JP2006151787A - Humification accelerating agent, method of humifying organic material and humified material - Google Patents

Humification accelerating agent, method of humifying organic material and humified material Download PDF

Info

Publication number
JP2006151787A
JP2006151787A JP2005089300A JP2005089300A JP2006151787A JP 2006151787 A JP2006151787 A JP 2006151787A JP 2005089300 A JP2005089300 A JP 2005089300A JP 2005089300 A JP2005089300 A JP 2005089300A JP 2006151787 A JP2006151787 A JP 2006151787A
Authority
JP
Japan
Prior art keywords
humification
organic matter
iron
compound
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005089300A
Other languages
Japanese (ja)
Inventor
Yoshito Suzuki
善人 鈴木
Masayuki Tani
昌幸 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEAPS KK
Obihiro University of Agriculture and Veterinary Medicine NUC
Original Assignee
LEAPS KK
Obihiro University of Agriculture and Veterinary Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEAPS KK, Obihiro University of Agriculture and Veterinary Medicine NUC filed Critical LEAPS KK
Priority to JP2005089300A priority Critical patent/JP2006151787A/en
Publication of JP2006151787A publication Critical patent/JP2006151787A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humification accelerating agent capable of effectively humifying an organic material or an organic decomposed material, a humifying method using the same and a humified material using them. <P>SOLUTION: The humified material is produced at an early date by adding the humification accelerating agent comprising an alkali compound and an iron compound to organic waste such as domestic animal excreta, garbage, organic sludge, compost or the like to accelerate the humification. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機物の腐植化促進材、腐植化方法及びおよびこれらによって得られた腐植物質に関する。   The present invention relates to an organic matter humification promoter, a humification method, and a humic substance obtained by these.

動植物の遺体や動物の排泄物などの有機物は土壌中で微生物による分解を受けアンモニアなどの栄養素となり植物に吸収される。この過程で一部は糖類やアミノ酸、脂肪酸などの低分子有機物となり微生物による再分解や再合成を繰り返す。さらに粘土などの無機成分による触媒的作用を受け長い時間をかけて最終的に不定形の高分子有機化合物である腐植物質となる。腐植物質の生成過程(腐植化過程)ではその進行に伴い色調が黄、赤褐、黒褐と暗色に変化する。したがって一般的に黒っぽい土壌は腐植物質の含有量も多く、肥沃な土壌であるとされている。   Organic matter such as animal and plant bodies and animal excrement are decomposed by microorganisms in the soil and become nutrients such as ammonia and are absorbed by plants. In this process, some of them become low-molecular organic substances such as sugars, amino acids, and fatty acids, which are repeatedly decomposed and re-synthesized by microorganisms. Furthermore, it takes a long time to be catalyzed by inorganic components such as clay, and finally becomes humic substance, which is an amorphous macromolecular organic compound. In the process of producing humic substances (humusification process), the color changes to yellow, reddish brown, black brown and dark with the progress. Therefore, it is generally said that dark soil has a high content of humic substances and is fertile.

化学肥料により農業生産性は著しく向上したが、一方で有機物の土壌還元量が低下して土壌中の腐植物質が合成されず地力の低下を招いている。これを補う堆肥の施用は効果的ではあるが、従来の堆肥製造時に添加する微生物資材などは有機物を分解するのが目的であり腐植物質の生成までもターゲットとしたものではない。   Agricultural productivity has been remarkably improved by chemical fertilizers, but on the other hand, the amount of organic matter reduced to the soil is reduced, and the humic substances in the soil are not synthesized, leading to a decrease in geopower. Although application of compost to compensate for this is effective, microbial materials and the like added during conventional compost production are aimed at decomposing organic matter, and are not targeted at the generation of humic substances.

腐植物質の定義・分別は国際腐植学会(International Humic Subtances Society、略称IHSS)で定めている。それによると腐植物質とは土壌をNaOH等のアルカリで抽出した画分あるいは天然水でXAD、PVP等の疎水性樹脂に吸着し希アルカリ水溶液で溶出される画分のことであり、さらに腐植物質の中で酸により沈殿する画分をフミン酸又は腐植酸、沈殿しない画分をフルボ酸という。   The definition and fractionation of humic substances are determined by the International Humic Substitutes Society (abbreviated as IHSS). According to this, humic substances are fractions obtained by extracting soil with alkali such as NaOH, or fractions adsorbed by hydrophobic water such as XAD and PVP with natural water and eluted with dilute alkaline aqueous solution. Among these, the fraction precipitated with acid is called humic acid or humic acid, and the fraction not precipitated is called fulvic acid.

腐植物質の生成過程についてはその農学的な重要性から古くから活発に議論されているが未だ結論を得ていない。その生成には多くの種類の物質と複雑多岐にわたる反応が関与するが、土壌中の無機成分の働きが大きく関与していると考えられている。   The formation process of humic substances has been actively discussed for a long time because of its agricultural significance, but no conclusion has yet been reached. The production involves many kinds of substances and complex and diverse reactions, but it is thought that the function of inorganic components in the soil is greatly involved.

土壌の肥沃度は「地力(ちりょく)」という言葉でも表現されている。「地力」とは昭和59年に施行された地力増進法によると「土壌の性質に由来する農地の生産力」と定義されている。地力と腐植物質には密接な関連があり土壌中の腐植物質の増加は地力の向上を意味するといえる。   Soil fertility is also expressed in terms of “geopower”. “Ground power” is defined as “productivity of farmland derived from the nature of the soil” according to the Geopower Promotion Law enacted in 1984. There is a close relationship between geological power and humic substances, and an increase in humic substance in the soil means an improvement in geological power.

有機物を施用せずに化学肥料を連用すると土壌中の腐植物質が分解される。その分解率は年間約5%といわれている。農地における平均的な腐植の含有量が5%であるならば、10a当たり約20tの腐植物質があり、それから年間約1tが失われていることになる。腐植の喪失による地力の低下は深刻化している。   When chemical fertilizer is used continuously without applying organic matter, humic substances in the soil are degraded. The decomposition rate is said to be about 5% per year. If the average humus content in farmland is 5%, there will be about 20 tons of humic substance per 10a, and then about 1 ton will be lost per year. The decline in geopower due to the loss of humus is getting worse.

腐植物質は土壌の物理的、化学的、生物的構造に大きな影響を与えており、農作物の生産性の向上に大きな影響を与えている。   Humic substances have a great influence on the physical, chemical and biological structure of the soil and have a great influence on the improvement of crop productivity.

腐植物質が多く含まる土壌は微細な粘土粒子と結合して土壌の物理的性質を変化させるため、土壌の透水性、保水性の改善や通気性を改善する。化学的な効果ではpH変化などに対する緩衝作用が大きくなる。また腐植は、マイナスに荷電していることからアンモニウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオンなどの植物の生育にとって必須栄養素を吸着して肥料効果を高め、肥料の流出を防ぐ。   Since soil containing a lot of humic substances is combined with fine clay particles to change the physical properties of the soil, it improves the water permeability, water retention and air permeability of the soil. The chemical effect increases the buffering action against pH change and the like. In addition, since humus is negatively charged, it absorbs essential nutrients for plant growth such as ammonium ion, potassium ion, magnesium ion and calcium ion to enhance the fertilizer effect and prevent the outflow of fertilizer.

腐植物質は植物にとって成長阻害成分であるアルミニウムと強固に結合し不活性化する働きがあり、アルミニウムと結合しやすいリン酸の肥効の向上と移動拡散を促進する。   The humic substance has a function of firmly binding and inactivating aluminum, which is a growth inhibitory component for the plant, and promotes the improvement of fertilization and migration and diffusion of phosphoric acid that easily binds to aluminum.

生物的な効果では腐植物質がオーキシンやサイトカイニンなどの植物ホルモンの持つ生理活性機能を示すことから植物の病害に対する抵抗性もあるとされている。これらの腐植物質の機能により、腐植物質の農地への施用は化学肥料や農薬の使用量を削減できる可能性を示唆している。   In terms of biological effects, humic substances are considered to be resistant to plant diseases because they exhibit the physiologically active functions of plant hormones such as auxin and cytokinin. Due to these functions of humic substances, the application of humic substances to farmland suggests the possibility of reducing the use of chemical fertilizers and pesticides.

さらに工学的な分野では、腐植物質を触媒として六価クロムの無毒化還元や有機ハロゲン化物の脱塩素化などの有害化学物質の浄化作用でも注目を集めている。また、腐植物質の持つ吸着性能を応用して脱臭などにも広く応用されている。   Furthermore, in the engineering field, humic substances are attracting attention for the detoxification of hexavalent chromium and the detoxification of organic halides such as dechlorination of organic halides. It is also widely applied to deodorization by applying the adsorption performance of humic substances.

