JP2006150481A - Method and device for forming abrasive wheel - Google Patents

Method and device for forming abrasive wheel Download PDF

Info

Publication number
JP2006150481A
JP2006150481A JP2004342779A JP2004342779A JP2006150481A JP 2006150481 A JP2006150481 A JP 2006150481A JP 2004342779 A JP2004342779 A JP 2004342779A JP 2004342779 A JP2004342779 A JP 2004342779A JP 2006150481 A JP2006150481 A JP 2006150481A
Authority
JP
Japan
Prior art keywords
grindstone
annular
forming
cup
abrasive wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004342779A
Other languages
Japanese (ja)
Other versions
JP4519618B2 (en
Inventor
Masaru Saeki
優 佐伯
Harutaka Kondo
晴崇 近藤
Kensuke Kobayashi
謙介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004342779A priority Critical patent/JP4519618B2/en
Publication of JP2006150481A publication Critical patent/JP2006150481A/en
Application granted granted Critical
Publication of JP4519618B2 publication Critical patent/JP4519618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for forming a abrasive wheel which can be applied to highly accurate optical element machining without uniform forming marks in the rotational direction of the abrasive wheel. <P>SOLUTION: The method for forming an abrasive wheel is used for forming an annular abrasive wheel (8) by rotating the annular abrasive wheel (8) used for aspheric surface grinding and a straight cup abrasive wheel (4) on the forming device (1). The straight cup abrasive wheel (4) can be rotationally driven around a first rotary shaft (a Z-axis) so that the forming face of the straight cup abrasive wheel (4) comes into contact with the annular abrasive wheel (8) on both ends of its diameter. The annular abrasive wheel (8) can be rotationally driven around a second rotary shaft (an X-axis) crossing with the first rotary shaft (the Z-axis). The annular abrasive wheel (8) can be formed by executing movement control for relatively moving the straight cup abrasive wheel (4) and the annular abrasive wheel (8) at least in the direction of approaching/separating from each other, in the mutually crossing direction, and in the direction (a B-axis) of changing an angle of the second rotary shaft (the X-axis) of the annular abrasive wheel (8) to the straight cup abrasive wheel (4). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子などの研削加工に用いる砥石の成形方法及び成形装置に係り、特に高精度な研削加工に適用可能な砥石の成形方法及び成形装置に関する。   The present invention relates to a method and apparatus for forming a grindstone used for grinding processing of an optical element and the like, and more particularly to a method and apparatus for forming a grindstone applicable to high-precision grinding.

レンズやプリズムなどの光学部品は、非常に高い形状精度及び表面粗さ精度が必要とされている。このような高い精度の光学部品を加工する方法として、円環状砥石を用いて、工作物の回転方向とクロスする方向に砥石移動させ、砥石加工面を工作物に対して円弧包絡させながら非球面研削を行う手法(パラレル研削法)が開示されている。この成形方法では、図6に示すように砥石16の断面形状が工作物17に転写されるために、非常に高精度な円弧断面形状を有する砥石を用いる必要がある。(例えば、非特許文献1参照。)
そのような高精度な砥石の成形及び目立て方法としては、図7に示す球面形状砥石の(a)成形(b)目立て方法がある。この方法は、カップ型砥石18を、成形する球面形状砥石19に対して1方向に切り込み(図では左から右方向へ切り込む)、球面形状を創成し、スラリ20によって目立てするものである。(例えば、特許文献1参照。)
近年、光学性能の向上を目的として、非球面レンズや曲面プリズムの形状が多様化しており、図8に示すように、球面形状砥石21を使用すると非球面工作物22と干渉することや、干渉を避けるために砥石半径を小さくすると砥石の磨耗が大きいため十分な加工精度を得られないという問題がある。そのため、砥石の直径よりも小さな円弧断面形状の加工面を有する円環状砥石を用いることが必要となっている。
Optical parts such as lenses and prisms are required to have very high shape accuracy and surface roughness accuracy. As a method of processing such a high-precision optical component, an aspherical surface is used while moving the grindstone in a direction crossing the rotation direction of the workpiece using an annular grindstone and encircling the grindstone machining surface with respect to the workpiece in an arc. A method of performing grinding (parallel grinding method) is disclosed. In this forming method, since the cross-sectional shape of the grindstone 16 is transferred to the workpiece 17 as shown in FIG. 6, it is necessary to use a grindstone having a highly accurate arc-shaped cross-sectional shape. (For example, refer nonpatent literature 1.)
As such a highly accurate grinding wheel shaping and sharpening method, there is a spherical grinding wheel (a) shaping (b) sharpening method shown in FIG. In this method, the cup-type grindstone 18 is cut in one direction with respect to the spherical-shaped grindstone 19 to be formed (cut from the left to the right in the figure) to create a spherical shape, which is conspicuous by the slurry 20. (For example, refer to Patent Document 1.)
In recent years, the shape of aspherical lenses and curved prisms has been diversified for the purpose of improving optical performance. As shown in FIG. 8, when a spherical grinding wheel 21 is used, it interferes with the aspherical work piece 22, If the radius of the grindstone is made small in order to avoid this, there is a problem that sufficient processing accuracy cannot be obtained due to large wear of the grindstone. Therefore, it is necessary to use an annular grindstone having a processed surface with an arc cross-sectional shape smaller than the diameter of the grindstone.

砥石の加工面を円環状に成形する手段は、図9(a)に示す単石ダイヤモンドドレッサ法や図9(b)に示すステンレスロール法が知られている。単石ダイヤモンドドレッサによる円環状の成形方法は、図9(a)に示すように、回転する円環状砥石23の加工面を単石ダイヤモンドドレッサ24に接触させながら、加工面が所望のR形状となるように相対的に移動させることにより円環状を成形するものである。また、図9(b)に示すステンレスロール法では、回転する円環状砥石23とステンレスロール25を接触させながら、相対的に円弧運動することにより、砥石加工面に円環状を成形するものである。(例えば、特許文献2参照。)
特開2001−260023号公報 特開2003−260646号公報 精密工学会誌Vol.68,No.8,2002(1067頁−1071頁)「パラレル研削法による非球面金型加工に関する研究」佐伯優、厨川常元、庄司克雄
As means for forming the processing surface of the grindstone into an annular shape, a single stone diamond dresser method shown in FIG. 9A and a stainless roll method shown in FIG. 9B are known. As shown in FIG. 9 (a), an annular molding method using a single stone diamond dresser is performed such that the processed surface of the rotating annular grindstone 23 is in contact with the single stone diamond dresser 24 and the processed surface has a desired R shape. The annular shape is formed by relatively moving as described above. Further, in the stainless roll method shown in FIG. 9B, an annular shape is formed on the grindstone processed surface by relatively moving in an arc while contacting the rotating annular grindstone 23 and the stainless roll 25. . (For example, see Patent Document 2.)
JP 2001-260023 A JP 2003-260646 A Journal of Precision Engineering Vol. 68, no. 8, 2002 (pages 1067-1071) "Study on aspherical die machining by parallel grinding method" Yu Saeki, Tsunemoto Tsujikawa, Katsuo Shoji

ところで、パラレル研削法により高精度な加工結果を得るためには、砥石の断面形状が高精度であることと同時に、工作物の加工面にうねりを形成させないために、砥石の加工面には砥石回転方向と同一方向に周期的な凹凸が存在しないことが必要である。しかしながら、特許文献2の技術による円環状砥石の成形手段では、図9(a)及び(b)に示すように円環状砥石23の回転方向に単石ダイヤモンドドレッサ24やステンレスロール25による一様な成形痕26が形成されてしまう。それらの砥石を非球面形状の研削に使用すると、砥石表面の成形痕26が工作物に転写されるため、加工された光学素子の表面にうねりが形成され、十分な光学性能を得ることができない。   By the way, in order to obtain a highly accurate processing result by the parallel grinding method, the cross-sectional shape of the grindstone is highly accurate, and at the same time, no waviness is formed on the work surface of the workpiece. It is necessary that there are no periodic irregularities in the same direction as the rotation direction. However, in the annular grindstone forming means according to the technique of Patent Document 2, as shown in FIGS. 9A and 9B, uniform rotation by the single stone diamond dresser 24 and the stainless steel roll 25 is performed in the rotation direction of the annular grindstone 23. A molding mark 26 is formed. When these grindstones are used for aspherical grinding, the molding marks 26 on the grindstone surface are transferred to the workpiece, so that waviness is formed on the surface of the processed optical element, and sufficient optical performance cannot be obtained. .

本発明の課題は、上記従来の実情に鑑み、砥石の回転方向に一様な成形痕が存在せず、高精度な光学素子加工に適用可能な砥石の成形方法及び成形装置を提供することである。   An object of the present invention is to provide a grinding wheel molding method and a molding apparatus that can be applied to high-precision optical element processing without the presence of uniform molding traces in the rotational direction of the grinding stone in view of the above-described conventional situation. is there.

本発明における第1の砥石の成形方法は、非球面研削を行うために用いる円環状砥石とカップ型砥石とを成形装置上で回転させることで上記円環状砥石を成形する砥石の成形方法において、上記カップ型砥石の成形面がその直径両端で上記円環状砥石に接するように、第1の回転軸の回りに回転駆動可能な上記カップ型砥石と、上記第1の回転軸とは交差する第2の回転軸の回りに回転駆動可能な上記円環状砥石とを、少なくとも、互いに離接する方向、互いに交差する方向、及び上記カップ型砥石に対する上記円環状砥石の上記第2の回転軸の角度を変化させる方向に相対移動させる移動制御を行うことにより、上記円環状砥石を成形することを特徴とする。   The first grinding wheel molding method of the present invention is a grinding wheel molding method for molding the annular grinding wheel by rotating an annular grinding wheel and a cup-type grinding wheel used for aspherical grinding on a molding device. The cup-type grindstone that can be driven to rotate around the first rotation axis so that the molding surface of the cup-type grindstone is in contact with the annular grindstone at both ends of the diameter, and the first rotation axis intersects with the first rotation axis. The annular grindstone that can be driven to rotate about two rotation axes, at least the direction in which they are separated from each other, the direction that intersects each other, and the angle of the second rotation axis of the annular grindstone with respect to the cup-shaped grindstone. The annular grindstone is formed by performing movement control for relative movement in a changing direction.

