JP2006150335A - Bad smell controlling material and method for controlling bad small of organic waste - Google Patents

Bad smell controlling material and method for controlling bad small of organic waste Download PDF

Info

Publication number
JP2006150335A
JP2006150335A JP2005089347A JP2005089347A JP2006150335A JP 2006150335 A JP2006150335 A JP 2006150335A JP 2005089347 A JP2005089347 A JP 2005089347A JP 2005089347 A JP2005089347 A JP 2005089347A JP 2006150335 A JP2006150335 A JP 2006150335A
Authority
JP
Japan
Prior art keywords
odor
iron
organic waste
psc
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005089347A
Other languages
Japanese (ja)
Inventor
Yoshito Suzuki
善人 鈴木
Masayuki Tani
昌幸 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEAPS KK
Obihiro University of Agriculture and Veterinary Medicine NUC
Original Assignee
LEAPS KK
Obihiro University of Agriculture and Veterinary Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEAPS KK, Obihiro University of Agriculture and Veterinary Medicine NUC filed Critical LEAPS KK
Priority to JP2005089347A priority Critical patent/JP2006150335A/en
Publication of JP2006150335A publication Critical patent/JP2006150335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively control bad smell of organic waste such as livestock excrement, garbage, organic sludge and compost. <P>SOLUTION: This bad smell controlling material comprises an alkaline compound and an amorphous iron compound. A suitable amount of this bad smell controlling material is mixed in organic waste, which is then left as it is so that the bad smell can effectively be controlled at a humification step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、臭気抑制材及び有機性廃棄物の臭気抑制方法に関する。   The present invention relates to an odor control material and an organic waste odor control method.

従来、動植物の遺体や糞尿、生ゴミ、有機性汚泥、堆肥などの有機物が発する臭いは強烈であり、腐敗が進むとさらに悪臭は強まり、公害問題ともなっているが、畜産農家等大量に発生する有機性廃棄物の臭気抑制のための効果的な方策は見出されていない。   Conventionally, the odor emitted by organic matter such as animal and plant bodies, manure, raw garbage, organic sludge, compost, etc. is intense, and as rot progresses, the odor further increases and it has become a pollution problem, but it occurs in large quantities such as livestock farmers An effective measure for controlling the odor of organic waste has not been found.

本願発明者らは、家畜排泄物の腐植化を促進する材料の検討を行い、アルカリ化合物と鉄化合物を同時に家畜排泄物に混合することにより、腐植化を促進することができることを発見した。それと共に、当該腐植化促進材を家畜排泄物に添加、混入することによって短時間の内に強烈な臭気が抑制されることを発見した。   The inventors of the present application have studied materials that promote the humification of livestock excrement, and have found that humification can be promoted by simultaneously mixing an alkali compound and an iron compound into the livestock excrement. At the same time, it was discovered that by adding and mixing the humification promoting material to livestock excrement, intense odor is suppressed within a short time.

本発明はこの技術的な発見に根ざし、有機性廃棄物の臭気を効果的に抑制できる臭気抑制材及び有機性廃棄物の臭気抑制方法を提供することを目的とする。   The present invention is based on this technical discovery and aims to provide an odor suppressing material and an organic waste odor suppressing method capable of effectively suppressing the odor of organic waste.

請求項1の発明の臭気抑制材は、アルカリ化合物と非晶質鉄化合物とを含有することを特徴とするものである。   The odor control material of the invention of claim 1 is characterized by containing an alkali compound and an amorphous iron compound.

請求項2の発明は、請求項1の臭気抑制材において、前記アルカリ化合物は、アルカリ金属又はアルカリ土類金属を含み、水溶化した際にアルカリ性を示す化合物であることを特徴とするものである。   According to a second aspect of the present invention, in the odor control material according to the first aspect, the alkali compound includes an alkali metal or an alkaline earth metal and exhibits alkalinity when water-solubilized. .

請求項3の発明は、請求項1の臭気抑制材において、前記アルカリ化合物は、カルシウム、マグネシウム、カリウム又はナトリウムのうちのいずれか1又は複数のものの炭酸塩、水酸化物若しくは酸化物のうちの少なくとも1つを含むことを特徴とするものである。   According to a third aspect of the present invention, in the odor control material of the first aspect, the alkali compound is one of a carbonate, hydroxide or oxide of one or more of calcium, magnesium, potassium or sodium. It is characterized by including at least one.

請求項4の発明は、請求項1の臭気抑制材において、前記非晶質鉄化合物は、非晶質酸化鉄または非晶質水酸化鉄を含み、結晶質酸化鉄、結晶質水酸化鉄、二価又は三価の鉄塩、鉄錯化合物、鉄イオン、元素鉄のいずれかの単体、又はそれらの2種類以上との混合物であることを特徴とするものである。   The invention of claim 4 is the odor control material according to claim 1, wherein the amorphous iron compound contains amorphous iron oxide or amorphous iron hydroxide, and crystalline iron oxide, crystalline iron hydroxide, A divalent or trivalent iron salt, an iron complex compound, iron ions, elemental iron, or a mixture of two or more thereof.

請求項5の発明は、請求項1〜4のいずれかに記載の臭気抑制材において、前記アルカリ化合物および前記鉄化合物を、無機物または有機物を主たる基質とする担体に担持または含浸させたものである。   A fifth aspect of the present invention is the odor suppressing material according to any one of the first to fourth aspects, wherein the alkali compound and the iron compound are supported or impregnated on a carrier having an inorganic or organic substance as a main substrate. .

請求項6の発明の有機性廃棄物の臭気抑制方法は、有機性廃棄物に対して、請求項1〜5のいずれかの臭気抑制材を添加して置くことにより、前記有機性廃棄物の臭気を抑制することを特徴とするものである。   The organic waste odor control method of the invention of claim 6 adds the odor control material according to any one of claims 1 to 5 to the organic waste, thereby placing the organic waste. It is characterized by suppressing odor.

請求項7の発明は、請求項6の臭気抑制方法において、前記有機性廃棄物は、動物の糞尿、生ゴミ、有機性汚泥、堆肥、動植物の遺体であることを特徴とするものである。   The invention of claim 7 is the odor control method of claim 6, characterized in that the organic waste is animal manure, raw garbage, organic sludge, compost, or animal and plant bodies.

本発明によれば、アルカリ化合物と鉄化合物からなる臭気抑制材を家畜排泄物、生ゴミ、有機性汚泥、堆肥等の有機性廃棄物に混入することでその臭気を短時間の内に効果的に抑制することができる。   According to the present invention, an odor suppressing material composed of an alkali compound and an iron compound is mixed with organic waste such as livestock excrement, raw garbage, organic sludge, and compost, so that the odor can be effectively obtained within a short time. Can be suppressed.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[腐植について]
「腐植」とは、「動植物の遺体が土壌中で微生物などによって分解された後、新たに合成(縮合、重合)されてできた分子量が数万から数十万程度の褐色か暗黒色の非結晶性有機物」といわれている。腐植は多様な物質の集合体であり、図1に示すように、有機物をピロリン酸ナトリウムや水酸化ナトリウムなどのアルカリ性物質で抽出することにより得られる物質をいう。この腐植物質は単位炭素当たりの黒色味の強い二次的高分子化合物であり、腐植化の進行に伴って単位炭素当たりの黒色味の強い二次的高分子化合物が形成され、腐植の色調が黄色、赤褐色、黒褐色へと変わる。このため、腐植化度を示すのに黒色化の度合いを用いる。
[About humus]
“Humus” refers to “brown or dark non-black, which has a molecular weight of about tens of thousands to hundreds of thousands of newly synthesized (condensed or polymerized) bodies after being decomposed by microorganisms in the soil. It is said to be “crystalline organic matter”. Humus is an aggregate of various substances, and refers to a substance obtained by extracting organic substances with an alkaline substance such as sodium pyrophosphate or sodium hydroxide, as shown in FIG. This humic substance is a secondary high molecular compound with a strong black taste per unit carbon, and as the humification progresses, a secondary high molecular compound with a strong black taste per unit carbon is formed, and the color of the humus is changed. It turns yellow, reddish brown, and blackish brown. For this reason, the degree of blackening is used to indicate the degree of humification.

本発明に記載の臭気抑制において対象となる有機性廃棄物には、動物の糞尿、生ゴミ、有機性汚泥、堆肥および動植物の遺体、ならびにこれらの有機物を含む液体が含まれる。有機物を含む液体としては、例えば糞尿スラリーなどのスラリー状物質、および堆肥製造時において余剰水分が滲出したレキ汁などがある。   The organic waste targeted for the odor control described in the present invention includes animal manure, raw garbage, organic sludge, compost and animal and plant bodies, and liquids containing these organic substances. Examples of the liquid containing organic matter include slurry substances such as manure slurry, and squeezed juice from which excess water exudes during compost production.

腐植化の進行度合いを評価するために、腐植化度、腐植酸含量および腐植酸の形態分析を行った。試料は105℃の乾燥機で48時間以上通風乾燥し、乾燥後の試料を粉砕して調製した。   In order to evaluate the progress of humification, humification degree, humic acid content and morphological analysis of humic acid were performed. The sample was prepared by air-drying for 48 hours or more in a dryer at 105 ° C., and the dried sample was pulverized.

腐植酸含量は、農林水産省が定める「泥炭および腐植酸質資材の試験方法」に準じて測定した。   The humic acid content was measured according to “Testing Method for Peat and Humic Acid Material” established by the Ministry of Agriculture, Forestry and Fisheries.

腐植化度については、泥炭の分解度指標として用いられる方法に準じて、ピロリン酸ナトリウム抽出液の波長550nmにおける吸光度を測定した。   About the degree of humification, the light absorbency in wavelength 550nm of the sodium pyrophosphate extract was measured according to the method used as a decomposition index of peat.

腐植酸の形態分析では、試料から水酸化ナトリウム溶液ないしピロリン酸ナトリウム・水酸化ナトリウム混液を用いて腐植を抽出後、抽出液を酸性化して腐植酸(沈殿部)とフルボ酸を分離し、得られた腐植酸を水酸化ナトリウム溶液で再溶解した溶液について、有機炭素含量と波長400および600nmにおける吸光度を測定した。腐植酸の分類法に基づき、色調係数(ΔlogK)と相対色度(RF)を算出した。色調係数(ΔlogK)は、波長400nmにおける吸光度と波長600nmにおける吸光度との差から次式に示すようにして求められる。
ΔlogK=ΔlogK400−ΔlogK600
(ただし、K400およびK600はそれぞれ、波長400nmおよび600nmにおける吸光度を示す。)
また、RFは腐植酸液の波長600nmにおける吸光度とKMnO消費量ないし有機炭素濃度から求めることができる。
In humic acid morphological analysis, humus is extracted from a sample using sodium hydroxide solution or sodium pyrophosphate / sodium hydroxide mixture, then the extract is acidified to separate humic acid (precipitate) and fulvic acid. About the solution which dissolved the obtained humic acid again in the sodium hydroxide solution, the organic carbon content and the light absorbency in wavelength 400 and 600 nm were measured. Based on the classification method of humic acid, a color tone coefficient (Δlog K) and a relative chromaticity (RF) were calculated. The color tone coefficient (ΔlogK) is obtained as shown in the following equation from the difference between the absorbance at a wavelength of 400 nm and the absorbance at a wavelength of 600 nm.
ΔlogK = ΔlogK 400 −ΔlogK 600
(However, K 400 and K 600 indicate the absorbance at wavelengths of 400 nm and 600 nm, respectively.)
RF can be determined from the absorbance of the humic acid solution at a wavelength of 600 nm and the amount of KMnO 4 consumed or the organic carbon concentration.

色調係数(ΔlogK)と相対色度(RF)を指標とする腐植化の進行度合いを図2に示す。このRFとΔlogKとの相関によって腐植酸を分類することが可能である。領域Aは高腐植化度領域、領域Rpは低腐植化度領域、B、Pは中間領域である。一般に、腐植化の進行(腐植酸の黒色化と安定化)に伴い、ΔlogKは小さくなり、RF値は大きくなる。土壌に本法を適用した場合、ΔlogKが0.7以下、RF値が80以上であればA型腐植酸に分類され、黒ボク土等の黒色土壌が含む腐植化が極めて進んだ腐植酸を意味する。   FIG. 2 shows the degree of progress of humification using the hue coefficient (ΔlogK) and relative chromaticity (RF) as indices. Humic acid can be classified by the correlation between RF and ΔlogK. Region A is a high humus degree region, region Rp is a low humus degree region, and B and P are intermediate regions. In general, as humification progresses (blackening and stabilization of humic acid), ΔlogK decreases and the RF value increases. When this method is applied to soil, if Δlog K is 0.7 or less and the RF value is 80 or more, it is classified as A-type humic acid, and humic acid that is very advanced in humification included in black soil such as black soil means.

そして図3に示すように、有機性廃棄物の腐植化前の物質、つまり非腐植物質は、腐植化過程においてRp−P−Aの経路で腐植化が進み、あるいはRp−B−Aの経路で腐植化が進む。   As shown in FIG. 3, the organic waste before humification, that is, the non-humic substance, is humated through the Rp-PA route in the humification process, or the Rp-BA route. Then humification progresses.

腐植酸の形態においては、水酸化ナトリウムによる抽出では遊離型腐植酸、また、ピロリン酸ナトリウム抽出では遊離型に加え、アルミニウム水酸化物や鉄酸化物等と複合体を形成している結合型腐植酸を抽出することができる。   In the form of humic acid, free humic acid is extracted by extraction with sodium hydroxide, and free humic acid is extracted by extraction with sodium pyrophosphate, and combined humus that forms a complex with aluminum hydroxide, iron oxide, etc. The acid can be extracted.

[腐植化促進材および臭気抑制材]
このような腐植物質を製造するには、自然界で有機物質の分解生成を待っていたのではあまりにも長時間を要する。ところが本願発明者らは、フリーストール牛舎より排出された家畜排泄物に対して堆肥化資材として再生紙製造プラントの排水処理汚泥であるペーパースラッジを高温処理することで得られるペーパースラッジ炭化物(PSC)、商品名ブラックライト(登録商標、道栄紙業株式会社製)を添加して混合し、一定周期で、堆積物をよく撹拌して積みなおしを行う、いわゆる切り返し作業を行い、性質変化を観察していたところ、PSC混合直後に臭気が著しく軽減することを発見した。また、家畜排泄物の温度は堆積後からゆるやかに上昇すること、また第2回目の切り返し後にも同様の温度上昇傾向を見た。しかも、温度は堆積物の底部に近いほど高く、水分率が高く還元状態に近いところでも発熱反応が起きていることを観察した。これと共に、PSCの添加、混入によって有機性廃棄物が発していた強烈な臭気が短時間の内に抑制されることも発見した。
[Humification promotion material and odor control material]
In order to produce such a humic substance, it takes a long time to wait for decomposition of organic substances in nature. However, the present inventors have made paper sludge carbide (PSC) obtained by high-temperature treatment of paper sludge, which is wastewater treatment sludge of a recycled paper manufacturing plant, as a composting material for livestock excrement discharged from a free stall barn. The product name Blacklight (registered trademark, manufactured by Doei Paper Industry Co., Ltd.) is added and mixed, and the deposit is thoroughly stirred and re-stacked at regular intervals, so-called turning work is performed, and the property change is observed. As a result, it was found that the odor was remarkably reduced immediately after PSC mixing. In addition, the temperature of livestock excrement gradually increased after deposition, and the same temperature increase tendency was observed after the second turnover. In addition, it was observed that the temperature was higher as it was closer to the bottom of the deposit, and that an exothermic reaction occurred even at a high moisture content and close to the reduced state. Along with this, it was also discovered that the intense odor generated by organic waste due to the addition and mixing of PSC is suppressed within a short time.

この現象から、本願発明者らは、PSCに含有されている何らかの成分が家畜排泄物のような有機性廃棄物に対して有効な腐植化促進作用をもたらすと共に、臭気抑制作用をもたらしているのではないかと仮定し、PSCの含有成分を分析し、かつ、その中から腐植化促進作用、臭気抑制作用を示す物質の特定を行った。   From this phenomenon, the inventors of the present application have brought about an effective humification promoting action against organic waste such as livestock excretion, and an odor suppressing action, as some components contained in PSC. Assuming that this is the case, the components contained in PSC were analyzed, and substances showing humification promoting action and odor suppressing action were identified.

PSCに含有される成分の分析結果は、図4の表1に示すようなものであった。PSC中には元素分析結果から酸化物に換算するとアルカリ化合物として酸化カルシウムを重量比15〜20%含有し、鉄化合物として酸化鉄を7〜20%含有していることが判明した。さらに、PSC中のカルシウムは古紙原料に填料として使われていた微細な炭酸カルシウムを主体とし、ごく一部が炭化の際に生石灰に変化している。鉄化合物は排水処理過程で無機凝集剤として使われていたポリ硫酸第二鉄([Fe(OH)(SO3−n/2)]を由来とするものであり、炭化の際にその半量が非晶質鉄となっている。また、酸化鉄、元素鉄を含む。 The analysis results of the components contained in PSC were as shown in Table 1 of FIG. From the elemental analysis results, it was found that the PSC contained 15 to 20% by weight of calcium oxide as an alkali compound and 7 to 20% of iron oxide as an iron compound when converted to an oxide. Furthermore, calcium in PSC is mainly composed of fine calcium carbonate that has been used as a filler for used paper raw materials, and only a small part is converted to quick lime during carbonization. The iron compound is derived from polyferric sulfate ([Fe 2 (OH) n (SO 4 ) 3-n / 2 )] m , which was used as an inorganic flocculant in the wastewater treatment process. Half of the amount is amorphous iron. It also contains iron oxide and elemental iron.

上述した腐植化過程でアルカリ化合物と鉄化合物は次のように作用すると推測される。アルカリ化合物は有機性廃棄物中に含まれている腐植物質やタンニンやリグニンなどのポリフェノール類(一次的な腐植酸様物質)を溶出させる。次に溶出された腐植物質やポリフェノール類、有機性廃棄物中に存在している有機酸が、鉄化合物の触媒作用を受け重合や縮合などの化学反応を起こす。そしてこの化学反応の際に、鉄化合物やアルカリ化合物に含有されている鉄やカルシウム、マグネシウムなどの金属が腐植物質生成の際の架橋物質として作用する。しかもこれら一連の反応は温度の上昇によってより促進されるが、鉄化合物は温度上昇作用にも寄与する。すなわち、アルカリ化合物および鉄化合物、特に酸化鉄が酸素を供給することにより有機性廃棄物中の還元状態を抑制する。ここで供給された酸素は有機性廃棄物中の物質の酸化反応ならびに好気的微生物反応を促進し発熱するとともに、アルカリ化合物は有機性廃棄物に含まれる酸性物質と中和反応することにより発熱する。これらの発熱量は微量であるが、家畜排泄物堆積物のような有機性廃棄物の大量の堆積により、その表面が強力な断熱材となって畜熱効果を高める。以上の発熱反応により腐植化は促進されることになる。   It is presumed that the alkali compound and the iron compound act as follows in the humification process described above. Alkaline compounds elute humic substances and polyphenols (primary humic acid-like substances) such as tannin and lignin contained in organic waste. Next, the eluted humic substances, polyphenols, and organic acids present in the organic waste are catalyzed by iron compounds to cause chemical reactions such as polymerization and condensation. In this chemical reaction, metals such as iron, calcium, and magnesium contained in the iron compound and the alkali compound act as a cross-linking substance when generating humic substances. Moreover, these series of reactions are further promoted by increasing the temperature, but the iron compound also contributes to the temperature increasing action. In other words, alkali compounds and iron compounds, particularly iron oxide, supply oxygen to suppress the reduced state in organic waste. The oxygen supplied here accelerates the oxidation reaction and aerobic microbial reaction of substances in organic waste, and generates heat, while the alkali compound generates heat by neutralizing with acidic substances contained in organic waste. To do. These calorific values are very small, but due to the large amount of organic waste such as livestock excrement deposits, the surface becomes a powerful heat insulating material and enhances the livestock heat effect. Humidification is promoted by the above exothermic reaction.

上述の発熱反応については次のようなメカニズムが推測される。   The following mechanism is assumed for the above exothermic reaction.

スラリー状糞尿や高水分糞尿では、大気中からの酸素供給が極めて少ない状態であり、また、糞尿内部の溶存酸素は微生物反応等により消費されるために、好気的な発酵は起りにくいといえる。しかし、腐植化促進材として非晶質鉄酸化物、結晶質鉄酸化物を添加した場合には、これらの酸化鉄化合物により糞尿内部液中に酸素が供給され、この酸素を利用する酵素反応および微生物の代謝反応を引き起こすことが推察される。   In slurry-like manure and high-water manure, oxygen supply from the atmosphere is extremely low, and dissolved oxygen in the manure is consumed by microbial reactions, etc., so aerobic fermentation is unlikely to occur. . However, when amorphous iron oxide or crystalline iron oxide is added as a humus accelerator, oxygen is supplied into the fecal urine liquid by these iron oxide compounds, It is presumed to cause a metabolic reaction of microorganisms.

すなわち、糞尿内部の溶存酸素濃度が低いときには、微生物の一部が生産する酵素による触媒作用によって鉄酸化物は酸素を放出し、二価に還元される。放出された酸素は糞尿中のセルロースや易分解製有機物の好気的微生物分解に利用されて、二酸化炭素と水、そして熱が得られる。一方で、酸素を放出し還元された二価鉄イオン(還元性鉄イオン)は、硫化水素やメチルメルカプタンなどの硫黄系臭気物質と化合して悪臭の発生を抑制するとともに、この二価鉄イオンは腐植物質と安定的な複合体を形成し、二次的な腐植酸の生成と腐植化の進行を促進する。   That is, when the dissolved oxygen concentration in manure is low, iron oxide releases oxygen by the catalytic action of an enzyme produced by a part of the microorganism and is reduced to bivalent. The released oxygen is used for aerobic microbial degradation of cellulose in manure and easily decomposable organic matter, and carbon dioxide, water, and heat are obtained. On the other hand, divalent iron ions reduced by releasing oxygen (reducible iron ions) combine with sulfur-based odorous substances such as hydrogen sulfide and methyl mercaptan to suppress the generation of bad odors, and this divalent iron ion Forms a stable complex with humic substances and promotes the production of secondary humic acid and the progress of humification.

このメカニズムを糞尿スラリーや堆肥滲出液などの水溶性腐植物質を含む液に適用した場合には、二価ないし三価の鉄イオンは水溶性腐植酸と安定的な腐植酸を形成し、その一部は沈殿する。   When this mechanism is applied to liquids containing water-soluble humic substances such as manure slurry and compost exudate, divalent or trivalent iron ions form water-soluble humic acid and stable humic acid. The part is precipitated.

この腐植化作用と共に臭気抑制作用のメカニズムについても解析した。それは図5に示すものである。   The mechanism of the odor control effect as well as the humification effect was analyzed. This is shown in FIG.

(i) アルカリ化合物が有機性廃棄物の臭気成分である揮発性脂肪酸(VFA)等の臭気物質を中和して不活化する。     (I) An alkali compound neutralizes and inactivates odorous substances such as volatile fatty acids (VFA) which are odorous components of organic waste.

(ii) 鉄化合物はメチルメルカプタンや硫化水素などの臭気の原因物質となる硫黄系化合物と化学反応(化合および吸着)を起こして不活化する。     (Ii) The iron compound is inactivated by causing a chemical reaction (combination and adsorption) with a sulfur-based compound that causes odor such as methyl mercaptan and hydrogen sulfide.

(iii) 鉄化合物は還元状態で2価鉄となり、VFAおよびイオウ(S)化合物と錯体を形成することにより安定化する。またイオウ化合物と化合して沈殿することにより不活化する。     (Iii) The iron compound becomes divalent iron in the reduced state and is stabilized by forming a complex with the VFA and the sulfur (S) compound. It is inactivated by combining with a sulfur compound and precipitation.

(iv) アルカリ性化合物と鉄化合物が腐植物質の生成を促進する。生成された腐植物質は、その機能によりアンモニア、アミン系臭気等を吸着し臭気の発生を抑制する。     (Iv) Alkaline compounds and iron compounds promote the formation of humic substances. The produced humic substance adsorbs ammonia, amine-based odor and the like by its function and suppresses the generation of odor.

(v) 腐植物質生成の過程でVFAおよびイオウ化合物やアンモニア、アミン類等の臭気発生成分が腐植物質に取り込まれることにより臭気が抑制される。     (V) Odor is suppressed by incorporating odor generating components such as VFA and sulfur compounds, ammonia and amines into the humic substance in the process of humic substance generation.

このような考察から、腐植化促進材として、また臭気抑制材として有用な物質は、アルカリ化合物と鉄化合物を主成分とするもので、アルカリ化合物は、アルカリ金属又はアルカリ土類金属を含み、水溶化した際にアルカリ性を示す化合物であり、特にカルシウム、マグネシウム、カリウム、ナトリウムのうちの1つ又は複数のものの炭酸塩、水酸化物若しくは酸化物の少なくとも1つを含むものが好ましく、他方、鉄化合物は、非晶質の鉄化合物を含み、結晶質酸化鉄、結晶質水酸化鉄、二価又は三価の鉄塩、鉄錯化合物、鉄イオン、元素鉄のいずれかの単体、又はそれらの2種類以上との混合物が好ましい。   From such considerations, substances useful as humification promoters and odor control materials are mainly composed of alkali compounds and iron compounds, and alkali compounds contain alkali metals or alkaline earth metals, and are water-soluble. A compound which shows alkalinity when it is converted, and preferably contains at least one of carbonate, hydroxide or oxide of one or more of calcium, magnesium, potassium and sodium, The compound includes an amorphous iron compound, crystalline iron oxide, crystalline iron hydroxide, divalent or trivalent iron salt, iron complex compound, iron ion, elemental iron alone, or their A mixture of two or more types is preferred.

本発明の臭気抑制材は、アルカリ化合物および鉄化合物を、無機物または有機物を主たる基質とする担体に担持または含浸させたものであってもよい。また、本発明の臭気抑制材は、上記担体に担持または含浸させたものを乾燥、焼成、炭化させて用いてもよい。前記無機物には、例えばゼオライトまたは粘土などがあり、前記有機物には、例えば木材チップまたはおがくずなどがある。   The odor-suppressing material of the present invention may be a material in which an alkali compound and an iron compound are supported or impregnated on a carrier having an inorganic or organic substance as a main substrate. In addition, the odor-suppressing material of the present invention may be used by drying, firing, and carbonizing what is supported or impregnated on the carrier. Examples of the inorganic material include zeolite and clay, and examples of the organic material include wood chips and sawdust.

上記臭気抑制材の添加量は、有機性廃棄物に対して少量、例えば1wt%であっても効果があるが、より多い方が好ましい。   The addition amount of the odor control material is effective even if it is a small amount, for example, 1 wt%, with respect to the organic waste, but a larger amount is preferable.

本発明の臭気抑制は鉄化合物のみを含有する臭気抑制材によっても達成しうるが、本発明に記載の臭気抑制材は、鉄化合物のみならずアルカリ化合物をも含むことが好ましい。   Although the odor suppression of the present invention can be achieved by an odor suppression material containing only an iron compound, the odor suppression material described in the present invention preferably contains not only an iron compound but also an alkali compound.

[実験例1](乳牛糞尿堆肥化試験)
1日2回の除糞作業をしているフリーストール牛舎より排出された水分率85%の家畜排泄物25tに対し、堆肥化資材としてアルカリ化合物として炭酸カルシウムを乾燥重量比10〜20%含有し、鉄化合物を乾燥重量比5〜20%含有する腐植化促進材兼臭気抑制材を家畜排泄物の含水重量に対して2%、500kgを添加してよく混合した。なお、鉄化合物はその半量は非晶質形態であった。試験区と同等の排泄物を用いて対照区を設定した。臭気抑制材混合後は30日に一度、よく攪拌して積みなおしを行う、いわゆる切り返し作業を行った。
[Experimental example 1] (dairy cow manure composting test)
Containing 25 to 20% of livestock excreta with a moisture content of 85% discharged from a free stall barn that performs defecation work twice a day, it contains 10 to 20% dry weight ratio of calcium carbonate as an alkali compound as composting material. The humification promoting material and odor control material containing 5 to 20% of the dry weight ratio of the iron compound was added at 2% and 500 kg with respect to the water content of the livestock excrement and mixed well. Half of the iron compound was in an amorphous form. A control group was set using excreta equivalent to the test group. After mixing the odor-suppressing material, a so-called reversing operation was carried out, in which thorough stirring was repeated once every 30 days.

臭気抑制材の混合直後に臭気が著しく軽減した。これは、臭気成分であるメチルメルカプタン、硫化水素などの硫黄系の臭気、および酪酸、イソ吉草酸、プロピオン酸などの揮発性脂肪酸系の臭気が腐植化促進材に含まれるアルカリ化合物によって中和されるとともに、鉄化合物による触媒作用により腐植物質と化合して取り込まれたことにより不活性となったためである。   Immediately after mixing of the odor control material, the odor was remarkably reduced. This is because the odorous components such as methyl mercaptan and sulfur sulfide, and volatile fatty acid odors such as butyric acid, isovaleric acid, and propionic acid are neutralized by the alkali compounds contained in the humification promoter. In addition, it became inactive by being combined with humic substances by the catalytic action of the iron compound.

堆積時の温度(表面からの深度50cm)では、試験区では堆積後からゆるやかに上昇して、30日後の第1回切り返し時には約37℃に達した。一方で対照区では温度上昇がほとんど見られなかった。60日後の第2回切り返し時においても同様の傾向がみられた。試験区では温度が約40℃に達した。   At the temperature at the time of deposition (depth of 50 cm from the surface), in the test section, the temperature gradually increased after the deposition, and reached about 37 ° C. at the first turning after 30 days. On the other hand, there was almost no temperature increase in the control group. The same tendency was observed at the second turnover after 60 days. In the test section, the temperature reached about 40 ° C.

また温度は堆積物の底部に近いほど高く、水分率が高く還元状態に近いところでも発熱反応が起きていることから、腐植化促進材兼臭気抑制材に含有している鉄、特に酸化鉄成分による酸素供給が酸化反応による発熱を誘引するとともに、好気性微生物の活性を高めるものと考えられる。これらの発熱量は微量であるが、大量の堆積により家畜排泄物堆積物表面が強力な断熱材となっていることから畜熱効果が高かったと考えられる。   In addition, the temperature is higher near the bottom of the deposit, and since the exothermic reaction occurs even in a place where the moisture content is high and close to the reduced state, iron contained in the humification promoting material and odor control material, particularly the iron oxide component It is considered that the oxygen supply caused by oxygen induces heat generation due to oxidation reaction and enhances the activity of aerobic microorganisms. Although these calorific values are very small, it is thought that the effect of animal heat was high because the surface of the animal excrement deposits became a powerful heat insulating material due to the large amount of accumulation.

90日後の第3回切り返しにおいては温度上昇は低く、むしろ低下傾向にあった。これは発熱に必要なアルカリ化合物、鉄化合物の消費によるものであると考えられる。   In the third turn-back after 90 days, the temperature rise was low but rather tended to decline. This is considered to be due to the consumption of alkali compounds and iron compounds necessary for heat generation.

[実験例2](乳牛糞尿堆肥化試験)
1日2回の除糞作業をしているフリーストール牛舎において、朝夕2回の除糞作業後に1日60kg/日・頭と想定した排泄糞尿総量の2%、1.2kg/日・頭に相当するPSCを散布した。散布されたPSCは、牛舎内の牛により攪拌されてよく糞尿に混合した。牛舎へのPSC散布は一週間毎に行った。
[Experimental example 2] (dairy cow manure composting test)
In a free stall barn where defecation work is performed twice a day, 2% of the total excreta excretion assumed to be 60 kg / day / head after daily defecation work in the morning and evening, 1.2 kg / day / head The corresponding PSC was sprayed. The sprayed PSC was agitated by the cows in the barn and mixed with manure. PSC was sprayed in the barn every week.

上記の手順により、PSCを重量比2%含む牛糞尿25tをコンクリート製遮水床、屋根を有する構造の堆肥盤に堆積した。この時点での水分量は79.3%であった。また、同時にPSCを含まない同量の牛糞尿を堆積した対照区を設定した。対照区の水分量は83.7%であった。   By the above procedure, 25 t of cow manure containing 2% by weight of PSC was deposited on a compost having a structure having a concrete impermeable floor and a roof. The water content at this time was 79.3%. At the same time, a control group in which the same amount of cow manure without PSC was deposited was set. The water content in the control group was 83.7%.

管理は1ヶ月毎に1度の切返し作業とし、堆積期間中の温度変化、および切返し時における臭気の状況を観察した。温度変化および臭気の状況の調査日は、8月10日、9月10日、10月13日および11月15日とした。臭気の変化は図9に、温度変化は図10に示した。なお、総合臭気の測定は、新コスモス電機製XP329IIIの臭気センサを使用した。そして表面臭気は堆積表面1cmの高さでの臭気、内部は30cm深度の臭気を示している。また、硫化水素、メチルメルカプタン、アンモニアは、ガステック社製の検知管を用いて測定した。   The management was carried out once every month, and the temperature change during the deposition period and the state of odor at the time of switching were observed. The survey dates for temperature change and odor status were August 10, September 10, October 13, and November 15. The change in odor is shown in FIG. 9, and the change in temperature is shown in FIG. The total odor was measured using an XP329III odor sensor manufactured by New Cosmos Electric. And the surface odor shows the odor at the height of 1 cm of the deposition surface, and the inside shows the odor at a depth of 30 cm. Further, hydrogen sulfide, methyl mercaptan, and ammonia were measured using a detector tube manufactured by Gastec.

腐植化促進の経過は、図6〜図8において堆積後1〜3ヶ月のサンプル写真にそれぞれ示す通りである。これらの写真において左側が試験区のサンプル(PSC区)、右側が対照区のサンプルである。図6〜図8から判るように、堆積後1〜3ヶ月ともPSC区(左側)は高い黒色度を示していた。堆積後2ヶ月目からは麦稈などの粗大有機物も柔らかくなり分解が進んでいるのが認められた。また、粗大有機物の柔軟化にともない空気層の少ない緻密な堆積状態となった。   The progress of humification promotion is as shown in the sample photographs of 1 to 3 months after deposition in FIGS. In these photographs, the sample on the left is the sample in the test group (PSC group), and the sample on the right is the sample in the control group. As can be seen from FIGS. 6 to 8, the PSC section (left side) showed high blackness in 1 to 3 months after deposition. From the second month after the deposition, coarse organic matter such as wheat straw became soft and decomposed. Moreover, it became a dense deposition state with few air layers with the softening of coarse organic matter.

乳牛糞尿堆肥化試験の温度変化および臭気の状況の結果を以下に考察する。   The results of temperature change and odor status of dairy manure composting test are discussed below.

試験開始1ヶ月目の初回調査時(8月10日)にはPSC区の温度が43℃と高く、対照区では33℃と温度差が高いことから、ニオイセンサによる測定結果もPSC区の方が1.5倍程度高くなった。官能的にはPSC区はアンモニア臭気が強く感じられ、対照区では糞尿臭気が強く感じられた。これはPSC区が発酵による温度上昇を示しているからであり、アンモニアの揮発量が高かったことによるものと推察される。   At the time of the first survey in the first month of the test (August 10), the temperature in the PSC group was as high as 43 ° C, and the temperature difference was as high as 33 ° C in the control group. Was about 1.5 times higher. Sensoryally, the PSC group felt a strong ammonia odor, while the control group felt a strong odor of manure. This is because the PSC section shows an increase in temperature due to fermentation, which is presumably due to the high volatilization amount of ammonia.

9月10日の調査では、明らかにPSC区の臭気が抑制されているのを切り返し作業中に実感することができた。ニオイセンサによる測定結果も、堆積物内部の臭気で対照区933に対し、PSC区404と半分以下の数値であった。検知管による硫化水素の測定では、対照区でわずかに検出された。アンモニアはPSC区が高かったが、これは発酵による易分解性有機物が無機化する際にアンモニアを生成し、揮発しているためと考えられる。   In the survey on September 10, we were able to realize that the odor in the PSC area was clearly suppressed during the turnover work. The measurement result by the odor sensor was also a numerical value less than half of the PSC group 404 with respect to the control group 933 by the odor inside the deposit. In the measurement of hydrogen sulfide using a detector tube, a slight amount was detected in the control group. Ammonia was high in the PSC section, but this is thought to be due to the generation and volatilization of ammonia when the readily decomposable organic matter is mineralized by fermentation.

10月13日の調査では、PSC区と対照区の温度が逆転し、対照区の方が高い(37℃)温度を示した。官能的にはPSC区ではほとんど不快な糞尿臭気は感じられなかったが、対照区は著しい糞尿臭気を放っており、アンモニアの刺激臭も強くなった。   In the survey on October 13, the temperatures of the PSC group and the control group were reversed, and the control group showed a higher temperature (37 ° C.). Sensoryally, almost no unpleasant manure odor was felt in the PSC group, but the control group released a remarkable manure odor, and the stimulated odor of ammonia became stronger.

11月15日の調査では、PSC区、対照区双方とも、発酵温度の低下と外気温の低下の影響もあり、揮発性の悪臭はあまり感じられなかった。特にPSC区では、堆肥盤の雰囲気や堆積物表面の臭気はほぼ無臭に近い状態であった。内部の臭気は、対照区では10月13日測定時の臭気と同程度であるのに対し、PSC区では10月13日の測定値からほぼ半減し、対照区の1/3程度まで臭気が低下した。対照区内部では嫌気的な発酵が始まっており、内部から発生するガスの臭気は700〜800と極めて高かった。対照区における硫化水素臭気は、10月13日の測定値の10倍の8ppmとなった。PSC区では硫化水素は検出されなかった。またアンモニアは、両試験区とも10月13日の調査時よりも低下した。これは、発酵温度の低下と外気温の低下によるものと考えられる。   In the survey on November 15th, both the PSC and control plots were affected by a decrease in fermentation temperature and a decrease in outside air temperature, and volatile odors were hardly felt. Particularly in the PSC zone, the atmosphere of the compost board and the odor on the surface of the deposit were almost odorless. The internal odor is about the same as the odor measured on October 13 in the control group, whereas the PSC group is almost halved from the measured value on October 13, and the odor is about 1/3 of the control group. Declined. Anaerobic fermentation has begun inside the control zone, and the odor of the gas generated from the inside was extremely high at 700 to 800. The hydrogen sulfide odor in the control group was 8 ppm, 10 times the value measured on October 13. Hydrogen sulfide was not detected in the PSC zone. Ammonia was lower in both test zones than on the October 13 survey. This is considered due to a decrease in fermentation temperature and a decrease in outside air temperature.

両試験区における堆肥化および腐植化の状況は、明らかにPSC区の堆肥化が進行しており、腐植化の進行により黒色化したことが確認されている(図6から図8参照)。堆肥の植物に対する生長阻害性をみた幼植物(コマツナ)の栽培では、PSC区の糞尿で低い確率ながら発芽がみられ、腐植化の進行による生長阻害因子の抑制が示唆されている。   It is confirmed that composting and humification in both test plots are clearly progressing in the PSC zone and blackened due to the progress of humification (see FIGS. 6 to 8). In the cultivation of young plants (Komatsuna) that showed the growth inhibitory properties of compost plants, germination was observed with a low probability in manure in the PSC section, suggesting suppression of growth inhibitory factors by the progress of humification.

今回の試験で供試した糞尿は水分率が80%と非常に高く、対照区でみられたようにほとんど堆肥化の進行がみられないとされてきた。しかし、PSCの添加により堆肥化のプロセスに好転的な反応が見られたことは、今後の糞尿の処理あるいは有効利用の観点からも非常に興味深い。   The feces and urine tested in this test had a very high water content of 80%, and it has been reported that composting has hardly progressed as seen in the control plot. However, it was very interesting from the viewpoint of the future treatment or effective use of manure that the composting process was improved by the addition of PSC.

[実験例3](豚糞尿堆肥化試験)
新鮮な豚糞に対しPSCを重量比2%の割合でよく混合した。この状態では水分含量が高いために流動性が高く堆積不可能であるため、1週間毎にモミ殻と容量比2:1で混合し、堆積可能な硬さに調整してから堆積ピットに入れた。管理上1ヶ月毎にピットを移動させているが、これを切り返しとした。堆積後の堆肥の水分量は約75〜80%であった。同時にPSCを混合しない対照区を設定した。堆積日は9月12日であり、調査日は9月15日、10月9日、11月6日、12月4日および1月17日とした。測定した臭気の変化は図11に、温度変化は図12に示した。
[Experiment 3] (Pig manure composting test)
PSC was mixed well with fresh pig dung at a ratio of 2% by weight. In this state, since the water content is high, fluidity is high and deposition is impossible. Therefore, it is mixed with the fir shell at a volume ratio of 2: 1 every week, adjusted to a depositable hardness, and then put into the deposition pit. It was. For administrative purposes, pits are moved every month, but this was turned back. The moisture content of the compost after deposition was about 75-80%. At the same time, a control group in which PSC was not mixed was set. The deposition date was September 12, and the survey dates were September 15, October 9, November 6, December 4, and January 17. The measured change in odor is shown in FIG. 11, and the change in temperature is shown in FIG.

豚糞尿堆肥化試験の温度変化および臭気の状況の結果を以下に考察する。   The results of the temperature change and odor status of the pig manure composting test are discussed below.

豚糞は乳牛と比較して刺激臭が強く、堆積直後のニオイセンサのデータでは乳牛の7〜10倍の数値を示した。堆積後3日目にあたる9月15日の調査では両試験区とも著しい悪臭を放っていたが、ニオイセンサのデータにおいてはPSC区の臭気は対照区の臭気と比較して3割程度抑制されていた。また、PSC区は対照区において高濃度で検出されたメチルメルカプタンおよび硫化水素などの硫黄系臭気が検出されず、官能検査におけるニオイも硫黄系臭気とは異質なものであった。アンモニアはPSC区が100ppmであるのに対し、対照区では25ppmであった。調査日周辺の堆肥温度はPSC区のほうが対照区よりも高く、堆肥温度が堆肥化の進行に少なからず影響を及ぼしているものと考えられる。   Pig feces had a stronger irritating odor than dairy cows, and the odor sensor data immediately after deposition showed a value 7 to 10 times that of dairy cows. In the survey on September 15th, the third day after deposition, both test areas gave off a significant odor. However, in the odor sensor data, the odor in the PSC area was suppressed by about 30% compared to the odor in the control area. It was. Further, in the PSC group, sulfur-based odors such as methyl mercaptan and hydrogen sulfide detected at a high concentration in the control group were not detected, and the odor in the sensory test was also different from the sulfur-based odor. Ammonia was 25 ppm in the control group compared to 100 ppm in the PSC group. The compost temperature around the survey date is higher in the PSC group than in the control group, and it is considered that the compost temperature has a considerable influence on the progress of composting.

10月9日の調査では、堆積直後と比較して内部臭気が60%程度減少した。一度目の切り返しの後、両試験区とも温度が著しく上昇した。特にPSC区では65℃まで温度が上昇し、対照区と比較して6〜7℃高かった。一方、アンモニアは温度の低い対照区の方が高くなり、堆肥化の過程での反応プロセスの差異をうかがわせている。   In the survey on October 9, the internal odor decreased by about 60% compared to immediately after deposition. After the first turnover, the temperature rose significantly in both test sections. In particular, in the PSC group, the temperature rose to 65 ° C., which was 6 to 7 ° C. higher than that in the control group. On the other hand, ammonia is higher in the control zone where the temperature is lower, indicating a difference in the reaction process during composting.

11月6日の調査では、PSC区の堆肥温度が70℃を超え、対照区との温度差が10℃以上となった。臭気は両試験区とも一定の割合で低下したが、アンモニアについては対照区が検知管の検出上限である200ppmを超えた数値であるのに対し、PSC区は10月9日の調査と比較してわずかに減少した。   In the survey on November 6, the compost temperature in the PSC group exceeded 70 ° C, and the temperature difference from the control group was 10 ° C or more. Odor decreased at a constant rate in both test plots, but for ammonia, the control plot exceeded the detection limit of 200 ppm, whereas the PSC plot compared with the October 9 survey. Slightly decreased.

12月4日の調査では、PSC区の堆肥温度はほぼピークを超え、温度が低下に転じた。しかし、切り返し後には再び70℃以上まで上昇した。この時点で、PSC区の臭気は官能的には糞尿臭は感じられず、アンモニアの刺激臭のみが強く感じられた。PSC区のアンモニア濃度はさらに低下し100ppmとなったが、対照区の濃度は相変わらず200ppm以上を示していた。   In the December 4 survey, the compost temperature in the PSC area almost exceeded the peak, and the temperature began to drop. However, it rose again to 70 ° C or higher after switching. At this time, the odor in the PSC group was not sensed in terms of feces and urine, but only the stimulating odor of ammonia was strongly felt. The ammonia concentration in the PSC group was further reduced to 100 ppm, while the concentration in the control group was still 200 ppm or more.

堆積後4ヶ月目にあたる1月17日の調査では、PSC区はほぼ完熟に近い堆肥となった。アンモニア濃度は36ppmと低く、対照区の200ppm超とは対称的な結果となった。ニオイセンサによる内部臭気のデータは260まで低下し、家畜舎の雰囲気に近づいた。対照区でも堆肥温度の上昇には減速感がみられるようになった。   According to the survey on January 17th, the fourth month after deposition, the PSC ward became compost that was almost fully ripe. The ammonia concentration was as low as 36 ppm, which was a symmetric result with the control group exceeding 200 ppm. The internal odor data from the odor sensor dropped to 260, approaching the atmosphere of a livestock barn. Even in the control plot, there was a slowdown in the increase in compost temperature.

1月17日の時点での堆肥の分析結果を図13に示す。両試験区間の温度差により、PSC区は対照区と比較して著しく水分が低下し、堆肥に触れてもべたつくようなことがなかった。窒素の形態分析の結果、PSC区の硝酸態窒素が著しく高く検出された。一方、対照区も60℃以上に温度上昇し、従来の堆肥製造上の観点からみれば良好な発酵をしたともいえる。しかし、両試験区においてできた堆肥は、上記堆肥の分析の結果(図13)にみられるように全く異質なものであった。   The analysis result of compost as of January 17 is shown in FIG. Due to the temperature difference between the two test sections, the PSC group showed a marked decrease in moisture compared to the control group, and there was no stickiness even when touching the compost. As a result of the nitrogen morphological analysis, nitrate nitrogen in the PSC section was detected extremely high. On the other hand, the temperature of the control group also rose to 60 ° C. or more, and it can be said that the fermentation was good from the viewpoint of conventional compost production. However, the compost produced in both test areas was quite different as seen in the results of the above analysis of compost (FIG. 13).

[実験例4](鶏糞尿堆肥化試験)
新鮮な鶏糞11.6tに対しPSCを重量比2.5%の割合で添加してよく混合した。同じ鶏糞を用いてPSCを混合しない対照区を設定した。管理は慣行に従い、原則的に切り返しは行わず、必要に応じて切り返しを行った。鶏糞の堆積日は9月12日、調査日は9月16日、10月9日、11月6日、12月4日および1月17日とした。測定した臭気の変化は図14に示す。
[Experimental example 4] (chicken manure composting test)
PSC was added to fresh chicken manure 11.6 t at a ratio of 2.5% by weight and mixed well. A control group in which PSC was not mixed was set using the same chicken dung. Management was in accordance with common practice, and in principle, no reversal was performed, and reversal was performed as necessary. The accumulation date of chicken dung was September 12, and the survey dates were September 16, October 9, November 6, December 4, and January 17. The measured change in odor is shown in FIG.

牛糞や豚糞の場合と異なり、PSC区では堆肥温度の上昇がみられず、対照区でも堆積直後に温度上昇がみられただけで、両試験区とも堆肥温度は試験期間中低下傾向にあった。12月13日に一度切り返しを行ったが、両試験区とも再び温度が上昇することはなかった。   Unlike the case of cow dung and pig dung, the compost temperature did not increase in the PSC group, and the temperature increased immediately after deposition in the control group. The compost temperature in both test groups tended to decrease during the test period. It was. Although it turned over once on December 13, the temperature did not rise again in both test sections.

臭気測定結果をみると、堆積直後(9月16日)の硫化水素およびメチルメルカプタンの臭気抑制効果が著しい。一方、ニオイセンサによる総合臭気の測定結果ではPSC区において高くなっており、著しい臭気抑制反応がPSC混合直後から起っているものと推測される。   From the odor measurement results, the odor suppression effect of hydrogen sulfide and methyl mercaptan immediately after deposition (September 16) is remarkable. On the other hand, the total odor measurement result by the odor sensor is high in the PSC section, and it is estimated that a remarkable odor suppression reaction occurs immediately after the PSC mixing.

臭気測定結果では、試験期間中通じてPSC区におけるニオイセンサの数値は対照区の1/2程度であった。対照区では堆積後3ヶ月間に硫化水素の発生がみられたが、PSC区では低いレベルに抑制されていた。アンモニアは、堆積当初には対照区における値がPSC区における値を上回ったが、その後両試験区間で大きな差は見られなかった。   As a result of odor measurement, the value of the odor sensor in the PSC group throughout the test period was about ½ of that in the control group. In the control group, hydrogen sulfide was generated in 3 months after deposition, but in the PSC group, it was suppressed to a low level. As for ammonia, the value in the control group at the beginning of deposition exceeded the value in the PSC group, but thereafter there was no significant difference between the two test sections.

実験例4で使用した鶏糞は敷料をほとんど含まず、水分量も比較的低めであり、鶏糞特有の粘ちょう性が高い性状であった。投入したPSCはよく混合されたが、鶏糞中で余剰水分を吸水し鶏糞そのものが固結して臭気抑制反応が制限されたものと考えられる。   The chicken manure used in Experimental Example 4 contained almost no litter, had a relatively low water content, and had a high consistency characteristic of chicken manure. The charged PSC was well mixed, but it is thought that the odor suppression reaction was restricted by absorbing excess water in the chicken dung and solidifying the chicken dung itself.

上記の実験例1〜4の結果から、PSCには家畜糞尿の悪臭を著しく抑制する働きがあることが認められた。 From the results of the above Experimental Examples 1 to 4, it was recognized that PSC has a function of remarkably suppressing the malodor of livestock manure.

図1は、一般的な腐植の分別の説明図である。FIG. 1 is an explanatory view of general humus separation. 図2は、色調係数(ΔlogK)と相対色度(RF)を指標とする腐植化の進行度合いの説明図である。FIG. 2 is an explanatory diagram of the degree of progress of humification using the hue coefficient (ΔlogK) and relative chromaticity (RF) as indices. 図3は、腐植化過程の説明図である。FIG. 3 is an explanatory diagram of the humification process. 図4は、PSCの分析結果を示す表1である。FIG. 4 is Table 1 showing the results of PSC analysis. 図5は、本発明の腐植化促進兼臭気抑制材による腐植化促進作用と臭気抑制作用の説明図である。FIG. 5 is an explanatory diagram of the humification promoting action and the odor inhibiting action by the humification promoting and odor suppressing material of the present invention. 図6は、実験例2における腐植化実験開始1ヶ月後の腐植化サンプル(左側)と非腐植化サンプル(右側)との対比写真である。FIG. 6 is a contrast photograph of a humus sample (left side) and a non-humus sample (right side) one month after the start of the humus experiment in Experimental Example 2. 図7は、本発明の実験例2における腐植化実験開始2ヶ月後の腐植化サンプル(左側)と非腐植化サンプル(右側)との対比写真である。FIG. 7 is a contrast photograph of a humus sample (left side) and a non-humus sample (right side) two months after the start of the humification experiment in Experimental Example 2 of the present invention. 図8は、本発明の実験例2における腐植化実験開始3ヶ月後の腐植化サンプル(左側)と非腐植化サンプル(右側)との対比写真である。FIG. 8 is a comparison photograph of a humus sample (left side) and a non-humus sample (right side) 3 months after the start of the humus experiment in Experimental Example 2 of the present invention. 図9は、本発明の実験例2(乳牛糞尿堆肥化試験)における臭気測定結果を示す表である。FIG. 9 is a table showing odor measurement results in Experimental Example 2 (dairy manure composting test) of the present invention. 図10は、本発明の実験例2(乳牛糞尿堆肥化試験)における温度変化を示したグラフである。FIG. 10 is a graph showing temperature changes in Experimental Example 2 (dairy cow manure composting test) of the present invention. 図11は、本発明の実験例3(豚糞尿堆肥化試験)における臭気測定結果を示す表である。FIG. 11 is a table showing odor measurement results in Experimental Example 3 (pig manure composting test) of the present invention. 図12は、本発明の実験例3(乳牛糞尿堆肥化試験)における温度変化を示したグラフである。FIG. 12 is a graph showing temperature changes in Experimental Example 3 (dairy cow manure composting test) of the present invention. 図13は、本発明の実験例3(乳牛糞尿堆肥化試験)における堆肥の分析結果を示す表である。FIG. 13 is a table showing the analysis results of compost in Experimental Example 3 (dairy cow manure composting test) of the present invention. 図14は、本発明の実験例4(鶏糞尿堆肥化試験)における臭気測定結果を示す表である。FIG. 14 is a table showing odor measurement results in Experimental Example 4 (chicken manure composting test) of the present invention.

Claims (7)

アルカリ化合物と非晶質鉄化合物とを含有することを特徴とする臭気抑制材。   An odor suppressing material comprising an alkali compound and an amorphous iron compound. 前記アルカリ化合物は、アルカリ金属又はアルカリ土類金属を含み、水溶化した際にアルカリ性を示す化合物であることを特徴とする請求項1に記載の臭気抑制材。   The odor suppressing material according to claim 1, wherein the alkali compound includes an alkali metal or an alkaline earth metal and exhibits alkalinity when water-solubilized. 前記アルカリ化合物は、カルシウム、マグネシウム、カリウム又はナトリウムのいずれか1又は複数の炭酸塩、水酸化物、酸化物のうちの少なくとも1つを含むことを特徴とする請求項1に記載の臭気抑制材。   2. The odor control material according to claim 1, wherein the alkali compound includes at least one of a carbonate, a hydroxide, and an oxide of any one or more of calcium, magnesium, potassium, and sodium. . 前記非晶質鉄化合物は、非晶質酸化鉄または非晶質水酸化鉄を含み、結晶質酸化鉄、結晶質水酸化鉄、二価又は三価の鉄塩、鉄錯化合物、鉄イオン、元素鉄のいずれかの単体、又はそれらの2種類以上との混合物であることを特徴とする、請求項1に記載の臭気抑制材。   The amorphous iron compound includes amorphous iron oxide or amorphous iron hydroxide, crystalline iron oxide, crystalline iron hydroxide, divalent or trivalent iron salt, iron complex compound, iron ion, The odor-suppressing material according to claim 1, wherein the odor-suppressing material is any one of elemental irons or a mixture of two or more of them. 前記アルカリ化合物および前記非晶質鉄化合物を、無機物または有機物を主たる基質とする担体に担持または含浸させた、請求項1〜4のいずれかに記載の臭気抑制材。   The odor suppressing material according to any one of claims 1 to 4, wherein the alkali compound and the amorphous iron compound are supported or impregnated on a carrier mainly composed of an inorganic substance or an organic substance. 有機性廃棄物に対して、請求項1〜5のいずれかの臭気抑制材を添加して置くことにより、前記有機性廃棄物の臭気を抑制することを特徴とする有機性廃棄物の臭気抑制方法。   The odor control of the organic waste characterized by suppressing the odor of the organic waste by adding the odor control material according to any one of claims 1 to 5 to the organic waste. Method. 前記有機性廃棄物は、動物の糞尿、生ゴミ、有機性汚泥、堆肥、動植物の遺体であることを特徴とする請求項6に記載の有機性廃棄物の臭気抑制方法。   The organic waste odor control method according to claim 6, wherein the organic waste is animal manure, raw garbage, organic sludge, compost, or a plant and animal remains.
JP2005089347A 2004-11-02 2005-03-25 Bad smell controlling material and method for controlling bad small of organic waste Pending JP2006150335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089347A JP2006150335A (en) 2004-11-02 2005-03-25 Bad smell controlling material and method for controlling bad small of organic waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004319940 2004-11-02
JP2005089347A JP2006150335A (en) 2004-11-02 2005-03-25 Bad smell controlling material and method for controlling bad small of organic waste

Publications (1)

Publication Number Publication Date
JP2006150335A true JP2006150335A (en) 2006-06-15

Family

ID=36629242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089347A Pending JP2006150335A (en) 2004-11-02 2005-03-25 Bad smell controlling material and method for controlling bad small of organic waste

Country Status (1)

Country Link
JP (1) JP2006150335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654887B1 (en) * 2023-08-08 2024-05-08 한국원자력연구원 Method for preparing deodorant composition and deodorant composition prepared therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142166A (en) * 1992-11-13 1994-05-24 Nippon Steel Corp Air cleaner and its production
JPH11128662A (en) * 1997-10-31 1999-05-18 Mitsubishi Paper Mills Ltd Deodorization
JP2000288592A (en) * 1999-04-07 2000-10-17 Kurita Water Ind Ltd Method for deodorizing dehydrated cake and deodorant
JP2003094095A (en) * 2001-09-26 2003-04-02 Someya:Kk Fowl waste fermentation method, fowl waste fermented material, and matter using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142166A (en) * 1992-11-13 1994-05-24 Nippon Steel Corp Air cleaner and its production
JPH11128662A (en) * 1997-10-31 1999-05-18 Mitsubishi Paper Mills Ltd Deodorization
JP2000288592A (en) * 1999-04-07 2000-10-17 Kurita Water Ind Ltd Method for deodorizing dehydrated cake and deodorant
JP2003094095A (en) * 2001-09-26 2003-04-02 Someya:Kk Fowl waste fermentation method, fowl waste fermented material, and matter using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654887B1 (en) * 2023-08-08 2024-05-08 한국원자력연구원 Method for preparing deodorant composition and deodorant composition prepared therefrom

Similar Documents

Publication Publication Date Title
Wang et al. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation
Ren et al. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission
Montes et al. SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options
Jeong et al. Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting
Ren et al. New insight of tertiary-amine modified bentonite amendment on the nitrogen transformation and volatile fatty acids during the chicken manure composting
Rihani et al. In-vessel treatment of urban primary sludge by aerobic composting
Huang et al. Carbon and N conservation during composting: A review
Yadav et al. Integrated composting–vermicomposting process for stabilization of human faecal slurry
JP5985477B2 (en) Mineral-releasing compost and method for soil purification using the same
Sharma et al. Vermicomposting: a green technology for organic waste management
JP3433123B2 (en) Fermentation promoter
US20170008790A1 (en) Methods for reducing greenhouse emissions from animal manure
EP2931680B1 (en) Organic fertilizer and method of its production
JP2006151787A (en) Humification accelerating agent, method of humifying organic material and humified material
Hao et al. Nitrogen transformation and losses during composting and mitigation strategies
KR100465534B1 (en) Wastewater treatment of domestic animals feces and urine
Khan et al. Complementing compost with biochar for agriculture, soil remediation and climate mitigation
Zhang et al. Industrial-scale composting of swine manure with a novel additive-yellow phosphorus slag: Variation in maturity indicators, compost quality and phosphorus speciation
Muchovej et al. Future directions of by-products and wastes in agriculture
JP2006150335A (en) Bad smell controlling material and method for controlling bad small of organic waste
RU2410337C2 (en) Method for wastewater silt and slurring briquetting
Nakasaki et al. Effect of bulking agent on the reduction of NH3emissions during thermophilic composting of night-soil sludge
KR102102727B1 (en) Manufacturing method for slowing compost release using livestock excretion and slowing compost manufactured thereby
Sayara et al. Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation, Processes 2021; 9: 1844
Miller Accumulation and consumption of odorous compounds in feedlot soils under aerobic, fermentative, and anaerobic respiratory conditions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518