腐植の量と程度は、気温(地温)、土壌水分、地上植生、粘土含量に依存して一定の平衡状態に保たれている。地上の植生が気候変動や農耕地化などによって変化すれば腐植物質の量と質は新たな平衡状態に移行する。   The amount and extent of humus is maintained at a constant equilibrium depending on the temperature (ground temperature), soil moisture, ground vegetation, and clay content. If the vegetation on the ground changes due to climate change or cultivated land, the quantity and quality of humic substances will shift to a new equilibrium state.

山地、丘陵地、草地を開墾して農耕地にした場合、農業生態系のなかで土壌に還元される植物遺体の量は自然生態系に比べ著しく少なくなる。また、耕作によって作土が好気的になり微生物の活性が高まるため、易分解性腐植の分解量が多くなり腐植含量は減少する。これらの失われた腐植を補うための手段として堆肥等の有機物の施用があるが、微生物によって分解されただけで腐植化されていない堆肥は土壌中でさらに分解、再合成することになり腐植として安定するまでに長い時間がかかり、決して効率的とはいえない。堆肥等の土壌に投入される有機物は最終的には安定的な腐植の状態にすることが望ましい。   When mountains, hills, and grasslands are cleared and used as agricultural land, the amount of plant remains reduced to soil in the agricultural ecosystem is significantly less than in natural ecosystems. In addition, the soil is aerobic and the activity of microorganisms is increased by cultivation, so that the amount of readily decomposable humus is increased and the humus content is reduced. There is application of organic matter such as compost as a means to supplement these lost humus, but compost that has been decomposed by microorganisms but not humus is further decomposed and re-synthesized in the soil. It takes a long time to stabilize and it is never efficient. It is desirable that the organic matter introduced into the soil such as compost is finally put into a stable humus state.

近年、植物残渣物や家畜排泄物、厨芥などの有機性廃棄物を堆肥化して農地に還元すべく、積極的な研究開発が行われている。しかし、ここでの堆肥化は有機物を微生物によってより低分子の糖やアミノ酸、タンパク質にまで分解することであって、より安定的な形である腐植の生成には至っていない。土壌を肥沃化するには腐植化が必須であるが、温湿度のコントロール以外に腐植化を促進する手段は今のところ見出されていず、より効率的な腐植化技術の確立が望まれている。   In recent years, active research and development has been carried out in order to compost organic waste such as plant residues, livestock excrement, and straw into compost and return it to farmland. However, composting here is the decomposition of organic matter into lower molecular sugars, amino acids, and proteins by microorganisms, and has not led to the generation of humus, which is a more stable form. In order to fertilize the soil, humification is essential, but no means for promoting humification other than temperature and humidity control has been found so far, and establishment of more efficient humification technology is desired. Yes.

腐植化促進材の開発により短時間に、そして任意に腐植物質を生成することが可能となれば、生成した腐植を農地に還元できるだけではなく、土壌浄化や脱臭などのより工学的な分野での応用も期待できるほか、任意に腐植を生成することによって腐植物質から植物ホルモン様物質などの有用物質の抽出などへの道が開けることが期待できる。さらに腐植物質の持つ多様な機能によって、地力が高まり植物本来の持つ生理活性や病虫害抵抗性を高め、化学肥料や農薬の使用量の削減にも効果が期待されるため、いわゆる有機農業の分野での利用が有効である。   If it becomes possible to produce humic substances in a short time and arbitrarily by the development of humus promoting materials, not only can the produced humus be reduced to farmland, but also in more engineering fields such as soil purification and deodorization. In addition to expectation of application, it can be expected to open the way to extraction of useful substances such as plant hormone-like substances from humic substances by arbitrarily generating humus. In addition, the various functions of humic substances increase the geological power, increase the physiological activity and disease resistance inherent in plants, and are expected to be effective in reducing the use of chemical fertilizers and pesticides. Use of is effective.

本願発明者らは、家畜排泄物の腐植化を促進する材料の検討を行い、アルカリ化合物と鉄化合物を同時に家畜排泄物に混合することにより、腐植化を促進することができることを発見した。   The inventors of the present application have studied materials that promote the humification of livestock excrement, and have found that humification can be promoted by simultaneously mixing an alkali compound and an iron compound into the livestock excrement.

本発明はこの技術的な発見に根ざし、有機物又は有機物分解生成物を効果的に腐植化できる腐植化促進材、これを用いた腐植化方法及びこれらにより生成された腐植物質を提供することを目的とする。   The present invention is based on this technical discovery, and an object thereof is to provide a humification promoting material capable of effectively humifying an organic matter or an organic matter decomposition product, a humification method using the same, and a humic substance produced thereby. And

請求項1の発明の腐植化促進材は、アルカリ化合物と鉄化合物とを含有することを特徴とするものである。   The humification promoting material of the invention of claim 1 is characterized by containing an alkali compound and an iron compound.

請求項2の発明は、請求項1の腐植化促進材において、前記アルカリ化合物は、アルカリ金属又はアルカリ土類金属を含み、水溶化した際にアルカリ性を示す化合物であることを特徴とするものである。   The invention of claim 2 is characterized in that, in the humification promoting material of claim 1, the alkali compound contains an alkali metal or an alkaline earth metal and exhibits alkalinity when water-solubilized. is there.

請求項3の発明は、請求項1の腐植化促進材において、前記アルカリ化合物は、カルシウム、マグネシウム、カリウム、ナトリウムのうちのいずれか1又は複数のものの炭酸塩、水酸化物若しくは酸化物の少なくとも1つを含むことを特徴とするものである。   The invention of claim 3 is the humification promoting material of claim 1, wherein the alkaline compound is at least one of carbonate, hydroxide or oxide of calcium, magnesium, potassium or sodium. It is characterized by including one.

請求項4の発明は、請求項1の腐植化促進材において、前記鉄化合物は、非晶質又は結晶質の酸化鉄、非晶質又は結晶質の水酸化鉄、二価又は三価の鉄塩、鉄錯化合物、鉄イオン、元素鉄のいずれかの単体、又はそれらの2種類以上の混合物であることを特徴とするものである。   The invention according to claim 4 is the humification promoting material according to claim 1, wherein the iron compound is amorphous or crystalline iron oxide, amorphous or crystalline iron hydroxide, divalent or trivalent iron. It is a single element of a salt, an iron complex compound, iron ion, or elemental iron, or a mixture of two or more of them.

請求項5の発明は、請求項1〜4のいずれかに記載の腐植化促進材において、前記アルカリ化合物および前記鉄化合物を、無機物または有機物を主たる基質とする担体に担持または含浸させたものである。   A fifth aspect of the present invention is the humification promoting material according to any one of the first to fourth aspects, wherein the alkali compound and the iron compound are supported or impregnated on a carrier having an inorganic or organic substance as a main substrate. is there.

請求項6の発明の有機物の腐植化方法は、有機物又は有機物の分解にて生成された有機物分解生成物に対して、請求項1〜5のいずれかの腐植化促進材を添加して置くことにより、前記有機物又は有機物分解生成物を腐植化することを特徴とするものである。   The organic matter humification method of the invention of claim 6 is the addition of the humification promoter according to any one of claims 1 to 5 to the organic matter or the organic matter decomposition product produced by the decomposition of the organic matter. The organic substance or the organic substance decomposition product is humified by the above.

請求項7の発明は、請求項6の有機物の腐植化方法において、前記有機物は、動物の糞尿、生ゴミ、有機性汚泥、堆肥又は動植物の遺体であることを特徴とするものである。   According to a seventh aspect of the present invention, in the organic matter humification method of the sixth aspect, the organic matter is animal manure, raw garbage, organic sludge, compost, or the body of an animal or plant.

請求項8の発明の腐植物質は、有機物又は有機物の分解にて生成された有機物分解生成物に対して、請求項1〜5のいずれかの腐植化促進材を添加して置くことにより、前記有機物又は有機物分解生成物を腐植化したものである。   The humic substance of the invention of claim 8 is obtained by adding the humus promoting agent according to any one of claims 1 to 5 to the organic matter or the organic matter decomposition product produced by the decomposition of the organic matter. Organic matter or organic matter decomposition products are humified.

請求項9の発明は、請求項8の腐植物質において、前記有機物は、動物の糞尿、生ゴミ、有機性汚泥、堆肥又は動植物の遺体であることを特徴とするものである。   According to a ninth aspect of the present invention, in the humic substance of the eighth aspect, the organic matter is animal manure, raw garbage, organic sludge, compost or animal and plant bodies.

本発明によれば、アルカリ化合物と鉄化合物からなる腐植化促進材によって家畜排泄物、生ゴミ、有機性汚泥、堆肥等の有機性廃棄物等の有機物又は有機物分解生成物の腐植化を促進し、植物生長を阻害しない、土壌施用できるレベルの堆肥を短期間で製造することを可能にし、地力の増進に必要な腐植物質を大量に提供することが可能である。   According to the present invention, the humification promoting material composed of an alkali compound and an iron compound promotes humification of organic matter such as livestock excrement, raw garbage, organic sludge, and organic waste such as compost, or organic matter decomposition products. It is possible to produce compost at a level that can be applied to soil without inhibiting plant growth, and can provide a large amount of humic substances necessary for the enhancement of geopower.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[腐植について]
「腐植」とは、「動植物の遺体が土壌中で微生物などによって分解された後、新たに合成(縮合、重合)されてできた分子量が数万から数十万程度の褐色か暗黒色の非結晶性有機物」といわれている。腐植は多様な物質の集合体であり、図1に示すように、有機物をピロリン酸ナトリウムや水酸化ナトリウムなどのアルカリ性物質で抽出することによって得られる物質をいう。この腐植物質は単位炭素当たりの黒色味の強い二次的高分子化合物であり、腐植化の進行による縮合および重合反応に伴って単位炭素当たりの黒色味が強い二次的高分子化合物となることから、腐植の色調が黄色、赤褐色、黒褐色へと変わる。この腐植化度を示すのに黒色化の度合いを用いる。
[About humus]
“Humus” refers to “brown or dark non-black, which has a molecular weight of about tens of thousands to hundreds of thousands of newly synthesized (condensed or polymerized) bodies after being decomposed by microorganisms in the soil. It is said to be “crystalline organic matter”. Humus is an aggregate of various substances, and refers to a substance obtained by extracting an organic substance with an alkaline substance such as sodium pyrophosphate or sodium hydroxide, as shown in FIG. This humic substance is a secondary high molecular compound with a strong black taste per unit carbon, and becomes a secondary high molecular compound with a strong black taste per unit carbon with the condensation and polymerization reaction due to the progress of humification. The color of the humus changes from yellow to reddish brown to blackish brown. The degree of blackening is used to indicate the degree of humification.

本発明に記載の腐植化において対象となる有機物には、動物の糞尿、生ゴミ、有機性汚泥、堆肥および動植物の遺体、ならびにこれらの有機物を含む液体が含まれる。有機物を含む液体としては、例えば糞尿スラリーなどのスラリー状物質、および堆肥製造時において余剰水分が滲出したレキ汁などがある。   The organic matter that is a target in the humification described in the present invention includes animal manure, raw garbage, organic sludge, compost and animal and plant bodies, and liquids containing these organic matter. Examples of the liquid containing organic matter include slurry substances such as manure slurry, and squeezed juice from which excess water exudes during compost production.

腐植化の進行度合いを評価するために、腐植化度、腐植酸含量および腐植酸の形態分析を行った。試料は105℃の乾燥機で48時間以上通風乾燥し、乾燥後の試料を粉砕して調製した。   In order to evaluate the progress of humification, humification degree, humic acid content and morphological analysis of humic acid were performed. The sample was prepared by air-drying for 48 hours or more in a dryer at 105 ° C., and the dried sample was pulverized.

腐植酸含量は、農林水産省が定める「泥炭および腐植酸質資材の試験方法」に準じて測定した。   The humic acid content was measured according to “Testing Method for Peat and Humic Acid Material” established by the Ministry of Agriculture, Forestry and Fisheries.

腐植化度については、泥炭の分解度指標として用いられる方法に準じて、ピロリン酸ナトリウム抽出液の波長550nmにおける吸光度を測定した。   About the degree of humification, the light absorbency in wavelength 550nm of the sodium pyrophosphate extract was measured according to the method used as a decomposition index of peat.

腐植酸の形態分析では、試料から水酸化ナトリウム溶液ないしピロリン酸ナトリウム・水酸化ナトリウム混液を用いて腐植を抽出後、抽出液を酸性化して腐植酸(沈殿部)とフルボ酸を分離し、得られた腐植酸を水酸化ナトリウム溶液で再溶解した溶液について、有機炭素含量と波長400および600nmにおける吸光度を測定した。腐植酸の分類法に基づき、色調係数(ΔlogK)と相対色度(RF)を算出した。色調係数(ΔlogK)は、波長400nmにおける吸光度と波長600nmにおける吸光度との差から次式に示すようにして求められる。
ΔlogK=ΔlogK400−ΔlogK600
(ただし、K400およびK600はそれぞれ、波長400nmおよび600nmにおける吸光度を示す。)
また、RFは腐植酸液の波長600nmにおける吸光度とKMnO消費量ないし有機炭素濃度から求めることができる。
In humic acid morphological analysis, humus is extracted from a sample using sodium hydroxide solution or sodium pyrophosphate / sodium hydroxide mixture, then the extract is acidified to separate humic acid (precipitate) and fulvic acid. About the solution which dissolved the obtained humic acid again in the sodium hydroxide solution, the organic carbon content and the light absorbency in wavelength 400 and 600 nm were measured. Based on the classification method of humic acid, a color tone coefficient (Δlog K) and a relative chromaticity (RF) were calculated. The color tone coefficient (ΔlogK) is obtained as shown in the following equation from the difference between the absorbance at a wavelength of 400 nm and the absorbance at a wavelength of 600 nm.
ΔlogK = ΔlogK 400 −ΔlogK 600
(However, K 400 and K 600 indicate the absorbance at wavelengths of 400 nm and 600 nm, respectively.)
RF can be determined from the absorbance of the humic acid solution at a wavelength of 600 nm and the amount of KMnO 4 consumed or the organic carbon concentration.

色調係数(ΔlogK)と相対色度(RF)を指標とする腐植化の進行度合いを図2に示す。このRFとΔlogKとの相関によって腐植酸を分類することが可能である。領域Aは高腐植化度領域、領域Rpは低腐植化度領域、B、Pは中間領域である。一般に、腐植化の進行(腐植酸の黒色化と安定化)に伴い、ΔlogKは小さくなり、RF値は大きくなる。土壌に本法を適用した場合、ΔlogKが0.7以下、RF値が80以上であればA型腐植酸に分類され、黒ボク土等の黒色土壌が含む腐植化が極めて進んだ腐植酸を意味する。   FIG. 2 shows the degree of progress of humification using the hue coefficient (ΔlogK) and relative chromaticity (RF) as indices. Humic acid can be classified by the correlation between RF and ΔlogK. Region A is a high humus degree region, region Rp is a low humus degree region, and B and P are intermediate regions. In general, as humification progresses (blackening and stabilization of humic acid), ΔlogK decreases and the RF value increases. When this method is applied to soil, if Δlog K is 0.7 or less and the RF value is 80 or more, it is classified as A-type humic acid, and humic acid that is very advanced in humification included in black soil such as black soil means.

そして図3に示すように、有機性廃棄物の腐植化前の物質、つまり非腐植物質は、腐植化過程においてRp−P−Aの経路で腐植化が進み、あるいはRp−B−Aの経路で腐植化が進む。   As shown in FIG. 3, the organic waste before humification, that is, the non-humic substance, is humated through the Rp-PA route in the humification process, or the Rp-BA route. Then humification progresses.

腐植酸の形態においては、水酸化ナトリウムによる抽出では遊離型腐植酸、また、ピロリン酸ナトリウム(Na)抽出では遊離型に加え、アルミニウム水酸化物や鉄酸化物等と複合体を形成している結合型腐植酸を抽出することができる。 In the form of humic acid, in the extraction with sodium hydroxide, in the form of free humic acid, and in the extraction with sodium pyrophosphate (Na 4 P 2 O 7 ), in addition to the free form, a complex with aluminum hydroxide, iron oxide, etc. The conjugated humic acid forming can be extracted.

[腐植化促進材]
このような腐植物質を製造するには、自然界で有機物質の分解による腐植生成を待っていたのではあまりにも長時間を要する。ところが本願発明者らは、フリーストール牛舎より排出された家畜排泄物に対して堆肥化資材として再生紙製造プラントの排水処理汚泥であるペーパースラッジを高温処理することで得られるペーパースラッジ炭化物(PSC)、商品名ブラックライト(登録商標、道栄紙業株式会社製)を添加して混合し、一定周期で、堆積物をよく攪拌して積みなおしを行う、いわゆる切り返し作業を行い、性質変化を観察していたところ、PSC混合直後に臭気が著しく軽減することを発見した。また、家畜排泄物の温度は堆積後からゆるやかに上昇すること、また第2回目の切り返し後にも同様の温度上昇傾向を見た。しかも、温度は堆積物の底部に近いほど高く、水分率が高く還元状態に近いところでも発熱反応が起きていることを観察した。
[Humification material]
In order to produce such a humic substance, it takes too long to wait for humus production by decomposition of organic substances in nature. However, the present inventors have made paper sludge carbide (PSC) obtained by high-temperature treatment of paper sludge, which is wastewater treatment sludge of a recycled paper manufacturing plant, as a composting material for livestock excreted from free stall barns. The product name Blacklight (registered trademark, manufactured by Doei Paper Industry Co., Ltd.) is added and mixed, and the deposit is thoroughly stirred and re-stacked at regular intervals, so-called reversing work is performed, and the property change is observed. As a result, it was found that the odor was remarkably reduced immediately after PSC mixing. In addition, the temperature of livestock excrement gradually increased after deposition, and the same temperature increase tendency was observed after the second turnover. In addition, it was observed that the temperature was higher as it was closer to the bottom of the deposit, and that an exothermic reaction occurred even at a high moisture content and close to the reduced state.

この現象から、本願発明者らは、PSCに含有されている何らかの成分が家畜排泄物のような有機性廃棄物に対して有効な腐植化促進作用をもたらしているのではないかと仮定し、PSCの含有成分を分析し、かつ、その中から腐植化促進作用を示す物質の特定を行った。   From this phenomenon, the present inventors hypothesized that any component contained in PSC may have an effective humification promoting effect on organic waste such as livestock excreta. Were analyzed, and the substance showing the humification promoting action was identified.

PSCに含有される成分の分析結果は、図4の表1に示すようなものであった。PSC中には元素分析結果から酸化物に換算するとアルカリ化合物として酸化カルシウムを重量比15〜20%含有し、鉄化合物として酸化鉄を7〜20%含有していることが判明した。さらに、PSC中のカルシウムは古紙原料に填料として使われていた微細な炭酸カルシウムを主体とし、ごく一部が炭化の際に生石灰に変化している。鉄化合物は排水処理過程で無機凝集剤として使われていたポリ硫酸第二鉄([Fe(OH)(SO3−n/2)]を由来とするものであり、炭化の際にその半量が非晶質鉄となっている。また、酸化鉄、元素鉄を含む。 The analysis results of the components contained in PSC were as shown in Table 1 of FIG. From the elemental analysis results, it was found that the PSC contained 15 to 20% by weight of calcium oxide as an alkali compound and 7 to 20% of iron oxide as an iron compound when converted to an oxide. Furthermore, calcium in PSC is mainly composed of fine calcium carbonate that has been used as a filler for used paper raw materials, and only a small part is converted to quick lime during carbonization. The iron compound is derived from polyferric sulfate ([Fe 2 (OH) n (SO 4 ) 3-n / 2 )] m , which was used as an inorganic flocculant in the wastewater treatment process. Half of the amount is amorphous iron. It also contains iron oxide and elemental iron.

上述した腐植化過程でアルカリ化合物と鉄化合物は次のように作用すると推測される。アルカリ化合物は有機性廃棄物中に含まれている腐植物質やタンニンやリグニンなどのポリフェノール類(一次的な腐植酸様物質)を溶出させる。次に溶出された腐植物質やポリフェノール類、有機性廃棄物中に存在している有機酸が、鉄化合物の触媒作用を受け重合や縮合などの化学反応を起こす。そしてこの化学反応の際に、鉄化合物やアルカリ化合物に含有されている鉄やカルシウム、マグネシウムなどの金属が腐植物質生成の際の架橋物質として作用する。   It is presumed that the alkali compound and the iron compound act as follows in the humification process described above. Alkaline compounds elute humic substances and polyphenols (primary humic acid-like substances) such as tannin and lignin contained in organic waste. Next, the eluted humic substances, polyphenols, and organic acids present in the organic waste are catalyzed by iron compounds to cause chemical reactions such as polymerization and condensation. In this chemical reaction, metals such as iron, calcium, and magnesium contained in the iron compound and the alkali compound act as a cross-linking substance when generating humic substances.

しかもこれら一連の反応は温度の上昇によってより促進されるが、鉄化合物は温度上昇作用にも寄与する。すなわち、アルカリ化合物および鉄化合物、特に酸化鉄が酸素を供給することにより有機性廃棄物中の還元状態を抑制する。ここで供給された酸素は有機性廃棄物中の物質の酸化反応ならびに好気的微生物反応を促進し発熱するとともに、アルカリ化合物は有機性廃棄物に含まれる酸性物質と中和反応することにより発熱する。これらの発熱量は微量であるが、家畜排泄物堆積物のような有機性廃棄物の大量の堆積により、その表面が強力な断熱材となって蓄熱効果を高める。以上の発熱反応により腐植化は促進されることになる。もちろん、微生物による有機物分解生成物も腐植物質生成の際の前駆的物質となる。   Moreover, these series of reactions are further promoted by increasing the temperature, but the iron compound also contributes to the temperature increasing action. In other words, alkali compounds and iron compounds, particularly iron oxide, supply oxygen to suppress the reduced state in organic waste. The oxygen supplied here accelerates the oxidation reaction and aerobic microbial reaction of substances in organic waste, and generates heat, while the alkali compound generates heat by neutralizing with acidic substances contained in organic waste. To do. Although these calorific values are very small, the large amount of organic waste such as livestock excrement deposits makes the surface a powerful heat insulating material and enhances the heat storage effect. Humidification is promoted by the above exothermic reaction. Of course, organic matter decomposition products by microorganisms are also precursors in the production of humic substances.

上述の発熱反応については次のようなメカニズムが推測される。   The following mechanism is assumed for the above exothermic reaction.

スラリー状糞尿や高水分糞尿では、大気中からの酸素供給が極めて少ない状態であり、また、糞尿内部の溶存酸素は微生物反応等により消費されるために、好気的な発酵は起りにくいといえる。しかし、腐植化促進材として非晶質鉄酸化物、結晶質鉄酸化物を添加した場合には、これらの酸化鉄化合物により糞尿内部液中に酸素が供給され、この酸素を利用する酵素反応および微生物の代謝反応を引き起こすことが推察される。   In slurry-like manure and high-water manure, oxygen supply from the atmosphere is extremely low, and dissolved oxygen in the manure is consumed by microbial reactions, etc., so aerobic fermentation is unlikely to occur. . However, when amorphous iron oxide or crystalline iron oxide is added as a humus accelerator, oxygen is supplied into the fecal urine liquid by these iron oxide compounds, It is presumed to cause a metabolic reaction of microorganisms.

すなわち、糞尿内部の溶存酸素濃度が低いときには、微生物の一部が生産する酵素による触媒作用によって鉄酸化物は酸素を放出し、二価に還元される。放出された酸素は糞尿中のセルロースや易分解性有機物の好気的微生物分解に利用されて、二酸化炭素と水、そして熱が得られる。一方で、酸素を放出し還元された二価鉄イオン(還元性鉄イオン)は、硫化水素やメチルメルカプタンなどの硫黄系臭気物質と化合して悪臭の発生を抑制するとともに、この二価鉄イオンは腐植物質と安定的な複合体を形成し、二次的な腐植酸の生成と腐植化の進行を促進する。   That is, when the dissolved oxygen concentration in manure is low, iron oxide releases oxygen by the catalytic action of an enzyme produced by a part of the microorganism and is reduced to bivalent. The released oxygen is used for aerobic microbial decomposition of cellulose and readily decomposable organic matter in manure to obtain carbon dioxide, water and heat. On the other hand, divalent iron ions reduced by releasing oxygen (reducible iron ions) combine with sulfur-based odorous substances such as hydrogen sulfide and methyl mercaptan to suppress the generation of bad odors, and this divalent iron ion Forms a stable complex with humic substances and promotes the production of secondary humic acid and the progress of humification.

このメカニズムを糞尿スラリーや堆肥滲出液などの水溶性腐植物質を含む液に適用した場合には、二価ないし三価の鉄イオンは水溶性腐植酸と安定的な腐植酸を形成し、その一部は沈殿する。   When this mechanism is applied to liquids containing water-soluble humic substances such as manure slurry and compost exudate, divalent or trivalent iron ions form water-soluble humic acid and stable humic acid. The part is precipitated.

このような考察から、腐植化促進材として有用な物質は、アルカリ化合物と鉄化合物を主成分とするもので、アルカリ化合物は、アルカリ金属又はアルカリ土類金属を含み、水溶化した際にアルカリ性を示す化合物であり、カルシウム、マグネシウム、ナトリウム、カリウムのうちのいずれか1又は複数のものの炭酸塩、水酸化物若しくは酸化物であり、他方、鉄化合物は、非晶質又は結晶質の酸化鉄、非晶質又は結晶質の水酸化鉄、二価又は三価の鉄塩、鉄錯化合物、鉄イオン、元素鉄のいずれかの単体、又はそれらの2種類以上の混合物が好ましい。さらに、腐植化促進材には、前駆物質として微生物分解によって生成されたアミノ酸又は糖類の低分子有機化合物を含有することが好ましい。   Based on such considerations, substances useful as humification promoters are mainly composed of alkali compounds and iron compounds. Alkali compounds contain alkali metals or alkaline earth metals and become alkaline when water-solubilized. A carbonate, hydroxide or oxide of any one or more of calcium, magnesium, sodium, potassium, while the iron compound is amorphous or crystalline iron oxide, Amorphous or crystalline iron hydroxide, a divalent or trivalent iron salt, an iron complex compound, iron ions, elemental iron, or a mixture of two or more of them is preferred. Further, the humification promoting material preferably contains a low molecular weight organic compound of amino acid or saccharide produced by microbial decomposition as a precursor.

本発明の腐植化促進材は、アルカリ化合物および鉄化合物を、無機物または有機物を主たる基質とする担体に担持または含浸させたものであってもよい。また、本発明の腐植化促進材は、上記担体に担持または含浸させたものを乾燥、焼成、炭化させて用いてもよい。前記無機物には、例えばゼオライトまたは粘土などがあり、前記有機物には、例えば木材チップまたはおがくずなどがある。   The humification promoting material of the present invention may be a material in which an alkali compound and an iron compound are supported or impregnated on a carrier having an inorganic or organic substance as a main substrate. Further, the humification promoting material of the present invention may be used by drying, firing or carbonizing a material supported or impregnated on the carrier. Examples of the inorganic material include zeolite and clay, and examples of the organic material include wood chips and sawdust.

上記腐植促進材の添加量は、有機性廃棄物に対して少量、例えば1wt%であっても効果があるが、より多い方が好ましい。   The addition amount of the humus promoting material is effective even if it is a small amount, for example, 1 wt%, with respect to the organic waste, but a larger amount is preferable.

本発明の腐植化促進は鉄化合物のみを含有する腐植化促進材によっても達成しうるが、本発明に記載の腐植化促進材は、鉄化合物のみならずアルカリ化合物をも含むことが好ましい。   Although the humification promotion of the present invention can be achieved by a humification promotion material containing only an iron compound, the humification promotion material described in the present invention preferably contains not only an iron compound but also an alkali compound.

[腐植化促進実験例1]
フリーストール牛舎より排出された水分率85%の家畜排泄物25tに対して堆肥化資材としてアルカリ化合物として炭酸カルシウムを乾燥重量比10〜20%含有し、鉄化合物を乾燥重量比5〜20%含有する資材を家畜排泄物の含水重量に対し2%、500kgを添加してよく混合した。なお、鉄化合物はその半量は非晶質形態であった。試験区と同等の排泄物を用いて対照区を設定した。腐植化促進材混合後は30日に一度、よく攪拌して積みなおしを行う、いわゆる切り返し作業を行った。
[Humification promotion experiment example 1]
Containing 25 to 20% of livestock excreta with a moisture content of 85% discharged from the free stall barn as a composting material containing calcium carbonate as an alkaline compound in a dry weight ratio of 10 to 20% and containing an iron compound in a dry weight ratio of 5 to 20% The material to be added was 2%, 500 kg with respect to the water content of livestock excrement and mixed well. Half of the iron compound was in an amorphous form. A control group was set using excreta equivalent to the test group. After mixing the humus accelerator, a so-called turning operation was carried out, in which thorough stirring was performed once every 30 days for restacking.

腐植化促進材混合直後に臭気が著しく軽減した。これは、臭気成分であるメチルメルカプタン、硫化水素などの硫黄系の臭気、および酪酸、イソ吉草酸、プロピオン酸などの揮発性脂肪酸系の臭気が腐植化促進材に含まれるアルカリ化合物によって中和されるとともに、鉄化合物による触媒作用により腐植物質と化合して取り込まれたことにより不活性となったためである。   The odor was remarkably reduced immediately after mixing the humus accelerator. This is because the odorous components such as methyl mercaptan and sulfur sulfide, and volatile fatty acid odors such as butyric acid, isovaleric acid, and propionic acid are neutralized by the alkali compounds contained in the humification promoter. In addition, it became inactive by being combined with humic substances by the catalytic action of the iron compound.

堆積時の温度(表面からの深度50cm)では、腐植化促進材処理区では堆積後からゆるやかに上昇して、30日後の第1回切り返し時には約37℃に達した。一方で対照区では温度上昇がほとんど見られなかった。60日後の第2回切り返し時においても同様の傾向がみられた。腐植化促進材混合区では温度が約40℃に達した。   In the temperature at the time of deposition (depth 50 cm from the surface), in the humus promoting material treatment zone, the temperature gradually increased after the deposition, and reached about 37 ° C. at the first turning after 30 days. On the other hand, there was almost no temperature increase in the control group. The same tendency was observed at the second turnover after 60 days. The temperature reached about 40 ° C. in the humification promoting material mixed section.

また温度は堆積物の底部に近いほど高く、水分率が高く還元状態に近いところでも発熱反応が起きていることから、腐植化促進材に含有している鉄、特に酸化鉄成分による酸素供給が酸化反応による発熱を誘引するとともに、好気性微生物の活性を高めるものと考えられる。これらの発熱量は微量であるが、大量の堆積により家畜排泄物堆積物表面が強力な断熱材となっていることから蓄熱効果が高かったと考えられる。   In addition, the temperature is higher near the bottom of the sediment, and since the exothermic reaction occurs even in a place where the moisture content is high and close to the reduced state, oxygen supply by iron contained in the humification promoter, especially iron oxide components, is possible. It is thought that it induces heat generation due to oxidation reaction and enhances the activity of aerobic microorganisms. Although these calorific values are very small, it is considered that the heat storage effect was high because the surface of livestock excrement deposits became a powerful heat insulating material due to the large amount of deposition.

90日後の第3回切り返しにおいては、腐植化促進材の温度上昇は低く、むしろ低下傾向にあった。これは発熱に必要なアルカリ化合物、鉄化合物の消費によるものであると考えられる。堆積物の黒色味が増し、腐植化の進行が見られた。   In the third reversal after 90 days, the temperature increase of the humification promoting material was low, but rather tended to decrease. This is considered to be due to the consumption of alkali compounds and iron compounds necessary for heat generation. The black color of the deposit increased and humification progressed.

図5〜図7は、上記実験時の開始1ヶ月後、2ヶ月後、3ヶ月後それぞれの腐植化促進材処理区(左側)、未処理の対照区(右側)のサンプルの写真であり、腐植化促進処理区(左側)での黒色化が時間と共に進行していることが判る。   5 to 7 are photographs of samples of the humification promoting material treatment group (left side) and the untreated control group (right side) after 1 month, 2 months, and 3 months after the start of the experiment, It can be seen that blackening in the humification promotion treatment area (left side) progresses with time.

[腐植化促進実験例2]
フリーストール牛舎より排出された敷料としての麦稈を若干量含む水分率85%の糞尿5tに対してPSCを重量比で5%量に相当する250kg混合し、コンクリート床、屋根付きの堆肥盤内に堆積した。PSC混合糞尿はPSCの混合により水分率が81%に低下した。同時に無処理区を設置した。両区とも1週間に1度の切返しを行う管理条件を設定した。試験期間は2003年5月27日から7月21日の8週間とした。試験期間中継続的に堆積内部温度(50cm深)を測定した。また、8週間の堆積期間終了後の堆積物について腐植化度、易分解性有機炭素の計測を行った。さらに幼植物(コマツナ)を用い発芽率、初期生育段階の根長、生体重を測定し、生育阻害度合いを判定した。
[Humification promotion experiment example 2]
Mixing 250kg of PSC with 5% of the weight ratio of 5t of manure with 85% moisture content containing a small amount of wheat straw as a bedding discharged from the free stall barn, and putting it in a compost with a concrete floor and roof Deposited. The moisture content of the PSC mixed manure decreased to 81% by mixing PSC. At the same time, an untreated zone was set up. In both wards, a management condition was set for turning back once a week. The test period was 8 weeks from May 27, 2003 to July 21, 2003. The deposition internal temperature (50 cm depth) was measured continuously during the test period. In addition, the degree of humification and readily decomposable organic carbon were measured for the deposits after the end of the 8 week deposition period. Furthermore, the germination rate, the root length at the initial growth stage, and the living weight were measured using a young plant (Komatsuna) to determine the degree of growth inhibition.

温度変化の結果は図8に、腐植化度の結果は図9に、幼植物を用いた生育試験結果は図10A〜図10Cに示してある。なお、堆積期間中における腐植化度の変化はピロリン酸での腐植抽出液で示した。   The results of temperature change are shown in FIG. 8, the results of humification degree are shown in FIG. 9, and the growth test results using young plants are shown in FIGS. 10A to 10C. The change in the degree of humification during the deposition period was shown by the humus extract with pyrophosphoric acid.

<堆積温度の変化と臭気の状況>
図8のグラフから判るように、牛糞単独の対照区は温度上昇がほとんど認められず、形状や臭気などから発酵が進んでいる兆候は見られない。しかも、強烈な腐敗臭(硫化水素などの一般臭気)とアンモニア臭が続いた。一方、PSC混合区では、試験開始直後から対照区と比較してわずかに温度上昇が起り、しかも時間の経過とともに継続的に温度上昇傾向が見られ、試験終了時には約45度まで温度上昇した。発酵が進んでいるためアンモニア臭気は感じたが腐敗臭は全く感じられなかった。
<Changes in deposition temperature and odor status>
As can be seen from the graph of FIG. 8, almost no increase in temperature was observed in the control group of cow dung alone, and no sign of fermentation progressing due to shape or odor was observed. Moreover, an intense rot odor (general odor such as hydrogen sulfide) and ammonia odor continued. On the other hand, in the PSC mixed group, a slight temperature increase occurred immediately after the start of the test as compared to the control group, and a continuous temperature increasing tendency was observed with the passage of time, and the temperature increased to about 45 degrees at the end of the test. As the fermentation progressed, I felt an ammonia odor but no rot odor.

<腐植化度>
腐植化度の測定は粉砕乾燥試料0.3gを遠沈管に測りとり、0.0025mol/lピロリン酸ナトリウム溶液30mlを加えて、16時間振とう後、0.1%Accoflocを試料の1%となるように加え、3000rpmで20分間遠心分離後、上澄み液をろ過し、さらに0.45μmのメンブランフィルターで限外ろ過したろ液を5倍に希釈し、分光光度計にて波長550nmにおける吸光度を計測して、その測定値を100倍したものを単位重量当たりの糞尿乾物の腐植化度とした。その結果、堆積後8週間目の腐植化度は対照区7.0に対しPSC区8.8となり腐植化が顕著に起きたことが判明した。図9の写真から、PSC区の黒色化が進んでいることも明らかである。
<Humification degree>
The degree of humification is measured by measuring 0.3 g of a pulverized dry sample in a centrifuge tube, adding 30 ml of a 0.0025 mol / l sodium pyrophosphate solution, shaking for 16 hours, and then adding 0.1% Accofloc to 1% of the sample. After centrifugation at 3000 rpm for 20 minutes, the supernatant is filtered, and the filtrate ultrafiltered with a 0.45 μm membrane filter is diluted 5-fold, and the absorbance at a wavelength of 550 nm is measured with a spectrophotometer. It measured and the thing which multiplied the measured value 100 times was made into the humification degree of the manure dry matter per unit weight. As a result, the degree of humification at 8 weeks after deposition was 8.8 in the PSC group compared with 7.0 in the control group, and it was found that humification occurred significantly. From the photograph in FIG. 9, it is also clear that the blackening of the PSC zone is progressing.

<幼植物を用いた生育試験結果>
発芽率、根長測定にはPSC区、対照区、各8週間後の試料2.5gに沸騰水を加え、1時間放置後のろ液をシャーレ内にコマツナ種子50粒を播いた発芽シートに10ml分注した。
<Results of growth test using young plants>
For measurement of germination rate and root length, boiling water was added to 2.5 g of the sample after 8 weeks each in the PSC group, the control group, and the filtrate after standing for 1 hour was placed on a germination sheet in which 50 komatsuna seeds were seeded in a petri dish. A 10 ml aliquot was dispensed.

ポット栽培試験では容量500ml、表面積100cm2のノイバウエルポットを用い、植害試験の標準区に相当するようN、P、KOとしてそれぞれ25mgとなるように化学肥料の硫酸アンモニウム、過リン酸石灰、塩化カリウムを施用した。堆積物の施用量は1000m2当たり10tに設定した。すなわち、本試験で使用する表面積100cmのポットでは20gに相当する。これにコマツナ種子25粒を播き栽培した。結果は図10A〜図10Cに示す。 In the pot cultivation test, a Neubauer pot with a capacity of 500 ml and a surface area of 100 cm2 was used, and the chemical fertilizers ammonium sulfate and superphosphorus were used so that each would be 25 mg as N, P 2 O 5 , and K 2 O to correspond to the standard section of the planting damage test. Acid lime and potassium chloride were applied. The deposit application rate was set at 10 t / 1000 m 2. That is, it corresponds to 20 g in a pot having a surface area of 100 cm 2 used in this test. This was seeded and cultivated with 25 komatsuna seeds. The results are shown in FIGS. 10A to 10C.

[腐植化促進実験例2]の実験結果から、PSC単独での発酵促進(温度上昇)効果は低いが、腐植化(黒色化)促進効果と臭気抑制効果が顕著であることが判った。   From the experimental results of [Humification Promotion Experimental Example 2], it was found that the fermentation promotion (temperature increase) effect by PSC alone is low, but the humification (blackening) promotion effect and the odor suppression effect are remarkable.

[腐植化促進実験例3]
[腐植化促進実験例2]で示した試験終了後の両区の堆積物を、2003年10月より野積して腐熟化を観察した。この間、数回の切り返し作業を行い、2004年8月に採取した。[腐植化促進実験例2]における8週間と合わせて、試験開始から約1年間の堆肥熟成に相当する。採取した試料については、理化学性、腐熟度および腐植化に関する分析を行った。分析結果を図11A〜図11Cに示す。
[Example 3 of humification promotion experiment]
The deposits in both sections after the end of the test shown in [Experimental Example 2 for Humusification] were piled up in October 2003 and observed for ripening. During this time, several reversing operations were performed and collected in August 2004. Together with 8 weeks in [Humification Promotion Experimental Example 2], it corresponds to compost ripening for about 1 year from the start of the test. The collected samples were analyzed for physicochemical properties, maturity and humification. The analysis results are shown in FIGS. 11A to 11C.

乳牛糞尿堆肥化試験(2003年度開始)堆積1年後の非腐植化サンプル(対照区)および腐植化サンプル(PSC区)の理化学性分析結果を、図11Aに示す。対照区では1年間の堆積と熟成を行ったにもかかわらず、堆積した糞尿は悪臭を放ち、性状も生糞尿とほとんど変わらないものであった。PSC区はほとんど土壌というに差し支えない程度まで腐熟しており、悪臭等も一切感じられなかった。性状は、堆肥と呼ぶよりはまさに土であり、測定した水分含量や灰分含量がこれを明瞭に支持している。また、PSC区においては、対照区と比較して灰分含量が高く、全炭素量が低い傾向にあり、発酵が十分に進んだことを示している。   FIG. 11A shows the results of physicochemical analysis of a non-humus sample (control group) and a humus sample (PSC group) one year after the dairy cattle manure composting test (started in 2003). Despite the accumulation and maturation for one year in the control group, the accumulated manure had a foul odor and the property was almost the same as that of raw manure. The PSC ward was ripened to such an extent that it could be called soil, and no bad smell was felt. The property is more like soil than compost, and the measured moisture and ash content clearly support this. In the PSC group, the ash content is higher and the total carbon content tends to be lower than the control group, indicating that the fermentation has progressed sufficiently.

乳牛糞尿堆肥化試験(2003年度開始)堆積1年後の非腐植化サンプル(対照区)および腐植化サンプル(PSC区)の幼植物発芽試験結果を、図11Bに示す。対照区では、2日目においても38%と低い発芽率であり、これは、腐熟化が進んでおらず、植物に対して悪影響を及ぼすことを示している。一方、PSC区では、2日目において96%であり、これは、PSC区においては対照区と比較して腐熟化の進行度に歴然とした差があることを示している。また、根長についても、2日目において対照区では0.61mmに対し、PSC区では4.85mmであり、腐熟化の進行度の差が明瞭になった。   FIG. 11B shows the seedling germination test results of the non-humated sample (control group) and the humic sample (PSC group) one year after the dairy cattle manure composting test (started in fiscal 2003). In the control group, the germination rate was as low as 38% even on the second day, indicating that the maturation has not progressed and the plant has an adverse effect. On the other hand, in the PSC group, it was 96% on the second day, which indicates that there is a clear difference in the degree of maturation in the PSC group compared to the control group. Further, the root length was 0.61 mm in the control group and 4.85 mm in the PSC group on the second day, and the difference in the degree of maturation became clear.

乳牛糞尿堆肥化試験(2003年度開始)堆積1年後の非腐植化サンプル(対照区)および腐植化サンプル(PSC区)の腐植分析結果を、図11Cに示す。PSC区と対照区では、上述のように腐熟化の進行度に明瞭な差が見られた(図11B)にもかかわらず、腐植酸含量は対照区のほうが高く、また腐植化度も対照区のほうが腐植酸含量の増加に応じて高くなった。   FIG. 11C shows the humus analysis results of the non-humus sample (control group) and the humus sample (PSC group) one year after the dairy cattle manure composting test (started in 2003). In spite of a clear difference in the degree of maturation between the PSC group and the control group (FIG. 11B), the humic acid content is higher in the control group and the degree of humification is also in the control group. It became higher with increasing humic acid content.

この結果は、腐植化が進行していない未熟な腐植であっても、量が多ければ全体の色が黒色化して見えることを意味しており、腐植化度だけで腐植化の進行を判断することの難しさを示唆している。すなわち、このデータが意味する腐植酸量には、PSCの添加によって新たに生成された腐植物質(二次的に生成した腐植酸)のみならず、糞尿にもともと含まれていたタンニンやリグニンなどのポリフェノール類などの未熟な腐植酸様物質(一次的な腐植酸様物質)を含むものであり、PSC添加による腐植化のみを反映したものとはいえない。   This result means that even if it is an immature humus where humification has not progressed, if the amount is large, the overall color appears to be blackened, and the progress of humification is judged only by the degree of humus This suggests the difficulty. That is, the amount of humic acid meant by this data includes not only humic substances newly generated by the addition of PSC (secondarily generated humic acid) but also tannin and lignin originally contained in manure. It contains immature humic acid-like substances (primary humic acid-like substances) such as polyphenols, and cannot be said to reflect only humification by addition of PSC.

また、腐植酸の形態分析の結果(図11C)、NaOH抽出では、対照区と比較してPSC区のほうがΔlogKは低く、RF値は高かった。この傾向はNa抽出において顕著に現れており、特にRF値はPSC区が対照区に対し2倍程度高かった。上述のように、NaOH抽出では遊離型腐植酸が抽出できるのに対し、Na抽出では遊離型に加え、結合型腐植酸を抽出することができることから、この結果は、PSC区に含まれている腐植酸が結合型腐植酸であることを意味している。 As a result of humic acid morphology analysis (FIG. 11C), in NaOH extraction, ΔlogK was lower and RF value was higher in PSC group than in control group. This tendency was remarkable in the extraction of Na 4 P 2 O 7 , and in particular, the RF value was about twice as high in the PSC group as compared to the control group. As described above, free extraction of humic acid can be extracted by NaOH extraction, whereas extraction of Na 4 P 2 O 7 can extract combined humic acid in addition to free form. This means that the humic acid contained in is conjugated humic acid.

[腐植化促進実験例3]の結果から、水分含量の高い乳牛糞尿にPSCを添加して堆積・撹拌を行い、堆積と熟成などにより腐熟化させることにより、腐植化が促進されることが示された。   From the result of [Experimental Example 3 for Humusification], it is shown that humus is promoted by adding PSC to dairy cow manure with high water content, depositing and stirring, and ripening by accumulation and aging. It was done.

図1は、一般的な腐植の分別の説明図である。FIG. 1 is an explanatory view of general humus separation. 図2は、色調係数(ΔlogK)と相対色度(RF)を指標とする腐植化の進行度合いの説明図である。FIG. 2 is an explanatory diagram of the degree of progress of humification using the hue coefficient (ΔlogK) and relative chromaticity (RF) as indices. 図3は、腐植化過程の説明図である。FIG. 3 is an explanatory diagram of the humification process. 図4は、PSCの分析結果を示す表1である。FIG. 4 is Table 1 showing the results of PSC analysis. 図5は、本発明の[腐植化促進実験例1]における腐植化実験開始1ヶ月後の腐植化サンプル(左側)と非腐植化サンプル(右側)との対比写真である。FIG. 5 is a comparison photograph of a humus sample (left side) and a non-humus sample (right side) one month after the start of the humus experiment in [Humification Promotion Experiment Example 1] of the present invention. 図6は、本発明の[腐植化促進実験例1]における腐植化実験開始2ヶ月後の腐植化サンプル(左側)と非腐植化サンプル(右側)との対比写真である。FIG. 6 is a comparison photograph of a humus sample (left side) and a non-humus sample (right side) two months after the start of the humus experiment in [Humification Promotion Experiment Example 1] of the present invention. 図7は、本発明の[腐植化促進実験例1]における腐植化実験開始3ヶ月後の腐植化サンプル(左側)と非腐植化サンプル(右側)との対比写真である。FIG. 7 is a comparison photograph of a humus sample (left side) and a non-humus sample (right side) 3 months after the start of the humus experiment in [Humification Promotion Experiment Example 1] of the present invention. 図8は、本発明の[腐植化促進実験例2]における腐植化処理区(PSC区)と対照区との温度変化のグラフである。FIG. 8 is a graph of temperature change between the humification treatment group (PSC group) and the control group in [Humification Promotion Experiment Example 2] of the present invention. 図9は、本発明の[腐植化促進実験例2]における非腐植化サンプル(上側:対照区)と腐植化サンプル(下側:PSC区)との黒色化対比写真である。FIG. 9 is a blackening contrast photograph of the non-humated sample (upper side: control group) and the humated sample (lower side: PSC group) in [Humification Promotion Experimental Example 2] of the present invention. 図10A〜図10Cは、本発明の[腐植化促進実験例2]で得た非腐植化サンプル(対照区)と腐植化サンプル(PSC区)とによる幼植物を用いた生育試験結果を示すものである。図10Aはコマツナ種子の発芽率を示す表であり、図10Bは、コマツナの根長を示す表であり、図10Cは、コマツナ1株当たりの生体重を示す表である。10A to 10C show the results of growth tests using young plants using the non-humidized sample (control group) and the humic sample (PSC group) obtained in [Humeralization Promotion Experiment Example 2] of the present invention. It is. FIG. 10A is a table showing the germination rate of Komatsuna seeds, FIG. 10B is a table showing the root length of Komatsuna, and FIG. 10C is a table showing the living weight per Komatsuna strain. 図11A〜図11Cは、本発明の[腐植化促進実験例3]で得た、乳牛糞尿堆肥化試験(2003年度開始)堆積1年後の非腐植化サンプル(対照区)および腐植化サンプル(PSC区)の分析結果を示すものである。図11Aは理化学性分析結果を示す表であり、図11Bは幼植物発芽試験結果を示す表であり、図11Cは堆肥の腐植分析結果を示す表である。FIG. 11A to FIG. 11C show a non-humus sample (control group) and a humus sample (according to the humification promotion experiment example 3) of the present invention, one year after the dairy cow manure composting test (started in 2003) The analysis results of PSC) are shown. FIG. 11A is a table showing physicochemical analysis results, FIG. 11B is a table showing seedling germination test results, and FIG. 11C is a table showing compost humus analysis results.

Claims (9)

アルカリ化合物と鉄化合物とを含有することを特徴とする腐植化促進材。   A humification promoting material comprising an alkali compound and an iron compound. 前記アルカリ化合物は、アルカリ金属又はアルカリ土類金属を含み、水溶化した際にアルカリ性を示す化合物であることを特徴とする請求項1に記載の腐植化促進材。   2. The humification promoter according to claim 1, wherein the alkali compound is a compound that contains an alkali metal or an alkaline earth metal and exhibits alkalinity when water-solubilized. 前記アルカリ化合物は、カルシウム、マグネシウム、カリウム、ナトリウムのうちのいずれか1又は複数のものの炭酸塩、水酸化物若しくは酸化物の少なくとも1つを含むことを特徴とする請求項1に記載の腐植化促進材。   The humicification according to claim 1, wherein the alkaline compound includes at least one of carbonate, hydroxide or oxide of one or more of calcium, magnesium, potassium and sodium. Promotional material. 前記鉄化合物は、非晶質又は結晶質の酸化鉄、非晶質又は結晶質の水酸化鉄、二価又は三価の鉄塩、鉄錯化合物、鉄イオン、元素鉄のいずれかの単体、又はそれらの2種類以上の混合物であることを特徴とする請求項1に記載の腐植化促進材。   The iron compound is amorphous or crystalline iron oxide, amorphous or crystalline iron hydroxide, divalent or trivalent iron salt, iron complex compound, iron ion, elemental iron alone, Or it is a mixture of 2 or more types of them, The humification promotion material of Claim 1 characterized by the above-mentioned. 前記アルカリ化合物および前記鉄化合物を、無機物または有機物を主たる基質とする担体に担持または含浸させた、請求項1〜4のいずれかに記載の腐植化促進材。   The humification promoting material according to any one of claims 1 to 4, wherein the alkali compound and the iron compound are supported or impregnated on a carrier mainly comprising an inorganic substance or an organic substance. 有機物又は有機物の分解にて生成された有機物分解生成物に対して、請求項1〜5のいずれかの腐植化促進材を添加して置くことにより、前記有機物又は有機物分解生成物を腐植化することを特徴とする有機物の腐植化方法。   The organic matter or the organic matter decomposition product produced by the decomposition of the organic matter or organic matter is humusified by adding and adding the humification promoting material according to any one of claims 1 to 5. An organic matter humification method characterized by the above. 前記有機物は、動物の糞尿、生ゴミ、有機性汚泥、堆肥又は動植物の遺体であることを特徴とする請求項6に記載の有機物の腐植化方法。   The organic matter humification method according to claim 6, wherein the organic matter is animal manure, raw garbage, organic sludge, compost, or the body of an animal or plant. 有機物又は有機物の分解にて生成された有機物分解生成物に対して、請求項1〜5のいずれかの腐植化促進材を添加して置くことにより、前記有機物又は有機物分解生成物を腐植化した腐植物質。   The organic matter or the organic matter decomposition product produced by the decomposition of the organic matter or the organic matter decomposition product is humusified by adding and adding the humification promoter according to any one of claims 1 to 5. Humic substances. 前記有機物は、動物の糞尿、生ゴミ、有機性汚泥、堆肥又は動植物の遺体であることを特徴とする請求項8に記載の腐植物質。   9. The humic substance according to claim 8, wherein the organic matter is animal manure, raw garbage, organic sludge, compost, or the remains of animals and plants.
JP2005089300A 2004-11-02 2005-03-25 Humification accelerating agent, method of humifying organic material and humified material Pending JP2006151787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089300A JP2006151787A (en) 2004-11-02 2005-03-25 Humification accelerating agent, method of humifying organic material and humified material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004319938 2004-11-02
JP2005089300A JP2006151787A (en) 2004-11-02 2005-03-25 Humification accelerating agent, method of humifying organic material and humified material

Publications (1)

Publication Number Publication Date
JP2006151787A true JP2006151787A (en) 2006-06-15

Family

ID=36630520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089300A Pending JP2006151787A (en) 2004-11-02 2005-03-25 Humification accelerating agent, method of humifying organic material and humified material

Country Status (1)

Country Link
JP (1) JP2006151787A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212900A (en) * 2016-05-31 2017-12-07 Lol株式会社 Soil regenerating method and regenerated soil
CN108698827A (en) * 2015-12-21 2018-10-23 凯米罗总公司 Method for producing phosphorus product from waste water
CN109279749A (en) * 2018-11-27 2019-01-29 内蒙古三泰清洁能源科技有限公司 Urban sewage treatment plant sludge processing method and processing fermentation catalyst
CN112088748A (en) * 2020-09-23 2020-12-18 华中师范大学 Directional humification strengthening soil making based on iron circulation regulation and control, and preparation method and application thereof
CN113735660A (en) * 2020-05-13 2021-12-03 株式会社克莱希 Reasonable method for preparing artificial humus and its application method
CN113996643A (en) * 2021-09-29 2022-02-01 浙江大学 Kitchen waste hydrothermal conversion rapid humification method
CN114031431A (en) * 2021-12-28 2022-02-11 燕山大学 Humic acid-rich pig manure compost prepared from wine grape skin residues and method and application thereof
CN114426679A (en) * 2022-01-04 2022-05-03 江南大学 Rice growth promoting method for synthesizing artificial humic acid through catalysis of nano ferric oxide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698827A (en) * 2015-12-21 2018-10-23 凯米罗总公司 Method for producing phosphorus product from waste water
CN108698827B (en) * 2015-12-21 2022-04-05 凯米罗总公司 Process for producing phosphorus products from wastewater
JP2017212900A (en) * 2016-05-31 2017-12-07 Lol株式会社 Soil regenerating method and regenerated soil
CN109279749A (en) * 2018-11-27 2019-01-29 内蒙古三泰清洁能源科技有限公司 Urban sewage treatment plant sludge processing method and processing fermentation catalyst
CN113735660A (en) * 2020-05-13 2021-12-03 株式会社克莱希 Reasonable method for preparing artificial humus and its application method
CN112088748A (en) * 2020-09-23 2020-12-18 华中师范大学 Directional humification strengthening soil making based on iron circulation regulation and control, and preparation method and application thereof
CN113996643A (en) * 2021-09-29 2022-02-01 浙江大学 Kitchen waste hydrothermal conversion rapid humification method
CN113996643B (en) * 2021-09-29 2022-08-12 浙江大学 Kitchen waste hydrothermal conversion rapid humification method
CN114031431A (en) * 2021-12-28 2022-02-11 燕山大学 Humic acid-rich pig manure compost prepared from wine grape skin residues and method and application thereof
CN114426679A (en) * 2022-01-04 2022-05-03 江南大学 Rice growth promoting method for synthesizing artificial humic acid through catalysis of nano ferric oxide
CN114426679B (en) * 2022-01-04 2023-01-06 江南大学 Rice growth promoting method for synthesizing artificial humic acid by catalyzing nano ferric oxide
WO2023130816A1 (en) * 2022-01-04 2023-07-13 江南大学 Method for promoting rice growth by means of artificial humic acid synthesized under catalysis of nano ferric oxide

Similar Documents

Publication Publication Date Title
Atiyeh et al. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth
Singh et al. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida
US8034148B2 (en) Methods and compositions for soil amendments and organic waste management
Nahm Factors influencing nitrogen mineralization during poultry litter composting and calculations for available nitrogen
JP2006151787A (en) Humification accelerating agent, method of humifying organic material and humified material
JP7021430B2 (en) How to produce ripe fertilizer with high humic acid content
EA029342B1 (en) Fertilizer, its use and process for preparing it
CN103270003B (en) Organic fertilizer and method of its production
KR100401247B1 (en) Non-fermented compost, organic manure and a preparation method thereof
Kolay Manures and fertilizers
Bisen et al. Vermicompost quality as influenced by different species of earthworm and bedding material
WO1999055644A1 (en) Liquid fertilizer
Beesigamukama et al. Improving water hyacinth-based compost for crop production
WO2008125739A1 (en) Aerobic biodegradation accelerant
JP2021058676A (en) Hygroscopic material-containing deodrant powder and deodrization method
Rahman 11. Production and evaluation of vermicompost from different types of livestock manures
Sánchez-Monedero et al. Biochar as an additive in composting: Impact on process performance and on the agronomical quality of the end product
Shakywal et al. ROLE OF ORGANIC MANURE FOR IMPROVING SOIL HEALTH
Mathur et al. Enriched Compost Production Technique from Water Hyacinth
RU2792771C1 (en) Method for preparing manure-peat compost based on poultry manure
JP2006150335A (en) Bad smell controlling material and method for controlling bad small of organic waste
Basha et al. Vermicomposting of organic waste: literature review
Amare SCHOOL OF GRADUATE STUDIES ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF CHEMICAL AND BIO ENGINEERING ENVIRONMENTAL ENGINEERING STREAM
Schröder et al. Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost. Agronomy 2021, 11, 1175
Dady et al. Impact of Oil Palm Empty Fruit Bunch Biochar Enriched with Chicken Manure Extract on Phosphorus Retention in Sandy Soil. Sustainability 2021, 13, 10851

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202