この構成によれば、円環状砥石とカップ型砥石の接触点において、お互いの回転方向が交差する方向で成形が行われるために、円環状砥石の回転方向に周期的な成形痕は形成されず、高精度な円環状砥石が成形される。   According to this configuration, at the contact point between the annular grindstone and the cup-shaped grindstone, molding is performed in a direction in which the rotation directions of the annular grindstone intersect with each other. A high-precision annular grindstone is formed.

本発明の第2の砥石の成形方法は、上記第1の砥石の成形方法において、上記移動制御は、上記カップ型砥石の上記第1の回転軸方向への移動制御と、上記円環状砥石の上記第1の回転軸方向とは直交する方向への移動制御と、上記円環状砥石の上記第2の回転軸の揺動制御とを含むことを特徴とする。   The second grinding wheel molding method of the present invention is the first grinding wheel molding method, wherein the movement control includes movement control of the cup-type grinding wheel in the first rotation axis direction, and the annular grinding wheel. It includes movement control in a direction orthogonal to the first rotation axis direction and swing control of the second rotation axis of the annular grindstone.

この構成によれば、カップ型砥石及び円環状砥石を各々の回転軸方向に移動、又は円環状砥石を回転軸方向に揺動させるため、複雑な構造にならない。
本発明における第3の砥石の成形方法は、上記第1又は第2の成形方法において、上記円環状砥石の成形後に、上記円環状砥石と上記カップ型砥石との接触面にGC(Green Silicon Carbide)砥粒を有するスラリを介在させることによって目立てすることを特徴とする。
According to this configuration, the cup-type grindstone and the annular grindstone are moved in the respective rotation axis directions or the annular grindstone is swung in the rotation axis direction, so that a complicated structure is not obtained.
According to the third method for forming a grindstone in the present invention, in the first or second molding method, a GC (Green Silicon Carbide) is formed on a contact surface between the annular grindstone and the cup-shaped grindstone after forming the annular grindstone. ) It is characterized by interposing a slurry having abrasive grains.

この構成によれば、供給された上記GCスラリによって上記円環状砥石の加工面がより高精度に目立てされる。
本発明における第4の砥石の成形方法は、上記第1乃至第3の砥石の成形方法において、上記カップ型砥石の上記成形面は、GC(Green Silicon Carbide)砥粒を有することを特徴とする。
According to this configuration, the processed surface of the annular grindstone is noticed with higher accuracy by the supplied GC slurry.
The fourth grinding wheel molding method according to the present invention is characterized in that, in the first to third grinding stone molding methods, the molding surface of the cup-type grinding stone has GC (Green Silicon Carbide) abrasive grains. .

この構成によれば、被成形砥石が円環状に成形されると同時に上記カップ型砥石から脱落した上記GC砥粒によって目立てされる。
本発明における第5の砥石の成形方法は、非球面研削を行うために用いる円環状砥石とダイヤモンドドレッサとを成形装置上で回転させることで上記円環状砥石を成形する砥石の成形方法において、上記ダイヤモンドドレッサの成形面がその旋回直径の両端で上記円環状砥石に接するように、第1の回転軸の回りに旋回駆動可能な上記ダイヤモンドドレッサと、上記第1の回転軸とは交差する第2の回転軸の回りに回転駆動可能な上記円環状砥石とを、少なくとも、互いに離接する方向、互いに交差する方向、及び上記ダイヤモンドドレッサに対する上記円環状砥石の上記第2の回転軸の角度を変化させる方向に相対移動させる移動制御を行うことにより、上記円環状砥石を成形することを特徴とする。
According to this configuration, the grindstone to be molded is formed into an annular shape, and at the same time, it is conspicuous by the GC abrasive grains dropped from the cup-type grindstone.
According to a fifth aspect of the present invention, there is provided a fifth method for forming a grindstone, wherein the annular grindstone is formed by rotating an annular grindstone used for aspherical grinding and a diamond dresser on a molding apparatus. The diamond dresser that can be swiveled around the first rotation axis so that the forming surface of the diamond dresser is in contact with the annular grindstone at both ends of the swivel diameter, and the second that intersects the first rotation axis. The ring-shaped grindstone that can be driven to rotate around the rotation axis of the ring-shaped grindstone is changed at least in a direction in which the ring-shaped grindstone is separated from each other, a direction that intersects each other, and an angle of the second rotation axis of the ring-shaped grindstone with respect to the diamond dresser. The annular grindstone is formed by performing movement control for relative movement in the direction.

この構成によれば、円環状砥石とダイヤモンドドレッサの接触点において、お互いの回転方向が交差する方向で成形が行われるために、円環状砥石の回転方向に周期的な成形痕は形成されず、高精度な円環状砥石が成形される。   According to this configuration, at the contact point between the annular grindstone and the diamond dresser, the molding is performed in the direction in which the respective rotation directions intersect with each other. Therefore, periodic molding marks are not formed in the rotation direction of the annular grindstone, A high-precision annular grindstone is formed.

本発明によれば、被成形砥石は砥石回転方向に一様な成形痕が存在しない高精度な円環状に成形され、高精度な非球面研削を行ことが可能である。   According to the present invention, the grinding wheel to be molded is formed into a high-accuracy annular shape having no uniform molding trace in the direction of rotation of the grinding stone, and high-precision aspherical grinding can be performed.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は実施の形態1における成形装置全体の概略図であり、図2はカップ型砥石と円環状砥石の位置関係を説明する図である。成形装置1上の工作物軸スピンドル2は、その回転軸方向(Z軸方向)で進退自在にZ軸スライドテーブル3上に設置されている。工作物軸スピンドル2の先端には、砥粒サイズ♯325のダイヤモンド砥粒を保持するメタルボンド砥石、又はビトリファイドボンド砥石で構成される内径rのカップ型砥石4が回転自在に保持されている。また、Z軸スライドテーブル3の移動方向と直交方向に移動するX軸スライドテーブル5が配設され、砥石軸スピンドル6は、X軸スライドテーブル5上に設置されたB軸ロータリテーブル7上に水平に配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of the entire molding apparatus according to Embodiment 1, and FIG. 2 is a diagram for explaining the positional relationship between a cup-type grindstone and an annular grindstone. The workpiece shaft spindle 2 on the forming apparatus 1 is installed on the Z-axis slide table 3 so as to be movable back and forth in the rotation axis direction (Z-axis direction). A cup-type grindstone 4 having an inner diameter r made of a metal bond grindstone or vitrified bond grindstone for holding diamond grains of abrasive grain size # 325 is rotatably held at the tip of the workpiece spindle 2. An X-axis slide table 5 that moves in a direction orthogonal to the moving direction of the Z-axis slide table 3 is disposed, and the grindstone shaft spindle 6 is placed horizontally on a B-axis rotary table 7 that is installed on the X-axis slide table 5. Is arranged.

成形される円環状砥石8は、砥粒サイズ♯3000のダイヤモンド砥粒を保持するレジンボンド砥石で構成され、保持軸9を介して砥石軸スピンドル6の先端位置に回転駆動自在に保持されている。また、スラリ供給ノズル10は、砥石の目立てのためにスラリを供給するためのノズルである。スラリは、GC(Green Silicon Carbide)砥粒を希釈油で希釈したものを使用する。   The formed annular grindstone 8 is formed of a resin bond grindstone that holds diamond abrasive grains having an abrasive grain size of # 3000, and is rotatably held at the tip position of the grindstone shaft spindle 6 via a holding shaft 9. . The slurry supply nozzle 10 is a nozzle for supplying slurry for sharpening the grindstone. As the slurry, GC (Green Silicon Carbide) abrasive grains diluted with a diluent oil are used.

上述した実施の形態1における成形を行う際の作用に関して以下に説明する。図2において、円環状砥石8の形状は、円環状砥石8の中心を原点とするXYZ座標系においてドーナツ形状の円環の断面円半径aと円環の中心からの距離bを用いて   The effect | action at the time of shaping | molding in Embodiment 1 mentioned above is demonstrated below. In FIG. 2, the shape of the annular grindstone 8 is determined by using the cross-sectional radius a of the donut-shaped ring and the distance b from the center of the ring in the XYZ coordinate system with the center of the annular grindstone 8 as the origin.

で表される。
図3は、円環状砥石の成形及び目立て工程におけるカップ型砥石と円環状砥石の接点の位置関係を説明する図であり、(a)はZ軸マイナス方向から見た図、(b)はY軸プラス方向から見た図である。図3に示すように、内径rのカップ型砥石の内径のY軸方向直径端tを所望の円環状に接するようにXZB軸を移動制御するが、その時のカップ型砥石は円環上のy=±rの位置で常に接するので、接点の軌跡を表す曲線sは上記式(1)においてyをrに置き換えて、xとzの式は次のように表される。
It is represented by
FIG. 3 is a view for explaining the positional relationship between the contact points of the cup-type grindstone and the annular grindstone in the shaping and sharpening process of the annular grindstone, (a) is a view seen from the negative direction of the Z axis, and (b) is Y It is the figure seen from the axial plus direction. As shown in FIG. 3, the movement of the XZB axis is controlled so that the Y-axis direction diameter end t of the inner diameter r of the cup-type grindstone is in contact with the desired annular shape. Since the contact is always made at the position of ±± r, the curve s representing the locus of the contact is replaced by y in the above equation (1), and the equations of x and z are expressed as follows.

したがって、カップ型砥石4の内径のY軸方向直径端tが曲線に沿うようにし、かつ、カップ型砥石の回転軸の方向が、この曲線上に立てた法線の向きとなるように成形装置のXZB軸を移動制御することで、円環状が成形される。このとき、カップ型砥石4の回転速度は500〜1000rpm、成形する円環状砥石8の回転速度は100〜500rpmの間に設定した。また、XZB各軸の移動速度は0.5〜4.0mm/minとして、B軸ロータリテーブル1回揺動するごとにZ軸スライドテーブルを0.5〜2.0μm移動させ、成形する円環状砥石8に対して切り込みを入れた。   Therefore, the molding apparatus is arranged so that the Y-axis direction diameter end t of the inner diameter of the cup-type grindstone 4 is along the curve, and the direction of the rotation axis of the cup-type grindstone is the direction of the normal line set on the curve. An annular shape is formed by controlling the movement of the XZB axis. At this time, the rotational speed of the cup-type grindstone 4 was set to 500 to 1000 rpm, and the rotational speed of the annular grindstone 8 to be formed was set to 100 to 500 rpm. Further, the moving speed of each axis of XZB is set to 0.5 to 4.0 mm / min, and the Z-axis slide table is moved by 0.5 to 2.0 μm each time the B-axis rotary table is swung once, and the ring is formed. A cut was made in the grindstone 8.

円環状砥石8の成形後、図3(b)に示すように、XZB各軸の移動制御による円環状砥石8とカップ型砥石4の接触を維持しながら、スラリ供給ノズル10より♯2000〜♯4000のGCスラリ11を供給し、砥石接触面に介在させることにより、円環状砥石8の目立てを行った。目立ては1分から5分間行った。   After forming the annular grindstone 8, as shown in FIG. 3B, while maintaining the contact between the annular grindstone 8 and the cup-type grindstone 4 by controlling the movement of each axis of XZB, the slurry supply nozzle 10 # 2000- #. The annular grindstone 8 was sharpened by supplying 4000 GC slurry 11 and interposing it on the grindstone contact surface. Sharpening was performed for 1 to 5 minutes.

以上のように、円環状砥石8とカップ型砥石4の接触点において、お互いの回転方向が交差する方向で成形が行われるために、円環状砥石8の回転方向に周期的な成形痕は形成されず、高精度な円環状砥石8を得ることができた。   As described above, at the contact point between the annular grindstone 8 and the cup-type grindstone 4, molding is performed in the direction in which the rotation directions intersect with each other. It was not, but was able to obtain the highly accurate annular grindstone 8.

また、上記式(2)に円環状砥石8の移動制御座標を円環状砥石8の中心を原点とした座標の計算式を示したが、円環状砥石8の先端、又は円環の断面円中心を原点としてもxとzの座標値を変換することで同様に円環状砥石8の成形が可能である。   In addition, the above equation (2) shows the calculation formula for the movement control coordinates of the circular grindstone 8 with the center of the circular grindstone 8 as the origin, but the tip of the circular grindstone 8 or the cross-sectional circle center of the ring It is possible to form the annular grindstone 8 in the same manner by converting the coordinate values of x and z even with the origin as the origin.

図4は実施の形態2におけるカップ型砥石と円環状砥石の接点の位置関係を説明する図であり、Y軸プラス方向から見た図である。実施の形態2では、上記実施の形態1におけるカップ型砥石は成形される砥石の砥粒メッシュサイズよりも細かいGC砥粒(Green Silicon Carbide)をビトリファイド、又はレジノイド結合材によって保持したカップ型GC砥石12で構成される。他の構成は、実施の形態1と同じである。   FIG. 4 is a view for explaining the positional relationship between the contact points of the cup-type grindstone and the annular grindstone in Embodiment 2, and is a view seen from the Y-axis plus direction. In the second embodiment, the cup-type grindstone in the first embodiment is a cup-type GC grindstone in which a GC abrasive grain (Green Silicon Carbide) smaller than the grain mesh size of the grindstone to be formed is held by vitrified or a resinoid binder. 12 is composed. Other configurations are the same as those of the first embodiment.

実施の形態2における作用は、上記実施の形態1と同様にXZB軸を移動制御すると同時に1〜60μm/minでZ軸スライドテーブルを成形する砥石に対して移動させる。その他は、実施の形態1に同じである。   In the second embodiment, the movement of the XZB axis is controlled in the same manner as in the first embodiment, and at the same time, the ZZ axis slide table is moved with respect to the grinding wheel forming the Z axis slide table. Others are the same as in the first embodiment.

実施の形態2によれば、カップ型GC砥石12が円環状砥石8を成形しながら、脱落したGC砥粒がスラリとしてGCスラリ11を供給するために、円環状の成形と同時に高精度な目立てが行われるために、上記実施の形態1と同様に高精度な円環状砥石をさらに効率良く得ることが可能である。   According to the second embodiment, the cup-type GC grindstone 12 forms the annular grindstone 8, and the dropped GC abrasive grains supply the GC slurry 11 as a slurry. Therefore, as in the first embodiment, it is possible to obtain a highly accurate circular grindstone more efficiently.

図5は実施の形態3における円環状砥石の成形工程の単石ダイヤモンドドレッサと円環状砥石の接点の位置関係を説明する図であり、(a)はZ軸マイナス方向から見た図、(b)はY軸プラス方向から見た図である。実施の形態3では、上記実施の形態1におけるカップ型砥石を単石ダイヤモンドドレッサ13に置き換えたものである。図5(b)に示すように、ドレッサ固定具14の任意の位置にネジ15を介して、工作物軸回転中心から距離rだけ離れた位置に単石ダイヤモンドドレッサ13を保持するものである。   FIG. 5 is a diagram for explaining the positional relationship between the contact points of the single stone diamond dresser and the annular grindstone in the process of forming the annular grindstone according to the third embodiment, and FIG. ) Is a view seen from the Y axis plus direction. In the third embodiment, the cup-type grindstone in the first embodiment is replaced with a single stone diamond dresser 13. As shown in FIG. 5B, the single stone diamond dresser 13 is held at a position separated from the workpiece shaft rotation center by a distance r via a screw 15 at an arbitrary position of the dresser fixture 14.

実施の形態3における作用は、単石ダイヤモンドドレッサ13を旋回半径rで回転させ、その回転直径両端tを、実施の形態1と同様に所望の円環状に接触するように成形装置のXZB軸を移動制御し、円環状砥石8を成形する。目立て工程に関しては、実施の形態1又は2と同じ構成、作用となっている。   In the third embodiment, the single stone diamond dresser 13 is rotated at the turning radius r, and the XZB axis of the molding apparatus is adjusted so that both ends t of the rotation diameter are in contact with a desired annular shape as in the first embodiment. The movement is controlled and the annular grindstone 8 is formed. The sharpening process has the same configuration and operation as in the first or second embodiment.

実施の形態3によれば、上記実施の形態1及び2と同様に円環状砥石8の回転方向に周期的な成形痕が形成されず、高精度な円環状砥石を得ることができると同時に、単石ダイヤモンドドレッサ13の旋回半径を任意に設定できるために、B軸移動による工具との干渉を避けるに最適な旋回位置に設定することが可能である。   According to the third embodiment, as in the first and second embodiments, periodic molding marks are not formed in the rotation direction of the annular grindstone 8, and a highly accurate annular grindstone can be obtained. Since the turning radius of the single stone diamond dresser 13 can be arbitrarily set, it is possible to set the turning position to be optimal for avoiding the interference with the tool due to the B-axis movement.

なお、実施の形態ではすべてXZB軸の3軸のみの制御としているが、X軸の揺動(B軸)に加えてZ軸を揺動させてもよく、他の軸制御を加えてもよい。
また、実施の形態で用いた砥粒サイズ及び速度の数値はすべて望ましい一例であって、本発明はこれに限定されるものではない。
In the embodiment, only the three XZB axes are controlled. However, in addition to the X axis swing (B axis), the Z axis may be swung, or other axis control may be added. .
Further, the numerical values of the abrasive grain size and speed used in the embodiments are all desirable examples, and the present invention is not limited thereto.

実施の形態1における成形装置全体の概略図である。1 is a schematic view of an entire molding apparatus in Embodiment 1. FIG. 実施の形態1におけるカップ型砥石と円環状砥石の位置関係を説明する図である。It is a figure explaining the positional relationship of the cup type grindstone and the annular grindstone in Embodiment 1. FIG. 実施の形態1における円環状砥石の成形及び目立て工程におけるカップ型砥石と円環状砥石の接点の位置関係を説明する図であり、(a)はZ軸マイナス方向から見た図、(b)はY軸プラス方向から見た図である。It is a figure explaining the positional relationship of the contact point of the cup type grindstone and the annular grindstone in the shaping and sharpening process of the annular grindstone in Embodiment 1, (a) is a view seen from the Z-axis minus direction, (b) It is the figure seen from the Y-axis plus direction. 実施の形態2におけるカップ型砥石と円環状砥石の接点の位置関係を説明する図であり、Y軸プラス方向から見た図である。It is a figure explaining the positional relationship of the contact of the cup type grindstone and the annular grindstone in Embodiment 2, and it is the figure seen from the Y-axis plus direction. 実施の形態3における円環状砥石の成形工程の単石ダイヤモンドドレッサと円環状砥石の接点の位置関係を説明する図であり、(a)はZ軸マイナス方向から見た図、(b)はY軸プラス方向から見た図である。It is a figure explaining the positional relationship of the contact point of the single stone diamond dresser and the annular grindstone in the molding process of the annular grindstone in Embodiment 3, (a) is a view seen from the Z-axis minus direction, (b) is Y It is the figure seen from the axis | shaft plus direction. 非特許文献1における砥石と工作物の接点の位置関係を説明する図である。It is a figure explaining the positional relationship of the contact point of a grindstone and a workpiece in nonpatent literature 1. 特許文献1における球面形状砥石の(a)成形工程(b)目立て工程を説明する図である。It is a figure explaining the (a) shaping | molding process (b) sharpening process of the spherical shape grindstone in patent document 1. FIG. 球面形状砥石を使用すると非球面工作物と干渉することを説明する図である。It is a figure explaining interfering with an aspherical surface work if a spherical shape grindstone is used. 特許文献2における砥石の加工面を円環状に成形する手段を説明する図であり、(a)は単石ダイヤモンドドレッサ法、(b)はステンレスロール法である。It is a figure explaining the means which shape | molds the processed surface of the grindstone in patent document 2 in a ring shape, (a) is a single stone diamond dresser method, (b) is a stainless roll method.

符号の説明Explanation of symbols

1 成形装置
2 工作物軸スピンドル
3 Z軸スライドテーブル
4 カップ型砥石
5 X軸スライドテーブル
6 砥石軸スピンドル
7 B軸ロータリテーブル
8 円環状砥石
9 保持軸
10 スラリ供給ノズル
11 GCスラリ
12 カップ型GC砥石
13 単石ダイヤモンドドレッサ
14 ドレッサ固定具
15 ネジ
16 砥石
17 工作物
18 カップ型砥石
19 球面形状砥石
20 スラリ
21 球面形状砥石
22 非球面工作物
23 円環状砥石
24 単石ダイヤモンドドレッサ
25 ステンレスロール
26 成形痕


DESCRIPTION OF SYMBOLS 1 Forming apparatus 2 Workpiece axis spindle 3 Z axis slide table 4 Cup type grindstone 5 X axis slide table 6 Grindstone axis spindle 7 B axis rotary table 8 Annular grindstone 9 Holding shaft 10 Slurry supply nozzle 11 GC slurry 12 Cup type GC grindstone 13 Single Stone Diamond Dresser 14 Dresser Fixing Tool 15 Screw 16 Grinding Wheel 17 Workpiece 18 Cup-shaped Grinding Wheel 19 Spherical Shaped Grindstone 20 Spherical Shaped Grindstone 22 Aspherical Workpiece 23 Single Ring Diamond Dresser 25 Single Stone Diamond Dresser 25 Stainless Roll 26 Molding Trace


Claims (8)

非球面研削を行うために用いる円環状砥石とカップ型砥石とを成形装置上で回転させることで前記円環状砥石を成形する砥石の成形方法において、
前記カップ型砥石の成形面がその直径両端で前記円環状砥石に接するように、第1の回転軸の回りに回転駆動可能な前記カップ型砥石と、前記第1の回転軸とは交差する第2の回転軸の回りに回転駆動可能な前記円環状砥石とを、少なくとも、互いに離接する方向、互いに交差する方向、及び前記カップ型砥石に対する前記円環状砥石の前記第2の回転軸の角度を変化させる方向に相対移動させる移動制御を行うことにより、前記円環状砥石を成形することを特徴とする砥石の成形方法。
In the method of forming a grindstone for forming the annular grindstone by rotating an annular grindstone and a cup-type grindstone used to perform aspheric grinding on a molding device,
The cup-type grindstone that can be driven to rotate about the first rotation axis so that the molding surface of the cup-type grindstone is in contact with the annular grindstone at both ends of the diameter thereof intersects the first rotation axis. The ring-shaped grindstone that can be driven to rotate about two rotation axes, at least a direction in which they are separated from each other, a direction that intersects each other, and an angle of the second rotation axis of the ring-shaped grindstone with respect to the cup-shaped grindstone A method for forming a grindstone, comprising forming the annular grindstone by performing movement control for relative movement in a changing direction.
前記移動制御は、前記カップ型砥石の前記第1の回転軸方向への移動制御と、前記円環状砥石の前記第1の回転軸方向とは直交する方向への移動制御と、前記円環状砥石の前記第2の回転軸の揺動制御とを含むことを特徴とする請求項1に記載の砥石の成形方法。   The movement control includes movement control of the cup-type grindstone in the first rotation axis direction, movement control of the annular grindstone in a direction orthogonal to the first rotation axis direction, and the annular grindstone. The method for forming a grindstone according to claim 1, further comprising: swing control of the second rotation shaft. 前記円環状砥石の成形後に、該円環状砥石と前記カップ型砥石との接触面にGC(Green Silicon Carbide)砥粒を有するスラリを介在させることによって目立てすることを特徴とする請求項1又は2に記載の砥石の成形方法。   3. The method according to claim 1, wherein after forming the annular grindstone, it is conspicuous by interposing a slurry having GC (Green Silicon Carbide) abrasive grains on a contact surface between the annular grindstone and the cup-type grindstone. The method for forming a grindstone according to 1. 前記カップ型砥石の前記成形面は、GC(Green Silicon Carbide)砥粒を有することを特徴とする請求項1から請求項3のうちいずれか1項に記載の砥石の成形方法。   The method for molding a grindstone according to any one of claims 1 to 3, wherein the molding surface of the cup-type grindstone includes GC (Green Silicon Carbide) abrasive grains. 非球面研削を行うために用いる円環状砥石とダイヤモンドドレッサとを成形装置上で回転させることで前記円環状砥石を成形する砥石の成形方法において、
前記ダイヤモンドドレッサの成形面がその旋回直径の両端で前記円環状砥石に接するように、第1の回転軸の回りに旋回駆動可能な前記ダイヤモンドドレッサと、前記第1の回転軸とは交差する第2の回転軸の回りに回転駆動可能な前記円環状砥石とを、少なくとも、互いに離接する方向、互いに交差する方向、及び前記ダイヤモンドドレッサに対する前記円環状砥石の前記第2の回転軸の角度を変化させる方向に相対移動させる移動制御を行うことにより、前記円環状砥石を成形することを特徴とする砥石の成形方法。
In the method of forming a grindstone for forming the annular grindstone by rotating an annular grindstone and a diamond dresser used for performing aspheric grinding on a molding apparatus,
The diamond dresser that can be swiveled around the first rotation axis so that the forming surface of the diamond dresser is in contact with the annular grindstone at both ends of the swivel diameter, and the first rotation axis intersects The annular grindstone that can be driven to rotate about two rotation axes, at least a direction in which they are separated from each other, a direction that intersects each other, and an angle of the second rotation axis of the annular grindstone with respect to the diamond dresser A method for forming a grindstone, wherein the annular grindstone is formed by performing movement control for relative movement in a moving direction.
非球面研削を行うために用いる円環状砥石とカップ型砥石とを回転させることで前記円環状砥石を成形する砥石の成形装置において、
第1の回転軸の回りに回転駆動可能な前記カップ型砥石と、前記第1の回転軸とは交差する第2の回転軸の回りに回転駆動可能な前記円環状砥石とを、少なくとも、互いに離接する方向、互いに交差する方向、及び前記カップ型砥石に対する前記円環状砥石の前記第2の回転軸の角度を変化させる方向に相対移動させる移動手段と、
前記カップ型砥石の成形面がその直径両端で前記円環状砥石に接するように、前記移動手段による各方向への移動量を制御する制御手段と、
を備えることを特徴とする砥石の成形装置。
In a grindstone forming apparatus for shaping the annular grindstone by rotating an annular grindstone used for performing aspheric grinding and a cup-type grindstone,
The cup-type grindstone that can be driven to rotate around the first rotating shaft and the annular grindstone that can be driven to rotate about the second rotating shaft that intersects the first rotating shaft, A moving means for relatively moving in a direction in which the second rotating shaft of the annular grindstone is changed with respect to the direction of separating and contacting, the direction intersecting with each other, and the cup-shaped grindstone;
Control means for controlling the amount of movement in each direction by the moving means so that the molding surface of the cup-type grindstone is in contact with the annular grindstone at both diameter ends;
An apparatus for forming a grindstone, comprising:
前記移動手段は、前記カップ型砥石を、前記第1の回転軸方向へスライドさせる第1のスライド手段と、前記円環状砥石を、前記第1の回転軸方向とは直交する方向へスライドさせる第2のスライド手段と、前記円環状砥石の前記第2の回転軸を揺動させる揺動手段を含むこと特徴とする請求項6に記載の砥石の成形装置。   The moving means slides the cup-type grindstone in the direction of the first rotation axis, and slides the annular grindstone in a direction orthogonal to the first rotation axis direction. The grindstone forming apparatus according to claim 6, further comprising: 2 slide means and a rocking means for rocking the second rotation shaft of the annular grindstone. 前記円環状砥石の成形後に、該円環状砥石と前記カップ型砥石との接触面にGC(Green Silicon Carbide)砥粒を有するスラリを介在させることによって目立てすることを特徴とする請求項6又は7に記載の砥石の成形装置。   8. The method according to claim 6, wherein after forming the annular grindstone, it is conspicuous by interposing a slurry having GC (Green Silicon Carbide) abrasive grains on a contact surface between the annular grindstone and the cup-type grindstone. The grindstone forming apparatus described in 1.
JP2004342779A 2004-11-26 2004-11-26 Grinding wheel molding method and molding apparatus Expired - Fee Related JP4519618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342779A JP4519618B2 (en) 2004-11-26 2004-11-26 Grinding wheel molding method and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342779A JP4519618B2 (en) 2004-11-26 2004-11-26 Grinding wheel molding method and molding apparatus

Publications (2)

Publication Number Publication Date
JP2006150481A true JP2006150481A (en) 2006-06-15
JP4519618B2 JP4519618B2 (en) 2010-08-04

Family

ID=36629370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342779A Expired - Fee Related JP4519618B2 (en) 2004-11-26 2004-11-26 Grinding wheel molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP4519618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218554A (en) * 2005-02-08 2006-08-24 Olympus Corp Method for creating shape of tool grinding wheel
CN108161744A (en) * 2017-12-29 2018-06-15 中国工程物理研究院激光聚变研究中心 A kind of polishing tool conditioning system and its dressing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277922A (en) * 1992-03-30 1993-10-26 Ngk Insulators Ltd Spherical machining of ring part
JP2001260023A (en) * 2000-03-13 2001-09-25 Olympus Optical Co Ltd Forming method for grinding wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277922A (en) * 1992-03-30 1993-10-26 Ngk Insulators Ltd Spherical machining of ring part
JP2001260023A (en) * 2000-03-13 2001-09-25 Olympus Optical Co Ltd Forming method for grinding wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218554A (en) * 2005-02-08 2006-08-24 Olympus Corp Method for creating shape of tool grinding wheel
JP4576255B2 (en) * 2005-02-08 2010-11-04 オリンパス株式会社 Tool whetstone shape creation method
CN108161744A (en) * 2017-12-29 2018-06-15 中国工程物理研究院激光聚变研究中心 A kind of polishing tool conditioning system and its dressing method

Also Published As

Publication number Publication date
JP4519618B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
TWI359711B (en) Raster cutting technology for ophthalmic lenses
CN103128663B (en) Air bag polishing tool trimmer
US20100280650A1 (en) Machining apparatus and machining method
JP4576255B2 (en) Tool whetstone shape creation method
JP4668872B2 (en) Grinding method and grinding apparatus
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP2007307680A (en) Cutting method, optical element and die
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JP2011036974A (en) Polishing method and polishing device
JP2005103669A (en) Recessed end surface machining method and device
JP2019198899A (en) Chamfering grinding device
JP2007283433A (en) Grinding method
JP2017124460A (en) Method and apparatus for continuously processing non-spherical shape of workpiece by cup shaped grind stone
JP2008142799A (en) Working method for diffraction groove
JP2009095973A (en) Grinding wheel molding device and method
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2005103668A (en) Free-form surface machining method and device
JP2009018366A (en) Method of grinding convex surface
JPH10328995A (en) Curved surface grinding method
JP2003260646A (en) Grinding method of nonaxisymmetric and aspheric surface, and its device
JP2004154888A (en) Grinding process for convex-shaped object
JP5381123B2 (en) Hemispherical forming apparatus and forming tool
JP2002066920A (en) Truing/dressing method and device for diamond grinding wheel
JP2001260023A (en) Forming method for grinding wheel
JP2003220544A (en) Method for grinding axially symmetrical aspheric surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4519618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees