置し、該最外周に負極板の基板を偏心させた部分を配置し、且つ、基板を偏心させた部分の基板を境にして合剤層3の厚さが大きい面を正極板5に対向するように配置する。
FIG. 2 is a diagram schematically showing a cross-sectional structure of the
極板群の構成を、図2に示した構成とすることによって、図3に示した基板を偏心させず、基板全体を負極板の中心に配置した従来の負極板を適用した構成に比べて、負極板の厚さや大きさ、水素吸蔵合金粉末の充填量を変えることなく、正極板5に対向する負極板1の活物質の量を多くすることができる。
The configuration of the electrode plate group is the same as that shown in FIG. 2, so that the substrate shown in FIG. The amount of the active material of the negative electrode plate 1 facing the
負極板1の正極板5に対向する水素吸蔵合金粉末の量を多くすると、負極板の基板を偏心させなかった電池と比較して、見かけの負極板の容量(N:単純に負極活物質の充填量から算定される負極板の容量)と正極板の容量(P)に対する比(N/P)は同じであっても、高率で充放電を行ったときに動作する(起電反応に預かる)負極活物質量から算定される負極板の容量(N')の正極板の容量(P)に対する比率(N'/P)の値を高めることができる。
When the amount of the hydrogen storage alloy powder facing the
アルカリ二次電池の場合は、一般に負極板の容量を正極板の容量に比べて大きくし、放電リザーブ、充電リザーブを確保している。従って、充放電サイクルの初期においては、放電容量が正極板の容量で規制されるので充電リザーブ量の大小によって放電容量に差が生じ難いが、サイクルが経過し負極板の充電リザーブ量が減少するに従って放電容量が負極板の容量で規制されるようになり、サイクルの経過とともに放電容量が低下する。前記のように、本願の発明に係る電池は、従来の電池に比べて、N'/Pの値を高めて大きい充電リザーブ量を確保しているために、電池の放電容量が負極板の容量で規制されるのを遅延させ、特に充電および放電を1ItA以上のレートで行ったときの高率充放電におけるサイクル特性を高めることができる。 In the case of an alkaline secondary battery, the capacity of the negative electrode plate is generally made larger than the capacity of the positive electrode plate to ensure the discharge reserve and the charge reserve. Therefore, at the initial stage of the charge / discharge cycle, the discharge capacity is regulated by the capacity of the positive electrode plate, so that it is difficult for the discharge capacity to vary depending on the charge reserve amount, but the charge reserve amount of the negative electrode plate decreases after the cycle. Accordingly, the discharge capacity is regulated by the capacity of the negative electrode plate, and the discharge capacity decreases with the passage of the cycle. As described above, the battery according to the invention of the present application increases the value of N ′ / P and secures a large charge reserve amount as compared with the conventional battery, so that the discharge capacity of the battery is the capacity of the negative electrode plate. The cycle characteristics in high rate charge / discharge when charging and discharging are performed at a rate of 1 ItA or more can be enhanced.
前記基板2を偏心させた部分(図1においてXより右側の部分)の長さは特に限定されるものではないが、図2に示したように、基板を偏心させた部分の長さが極板群の最外周の負極板の長さとほぼ一致させると、正極板に対向しない合剤層に含まれる活物質量を最小限にすることができるので好ましい。該基板を偏心させた部分の、基板を境にした厚さの小さい合剤層と厚さの大きい合剤層の厚さの比率は、特に限定されるものではないが、1:9〜4:6に設定するのが好ましく、1:9〜3:7に設定するのがさらに好ましい。該比率が1:9を下回ると、基板上に合剤層を担持させた後、極板にプレス加工を施す工程で、極板が変形したり、活物質(水素吸蔵合金粉末)が脱落する虞がある。該比率が4:6を上回ると負極板の活物質利用率を高める効果が得られない。
The length of the portion where the
なお、負極板のうち、基板を偏心させてない部分(図1のXの左側の部分)は、図1に示すように、基板を極板の切断面の中心に位置させる。該部分は、両面が正極板に対向しており、基板を極板の切断面の中心に位置させることによって極板の表裏両面が均等に起電反応に寄与し、負極板の利用率を最大限高めることができるので好ましい。 Note that the portion of the negative electrode plate where the substrate is not eccentric (the portion on the left side of X in FIG. 1) positions the substrate at the center of the cut surface of the electrode plate, as shown in FIG. This part has both sides facing the positive electrode plate, and by positioning the substrate at the center of the cut surface of the electrode plate, both the front and back surfaces of the electrode plate contribute equally to the electromotive reaction, maximizing the utilization rate of the negative electrode plate It is preferable because it can be increased to the limit.
負極板の製造において、極板の一方の端部(捲回式極板群を構成したときに最外周側に位置する端部)の基板を偏心させる方法は、特に限定されるものではないが、例えば、基板を水素吸蔵合金粉末のペースト{水素吸蔵合金粉末や結着剤を水に分散させたものにカルボキシメチルセルロース(CMC)などの増粘剤を添加混練して糊状にしたもの}を収容したペースト槽の中を通して基板の両面に所定量より過剰のペーストを担持させた後、所定の間隔を設けたスリットの間を通過させて余分のペーストを削ぎ落とす工程で、基板を偏芯させない部分を製造するときは基板がスリットの間隔の中心を通るように基板とスリットの位置を調整し、基板を偏芯させた部分を製造するときには、基板の位置またはスリットの位置を変えて基板がスリットの間隔の一方に偏った位置を通過するように基板とスリットの位置を調整することによって製造することができる。該方法において基板の位置またはスリットの位置を変えるときには、位置を変える時点でスリットを通過中の部分に大きな張力が加わるために、該部分で基板が切断する虞がある。 In the production of the negative electrode plate, the method of decentering the substrate at one end of the electrode plate (the end located on the outermost peripheral side when the wound electrode plate group is configured) is not particularly limited. For example, a paste of a hydrogen storage alloy powder (a paste obtained by adding a thickener such as carboxymethylcellulose (CMC) to water in which a hydrogen storage alloy powder or a binder is dispersed in water) is used as a paste. In the process in which excess paste is supported on both sides of the substrate through the contained paste tank and then passed through the slits with a predetermined interval, the excess paste is scraped off so that the substrate is not eccentric. When manufacturing the part, adjust the position of the substrate and the slit so that the substrate passes through the center of the gap of the slit, and when manufacturing the part where the substrate is eccentric, change the position of the substrate or the position of the slit and The The position of the substrate and the slit so as to pass through a position offset to one Tsu City of spacing can be produced by adjusting the. In this method, when the position of the substrate or the position of the slit is changed, a large tension is applied to the portion passing through the slit at the time of changing the position, so that the substrate may be cut at the portion.
図4に示した基板2は、前記基板の切断を防ぐ効果を持たせたものであって、全体に穿孔7を設けた基板のうち、基板が偏芯を開始する部分(負極板1の厚さ方向に対して基板2の位置が変化する部分)Xの穿孔の数を減らして(開口率が低い、図では穿孔を無くし、開口率を0%としている。)基板の抗張力を高めている。部分Xにおける開口率については数値的な限定は特になく、ペーストを削ぎ落とす工程で基板を偏芯させたときに基板が切断する虞のない強度が得られるように設定すればよい。部分Xにおける開口率を低くした部分の幅に付いては特に限定はないが2〜5mmとするのが好ましい。該幅が2mm未満では開口率を低くした部分を設けた効果が得られ難い。また、該幅が5mmを超えると、活物質が脱落し易くなったり、基板によってイオンの移動が妨げられて電気的特性が低下する虞がある。
The
(第2の実施の形態)
第2に実施の形態は、負極板の全体に亘って基板を偏心させた実施の形態である。図5は、本発明の第2の実施の形態に係る負極板1を長辺に平行な面で切断した断面を模式的に示す断面図である。本発明においては前記第1の実施の形態に示した如く、負極板の一方の端部の基板の位置を偏心させる他に、図5に示した如く、極板の全体亘って基板2を偏心させることもできる。ただし、該第2の実施形態においても、前記第1の実施形態同様に負極板の厚さが一様であり、生産性に優れた負極板である。
(Second Embodiment)
The second embodiment is an embodiment in which the substrate is eccentric over the entire negative electrode plate. FIG. 5 is a cross-sectional view schematically showing a cross section of the negative electrode plate 1 according to the second embodiment of the present invention cut along a plane parallel to the long side. In the present invention, as shown in the first embodiment, in addition to decentering the substrate at one end of the negative electrode plate, as shown in FIG. It can also be made. However, also in the second embodiment, as in the first embodiment, the thickness of the negative electrode plate is uniform and the negative electrode plate is excellent in productivity.
該負極板1を適用して捲回式極板群を構成するに際しては、負極板1の基板2を境にして合剤層3を厚くした面を内側に、合剤層3を薄くした面を外側に配置する。該構成とすることによって、極板群の最外周において負極板の合剤層の厚い面を正極板5に対向させ、起電反応に寄与する負極板の活物質量を多く確保することができる。
When the negative electrode plate 1 is applied to form a wound electrode plate group, the surface of the negative electrode plate 1 where the
極板群の構成を該構成とすることによって、前記第1の実施の形態と同様に、正極板に対向しない負極板の活物質量を低減し、高率で充放電を行ったときに動作する(起電反応に預かる)負極活物質量から算定される負極板の容量(N')の正極板の容量(P)に対する比率(N'/P)の値を高めることができ、充放電サイクル性能を高めることができる。該第2の実施の形態では、基板の両面に活物質を塗工する過程で基板の位置を変える必要がないため、第1の実施の形態に比べてさらに負極板の製造が容易である。 By adopting this configuration of the electrode plate group, the amount of the active material of the negative electrode plate that does not face the positive electrode plate is reduced and the charge / discharge is performed at a high rate, as in the first embodiment. The ratio (N '/ P) of the negative electrode plate capacity (N') to the positive electrode capacity (P) calculated from the amount of the negative electrode active material (deposited in the electromotive reaction) can be increased, and charging / discharging Cycle performance can be improved. In the second embodiment, since it is not necessary to change the position of the substrate in the process of applying the active material to both surfaces of the substrate, it is easier to manufacture the negative electrode plate than in the first embodiment.
該第2の実施の形態においては、負極板の基板の開口率を、前記第1の実施形態同様に基板の開口率を好ましくは35〜60%、さらに好ましくは40〜55%とすることによって負極活物質の利用率の低下を抑制して充電リザーブ量を確保できたためか、良好なサイクル性能が得られることが分かった。第2の実施の形態においては、極群の内部の周においても、負極板の基板を境にして合剤層の厚さが相違している(基板を境にして極板群の内側の合剤層の厚さが大きく、外側の合剤層の厚さが小さい。)。このように、基板を境にして合剤層の厚さを相違させた(活物質粉末の量も合剤層の厚さの比に比例して相違する)場合、厚さの大きい合剤層に含まれる活物質の利用率が低くなるのではないかと予想されたが、負極板の基板の開口率を前記のように35〜60%、さらに好ましくは40〜55%に設定することによって良好なサイクル性能が得られた。 In the second embodiment, the aperture ratio of the substrate of the negative electrode plate is preferably 35 to 60%, more preferably 40 to 55%, as in the first embodiment. It was found that good cycle performance could be obtained because the charge reserve amount could be secured by suppressing the decrease in the utilization factor of the negative electrode active material. In the second embodiment, the thickness of the mixture layer is different at the inner periphery of the electrode group with the substrate of the negative electrode plate as the boundary (the inner layer of the electrode plate group with the substrate as the boundary). The thickness of the agent layer is large, and the thickness of the outer mixture layer is small.) In this way, when the thickness of the mixture layer is made different from the substrate (the amount of the active material powder is also different in proportion to the ratio of the thickness of the mixture layer), the thick mixture layer It is expected that the utilization rate of the active material contained in the substrate will be low, but it is good by setting the aperture ratio of the substrate of the negative electrode plate to 35 to 60%, more preferably 40 to 55% as described above. Cycle performance was obtained.
該第2の実施の形態においても、負極板の基板を境にして厚さの小さい合剤層と厚さの大きい合剤層の厚さの比率は、特に限定されるものではないが、1:9〜4:6に設定するのが好ましく、1:9〜3:7に設定するのがさらに好ましい。該比率が1:9を下回ると、基板上に合剤層を担持させた後、極板にプレス加工を施す工程で、極板が変形したり、活物質粉末が脱落する虞がある。また、極板の片面に基板が露出すると、極板群を構成したときに、セパレータを介して基板が正極板の表面に近接するために、イオンの移動が阻害され、基板に面する部分において起電反応が起きにくく、活物質利用率が低下する虞がある。 Also in the second embodiment, the ratio of the thickness of the mixture layer having a small thickness and the mixture layer having a large thickness with respect to the substrate of the negative electrode plate is not particularly limited. : It is preferable to set to 9 to 4: 6, and it is more preferable to set to 1: 9 to 3: 7. When the ratio is less than 1: 9, the electrode plate may be deformed or the active material powder may fall off in the step of pressing the electrode plate after supporting the mixture layer on the substrate. In addition, when the substrate is exposed on one side of the electrode plate, when the electrode plate group is configured, the substrate is brought close to the surface of the positive electrode plate via the separator. An electromotive reaction is unlikely to occur, and the active material utilization rate may be reduced.
(第3の実施の形態)
第3に実施の形態は、負極板の全体に亘って基板を偏心させた実施の形態であって、第2の実施の形態とは別の実施の形態である。第2の実施形態においては、図5に示すように、極板を長辺に平行な線で切断したときに、基板2の極板1の厚さ方向に対する位置は変化しない。これに対して第3の実施の形態においては、負極板の全体に亘って基板を極板の厚さの中心に対して一方の側に偏心させるのであるが、図1に示したように、極板の長手方向において、基板の厚さ方向に対する位置を途中で変化させる。例えば、図1においてXより右側(負極板のうち捲回式極板群の最外周側端部)の負極板の合剤層の厚さを1:9とし、Xより左側の負極板の合剤層の厚さの比を3:7とする。ただし、第3に実施の形態においても、負極板の活物質利用率を高めるために、捲回式極板群の最外周側の端部の基板の偏心の度合い(基板と極板の厚さの中心との間の距離)を他の部分より大きく設定し、且つ、極板全体に亘り、負極板の基板を境とする合剤層の厚さの比を4:6〜1:9の範囲に設定するのが好ましい。
(Third embodiment)
The third embodiment is an embodiment in which the substrate is decentered over the entire negative electrode plate, and is an embodiment different from the second embodiment. In the second embodiment, as shown in FIG. 5, when the electrode plate is cut along a line parallel to the long side, the position of the
該第3の実施の形態においては、前記第1の実施の形態同様、極板の厚さ方向に対して基板の位置が変化する部分Xにおいて基板の開口率を低く(例えば部分Xのみ穿孔を無くす)設定すると、基板の切断が抑制されるので好ましい。また、例えば前記部分Xにおいて負極板の厚さの中心を跨って基板の位置を変化させると、基板の位置の変化が大きくなって、負極板を作製する過程あるいは極板群を作製する(捲回する)過程で基板が切断される虞が高くなる。 In the third embodiment, as in the first embodiment, the aperture ratio of the substrate is lowered in the portion X where the position of the substrate changes in the thickness direction of the electrode plate (for example, only the portion X is perforated). If it is set, it is preferable because cutting of the substrate is suppressed. Further, for example, when the position of the substrate is changed across the center of the thickness of the negative electrode plate in the portion X, the change in the position of the substrate becomes large, and the process of manufacturing the negative electrode plate or the electrode plate group is manufactured (捲There is a high risk that the substrate will be cut in the process of turning.
以下、負極板に水素吸蔵合金粉末を活物質とする水素吸蔵電極を用いたニッケル水素電池を例に挙げて説明するが、本発明はニッケル水素電池に限定されるものではなく例えばカドミウム電極を負極とするニッケルカドミウム電池にも適用できるものである。 Hereinafter, a nickel metal hydride battery using a hydrogen storage electrode using a hydrogen storage alloy powder as an active material for the negative electrode plate will be described as an example. However, the present invention is not limited to a nickel metal hydride battery. For example, a cadmium electrode is used as a negative electrode. The present invention can also be applied to nickel cadmium batteries.
(実施例1)
(電池の構成)
亜鉛を金属換算で亜鉛を3重量%、コバルトを1重量%固溶状態で含有する水酸化ニッケルを芯層とし該芯層95重量%に対して5重量%のオキシ水酸化コバルトからなる表面被覆層を設けた正極活物質粉末を発泡ニッケル製基板に充填した厚さ0.7mm、長さ96mm、幅44mmの極板を正極板とした。正極板の容量{正極活物質充填量(g)×正極活物質単位重量当たりの容量(mAh/g)}は、2300mAhであった。
Example 1
(Battery configuration)
Surface coating comprising 5% by weight of cobalt oxyhydroxide having a core layer of nickel hydroxide containing 3% by weight of zinc in terms of metal and 1% by weight of cobalt in a solid solution state with respect to 95% by weight of the core layer A positive electrode plate having a thickness of 0.7 mm, a length of 96 mm, and a width of 44 mm in which a positive electrode active material powder provided with a layer was filled in a nickel foam substrate was used. The capacity of the positive electrode plate {positive electrode active material filling amount (g) × capacity per unit weight of positive electrode active material (mAh / g)} was 2300 mAh.
厚さ0.04mm、直径が1mmの円形の穿孔を有し、開口率45%の穿孔鋼板(ニッケルメッキ品)を基板とし、該基板の両面に、Mm1.0Ni3.9Co0.7Mn0.3Al0.2(Mmはミッシュメタルを表す)の組成を有する平均粒径40μmの水素吸蔵合金98.8重量%とSBR(スチレンブタジエンゴム)1重量%、MC(メチルセルロース)0.2重量%からなる活物質層を配置し、厚さが0.34mm、長さが137mm、幅が44mmの極板を作成した。なお、該負極板の巻き始め側の短辺からの距離が94mmの位置(図1において、Xを図1の左端の辺から94mmの位置に設定した。)を境にして、基板を偏心させ、基板を境にして片側の合剤層の厚さを0.03mm、他方の側の合剤層の厚さを0.27mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=1:9)とした。 A perforated steel sheet (nickel-plated product) having a circular perforation having a thickness of 0.04 mm and a diameter of 1 mm and having an aperture ratio of 45% is used as a substrate, and Mm 1.0 Ni 3.9 Co 0.7 Mn 0.3 Al 0.2 ( Mm represents a misch metal) and an active material layer composed of 98.8% by weight of a hydrogen storage alloy having an average particle diameter of 40 μm, 1% by weight of SBR (styrene butadiene rubber), and 0.2% by weight of MC (methyl cellulose). An electrode plate having a thickness of 0.34 mm, a length of 137 mm, and a width of 44 mm was prepared. The substrate is decentered at a position where the distance from the short side on the winding start side of the negative electrode plate is 94 mm (in FIG. 1, X is set to a position 94 mm from the left end side in FIG. 1). The thickness of the mixture layer on one side of the substrate is 0.03 mm, the thickness of the mixture layer on the other side is 0.27 mm (thickness of the mixture layer with a small thickness: The thickness of the agent layer was 1: 9).
厚さ0.1mm、坪量40g/m2、幅が46mmであって親水処理を施したポリプロピレン製繊維からなる不織布をセパレータに適用した。 A non-woven fabric made of polypropylene fibers having a thickness of 0.1 mm, a basis weight of 40 g / m 2 , a width of 46 mm, and subjected to hydrophilic treatment was applied to the separator.
前記正極板、セパレータ、負極板を積層し、直径が2mmの巻芯を適用し、前記負極板のうち基板を偏心させた部分が極群の巻き終わり部分になるように配置し、巻き終わり周(極板群の外周)において負極板が外側、正極板が内側になるように、また、該周において基板を偏芯させることによって形成させた合剤層の厚さが0.27mmと大きくした側が正極板に対向するように配置した。該極板群を直径(内径)13.6mmの有底円筒状の金属製電槽缶に収納し、6.8mol/lのKOHと0.8mol/lのLiOHを含む水溶液からなる電解液を所定量注入し、電槽缶の開放端を排気弁およびキャップ状正極端子付きの蓋体で気密に封止してAAサイズの円筒形ニッケル水素蓄電池を作製した。なお、負極板の容量{水素吸蔵合金粉末1g当たりの容量(mAh/g)×負極板の基板を境にして正極板に対向する部位に位置する水素吸蔵合金粉末の充填量(g)}と正極板の容量{正極活物質1g当たりの容量(mAh/g)×正極活物質の充填量(g)}の比(N/P比)は、1.30であった。該例を実施例1とする。 Laminating the positive electrode plate, the separator and the negative electrode plate, applying a winding core having a diameter of 2 mm, arranging the negative electrode plate so that the eccentric part of the substrate is the end of winding of the pole group, In the outer periphery of the electrode plate group, the thickness of the mixture layer formed by decentering the substrate in the periphery was increased to 0.27 mm so that the negative electrode plate was on the outer side and the positive electrode plate was on the inner side. It arrange | positioned so that the side might oppose a positive electrode plate. The electrode plate group is housed in a bottomed cylindrical metal battery case with a diameter (inner diameter) of 13.6 mm, and an electrolytic solution comprising an aqueous solution containing 6.8 mol / l KOH and 0.8 mol / l LiOH is prepared. A predetermined amount was injected, and the open end of the battery case was hermetically sealed with a cover with an exhaust valve and a cap-like positive electrode terminal to produce an AA size cylindrical nickel-metal hydride storage battery. Note that the capacity of the negative electrode plate {capacity per gram of hydrogen storage alloy powder (mAh / g) × filling amount of hydrogen storage alloy powder (g) located at a position facing the positive electrode plate with the substrate of the negative electrode plate as a boundary} and The ratio (N / P ratio) of the capacity of the positive electrode plate {capacity per gram of positive electrode active material (mAh / g) x positive electrode active material filling amount (g)} was 1.30. This example is referred to as Example 1.
(実施例2)
前記実施例1において、負極板の基板を偏心させた部分の基板を境にして片側の合剤層の厚さを0.06mm、他方の側の合剤層の厚さを0.24mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=2:8)とした。それ以外は、実施例1と同じ構成とした。該例を実施例2とする。該例のN/P比は、1.30であった。
(Example 2)
In Example 1, the thickness of the mixture layer on one side is 0.06 mm and the thickness of the mixture layer on the other side is 0.24 mm (thickness) with the substrate of the portion where the substrate of the negative electrode plate is eccentric as a boundary. The thickness of the small mixture layer: the thickness of the large mixture layer = 2: 8). Otherwise, the configuration was the same as in Example 1. This example is referred to as Example 2. The N / P ratio in this example was 1.30.
(実施例3)
前記実施例1において、負極板の基板を偏心させた部分の基板を境にして片側の合剤層の厚さを0.09mm、他方の側の合剤層の厚さを0.21mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=3:7)とした。それ以外は、実施例1と同じ構成とした。該例を実施例3とする。該例のN/P比は、1.30であった。
(Example 3)
In Example 1, the thickness of the mixture layer on one side is 0.09 mm and the thickness of the mixture layer on the other side is 0.21 mm (thickness) with the substrate of the part of the negative electrode plate eccentric. The thickness of the small mixture layer: the thickness of the large mixture layer = 3: 7). Otherwise, the configuration was the same as in Example 1. This example is referred to as Example 3. The N / P ratio in this example was 1.30.
(実施例4)
前記実施例1において、負極板の基板を偏心させた部分の基板を境にして片側の合剤層の厚さを0.12mm、他方の側の合剤層の厚さを0.18mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=4:6)とした。それ以外は、実施例1と同じ構成とした。該例を実施例4とする。該例のN/P比は、1.30であった。
Example 4
In Example 1, the thickness of the mixture layer on one side is 0.12 mm and the thickness of the mixture layer on the other side is 0.18 mm (thickness) with the substrate of the portion of the negative electrode plate eccentric. The thickness of the small mixture layer: the thickness of the large mixture layer = 4: 6). Otherwise, the configuration was the same as in Example 1. This example is referred to as Example 4. The N / P ratio in this example was 1.30.
(比較例1)
前記実施例1において、負極板の基板を偏心させた部分を設けず、極板の長手方向の全域に亘り基板を境にして合剤層の厚さを0.15mm(基板を境にして、一方の側の合剤層の厚さ:他方の側の合剤層の厚さ=5:5)とした。それ以外は、実施例1と同じ構成とした。該例を比較例1とする。該例のN/P比は、1.30であった。
(Comparative Example 1)
In Example 1, without providing the portion of the negative electrode substrate that was eccentric, the thickness of the mixture layer was 0.15 mm across the entire substrate in the longitudinal direction of the electrode plate (with the substrate as the boundary, The thickness of the mixture layer on one side: the thickness of the mixture layer on the other side = 5: 5). Otherwise, the configuration was the same as in Example 1. This example is referred to as Comparative Example 1. The N / P ratio in this example was 1.30.
(比較例2)
前記実施例1において、負極板の基板を偏心させた部分の基板を境にして片側の合剤層の厚さを0.0mm、他方の側の合剤層の厚さを0.30mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=0:10)とした。それ以外は、実施例1と同じ構成とした。該例を比較例4とする。該例のN/P比は、1.30であった。
(Comparative Example 2)
In Example 1, the thickness of the mixture layer on one side is set to 0.0 mm and the thickness of the mixture layer on the other side is set to 0.30 mm (thickness) with the substrate of the portion where the substrate of the negative electrode plate is eccentric. The thickness of the small mixture layer: the thickness of the large mixture layer = 0: 10). Otherwise, the configuration was the same as in Example 1. This example is referred to as Comparative Example 4. The N / P ratio in this example was 1.30.
(初期化成)
前記実施例1〜4および比較例1、比較例2に係る電池を周囲温度20℃において初期化成を行った。初回(1サイクル目)0.02ItAで13時間充電した後、0.1ItAで10時間充電した。1時間放置後放電電流0.2ItA、放電カット電圧1.0Vとして放電した。2〜10サイクル目まで0.1ItAで16時間充電後1時間放置し、放電電流0.2ItA、放電カット電圧を1.0Vとし、該充放電を1サイクルとして繰り返し充放電を行った。
(Initialization)
The batteries according to Examples 1 to 4 and Comparative Examples 1 and 2 were initialized at an ambient temperature of 20 ° C. The first charge (first cycle) was charged with 0.02 ItA for 13 hours, and then charged with 0.1 ItA for 10 hours. After being left for 1 hour, the battery was discharged with a discharge current of 0.2 ItA and a discharge cut voltage of 1.0 V. From the 2nd to the 10th cycle, the battery was charged with 0.1 ItA for 16 hours and then left for 1 hour, the discharge current was 0.2 ItA, the discharge cut voltage was 1.0 V, and the charge / discharge was repeated as one cycle.
(放電容量評価試験)
前記実施例1〜4および比較例1、比較例2に係る電池であって、化成済みの蓄電池をそれぞれ10個用意し、周囲温度20℃において充電電流0.1ItAで16時間充電後、1時間放置した後、放電電流0.2ItAにおいて放電カット電圧1.0Vにて放電し、放電容量を求めた。
(Discharge capacity evaluation test)
The batteries according to Examples 1 to 4 and Comparative Examples 1 and 2, each of which was prepared with 10 formed storage batteries, charged at an ambient temperature of 20 ° C. with a charging current of 0.1 ItA for 16 hours, and then 1 hour After being left standing, the battery was discharged at a discharge cut voltage of 1.0 V at a discharge current of 0.2 ItA, and the discharge capacity was determined.
(充放電サイクル試験)
前記実施例1〜4および比較例1、比較例2に係る電池であって、化成済みの蓄電池をそれぞれ10個用意し、該蓄電池を周囲温度20℃において充電電流1ItAで1.05時間充電(105%充電)し、1時間放置した後、放電電流1ItAにおいて放電カット電圧1.0Vにて放電した。該充放電を1サイクルとしてサイクルを繰り返し行った。放電容量が該サイクルの1サイクル目の放電容量の60%に低下したサイクル数をもって当該蓄電池のサイクル寿命とした。
(Charge / discharge cycle test)
Each of the batteries according to Examples 1 to 4 and Comparative Examples 1 and 2 was prepared, and 10 formed storage batteries were prepared. The storage batteries were charged at an ambient temperature of 20 ° C. with a charging current of 1 ItA for 1.05 hours ( 105%) and left for 1 hour, and then discharged at a discharge cut voltage of 1.0 V at a discharge current of 1 ItA. The charge / discharge cycle was repeated for one cycle. The cycle number of the storage battery was defined as the number of cycles in which the discharge capacity was reduced to 60% of the discharge capacity in the first cycle of the cycle.
表1に、放電容量評価試験、充放電サイクル試験の結果を示す(10個の平均値)を示す。また、図6に充放電サイクル数と放電容量の関係を示す。 Table 1 shows the results of the discharge capacity evaluation test and the charge / discharge cycle test (10 average values). FIG. 6 shows the relationship between the number of charge / discharge cycles and the discharge capacity.
また、実施例1〜実施例4のなかでは実施例1〜実施例3が特に優れたサイクル特性を有しているところから、基板を偏心させた部分の基板を境にした負極板の合剤層の厚さの比を1:9〜4:6に設定するのが好ましく、1:9〜3:7に設定するのがさらに好ましい。 Further, among Examples 1 to 4, since Examples 1 to 3 have particularly excellent cycle characteristics, the mixture of the negative electrode plate with the substrate at the portion where the substrate is decentered as a boundary. The layer thickness ratio is preferably set to 1: 9 to 4: 6, and more preferably set to 1: 9 to 3: 7.
(実施例5)
前記実施例1において、図5に示したように負極板の全領域において基板を偏心させた。基板を境にして片側の合剤層の厚さを0.03mm、他方の側の合剤層の厚さを0.27mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=1:9)とした。極群の巻き終わり周(極群の最外周)において負極板が外側、正極板が内側になるように、また、基板を偏心させることによって、基板を境にして厚さを0.27mmと大きくした合剤層を内側に配置し、厚さを0.03mmと小さく合剤層を外側に配置した。それ以外は実施例1と同じ構成とした。該例を実施例5とする。
(Example 5)
In Example 1, the substrate was decentered in the entire area of the negative electrode plate as shown in FIG. The thickness of the mixture layer on one side is 0.03 mm from the substrate, and the thickness of the mixture layer on the other side is 0.27 mm (thickness of the mixture layer having a small thickness: the mixture having a large thickness) Layer thickness = 1: 9). By decentering the substrate so that the negative electrode plate is on the outer side and the positive electrode plate is on the inner side at the end of winding of the pole group (the outermost circumference of the pole group), the thickness is increased to 0.27 mm with the substrate as a boundary. The mixture layer was arranged on the inside, and the mixture layer was arranged on the outside with a small thickness of 0.03 mm. Otherwise, the configuration was the same as in Example 1. This example is referred to as Example 5.
(実施例6)
前記実施例5において、基板を境にして片側の合剤層の厚さを0.09mm、他方の側の合剤層の厚さを0.21mm(厚さの小さい合剤層の厚さ:厚さの大きい合剤層の厚さ=3:7)とした。それ以外は実施例5と同じ構成とした。該例を実施例6とする。
(Example 6)
In Example 5, the thickness of the mixture layer on one side was 0.09 mm, and the thickness of the mixture layer on the other side was 0.21 mm (thickness of the mixture layer having a small thickness: The thickness of the mixture layer having a large thickness was set to 3: 7). Otherwise, the configuration was the same as in Example 5. This example is referred to as Example 6.
表2に比較例1と合わせて実施例5、実施例6の放電容量評価試験、充放電サイクル試験の結果を示す(10個の平均値)を示す。また、図7に充放電サイクル数と放電容量の関係を示す。 Table 2 shows the results of the discharge capacity evaluation test and charge / discharge cycle test of Example 5 and Example 6 together with Comparative Example 1 (10 average values). FIG. 7 shows the relationship between the number of charge / discharge cycles and the discharge capacity.
(実施例7)
前記実施例1において、負極板の厚さ方向に対する基板の位置が変化する部分(図1のX)に幅3mmに亘り、穿孔を設けなかった。それ以外は実施例1と同じとした。該例を実施例7とする。
(Example 7)
In Example 1, the portion where the position of the substrate changes with respect to the thickness direction of the negative electrode plate (X in FIG. 1) was not provided with a perforation over a width of 3 mm. Otherwise, it was the same as Example 1. This example is referred to as Example 7.
(実施例8)
前記実施例3において、負極板の厚さ方向に対する基板の位置が変化する部分(図1のX)に幅3mmに亘り、穿孔を設けなかった。それ以外は実施例3と同じとした。該例を実施例8とする。
(Example 8)
In Example 3, the portion where the position of the substrate changes with respect to the thickness direction of the negative electrode plate (X in FIG. 1) was not provided with a perforation over a width of 3 mm. Otherwise, it was the same as Example 3. This example is referred to as Example 8.
(極板群量産試作)
前記実施例1、実施例3、実施例7、実施例8、比較例1、比較例2に係る極板板群を量産用製造ラインを適用して各5千個づつ作製し、極板群を解体して不良(負極板の基板切れ、負極板の活物質の脱落)の有無を調べた。また、実施例7、実施例8の極板群を10個抽出し、前記同様に円筒形のニッケル水素電池を作製して放電容量試験、充放電サイクル試験に供した。
(Pole group mass production trial production)
The electrode plate group according to Example 1, Example 3, Example 7, Example 8, Comparative Example 1, and Comparative Example 2 was manufactured by applying 5,000 each to the production line for mass production, and the electrode plate group Was disassembled and examined for the presence of defects (cutting of the negative electrode plate, dropping of the active material of the negative electrode plate). Further, ten electrode plate groups of Example 7 and Example 8 were extracted, and a cylindrical nickel-metal hydride battery was produced in the same manner as described above and subjected to a discharge capacity test and a charge / discharge cycle test.
該量産試作結果(不良率および放電容量試験、充放電サイクル試験)を表3に示す。また、図8に充放電サイクル数と放電容量の関係を示す。 Table 3 shows the results of the mass production trial production (defective rate and discharge capacity test, charge / discharge cycle test). FIG. 8 shows the relationship between the number of charge / discharge cycles and the discharge capacity.
本発明は、捲回式極群を備えるニッケル水素蓄電池などの円筒形蓄電池において、生産性を低下させることなく、充放電サイクル特性に優れたアルカリ蓄電池を提供するもので産業上の利用価値の高いものである。 The present invention provides an alkaline storage battery excellent in charge / discharge cycle characteristics without reducing productivity in a cylindrical storage battery such as a nickel metal hydride storage battery having a wound electrode group, and has high industrial utility value. Is.
1 負極板
2 基板
3 合剤層
X 負極板の厚さ方向に対して基板の位置が変化する部分
4 捲回式極群
7 穿孔
DESCRIPTION OF SYMBOLS 1
Claims (4)
The wound electrode plate group to which the negative electrode plate for an alkaline secondary battery according to claim 1 or 2 is applied, wherein the substrate is decentered to one side with respect to the center of the cut surface of the electrode plate over the entire electrode plate. The negative electrode plate mixture layer having a thickness increased from the substrate by decentering the substrate is arranged on the inner side, and the negative electrode plate mixture layer having a smaller thickness is arranged on the outer side. An alkaline secondary battery comprising an electrode plate group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346329A JP4967229B2 (en) | 2004-11-30 | 2004-11-30 | A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346329A JP4967229B2 (en) | 2004-11-30 | 2004-11-30 | A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied. |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011121480A Division JP5602092B2 (en) | 2011-05-31 | 2011-05-31 | Alkaline secondary battery using negative electrode plate for alkaline secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006156186A true JP2006156186A (en) | 2006-06-15 |
JP2006156186A5 JP2006156186A5 (en) | 2008-01-17 |
JP4967229B2 JP4967229B2 (en) | 2012-07-04 |
Family
ID=36634198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004346329A Active JP4967229B2 (en) | 2004-11-30 | 2004-11-30 | A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4967229B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100442576C (en) * | 2006-10-13 | 2008-12-10 | 深圳市豪鹏科技有限公司 | Cathode piece of hydrogen-nickel battery, and method for fabricating hydrogen-nickel battery by using the cathode pieces |
EP2533330A1 (en) * | 2011-06-09 | 2012-12-12 | FDK Twicell Co., Ltd. | Negative electrode for a nickel-hydrogen rechargeable battery and a nickel-hydrogen rechargeable battery using the same |
JP2013175370A (en) * | 2012-02-24 | 2013-09-05 | Gs Yuasa Corp | Electrode plate, rolled electrode group, and cylindrical battery |
WO2022195959A1 (en) * | 2021-03-15 | 2022-09-22 | 日本碍子株式会社 | Negative electrode and zinc secondary battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56174461U (en) * | 1980-05-27 | 1981-12-23 | ||
JP2638919B2 (en) * | 1988-04-30 | 1997-08-06 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
JPH09320631A (en) * | 1996-05-27 | 1997-12-12 | Shin Kobe Electric Mach Co Ltd | Nickel-cadmium storage battery and manufacture thereof |
JP2000012087A (en) * | 1998-06-18 | 2000-01-14 | Hitachi Maxell Ltd | Organic electrolyte secondary battery |
JP2000036324A (en) * | 1998-07-16 | 2000-02-02 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2001176541A (en) * | 1999-12-14 | 2001-06-29 | Matsushita Electric Ind Co Ltd | Alkaline storage battery |
JP2001222993A (en) * | 2000-02-07 | 2001-08-17 | Yuasa Corp | Battery |
-
2004
- 2004-11-30 JP JP2004346329A patent/JP4967229B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56174461U (en) * | 1980-05-27 | 1981-12-23 | ||
JP2638919B2 (en) * | 1988-04-30 | 1997-08-06 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
JPH09320631A (en) * | 1996-05-27 | 1997-12-12 | Shin Kobe Electric Mach Co Ltd | Nickel-cadmium storage battery and manufacture thereof |
JP2000012087A (en) * | 1998-06-18 | 2000-01-14 | Hitachi Maxell Ltd | Organic electrolyte secondary battery |
JP2000036324A (en) * | 1998-07-16 | 2000-02-02 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2001176541A (en) * | 1999-12-14 | 2001-06-29 | Matsushita Electric Ind Co Ltd | Alkaline storage battery |
JP2001222993A (en) * | 2000-02-07 | 2001-08-17 | Yuasa Corp | Battery |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100442576C (en) * | 2006-10-13 | 2008-12-10 | 深圳市豪鹏科技有限公司 | Cathode piece of hydrogen-nickel battery, and method for fabricating hydrogen-nickel battery by using the cathode pieces |
EP2533330A1 (en) * | 2011-06-09 | 2012-12-12 | FDK Twicell Co., Ltd. | Negative electrode for a nickel-hydrogen rechargeable battery and a nickel-hydrogen rechargeable battery using the same |
US8785019B2 (en) | 2011-06-09 | 2014-07-22 | Fdk Twicell Co., Ltd. | Negative electrode for a nickel-hydrogen rechargeable battery and a nickel-hydrogen rechargeable battery using the same |
JP2013175370A (en) * | 2012-02-24 | 2013-09-05 | Gs Yuasa Corp | Electrode plate, rolled electrode group, and cylindrical battery |
US9531011B2 (en) | 2012-02-24 | 2016-12-27 | Gs Yuasa International Ltd. | Electrode plate, wound electrode group, and cylindrical battery |
WO2022195959A1 (en) * | 2021-03-15 | 2022-09-22 | 日本碍子株式会社 | Negative electrode and zinc secondary battery |
JP7557613B2 (en) | 2021-03-15 | 2024-09-27 | 日本碍子株式会社 | Anode and zinc secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4967229B2 (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602092B2 (en) | Alkaline secondary battery using negative electrode plate for alkaline secondary battery | |
RU2554100C2 (en) | Electric power accumulation device and its electrode | |
US20050031948A1 (en) | Cylindrical alkaline storage battery | |
JP5896551B2 (en) | Manufacturing method of metal solid substrate for electrode, metal solid substrate for electrode, and electrochemical application product using the same | |
JP3527586B2 (en) | Manufacturing method of nickel electrode for alkaline storage battery | |
JP4429569B2 (en) | Nickel metal hydride storage battery | |
US20230045571A1 (en) | Negative electrode coated with lithiophilic material for lithium secondary batteries and method of manufacturing the same | |
JP2020087554A (en) | Electrolyte solution for zinc battery and zinc battery | |
JP4967229B2 (en) | A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied. | |
KR20070093065A (en) | Nickel hydrogen storage battery and production method for its cathode | |
US6551737B1 (en) | Cylindrical alkaline storage battery | |
JP5655808B2 (en) | Cylindrical alkaline storage battery | |
JPH11185767A (en) | Manufacture of nickel-hydrogen secondary battery and electrode | |
JP5110889B2 (en) | Nickel metal hydride secondary battery | |
JP7182062B2 (en) | Nickel-zinc battery manufacturing method | |
JP6719101B2 (en) | Nickel-hydrogen battery and manufacturing method thereof | |
JP2006196207A (en) | Alkaline storage battery and manufacturing method of its electrode group | |
JP3893856B2 (en) | Square alkaline storage battery | |
US20040219427A1 (en) | Non-sintered electrode for an electrochemical generator with an alkaline electrolyte | |
KR102111288B1 (en) | Positive electrode and alkaline secondary battery including the same | |
JP2002100396A (en) | Cylindrical alkaline secondary cell | |
JP4997529B2 (en) | Nickel electrode for alkaline battery and method for producing the same | |
JPH103928A (en) | Nickel-hydrogen secondary battery | |
JP4168578B2 (en) | Square alkaline storage battery and manufacturing method thereof | |
JP5396702B2 (en) | battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071126 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071126 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120319 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4967229 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |