JP2006150807A - Mold for molding fine structure, preparation method of mold for molding fine structure and molding method of fine structure - Google Patents

Mold for molding fine structure, preparation method of mold for molding fine structure and molding method of fine structure Download PDF

Info

Publication number
JP2006150807A
JP2006150807A JP2004346205A JP2004346205A JP2006150807A JP 2006150807 A JP2006150807 A JP 2006150807A JP 2004346205 A JP2004346205 A JP 2004346205A JP 2004346205 A JP2004346205 A JP 2004346205A JP 2006150807 A JP2006150807 A JP 2006150807A
Authority
JP
Japan
Prior art keywords
mold
forming
layer
fine structure
carbon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004346205A
Other languages
Japanese (ja)
Other versions
JP4533730B2 (en
Inventor
Yoichi Ogawa
容一 小川
Eiji Koyama
栄二 小山
Toshishige Shibazaki
利成 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004346205A priority Critical patent/JP4533730B2/en
Publication of JP2006150807A publication Critical patent/JP2006150807A/en
Application granted granted Critical
Publication of JP4533730B2 publication Critical patent/JP4533730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold capable of manufacturing a precise, fine structure in a highly efficient manner; to provide a method for preparing this mold easily and at a low cost; and to provide a method for highly efficiently molding the precise, fine structure using this mold. <P>SOLUTION: A prototype 11, on the surface of which a needed unevenness pattern 11a is formed, is prepared. On the surface, on which the unevenness pattern is formed, of the prototype 11, a carbon layer 2 consisting of graphite and the like is formed. Using the carbon layer 2 as a cathode, a metal layer 3 by electroplating, such as nickel, is formed. The interface of the unevenness pattern 11a and the carbon layer 2 is separated to obtain a mold 1A for molding a fine structure. Between the unevenness pattern 2a of the mold 1A and the substrate 14 a molding material 15 is uniformly extended to transfer the unevenness pattern 11a of the prototype 11 to the surface of the molding material 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細構造体成形用型材、微細構造体成形用型材の作製方法及び微細構造体の成形方法に係り、特に、型材の離型性及び耐久性を向上させる手段に関する。   The present invention relates to a mold material for forming a fine structure, a method for producing a mold material for forming a fine structure, and a method for forming a fine structure, and more particularly, to a means for improving mold releasability and durability.

近年、半導体装置、記録媒体、光学素子、マイクロ流体デバイスなどの多くの分野で微細構造体を大量に製造する技術へのニーズが高まっており、例えば2P法を改良した方法でマイクロレンズアレイを製造する技術(例えば、特許文献1参照。)や、ナノインプリント法で100nm以下の微細構造体を製造する技術(例えば、特許文献2参照。)などが従来より提案されている。このように、型材に成形材料を押しつけ、型材に形成された凹凸パターンを成形物に転写する微細構造体の製造方法においては、型材と成形物との剥離性を高めることが凹凸パターンの転写性及び成形物の生産性を高める上で重要であり、従来より型材の表面に離型層を形成したり、型材自体を離型材料で形成することが行われている。   In recent years, there has been an increasing need for technologies for mass-producing fine structures in many fields such as semiconductor devices, recording media, optical elements, and microfluidic devices. For example, microlens arrays can be manufactured by improving the 2P method. Techniques (for example, refer to Patent Document 1), techniques for manufacturing a fine structure of 100 nm or less by a nanoimprint method (for example, refer to Patent Document 2), and the like have been proposed. As described above, in the manufacturing method of the fine structure in which the molding material is pressed against the mold material and the concavo-convex pattern formed on the mold material is transferred to the molded product, the detachability between the mold material and the molded product is improved. It is important to increase the productivity of molded products, and conventionally, a mold release layer is formed on the surface of a mold material, or the mold material itself is formed of a mold release material.

ところで、微細構造体の技術分野においては、凹凸パターンがますます微細化され、かつ例えばゾルゲル材料などの化学的に反応性の高い材料を用いた成形物に対する需要も増加する傾向にあるので、従来の技術では型材からの成形物の剥離が困難になりつつあり、より高性能な離型構造が求められている。また、大量の微細構造体を高能率に製造するため、型材自体の強度の向上も求められている。   By the way, in the technical field of fine structures, since the uneven pattern is increasingly miniaturized, and there is a tendency to increase the demand for a molded article using a chemically reactive material such as a sol-gel material. With this technique, it is becoming difficult to peel off the molded product from the mold material, and a higher-performance release structure is required. Further, in order to produce a large amount of fine structures with high efficiency, improvement in the strength of the mold material itself is also required.

このような要請に対応する手段として、近年、真空成膜されたカーボン膜を型材とする各種の技術が提案されている。例えば、姫路工業大学の渡辺啓一郎等は、集束イオンビーム化学蒸着(FIB−CVD)によって作製した三次元ダイヤモンド状炭素モールドを用いてマイクロレンズを作製している(例えば、非特許文献1参照。)。また、大阪府立大学の平井等は、化学気相成長(CVD)ダイアモンド層を用いた微小モールドを用いて幅が100nm以下、深さが1.0μmの狭小溝を得ることに成功している(例えば、非特許文献2参照。)。
特開平8−248207号公報 米国特許第5772905号明細書 “Nanoimprint using three−dimensional microlens mold made by focused−ion−beam chemical vapor deposition”, J Vac Sci Technol B.VOL.22 NO.1;PAGE.22−26;(200401−200402) “TIEN High Aspect Pattern Fabrication by Nano Imprint Lithography Using Fine Diamond Mold”,Jpn J Appl Phys Part1,VOL.42 NO.6B;PAGE.3863−3866;(20030630)
In recent years, various techniques using a vacuum-deposited carbon film as a mold have been proposed as means for meeting such demands. For example, Keiichiro Watanabe and others at Himeji Institute of Technology are producing microlenses using a three-dimensional diamond-like carbon mold produced by focused ion beam chemical vapor deposition (FIB-CVD) (see Non-Patent Document 1, for example). . Hirai et al. Of Osaka Prefecture University have succeeded in obtaining a narrow groove having a width of 100 nm or less and a depth of 1.0 μm by using a micro mold using a chemical vapor deposition (CVD) diamond layer ( For example, refer nonpatent literature 2.).
JP-A-8-248207 US Pat. No. 5,772,905 “Nanoimprinting three-dimensional microlens mold made by focused-ion-beam chemical vapor deposition”, J Vac Sci Techno B. VOL. 22 NO. 1; PAGE. 22-26; (200401-200402) “TIEN High Aspect Pattern Fabrication by Nano Imprint Lithography Using Fine Diamond Mold”, Jpn J Appl Phys Part 1, VOL. 42 NO. 6B; PAGE. 3863-3866; (200330630)

しかるに、これらの方法はいずれも、真空成膜されたカーボン膜の表面に電子線リソグラフィやエッチングなどの半導体製造手法を適用して所要の加工を行うものであるので、型材の作製に多大の労力を要し、製品である微細構造体が高コストになるという不都合がある。   However, since all of these methods apply the required processing by applying a semiconductor manufacturing technique such as electron beam lithography or etching to the surface of the carbon film that has been vacuum-deposited, a great deal of effort is required in the production of the mold material. Therefore, there is an inconvenience that the fine structure as a product is expensive.

なお、原型からニッケルなどの金型を複製した後に、当該金型の表面にカーボン膜を真空成膜すれば、高強度にして成形物の剥離性に優れた微細構造体成形用の型材を得ることができるが、この方法では、金型の複雑な表面形状に対応させてカーボン膜を均一に形成することができないため、金型形状が乱れ、所望形状の成形物を複製することができない。また、かかる不都合を防止するために、カーボン膜の膜厚を考慮して金型を薄肉に作製すると、アスペクト比が大きい部分で強度不足を生じ、所要の耐久性をもたせることができない。   In addition, after replicating a mold such as nickel from the original mold, if a carbon film is vacuum-deposited on the surface of the mold, a mold material for molding a fine structure having high strength and excellent peelability is obtained. However, in this method, since the carbon film cannot be uniformly formed corresponding to the complicated surface shape of the mold, the shape of the mold is disturbed and a molded product having a desired shape cannot be duplicated. In addition, in order to prevent such inconvenience, if the mold is made thin in consideration of the thickness of the carbon film, the strength is insufficient at the portion where the aspect ratio is large, and the required durability cannot be obtained.

本発明は、このような従来技術の不備を解決するためになされたものであり、その目的は、精密な微細構造体を高能率に製造可能な型材を提供すること、この型材を容易かつ低コストで作製する方法を提供すること、及び、この型材を用いて精密な微細構造体を高能率に成形する方法を提供することにある。   The present invention has been made to solve such deficiencies of the prior art, and an object of the present invention is to provide a mold material capable of producing a precise fine structure with high efficiency, and to easily and reduce the mold material. It is an object to provide a method for manufacturing at a low cost, and to provide a method for forming a precise microstructure with high efficiency using this mold material.

本発明は、前記の目的を達成するため、微細構造体成形用型材に関しては、表面に所要の凹凸パターンが形成されたカーボン層と、当該カーボン層の裏面側に直接又は導電性金属層を介して形成された電気めっき金属層とを有するという構成にした。   In order to achieve the above object, the present invention relates to a mold for forming a fine structure, a carbon layer having a required uneven pattern formed on the surface, and a direct or conductive metal layer on the back side of the carbon layer. And an electroplating metal layer formed.

かかる構成によると、成形物の成形面がカーボン層によって形成されるので、成形材料としてゾルゲル材料や高分子組成物のように化学的に反応性の高い材料を用いた場合にも、成形物の剥離性を良好なものにすることができ、微細な凹凸パターンを有する微細構造体を高能率に製造することができる。また、カーボン層の表面に所要の凹凸パターンを形成するので、転写する凹凸パターンに乱れを生じることがなく、高性能の微細構造体を製造することができる。さらに、カーボン層の裏面側に電気めっき金属層を形成するので、型材の機械的強度を高めることができ、多数の微細構造体を安定して製造することができる。   According to such a configuration, since the molding surface of the molded product is formed by the carbon layer, even when a chemically reactive material such as a sol-gel material or a polymer composition is used as the molding material, The peelability can be improved, and a fine structure having a fine concavo-convex pattern can be produced with high efficiency. Moreover, since a required uneven | corrugated pattern is formed in the surface of a carbon layer, it does not produce disorder in the uneven | corrugated pattern to transfer, but can manufacture a highly efficient fine structure. Furthermore, since the electroplated metal layer is formed on the back side of the carbon layer, the mechanical strength of the mold material can be increased, and a large number of microstructures can be stably produced.

また、本発明は、前記構成の微細構造体成形用型材において、前記カーボン層が、ダイヤモンドライクカーボン(以下、「DLC」と略称する。)又はグラファイトからなるという構成にした。   According to the present invention, in the microstructure forming mold material having the above configuration, the carbon layer is made of diamond-like carbon (hereinafter abbreviated as “DLC”) or graphite.

DLCとは、ラマン分光分析法で分析したときにSP2及びSP3両結合成分が存在するカーボンであり、グラファイトよりも硬度が高いという特質を有する。アスペクト比の低い形状の成形を行う場合やゾルゲル材料などの粘性の低い成形材料を成形する場合は、グラファイトなどの比較的柔らかい材料を用いても特別な問題を生じないが、アスペクト比の高い形状の成形を行う場合や粘性の高い成形材料の成形を行う場合は、柔らかいカーボン膜を用いると繰り返し成形により金型に変形を生じやすくなる。DLCはグラファイトよりも高硬度であるので、グラファイトに代えてDLCを用いることにより、型材の強度を高めることができ、成形時における型材の変形を防止できる。   DLC is carbon in which both SP2 and SP3 binding components are present when analyzed by Raman spectroscopy, and has the property of being harder than graphite. When molding a shape with a low aspect ratio or a molding material with a low viscosity such as a sol-gel material, there is no special problem with using a relatively soft material such as graphite. When molding is performed or when molding a molding material having high viscosity, if a soft carbon film is used, the mold is likely to be deformed by repeated molding. Since DLC has a higher hardness than graphite, the use of DLC instead of graphite can increase the strength of the mold material and can prevent deformation of the mold material during molding.

また、本発明は、前記構成の微細構造体成形用型材において、前記カーボン層の表層部に離型層が存在するという構成にした。   Moreover, the present invention has a configuration in which a mold release layer is present in the surface layer portion of the carbon layer in the microstructure forming mold material having the above configuration.

通常の成形物はカーボン層で充分に離型することができるが、成形材料として特に反応性が高いものを用いる場合には、カーボン層の少なくとも表層部分にフッ素層などの離型層を形成することによって、離型性を向上することができる。   A normal molded product can be sufficiently released by a carbon layer, but when a highly reactive material is used as a molding material, a release layer such as a fluorine layer is formed at least on the surface layer of the carbon layer. Thus, the releasability can be improved.

また、本発明は、前記構成の微細構造体成形用型材において、前記カーボン層の層厚が、前記凹凸パターンの段差の大きさよりも厚いという構成にした。   According to the present invention, in the microstructure forming mold material having the above-described configuration, the thickness of the carbon layer is thicker than the size of the step of the concavo-convex pattern.

カーボン層の層厚は、最小限成形時の圧力に耐えうる大きさであれば良いが、カーボン層の裏面側に均一厚さの電気めっき金属層を形成できるようにするため、凹凸パターンの段差の大きさよりも厚くすることがより望ましい。   The layer thickness of the carbon layer is not limited as long as it can withstand the pressure at the time of molding, but in order to form an electroplated metal layer with a uniform thickness on the back side of the carbon layer, the uneven pattern step It is more desirable to make it thicker than the size of.

一方、微細構造体成形用型材の作製方法に関して、本発明は、表面に所要の凹凸パターンが形成された原型を作製する工程と、前記原型の凹凸パターン形成面に所要の層厚のカーボン層を形成する工程と、前記カーボン層上に直接又は導電性金属層を介して電気めっき金属層を形成する工程と、前記原型と前記カーボン層との界面を剥離し、前記カーボン層と前記電気めっき金属層とが一体化された微細構造体成形用型材を得る工程とを含むという構成にした。   On the other hand, regarding the method for producing a mold for forming a fine structure, the present invention includes a step of producing a prototype having a surface with a required concavo-convex pattern formed thereon, and a carbon layer having a required layer thickness on the surface of the original concavo-convex pattern. Forming the electroplating metal layer directly on the carbon layer or via the conductive metal layer, peeling the interface between the prototype and the carbon layer, and forming the carbon layer and the electroplating metal. And a step of obtaining a mold for forming a fine structure integrated with a layer.

このように、原型の凹凸パターン形成面に所要の層厚のカーボン層を形成した後、原型とカーボン層との界面を剥離することによって、カーボン層の表面に所要の凹凸パターンを形成することができる。   In this way, after forming a carbon layer of a required layer thickness on the surface of the original concavo-convex pattern, the required concavo-convex pattern can be formed on the surface of the carbon layer by peeling the interface between the original and the carbon layer. it can.

また、本発明は、前記構成の微細構造体成形用型材の作製方法において、前記原型を作製した後、前記カーボン層を形成する前に、前記原型の凹凸パターン形成面に離型層を形成し、前記電気めっき金属層の形成後に、前記原型と前記離型層との界面を剥離するという構成にした。   Further, the present invention provides a method for producing a mold for forming a fine structure having the above-described configuration, in which a mold release layer is formed on the surface of the original pattern after forming the original mold and before forming the carbon layer. After the electroplating metal layer is formed, the interface between the original mold and the release layer is peeled off.

離型層とは、離型剤よりなる層で、塗布又はベーパーディポジション法などにより形成される。この離型層を原型の凹凸パターン形成面に形成すると、原型とカーボン膜との離型性を向上することができるので、微細構造体成形用型材の生産性を高めることができる。   The release layer is a layer made of a release agent and is formed by coating or vapor deposition. When this release layer is formed on the original concave / convex pattern forming surface, the release property between the original mold and the carbon film can be improved, so that the productivity of the mold material for forming a fine structure can be increased.

また、本発明は、前記構成の微細構造体成形用型材の作製方法において、前記原型を作製した後、前記カーボン層を形成する前に、前記原型の凹凸パターン形成面に可溶性膜を形成し、前記電気めっき金属層の形成後に、前記可溶性膜を溶解し、前記原型から前記カーボン層との界面を剥離するという構成にした。   Further, the present invention provides a method for producing a mold for forming a fine structure having the above-described structure, after forming the original mold and before forming the carbon layer, forming a soluble film on the concave / convex pattern forming surface of the original mold, After the electroplating metal layer was formed, the soluble film was dissolved, and the interface with the carbon layer was peeled off from the prototype.

可溶性膜とは、原型及び微細構造体成形用型材を損傷することなく酸や高温で溶解可能な膜である。この可溶性膜を原型の凹凸パターン形成面に形成すると、原型とカーボン膜との離型性を向上することができるので、微細構造体成形用型材の生産性を高めることができる。   A soluble film | membrane is a film | membrane which can melt | dissolve at an acid or high temperature, without damaging a prototype and the mold material for fine structure shaping | molding. When this soluble film is formed on the surface of the original concavo-convex pattern, the releasability between the original and the carbon film can be improved, so that the productivity of the mold for forming a fine structure can be increased.

さらに、微細構造体の成形方法に関して、本発明は、表面に所要の凹凸パターンが形成されたカーボン層と、当該カーボン層の裏面側に直接又は導電性金属層を介して形成された電気めっき金属層とを有する微細構造体成形用型材を用い、前記凹凸パターンに微細構造体の成形材料を押しつけ、微細構造体に前記凹凸パターンを転写するという構成にした。前記微細構造体の成形材料としては、ゾルゲル材料又は高分子組成物を用いることができる。   Further, regarding the method of forming a fine structure, the present invention relates to a carbon layer having a required uneven pattern formed on the surface, and an electroplated metal formed directly or via a conductive metal layer on the back side of the carbon layer. A mold for forming a fine structure having a layer is used, and a molding material for the fine structure is pressed against the uneven pattern, and the uneven pattern is transferred to the fine structure. A sol-gel material or a polymer composition can be used as the molding material for the microstructure.

このように、表面に所要の凹凸パターンが形成されたカーボン層と当該カーボン層の裏面側に直接又は導電性金属層を介して形成された電気めっき金属層とを有する微細構造体成形用型材を用いて微細構造体の成形を行うと、成形物の成形面がカーボン層によって形成されるので、成形材料としてゾルゲル材料や高分子組成物のように化学的に反応性の高い材料を用いた場合にも、成形物の剥離性を良好なものにすることができ、微細な凹凸パターンを有する微細構造体を高能率に製造することができる。また、カーボン層の表面に所要の凹凸パターンが形成されているので、転写する凹凸パターンに乱れを生じることがなく、高性能の微細構造体を製造することができる。さらに、カーボン層の裏面側に電気めっき金属層が形成されているので、型材の機械的強度が高く、多数の微細構造体を安定して製造することができる。   Thus, a microstructure forming mold material having a carbon layer having a required uneven pattern formed on the surface and an electroplating metal layer formed directly or via a conductive metal layer on the back side of the carbon layer. When the microstructure is molded, the molding surface of the molded product is formed by the carbon layer. Therefore, when a chemically reactive material such as a sol-gel material or a polymer composition is used as the molding material In addition, the peelability of the molded product can be improved, and a fine structure having a fine concavo-convex pattern can be produced with high efficiency. In addition, since the required concavo-convex pattern is formed on the surface of the carbon layer, the concavo-convex pattern to be transferred is not disturbed, and a high-performance fine structure can be manufactured. Furthermore, since the electroplating metal layer is formed on the back surface side of the carbon layer, the mechanical strength of the mold material is high, and a large number of fine structures can be stably manufactured.

本発明の微細構造体成形用型材は、成形物の成形面がカーボン層によって形成されるので、成形材料としてゾルゲル材料や高分子組成物のように化学的に反応性の高い材料を用いた場合にも、成形物の剥離性を良好なものにすることができ、微細な凹凸パターンを有する微細構造体を高能率に製造することができる。また、カーボン層の表面に所要の凹凸パターンを形成するので、転写する凹凸パターンに乱れを生じることがなく、高性能の微細構造体を製造することができる。さらに、カーボン層の裏面側に電気めっき金属層を形成するので、型材の機械的強度を高めることができ、多数の微細構造体を安定して製造することができる。   Since the molding surface of the microstructure of the present invention is formed by a carbon layer, the molding material is formed of a chemically reactive material such as a sol-gel material or a polymer composition. In addition, the peelability of the molded product can be improved, and a fine structure having a fine concavo-convex pattern can be produced with high efficiency. Moreover, since a required uneven | corrugated pattern is formed in the surface of a carbon layer, it does not produce disorder in the uneven | corrugated pattern to transfer, but can manufacture a highly efficient fine structure. Furthermore, since the electroplated metal layer is formed on the back side of the carbon layer, the mechanical strength of the mold material can be increased, and a large number of microstructures can be stably produced.

本発明の微細構造体成形用型材の作製方法は、原型の凹凸パターン形成面に所要の層厚のカーボン層を形成した後に、原型とカーボン層との界面を剥離するので、カーボン層の表面に所要の凹凸パターンを形成することができる。   In the method for producing a mold for forming a microstructure of the present invention, after forming a carbon layer having a required layer thickness on the surface of the original concavo-convex pattern, the interface between the master and the carbon layer is peeled off. A required uneven pattern can be formed.

本発明の微細構造体の成形方法は、表面に所要の凹凸パターンが形成されたカーボン層と当該カーボン層の裏面側に直接又は導電性金属層を介して形成された電気めっき金属層とを有する微細構造体成形用型材を用いて微細構造体の成形を行うので、微細な凹凸パターンを有する高性能の微細構造体を高能率に製造することができる。   The method for forming a microstructure of the present invention includes a carbon layer having a predetermined uneven pattern formed on the surface and an electroplated metal layer formed directly or via a conductive metal layer on the back side of the carbon layer. Since the microstructure is formed using the mold for forming the microstructure, a high-performance microstructure having a fine uneven pattern can be manufactured with high efficiency.

以下、本発明に係る微細構造体成形用型材の実施形態を図1乃至図4に基づいて説明する。図1は第1実施形態に係る微細構造体成形用型材の断面図、図2は第2実施形態に係る微細構造体成形用型材の断面図、図3は第3実施形態に係る微細構造体成形用型材の断面図、図4は第4実施形態に係る微細構造体成形用型材の断面図である。   Hereinafter, an embodiment of a mold for forming a microstructure according to the present invention will be described with reference to FIGS. 1 is a cross-sectional view of a mold for forming a fine structure according to the first embodiment, FIG. 2 is a cross-sectional view of a mold for forming a fine structure according to the second embodiment, and FIG. 3 is a fine structure according to the third embodiment. FIG. 4 is a cross-sectional view of a mold for molding a microstructure according to the fourth embodiment.

図1乃至図4に示すように、本発明に係る微細構造体成形用型材1A〜1Dは、いずれも、表面に所要の凹凸パターン2aが形成されたカーボン層2と、当該カーボン層2の裏面側に形成された電気めっき金属層3とから主に構成されている。第1実施形態に係る微細構造体成形用型材1Aは、図1に示すように、凹凸パターン2aの段差の大きさdよりも厚肉に形成されたカーボン層2の裏面に電気めっき金属層3が他の膜を介することなく直接形成されており、第2実施形態に係る微細構造体成形用型材1Bは、図2に示すように、凹凸パターン2aの段差の大きさdよりも厚肉に形成されたカーボン層2の裏面に電気めっき金属層3が導電性金属層4を介して形成されている。また、第3実施形態に係る微細構造体成形用型材1Cは、図3に示すように、凹凸パターン2aの段差の大きさdよりも薄肉に形成されたカーボン層2の裏面に電気めっき金属層3が他の膜を介することなく直接形成されており、第4実施形態に係る微細構造体成形用型材1Dは、図4に示すように、凹凸パターン2aの表層部に離型層5が形成されると共に、カーボン層2の裏面に電気めっき金属層3が導電性金属層4を介して形成されている。   As shown in FIGS. 1 to 4, the microstructure forming molds 1 </ b> A to 1 </ b> D according to the present invention each have a carbon layer 2 having a required uneven pattern 2 a formed on the surface, and a back surface of the carbon layer 2. It is mainly composed of an electroplating metal layer 3 formed on the side. As shown in FIG. 1, the microstructure forming mold material 1 </ b> A according to the first embodiment has an electroplating metal layer 3 on the back surface of the carbon layer 2 formed thicker than the step size d of the uneven pattern 2 a. Are formed directly without any other film, and the microstructure forming mold material 1B according to the second embodiment is thicker than the step size d of the uneven pattern 2a as shown in FIG. An electroplated metal layer 3 is formed on the back surface of the formed carbon layer 2 via a conductive metal layer 4. In addition, as shown in FIG. 3, the microstructure forming mold 1C according to the third embodiment has an electroplated metal layer on the back surface of the carbon layer 2 formed thinner than the step size d of the uneven pattern 2a. 3 is formed directly without any other film, and in the microstructure forming mold material 1D according to the fourth embodiment, as shown in FIG. 4, a release layer 5 is formed on the surface layer portion of the concavo-convex pattern 2a. In addition, an electroplating metal layer 3 is formed on the back surface of the carbon layer 2 via a conductive metal layer 4.

カーボン層2は、DLC又はグラファイトなどをもって形成され、電気めっき金属層3は、ニッケル又はニッケル合金などをもって形成される。カーボン層2がグラファイトなどの導電体をもって形成される場合には、当該導電性のカーボン層2を陰極として、その裏面に電気めっき金属層3を直接形成することができる。これに対して、カーボン層2がDLCなどの不導体をもって形成される場合には、当該カーボン層2の裏面に導電性金属層4がスパッタリングされ、当該導電性金属層4を陰極として、その裏面に電気めっき金属層3が形成される。導電性金属層4は、電気めっき金属層3を形成する金属材料と同種の金属材料をもって形成される。離型層5は、金膜又は金合金膜などの金属膜や、ステアリン酸モノグリセリドなどの有機物をもって形成される。   The carbon layer 2 is formed of DLC or graphite, and the electroplating metal layer 3 is formed of nickel or a nickel alloy. When the carbon layer 2 is formed with a conductor such as graphite, the electroplated metal layer 3 can be directly formed on the back surface of the conductive carbon layer 2 as a cathode. On the other hand, when the carbon layer 2 is formed with a nonconductor such as DLC, the conductive metal layer 4 is sputtered on the back surface of the carbon layer 2, and the back surface of the conductive metal layer 4 is used as a cathode. An electroplated metal layer 3 is formed on the substrate. The conductive metal layer 4 is formed of the same metal material as the metal material forming the electroplating metal layer 3. The release layer 5 is formed of a metal film such as a gold film or a gold alloy film, or an organic material such as stearic acid monoglyceride.

次に、本発明に係る微細構造体成形用型材の作製方法及び本発明に係る微細構造体成形用型材を用いた微細構造体の成形方法の実施形態を図5及び図6に基づいて説明する。図5は第1実施形態に係る微細構造体成形用型材1Aの作製方法とこれを用いた微細構造体の成形方法を示すフロー図、図6は第4実施形態に係る微細構造体成形用型材1Dの作製方法とこれを用いた微細構造体の成形方法を示すフロー図である。   Next, an embodiment of a method for producing a microstructure forming mold according to the present invention and a method for forming a microstructure using the microstructure forming mold according to the present invention will be described with reference to FIGS. 5 and 6. . FIG. 5 is a flowchart showing a method for producing a microstructure forming mold 1A according to the first embodiment and a method for forming a microstructure using the same, and FIG. 6 is a mold for forming a microstructure according to the fourth embodiment. It is a flowchart which shows the manufacturing method of 1D, and the shaping | molding method of the fine structure using the same.

第1実施形態に係る微細構造体成形用型材1Aの作製に当たっては、まず図5(a)に示すように、表面に所要の凹凸パターン11aが形成された原型11を作製する。この原型11はシリコンウエハなどを加工することにより作製される。次に、当該原型11の凹凸パターン形成面にグラファイトなどの導電性のカーボン12をベーパーディポジション法によって堆積し、図5(b)に示すように、凹凸パターン2aの段差の大きさdよりも厚肉のカーボン層2を形成する。次に、当該導電性のカーボン層2を陰極としてニッケル又はニッケル合金13を電気めっき(電鋳)し、図5(c)に示すように、カーボン層2の裏面側に直接所要の厚みの電気めっき金属層3を形成する。しかる後に、凹凸パターン11aとカーボン層2の界面を剥離することにより、図5(d)に示す微細構造体成形用型材1Aが得られる。   In the production of the microstructure forming mold 1A according to the first embodiment, first, as shown in FIG. 5A, a prototype 11 having a required uneven pattern 11a formed on the surface is produced. This prototype 11 is produced by processing a silicon wafer or the like. Next, conductive carbon 12 such as graphite is deposited on the surface of the original pattern 11 by the vapor deposition method, and as shown in FIG. A thick carbon layer 2 is formed. Next, nickel or nickel alloy 13 is electroplated (electroformed) using the conductive carbon layer 2 as a cathode, and as shown in FIG. A plated metal layer 3 is formed. Thereafter, the interface between the concavo-convex pattern 11a and the carbon layer 2 is peeled off, thereby obtaining the microstructure forming mold material 1A shown in FIG. 5 (d).

また、この型材1Aを用いて微細構造体を成形するに当たっては、図5(e)に示すように、型材1Aの凹凸パターン2aと平板状の基板14との間で成形材料15を均一に展伸し、成形材料15の固化後、型材1Aと成形材料15の界面を剥離する。これにより、図5(f)に示すように、基板14と成形材料15とからなり、成形材料15に原型11の凹凸パターン11aが複製された微細構造体10Aが得られる。   In forming a microstructure using the mold material 1A, as shown in FIG. 5 (e), the molding material 15 is uniformly spread between the uneven pattern 2a of the mold material 1A and the flat substrate 14. After stretching and solidifying the molding material 15, the interface between the mold material 1A and the molding material 15 is peeled off. As a result, as shown in FIG. 5 (f), a microstructure 10 </ b> A is obtained that is composed of the substrate 14 and the molding material 15 and in which the concave / convex pattern 11 a of the prototype 11 is replicated on the molding material 15.

第4実施形態に係る微細構造体成形用型材1Dの作製に当たっては、まず図6(a)に示すように、表面に所要の凹凸パターン11aが形成された原型11を作製する。次に、図6(b)に示すように、当該原型11の凹凸パターン形成面にステアリン酸モノグリセリドなどの離型剤21を均一に塗布し、所要の離型層5を形成する。次に、当該離型層5上にDLCなどの非導電性のカーボン22をベーパーディポジション法によって堆積し、図6(c)に示すように、凹凸パターン2aの段差の大きさdよりも厚肉のカーボン層2を形成する。次に、当該非導電性のカーボン層2に導電性の金属23をスパッタリングし、図6(d)に示すように、カーボン層2の裏面に所要の導電性金属層4を形成する。次に、当該導電性金属層4を陰極としてニッケル又はニッケル合金13を電気めっき(電鋳)し、図5(e)に示すように、カーボン層2の裏面側に導電性金属層4を介して所要の厚みの電気めっき金属層3を形成する。しかる後に、凹凸パターン11aとカーボン層2の界面を剥離することにより、図6(f)に示す微細構造体成形用型材1Dが得られる。   In producing the microstructure forming mold material 1D according to the fourth embodiment, first, as shown in FIG. 6A, a prototype 11 having a required uneven pattern 11a formed on the surface is produced. Next, as shown in FIG. 6 (b), a release agent 21 such as stearic acid monoglyceride is uniformly applied to the concave / convex pattern forming surface of the original 11 to form a required release layer 5. Next, non-conductive carbon 22 such as DLC is deposited on the release layer 5 by the vapor deposition method, and as shown in FIG. 6C, the thickness is larger than the step size d of the concavo-convex pattern 2a. A meat carbon layer 2 is formed. Next, a conductive metal 23 is sputtered on the nonconductive carbon layer 2 to form a required conductive metal layer 4 on the back surface of the carbon layer 2 as shown in FIG. Next, nickel or a nickel alloy 13 is electroplated (electroformed) using the conductive metal layer 4 as a cathode, and the conductive metal layer 4 is interposed on the back side of the carbon layer 2 as shown in FIG. Thus, the electroplated metal layer 3 having a required thickness is formed. Thereafter, the interface between the concavo-convex pattern 11a and the carbon layer 2 is peeled to obtain a microstructure forming mold 1D shown in FIG. 6 (f).

また、この型材1Dを用いて微細構造体を成形するに当たっては、図6(g)に示すように、型材1Dの凹凸パターン2aと平板状の基板14との間で成形材料15を均一に展伸し、成形材料15の固化後、型材1Dと成形材料15の界面を剥離する。これにより、図6(h)に示すように、基板14と成形材料15とからなり、成形材料15に原型11の凹凸パターン11aが複製された微細構造体10Dが得られる。   In forming a microstructure using the mold material 1D, as shown in FIG. 6G, the molding material 15 is uniformly spread between the uneven pattern 2a of the mold material 1D and the flat substrate 14. After stretching and solidifying the molding material 15, the interface between the mold material 1D and the molding material 15 is peeled off. As a result, as shown in FIG. 6 (h), a microstructure 10D is obtained which is composed of the substrate 14 and the molding material 15 and in which the concave / convex pattern 11a of the prototype 11 is replicated on the molding material 15.

なお、前記離型層5に代えて、SiOなどの可溶性膜を原型11の凹凸パターン形成面に形成することもできる。また、第2実施形態に係る微細構造体成形用型材1Bの作製方法及び第3実施形態に係る微細構造体成形用型材1Cの作製方法並びにこれらの各型材1B,1Cを用いた微細構造体の作製方法については、前記の各技術を応用して容易に実施可能であるので、説明を省略する。 Instead of the release layer 5, a soluble film such as SiO 2 can be formed on the concave / convex pattern forming surface of the master 11. Also, a method for producing a microstructure forming mold 1B according to the second embodiment, a method for producing a microstructure forming mold 1C according to the third embodiment, and a microstructure using each of these molds 1B and 1C. The manufacturing method can be easily implemented by applying each of the above-described techniques, and thus the description thereof is omitted.

以下に、より具体的な実施例と比較例とを挙げ、本発明の効果を明らかにする。   Hereinafter, more specific examples and comparative examples will be given to clarify the effects of the present invention.

〈実施例1〉
原型として、線幅0.4μm、深さ0.2μmの溝が等間隔に形成されたSiウエハを用い、当該Siウエハの溝形成面に、カーボン層として厚さ0.3μmのグラファイト膜を真空蒸着装置で形成した。グラファイト膜の成膜は、図7の実施例1の欄に示す条件で行った。
<Example 1>
As a prototype, a Si wafer in which grooves having a line width of 0.4 μm and a depth of 0.2 μm are formed at equal intervals is used, and a 0.3 μm-thick graphite film is vacuumed as a carbon layer on the groove forming surface of the Si wafer. It formed with the vapor deposition apparatus. The film formation of the graphite film was performed under the conditions shown in the column of Example 1 in FIG.

次いで、スルフォミン酸Ni液中で電解めっきを施し、グラファイト膜上に電気めっき金属層として厚さ0.3mmのNi電気めっき膜を形成した。このNi電気めっき膜が形成されたカーボン膜をSiウエハから引き剥がし、片面に原型の反転パターンが形成された微細構造体形成用の型材を作製した。   Next, electrolytic plating was performed in a sulfamic acid Ni solution to form a 0.3 mm thick Ni electroplated film as an electroplated metal layer on the graphite film. The carbon film on which this Ni electroplating film was formed was peeled off from the Si wafer, and a mold material for forming a microstructure having an original inverted pattern formed on one side was produced.

次いで、エチルアルコールを用いてフェニルトリエキトキシシラン及びジメチルジエトキシシランを希釈してから酸水溶液により加水分解した溶液を、成形面を上向きにした前記型材に注ぎ、加熱を行いゾルゲル状にした後、硼珪酸ガラス板を上に載せ、30分間200℃まで加熱してゾルゲル材料を硬化した。ゾルゲル材料を自然空冷した後、型材から離型させて、片面に原型と同じ溝パターンが形成された成形物を得た。   Next, after diluting phenyltriethoxysilane and dimethyldiethoxysilane with ethyl alcohol, the solution hydrolyzed with an aqueous acid solution was poured into the mold with the molding surface facing upward, and heated to form a sol-gel. A borosilicate glass plate was placed on top and heated to 200 ° C. for 30 minutes to cure the sol-gel material. The sol-gel material was naturally air-cooled and then released from the mold material to obtain a molded product in which the same groove pattern as that of the original mold was formed on one side.

〈実施例2〉
原型として、直径40μm、高さ4μmのレンズ状突起物が縦横50μm間隔で等間隔に並んだNi板を用い、当該Ni板の突起形成面に可溶性膜として厚さ0.1μmのSiO膜をRFスパッタリング装置で形成した。この上に続けてカーボン層として厚さ1μmのDLC膜をプラズマCVD装置で形成した。更にこの上に続けて電気めっき金属層として厚さ0.1μmのNi膜をRFスパッタリング装置で形成した。各膜の成膜条件を図7の実施例2の欄に示す。
<Example 2>
As a prototype, a Ni plate in which lenticular projections having a diameter of 40 μm and a height of 4 μm are arranged at equal intervals in the vertical and horizontal directions is used, and a SiO 2 film having a thickness of 0.1 μm is formed as a soluble film on the projection forming surface of the Ni plate. It formed with the RF sputtering apparatus. Subsequently, a DLC film having a thickness of 1 μm was formed as a carbon layer using a plasma CVD apparatus. Further on this, an Ni film having a thickness of 0.1 μm was formed as an electroplating metal layer by an RF sputtering apparatus. The film forming conditions for each film are shown in the column of Example 2 in FIG.

次いで、前記Ni膜を電極としてスルフォミン酸Ni液中で電解めっきを施し、厚さ0.3mmのNi電気めっき膜を形成した。HF溶液中でSiO膜を溶かすことによって前記Ni電気めっき膜の着いたDLC膜をNi板から引き剥がし、片面に原型の反転パターンが形成された微細構造体形成用の型材を作製した。 Next, electrolytic plating was performed in a sulfamic acid Ni solution using the Ni film as an electrode to form a Ni electroplated film having a thickness of 0.3 mm. The DLC film with the Ni electroplated film was peeled off from the Ni plate by dissolving the SiO 2 film in an HF solution, and a mold member for forming a microstructure having an original inverted pattern formed on one side was produced.

ヒーターの上に厚さ0.5mmの板状の住田光学ガラス製光学硝子K−PG375(転位点Tg=343℃)を置き、この硝子板及び前記金型を375℃に加熱した状態で金型を5分間押しつけ、200℃まで冷却した後金型を離してマイクロレンズアレイを作製した。   A plate-shaped Sumita Optical Glass K-PG375 (dislocation point Tg = 343 ° C.) having a thickness of 0.5 mm is placed on the heater, and the glass plate and the mold are heated to 375 ° C. Was pressed for 5 minutes, cooled to 200 ° C., and then the mold was released to prepare a microlens array.

〈実施例3〉
原型として、線幅0.4μm、深さ0.2μmの溝が等間隔に形成されたSiウエハを用い、当該Siウエハの溝形成面に、剥離層として厚さ0.1μmのAu膜をRFスパッタリング装置で形成した。この上に続けてカーボン層として厚さ1μmのDLC膜を同様のRFスパッタリング装置で形成した。更にこの上に続けて導電性金属膜として厚さ0.1μmのNi膜を同様のRFスパッタリング装置で形成した。各膜の成膜条件を図7の実施例3の欄に示す。
<Example 3>
As a prototype, an Si wafer in which grooves having a line width of 0.4 μm and a depth of 0.2 μm are formed at equal intervals is used, and an Au film having a thickness of 0.1 μm is formed as a peeling layer on the groove forming surface of the Si wafer. It formed with the sputtering device. Subsequently, a DLC film having a thickness of 1 μm was formed as a carbon layer with the same RF sputtering apparatus. Subsequently, a Ni film having a thickness of 0.1 μm was formed as a conductive metal film on the same RF sputtering apparatus. The film forming conditions for each film are shown in the column of Example 3 in FIG.

次いで前記Ni膜を電極としてスルフォミン酸Ni液中で電解めっきを施し、電気めっき金属層として厚さ0.3mmのNi電気めっき膜を形成した。SiウエハとAu膜との界面を引き剥がし、片面に原型の反転パターンが形成された微細構造体形成用の型材を作製した。   Next, the Ni film was used as an electrode for electrolytic plating in a sulfamic acid Ni solution to form a 0.3 mm thick Ni electroplated film as an electroplated metal layer. The interface between the Si wafer and the Au film was peeled off, and a mold material for forming a fine structure having an original inverted pattern formed on one side was produced.

ヒーターの上に厚さ0.6mmの板状のポリカーボネイト(転移点Tg=130℃)を置き、プレス圧力10kg/cmとしてこの硝子板及び前記型材を210℃に加熱した状態で金型を5分間押しつけ、100℃まで冷却した後、型材から離型させて、片面に原型と同じ溝パターンが形成された成形物を得た。 A plate-like polycarbonate having a thickness of 0.6 mm (transition point Tg = 130 ° C.) is placed on the heater, and the glass plate and the mold are heated to 210 ° C. with a pressing pressure of 10 kg / cm 2. After pressing for a minute and cooling to 100 ° C., the mold was released from the mold material to obtain a molded product in which the same groove pattern as the original mold was formed on one side.

〈実施例4〉
原型として、線幅0.4μm、深さ0.2μmの溝が等間隔に形成されたSiウエハを用い、当該Siウエハの溝形成面に、離型剤としてステアリン酸モノグリセリドをアセトン溶媒に0.1wt%程度溶解させた溶液をスピン塗布した。
<Example 4>
As a prototype, an Si wafer in which grooves having a line width of 0.4 μm and a depth of 0.2 μm are formed at equal intervals is used, and stearic acid monoglyceride as a mold release agent is added to an acetone solvent on the groove forming surface of the Si wafer. A solution in which about 1 wt% was dissolved was spin-coated.

この上に続けてカーボン層として厚さ1μmのDLC膜を同様のRFスパッタリング装置で形成した。更にこの上に続けて導電性金属膜として厚さ0.1μmのNi膜を同様のRFスパッタリング装置で形成した。各膜の成膜条件を図7の実施例4の欄に示す。   Subsequently, a DLC film having a thickness of 1 μm was formed as a carbon layer with the same RF sputtering apparatus. Subsequently, a Ni film having a thickness of 0.1 μm was formed as a conductive metal film on the same RF sputtering apparatus. The film forming conditions for each film are shown in the column of Example 4 in FIG.

次いで前記Ni膜を電極としてスルフォミン酸Ni液中で電解めっきを施し、電気めっき金属層として厚さ0.3mmのNi電気鋳造膜を形成した。Siウエハと離型層の界面を引き剥がし、片面に原型の反転パターンが形成された微細構造体形成用の型材を作製した。   Next, the Ni film was used as an electrode for electroplating in a sulfamic acid Ni solution to form a 0.3 mm thick Ni electroformed film as an electroplated metal layer. The interface between the Si wafer and the release layer was peeled off, and a mold material for forming a microstructure having an original reversal pattern formed on one side was produced.

ヒーター上に厚さ0.6mmの板状のポリカーボネイト(転移点Tg=130℃)を置き、プレス圧力10kg/cmとしてこの硝子板及び前記型材を210℃に加熱した状態で型材を5分間押しつけ、100℃まで冷却した後、型材から離型させて、片面に原型と同じ溝パターンが形成された成形物を得た。 A plate-like polycarbonate (transition point Tg = 130 ° C.) having a thickness of 0.6 mm is placed on the heater, and the glass plate and the mold material are heated to 210 ° C. with a pressing pressure of 10 kg / cm 2 , and the mold material is pressed for 5 minutes. After cooling to 100 ° C., the mold was released from the mold material to obtain a molded product in which the same groove pattern as the original mold was formed on one side.

〈実施例5〉
原型として、線幅0.4μm、深さ0.2μmの溝が等間隔に形成されたSiウエハを用い、当該Siウエハの溝形成面に、可溶性膜として厚さ0.1μmのSiO膜をRFスパッタリング装置で形成した。この上に続けてカーボン層として厚さ0.2μmのフッ素含有DLC膜をプラズマCVD装置で形成した。更にこの上に続けて導電性金属膜として厚さ0.1μmのNi膜をRFスパッタリング装置で形成した。各膜の成膜条件を図7の実施例5の欄に示す。
<Example 5>
As a prototype, a Si wafer in which grooves having a line width of 0.4 μm and a depth of 0.2 μm are formed at equal intervals is used, and a 0.1 μm thick SiO 2 film is formed as a soluble film on the groove forming surface of the Si wafer. It formed with the RF sputtering apparatus. Subsequently, a fluorine-containing DLC film having a thickness of 0.2 μm was formed as a carbon layer using a plasma CVD apparatus. Further on this, an Ni film having a thickness of 0.1 μm was formed as a conductive metal film by an RF sputtering apparatus. The film forming conditions for each film are shown in the column of Example 5 in FIG.

次いで前記Ni膜を電極としてスルフォミン酸Ni液中で電解めっきを施し、電気めっき金属層として厚さ0.3mmのNi電気めっき膜を形成した。HF溶液中でSiO膜を溶かすことによって前記Ni電気めっき膜の着いたDLC膜をSiウエハから引き剥がし、片面に原型の反転パターンが形成された微細構造体形成用の型材を作製した。 Next, the Ni film was used as an electrode for electrolytic plating in a sulfamic acid Ni solution to form a 0.3 mm thick Ni electroplated film as an electroplated metal layer. The DLC film with the Ni electroplated film was peeled off from the Si wafer by dissolving the SiO 2 film in an HF solution, and a mold member for forming a microstructure having an original inverted pattern formed on one side was produced.

エポキシシラン、メタクリロキシシラン、チタンのアルコキシドを90:5:5のmol%で混合してなる溶液を反応させ、これに25mol%のメタクリレートモノマーと過酸化物重合触媒を加えてさらに反応を進ませ、粘性溶液を作製した。この粘性溶液を、成形面を上向きにした前記型材上に注ぎ、硼珪酸ガラス板を上に載せ、30分間140℃まで加熱してゾルゲル材料を硬化した。ゾルゲル材料を自然空冷した後、型材から離型させて、片面に原型と同じ溝パターンが形成された成形物を得た。   A solution obtained by mixing epoxy silane, methacryloxy silane, and titanium alkoxide at a molar ratio of 90: 5: 5 is allowed to react, and 25 mol% of a methacrylate monomer and a peroxide polymerization catalyst are added thereto to further promote the reaction. A viscous solution was prepared. This viscous solution was poured onto the mold material with the molding surface facing upward, a borosilicate glass plate was placed on top, and heated to 140 ° C. for 30 minutes to cure the sol-gel material. The sol-gel material was naturally air-cooled and then released from the mold material to obtain a molded product in which the same groove pattern as that of the original mold was formed on one side.

〈比較例1〉
実施例1とは凹凸の向きが反転した溝構造を有するSiウエハを原型として用い、表面にカーボン層として厚さ0.05μmのグラファイト膜を真空蒸着装置で形成した。グラファイト膜の成膜は図7の比較例1に示す条件で行い、これを型材として用いた。
<Comparative example 1>
A Si wafer having a groove structure in which the direction of unevenness is reversed from that of Example 1 was used as a prototype, and a graphite film having a thickness of 0.05 μm was formed as a carbon layer on the surface by a vacuum deposition apparatus. The graphite film was formed under the conditions shown in Comparative Example 1 in FIG. 7, and this was used as a mold material.

エチルアルコールを用いてフェニルトリエキトキシシランおよびジメチルジエトキシシランを希釈してから、酸水溶液により加水分解した溶液を、成形面を上向きにした前記型材上に注ぎ、加熱を行いゾルゲル状にした後、硼珪酸ガラス板を上に載せ、30分間200℃まで加熱してゾルゲル材料を硬化した。ゾルゲル材料を自然空冷した後、型材から離型させて、片面に原型と同じ溝パターンが形成された成形物を得た。   After diluting phenyltriethoxysilane and dimethyldiethoxysilane with ethyl alcohol, the solution hydrolyzed with an aqueous acid solution is poured onto the mold with the molding surface facing upward, and heated to form a sol-gel. A borosilicate glass plate was placed on top and heated to 200 ° C. for 30 minutes to cure the sol-gel material. The sol-gel material was naturally air-cooled and then released from the mold material to obtain a molded product in which the same groove pattern as that of the original mold was formed on one side.

〈比較例2〉
Siウエハ上にカーボン層として厚さ0.6μmのDLC膜をプラズマCVD装置で形成した。次いで前記DLC膜に電子ビーム加工を行い、線幅0.4μm、深さ0.2μmの溝が等間隔で並んだ型材を作製した。
<Comparative example 2>
A DLC film having a thickness of 0.6 μm was formed as a carbon layer on the Si wafer using a plasma CVD apparatus. Next, electron beam machining was performed on the DLC film to produce a mold material in which grooves having a line width of 0.4 μm and a depth of 0.2 μm were arranged at equal intervals.

ヒーターの上に厚さ0.6mmの板状のポリカーボネイト(転移点Tg=130℃)を置き、プレス圧力10kg/cmとしてこの硝子板及び前記型材を210℃に加熱した状態で型材を5分間押しつけ、100℃まで冷却した後、型材から離型させて、片面に原型と同じ溝パターンが形成された成形物を得た。 A plate-like polycarbonate having a thickness of 0.6 mm (transition point Tg = 130 ° C.) is placed on the heater, and the glass plate and the mold material are heated to 210 ° C. at a press pressure of 10 kg / cm 2 for 5 minutes. After pressing and cooling to 100 ° C., the mold was released from the mold material to obtain a molded product in which the same groove pattern as the original mold was formed on one side.

〈比較例3〉
原型であるNi板上に可溶性膜であるSiO膜を形成しない他は実施例2と同様にして微細構造体成形用型材の作製を試みた。
<Comparative Example 3>
An attempt was made to produce a mold for forming a fine structure in the same manner as in Example 2 except that the SiO 2 film, which is a soluble film, was not formed on the original Ni plate.

〈比較例4〉
剥離層であるAu膜上にDLC膜を形成する代わりに厚さ0.3μmのグラファイト膜を真空蒸着法で形成した他は実施例3と同様にして微細構造体成形物を得た。グラファイト膜の成膜は到達真空度5×10−6Torr、成膜時真空度4×10−4Torr、成膜速度1nm/secの条件の電子ビーム蒸着法で行った。
<Comparative example 4>
A microstructured molded article was obtained in the same manner as in Example 3 except that a 0.3 μm thick graphite film was formed by vacuum deposition instead of forming a DLC film on the Au film as the release layer. The film formation of the graphite film was performed by an electron beam evaporation method under conditions of an ultimate vacuum of 5 × 10 −6 Torr, a vacuum during film formation of 4 × 10 −4 Torr, and a film formation rate of 1 nm / sec.

〈比較例5〉
SiO膜上に続けて厚さフッ素含有DLC膜を形成する代わりに厚さ0.2μmのフッ素を含有しないDLC膜を形成した他は実施例5と同様にして微細構造体を持った金型を作製した。続けて実施例4と同様にして微細構造体成形物を成形した。
<Comparative Example 5>
A mold having a microstructure in the same manner as in Example 5 except that a DLC film not containing fluorine having a thickness of 0.2 μm was formed instead of forming a fluorine-containing DLC film continuously on the SiO 2 film. Was made. Subsequently, a microstructured molded product was molded in the same manner as in Example 4.

図8に、実施例1〜5及び比較例1〜5について、成形時に成形材料が金型からうまく離型できるかどうかを示した離型性、成形時に金型形状がうまく転写できるかどうかを示す成形性、同じ金型で成形を何回繰り返せるかの回数を示す繰り返し耐久性、金型を量産する際の量産性をまとめている。   In FIG. 8, for Examples 1 to 5 and Comparative Examples 1 to 5, the releasability indicating whether or not the molding material can be successfully released from the mold during molding, and whether or not the mold shape can be successfully transferred during molding. It summarizes the moldability shown, the repeated durability showing how many times the molding can be repeated with the same mold, and the mass productivity when mass-producing molds.

この図から明らかなように、実施例1〜5は何れも離型性、成形性、繰り返し耐久性に優れている。これに対し、比較例1はNi金型表面に設けたカーボン膜が金型の複雑な表面形状に対応できず、均一な膜形成ができないため、元の金型形状が乱れてしまい、成形性に問題が生じた。また、比較例2はDLC膜を直接電子ビーム加工しているため、離型性、成形性、繰り返し耐久性に優れた金型が得られたものの、金型の生産性が悪い。比較例3はNi基材上に設けたDLC膜がNi基材から剥がれず、金型自体を作製できなかった。比較例4はグラファイト金型に対して比較的粘性の高い状態で成形を行わなければならないポリカーボネイトを成形材料として用いたため、成形自体に問題のないものの、繰り返し耐久性に問題が生じた。比較例5は反応性の高い有機無機ハイブリッドゾルゲル材料に対して金型表面のDLC膜の離型性が不足したため、うまく成形材料の離型ができなかった。   As is apparent from this figure, Examples 1 to 5 are all excellent in releasability, moldability, and repeated durability. On the other hand, in Comparative Example 1, the carbon film provided on the surface of the Ni mold cannot cope with the complicated surface shape of the mold, and a uniform film cannot be formed. There was a problem. In Comparative Example 2, since the DLC film is directly electron beam processed, a mold having excellent mold releasability, moldability, and repeated durability was obtained, but the mold productivity was poor. In Comparative Example 3, the DLC film provided on the Ni base material did not peel from the Ni base material, and the mold itself could not be produced. In Comparative Example 4, polycarbonate, which must be molded in a relatively high viscosity state with respect to the graphite mold, was used as a molding material. However, although there was no problem in molding itself, there was a problem in repeated durability. In Comparative Example 5, the release of the DLC film on the mold surface was insufficient with respect to the highly reactive organic-inorganic hybrid sol-gel material, so that the molding material could not be released successfully.

第1実施形態に係る微細構造体成形用型材の断面図である。It is sectional drawing of the mold material for fine structure shaping | molding which concerns on 1st Embodiment. 第2実施形態に係る微細構造体成形用型材の断面図である。It is sectional drawing of the mold material for fine structure shaping | molding which concerns on 2nd Embodiment. 第3実施形態に係る微細構造体成形用型材の断面図である。It is sectional drawing of the mold material for fine structure shaping | molding which concerns on 3rd Embodiment. 第4実施形態に係る微細構造体成形用型材の断面図である。It is sectional drawing of the mold material for fine structure shaping | molding which concerns on 4th Embodiment. 第1実施形態に係る微細構造体成形用型材1Aの作製方法とこれを用いた微細構造体の成形方法を示すフロー図である。It is a flowchart which shows the preparation method of the mold material 1A for fine structure shaping | molding which concerns on 1st Embodiment, and the shaping | molding method of a fine structure using the same. 第4実施形態に係る微細構造体成形用型材1Dの作製方法とこれを用いた微細構造体の成形方法を示すフロー図である。It is a flowchart which shows the preparation method of the mold material 1D for fine structure shaping | molding which concerns on 4th Embodiment, and the shaping | molding method of a fine structure using the same. 実施例及び比較例に係る各膜の成膜条件を示す表図である。It is a table | surface figure which shows the film-forming conditions of each film | membrane concerning an Example and a comparative example. 実施例及び比較例に係る各型材の離型性、成形性、繰り返し耐久性及び量産性を比較して示す表図である。It is a table | surface figure which compares and shows the mold release property, moldability, repetition durability, and mass-productivity of each type | mold material which concerns on an Example and a comparative example.

符号の説明Explanation of symbols

1A〜1D 微細構造体成形用型材
2 カーボン層
2a 凹凸パターン
3 電気めっき金属層
4 導電性金属層
5 離型層
11 原型
14 基板
DESCRIPTION OF SYMBOLS 1A-1D Mold material for fine structure shaping | molding 2 Carbon layer 2a Concavity and convexity pattern 3 Electroplating metal layer 4 Conductive metal layer 5 Release layer 11 Prototype 14 Substrate

Claims (9)

表面に所要の凹凸パターンが形成されたカーボン層と、当該カーボン層の裏面側に直接又は導電性金属層を介して形成された電気めっき金属層とを有することを特徴とする微細構造体成形用型材。   It has a carbon layer having a required concavo-convex pattern formed on the surface, and an electroplated metal layer formed directly or via a conductive metal layer on the back side of the carbon layer. Mold material. 前記カーボン層が、ダイヤモンドライクカーボン又はグラファイトからなることを特徴とする請求項1に記載の微細構造体成形用型材。   The mold material for forming a fine structure according to claim 1, wherein the carbon layer is made of diamond-like carbon or graphite. 前記カーボン層の表層部に離型層が存在することを特徴とする請求項1に記載の微細構造体成形用型材。   The mold for molding a fine structure according to claim 1, wherein a release layer is present in a surface layer portion of the carbon layer. 前記カーボン層の層厚が、前記凹凸パターンの段差の大きさよりも厚いことを特徴とする請求項1に記載の微細構造体成形用型材。   2. The mold for forming a fine structure according to claim 1, wherein a thickness of the carbon layer is thicker than a level difference of the uneven pattern. 表面に所要の凹凸パターンが形成された原型を作製する工程と、前記原型の凹凸パターン形成面に所要の層厚のカーボン層を形成する工程と、前記カーボン層上に直接又は導電性金属層を介して電気めっき金属層を形成する工程と、前記原型と前記カーボン層との界面を剥離し、前記カーボン層と前記電気めっき金属層とが一体化された微細構造体成形用型材を得る工程とを含むことを特徴とする微細構造体成形用型材の作製方法。   A step of producing a prototype in which a required concavo-convex pattern is formed on the surface, a step of forming a carbon layer of a required layer thickness on the concavo-convex pattern forming surface of the original, and a conductive metal layer directly or on the carbon layer. A step of forming an electroplating metal layer via, and a step of peeling the interface between the prototype and the carbon layer to obtain a mold for molding a fine structure in which the carbon layer and the electroplating metal layer are integrated. A method for producing a mold for forming a microstructure, comprising: 前記原型を作製した後、前記カーボン層を形成する前に、前記原型の凹凸パターン形成面に離型層を形成し、前記電気めっき金属層の形成後に、前記原型と前記離型層との界面を剥離することを特徴とする請求項5に記載の微細構造体成形用型材の作製方法。   After forming the prototype, before forming the carbon layer, a release layer is formed on the concave / convex pattern forming surface of the prototype, and after forming the electroplated metal layer, the interface between the prototype and the release layer. The method for producing a mold for forming a microstructure according to claim 5, wherein: 前記原型を作製した後、前記カーボン層を形成する前に、前記原型の凹凸パターン形成面に可溶性膜を形成し、前記電気めっき金属層の形成後に、前記可溶性膜を溶解し、前記原型から前記カーボン層との界面を剥離することを特徴とする請求項5に記載の微細構造体成形用型材の作製方法。   After forming the prototype, before forming the carbon layer, form a soluble film on the concave / convex pattern forming surface of the prototype, and after forming the electroplated metal layer, dissolve the soluble film, The method for producing a mold for forming a microstructure according to claim 5, wherein the interface with the carbon layer is peeled off. 表面に所要の凹凸パターンが形成されたカーボン層と、当該カーボン層の裏面側に直接又は導電性金属層を介して形成された電気めっき金属層とを有する微細構造体成形用型材を用い、前記凹凸パターンに微細構造体の成形材料を押しつけ、微細構造体に前記凹凸パターンを転写することを特徴とする微細構造体の成形方法。   Using a mold for forming a fine structure having a carbon layer having a required concavo-convex pattern formed on the surface and an electroplating metal layer formed directly or via a conductive metal layer on the back side of the carbon layer, A method for forming a fine structure, comprising pressing a molding material for the fine structure against the concavo-convex pattern, and transferring the concavo-convex pattern to the fine structure. 前記微細構造体の成形材料が、ゾルゲル材料又は高分子組成物であることを特徴とする特許請求項3記載の微細構造体の成形方法。   4. The method for forming a microstructure according to claim 3, wherein the molding material for the microstructure is a sol-gel material or a polymer composition.
JP2004346205A 2004-11-30 2004-11-30 Fine structure molding material, method for producing fine structure molding material, and method for forming fine structure Expired - Fee Related JP4533730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346205A JP4533730B2 (en) 2004-11-30 2004-11-30 Fine structure molding material, method for producing fine structure molding material, and method for forming fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346205A JP4533730B2 (en) 2004-11-30 2004-11-30 Fine structure molding material, method for producing fine structure molding material, and method for forming fine structure

Publications (2)

Publication Number Publication Date
JP2006150807A true JP2006150807A (en) 2006-06-15
JP4533730B2 JP4533730B2 (en) 2010-09-01

Family

ID=36629663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346205A Expired - Fee Related JP4533730B2 (en) 2004-11-30 2004-11-30 Fine structure molding material, method for producing fine structure molding material, and method for forming fine structure

Country Status (1)

Country Link
JP (1) JP4533730B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266384A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Mold for imprinting and manufacturing method thereof
JP2008044328A (en) * 2006-08-21 2008-02-28 Yamaha Corp Manufacturing method of fine mold
JP2008044237A (en) * 2006-08-16 2008-02-28 Bridgestone Corp Mold release agent, method of forming irregular pattern and manufacturing process of optical information storage medium using same, and optical information storage medium
JP2008068475A (en) * 2006-09-13 2008-03-27 Toppan Printing Co Ltd Mold for imprint, method for manufacturing mold for imprint and pattern forming method
JP2009160677A (en) * 2007-12-28 2009-07-23 Yamaha Corp Mems and its manufacturing method
US9172022B2 (en) 2011-12-01 2015-10-27 Samsung Electronics Co., Ltd. Composite structure of graphene and polymer and method of manufacturing the same
EP2523915B1 (en) * 2010-01-14 2017-01-11 Schott AG Glass or glass-ceramic composite material, and method for the production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319154A (en) * 1989-06-16 1991-01-28 Nec Corp Stamper
JP2006032423A (en) * 2004-07-12 2006-02-02 Toshiba Corp Stamper for imprint processing and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319154A (en) * 1989-06-16 1991-01-28 Nec Corp Stamper
JP2006032423A (en) * 2004-07-12 2006-02-02 Toshiba Corp Stamper for imprint processing and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266384A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Mold for imprinting and manufacturing method thereof
JP2008044237A (en) * 2006-08-16 2008-02-28 Bridgestone Corp Mold release agent, method of forming irregular pattern and manufacturing process of optical information storage medium using same, and optical information storage medium
JP2008044328A (en) * 2006-08-21 2008-02-28 Yamaha Corp Manufacturing method of fine mold
JP2008068475A (en) * 2006-09-13 2008-03-27 Toppan Printing Co Ltd Mold for imprint, method for manufacturing mold for imprint and pattern forming method
JP2009160677A (en) * 2007-12-28 2009-07-23 Yamaha Corp Mems and its manufacturing method
EP2523915B1 (en) * 2010-01-14 2017-01-11 Schott AG Glass or glass-ceramic composite material, and method for the production thereof
EP2523916B1 (en) * 2010-01-14 2017-08-23 Schott AG Composite material and method for the production thereof
US9172022B2 (en) 2011-12-01 2015-10-27 Samsung Electronics Co., Ltd. Composite structure of graphene and polymer and method of manufacturing the same

Also Published As

Publication number Publication date
JP4533730B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5876059B2 (en) Method for fabricating highly ordered nanopillars or nanohole structures on large areas
JP3554228B2 (en) Microlens mold or mold master, and method for producing them
CN104724921A (en) Mold, method for producing a mold, and method for forming a mold article
JP2003534651A (en) Method for producing template and template produced by the method
US20100304087A1 (en) Mold, Fine Pattern Product, and Method of Manufacturing Those
JP2005183985A (en) Composite stamper for imprint lithography
JP5698916B2 (en) Method for producing resin material having surface uneven pattern
JP2003172808A (en) Super water-repellent plastic substrate and reflection preventive film
JP5002207B2 (en) Method for manufacturing structure having pattern
KR101698838B1 (en) Method and process for metallic stamp replication for large area nanopatterns
JP4533730B2 (en) Fine structure molding material, method for producing fine structure molding material, and method for forming fine structure
TW201319636A (en) Method of manufacturing mold for nano imprint
TW201518067A (en) Patterned stamp manufacturing method, patterned stamp imprinting method and imprinted article
JP5599355B2 (en) Mold manufacturing method
JP2006269919A (en) Pattern forming method
US20170151598A1 (en) Imprinting Metallic Substrates at Hot Working Temperatures
US7344990B2 (en) Method of manufacturing micro-structure element by utilizing molding glass
JP4650113B2 (en) Laminated structure, donor substrate, and manufacturing method of laminated structure
JP2006303454A (en) Nano imprint mold and methods for manufacturing same, transcribing method of convexo-concave pattern, and manufacturing method of member with concave
JP4745289B2 (en) Duplicating stamper and manufacturing method thereof
KR20130020425A (en) Stamp, manufacturing method thereof and imprint method using the stamp
CN100555076C (en) Be used for pressing mold of nano impression and preparation method thereof
KR100926977B1 (en) Imprint mold with release film and release film formation method of imprint mold
JP6372145B2 (en) Imprint mold manufacturing method, imprint mold, and hierarchical structure formed body
JP5180019B2 (en) Master and mold structure made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4533730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees