JP2008200779A - Method of cutting axisymmetric diffraction curved surface - Google Patents

Method of cutting axisymmetric diffraction curved surface Download PDF

Info

Publication number
JP2008200779A
JP2008200779A JP2007037053A JP2007037053A JP2008200779A JP 2008200779 A JP2008200779 A JP 2008200779A JP 2007037053 A JP2007037053 A JP 2007037053A JP 2007037053 A JP2007037053 A JP 2007037053A JP 2008200779 A JP2008200779 A JP 2008200779A
Authority
JP
Japan
Prior art keywords
axis
curved surface
workpiece
cutting
sword
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007037053A
Other languages
Japanese (ja)
Inventor
Kio En
紀旺 閻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007037053A priority Critical patent/JP2008200779A/en
Publication of JP2008200779A publication Critical patent/JP2008200779A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of cutting an axisymmetric diffraction curved surface of a Fresnel lens made of a fragile material such as an optical crystal of a different type and a glass, easily, at a low machining cost, and with high precision. <P>SOLUTION: The method comprises a step in which while a minute sword-shaped cutting tool 11 having a pointed tip is driven on the workpiece 1 having a rotation axis along a constant locus, straight line enveloping is carried out by uniaxial (Z) straight line motion and triaxial simultaneous control of a B axis in addition to two axes (XZ), and a discontinuous diffraction curved surface is formed in a surface of the rotating workpiece 1 by transfer and enveloping of a cutting edge of the sword-shaped cutting tool 11. In this step, firstly, the straight line enveloping by the uniaxial (Z) straight motion and the triaxial simultaneous control of the B axis in addition to the two axes (XZ), is carried out for a first groove in the vicinity of the rotation axis of the workpiece 1, and the discontinuous diffraction curved surface is formed in the surface of the rotating workpiece 1, followed by successively machining grooves formed on the outside of the rotation axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸対称回折曲面の切削加工方法に係り、特に暗視野赤外線光学機器や車載用ナイトビジョンシステム、赤外線センサー等に用いられるフレネルレンズの製造方法として好適な軸対称回折曲面の切削加工方法に関するものである。   TECHNICAL FIELD The present invention relates to an axially symmetric diffraction curved surface cutting method, and in particular, an axially symmetric diffraction curved surface cutting method suitable as a manufacturing method of a Fresnel lens used for dark-field infrared optical devices, in-vehicle night vision systems, infrared sensors, and the like. It is about.

フレネルレンズは、球面や非球面レンズの表面を同心円状の細かい幅に分割し、その傾斜角だけを平面上にプリズムとして置き換えたものであり、不連続な回折表面よりなる。フレネルレンズのレンズ母材としては、ガラスやプラスチック、光学結晶などがある。その中でもプラスチック製フレネルレンズは、射出成形技術により、比較的安価に生産を行えるようになってきている。しかし、各種光学結晶や一部のガラス等の脆性材料をレンズ基板としたときには、射出成形が不可能であり、機械加工に頼らざるを得ない。しかし、このような硬質脆性材料のフレネルレンズ形状の加工は技術的に困難であり、加工コストが非常に大きいという問題点がある。   A Fresnel lens is obtained by dividing the surface of a spherical or aspherical lens into concentric fine widths and replacing only the inclination angle with a prism on a plane, and is composed of a discontinuous diffractive surface. As a lens base material of the Fresnel lens, there are glass, plastic, optical crystal and the like. Among these, plastic Fresnel lenses can be produced at a relatively low cost by injection molding technology. However, when a brittle material such as various optical crystals or a part of glass is used as a lens substrate, injection molding is impossible and it is necessary to rely on machining. However, the processing of the Fresnel lens shape of such a hard brittle material is technically difficult, and there is a problem that the processing cost is very high.

本発明の先行技術として、断面が直線である鋸刃状を有する光学素子を製造するための加工方法が提案されている(特許文献1参照)。しかしながら、この先行文献は、曲面加工が出来ないという問題点がある。また、短い直線を理想曲線の内側でつないで擬似曲面を加工する方法も提案されている(特許文献2参照)。しかしながら、この方法は、工作物1回転あたりの切取り厚さに対して制御を行っていないため、光学素子成形加工用の金属製金型の製造においては有効であるが、脆性材料製フレネルレンズの加工には適用できないという問題点がある。   As a prior art of the present invention, there has been proposed a processing method for manufacturing an optical element having a saw blade shape with a straight section (see Patent Document 1). However, this prior document has a problem that curved surface processing cannot be performed. A method of processing a pseudo curved surface by connecting short straight lines inside an ideal curve has also been proposed (see Patent Document 2). However, since this method does not control the cut thickness per rotation of the workpiece, it is effective in the manufacture of a metal mold for forming an optical element. There is a problem that it cannot be applied to processing.

また、硬質脆性材料のフレネル形状の新しい加工方法も提案されている(非特許文献1参照)。この新しい加工方法を要約すると、先端の尖った円盤状研削砥石を使用し、砥石の回転軸と工作物の回転軸とを直交するように配置し、工作物上で接する研削砥石の回転方向と工作物の回転方向とが平行になるようにした研削加工方法である。しかし、この加工方法では、複数の砥粒の形状およびその分布を精密に把握することが不可能であるため、硬質脆性材料に適した高品質・高安定性加工は困難である。また、加工対象となるフレネルレンズ等の光学部品について、砥石成形技術の制限により、表面回折部すなわち溝の底部において大きな円弧が残され(数十ミクロンレベル)、光学部品の性能に影響を及ぼす。さらに、加工中に断続的に加工を停止させ、砥石を成形修正しなければならない問題もある。   Also, a new processing method of a Fresnel shape of a hard brittle material has been proposed (see Non-Patent Document 1). To summarize this new processing method, a disc-shaped grinding wheel with a sharp tip is used, and the rotation axis of the grinding wheel and the rotation axis of the workpiece are arranged so as to be orthogonal to each other. This is a grinding method in which the rotation direction of the workpiece is parallel. However, with this processing method, it is impossible to accurately grasp the shape and distribution of a plurality of abrasive grains, and therefore high quality and high stability processing suitable for hard brittle materials is difficult. In addition, for optical parts such as Fresnel lenses to be processed, a large arc is left at the surface diffraction part, that is, the bottom of the groove due to the limitation of the grinding wheel forming technique, which affects the performance of the optical part. Furthermore, there is also a problem that the processing must be intermittently stopped during processing and the grindstone must be shaped and corrected.

一方、本発明者は、先に硬質脆性材料に適した軸対称回折曲面の加工方法を提案している(特許文献3参照)。この方法は、先端の尖った微小な剣状切削バイトを軸対称被加工物の回転軸が所在する平面上で一定の軌跡に沿って駆動させながら、前記平面と垂直な直線を軸として旋回させ、1軸(Z)直線運動と、2軸(XZ)に加えてB軸の3軸同時制御による直線包絡を行い、前記剣状切削バイトの切れ刃の転写および包絡によって、回転する前記被加工物の表面に不連続な回折曲面を形成するものである。   On the other hand, the present inventor has previously proposed a method of processing an axially symmetric diffraction curved surface suitable for a hard brittle material (see Patent Document 3). In this method, a fine sword-shaped cutting tool with a sharp tip is driven along a fixed trajectory on the plane where the axis of rotation of the axisymmetric workpiece is located, and swiveled around a straight line perpendicular to the plane. The workpiece to be rotated by performing linear envelope by simultaneous control of three axes of B axis in addition to one axis (Z) linear motion and two axes (XZ). A discontinuous diffraction curved surface is formed on the surface of an object.

特開平10−309601号公報JP-A-10-309601 特開平10−293205号公報JP-A-10-293205 特開2005−96064号公報JP 2005-96064 A 鈴木浩文、樋口俊郎、和嶋直、北嶋孝之、奥山繁樹、山崎洋、「マイクロフレネルレンズ成形型の超精密研削−超硬合金型の研削加工の可能性検証−」、精密工学会誌、1999、65(8)、p.1163-1168Hirofumi Suzuki, Toshiro Higuchi, Nao Wazushima, Takayuki Kitajima, Shigeki Okuyama, Hiroshi Yamazaki, "Ultra-precision grinding of micro Fresnel lens molds-Verification of the possibility of grinding of cemented carbide-", Journal of Precision Engineering, 1999, 65 (8), p.1163-1168

しかしながら、特許文献3に記載の加工方法で硬質脆性材料を加工すると、最外溝から回転中心方向に加工するので、それぞれのZ軸の直線加工において、被加工物の先端の凸部(Lens edge)に、脆性破壊やマイクロチッピング等の欠陥が導入される可能性が高く、加工後に、脆性破壊部やマイクロチッピングを除去するための表面研磨加工が必要になり、結果的に加工コストが大きくなり、更に、加工により光学性能が低下するという課題がある。特に、剣状切削バイトの先端が摩耗したときに、チッピングが生じやすくなる。   However, when a hard brittle material is processed by the processing method described in Patent Document 3, the processing is performed from the outermost groove in the direction of the rotation center. Therefore, in each Z-axis linear processing, the convex portion (Lens edge) of the workpiece is processed. ) Is likely to introduce defects such as brittle fracture and microchipping, and after processing, surface polishing is required to remove brittle fractures and microchipping, resulting in increased processing costs. Furthermore, there is a problem that the optical performance is deteriorated by processing. In particular, chipping tends to occur when the tip of the sword-shaped cutting tool is worn.

本発明はこのような課題に着目してなされており、本発明の目的は、簡便にして、低加工コストで、高精度な切削加工を行うことができる軸対称回折曲面の切削加工方法を提供することにある。   The present invention has been made paying attention to such problems, and an object of the present invention is to provide a cutting method of an axially symmetric diffraction curved surface that can be performed with high precision at a low processing cost in a simple manner. There is to do.

本発明によれば、被加工物を所定の回転軸を中心として回転させ、前記回転軸に対して対称な回折曲面を形成するための軸対称回折曲面の切削加工方法であって、前記回転軸に平行なZ軸に沿った直線運動と、前記Z軸に対して垂直なX軸に沿った直線運動と、前記Z軸および前記X軸に対して垂直なY軸を中心とした回転運動とを行うよう、先端の尖った微小な剣状切削バイトを3軸同時制御することにより、前記回転軸を中心として回転する前記被加工物に対して直線包絡法で切削を行い、前記回転軸近傍の第1の溝から順次、外側の溝を加工して、前記被加工物の表面に不連続な回折曲面を形成することを、特徴とする軸対称回折曲面の切削加工方法が得られる。   According to the present invention, there is provided an axisymmetric diffraction curved surface cutting method for rotating a workpiece around a predetermined rotation axis to form a diffraction curved surface that is symmetric with respect to the rotation axis. Linear movement along the Z axis parallel to the Z axis, linear movement along the X axis perpendicular to the Z axis, and rotational movement about the Y axis perpendicular to the Z axis and the X axis; By performing simultaneous control of three axes of a fine sword-shaped cutting tool with a sharp tip, the workpiece rotating around the rotation axis is cut by a linear envelope method, and the vicinity of the rotation axis An axially symmetric diffraction curved surface cutting method characterized in that the outer grooves are sequentially processed from the first groove to form a discontinuous diffraction curved surface on the surface of the workpiece.

また、本発明によれば、所定の溝を加工するためのZ軸に沿った直線運動の際に発生する、前記被加工物の直線加工部先端のチッピングが、次の外側の溝加工により削除されるよう、前記剣状切削バイトを3軸同時制御して直線包絡法で切削を行うことを、特徴とする軸対称回折曲面の切削加工方法が得られる。   In addition, according to the present invention, chipping at the tip of the linearly processed portion of the workpiece, which occurs during linear movement along the Z-axis for processing a predetermined groove, is eliminated by the next outer groove processing. Thus, a cutting method for an axially symmetric diffractive curved surface characterized in that the sword-shaped cutting tool is simultaneously controlled by three axes and cutting is performed by a linear envelope method.

本発明により、各種の光学結晶やガラス等の脆性材料からなるフレネルレンズの、簡便にして、低加工コストで、高精度な切削加工を行うことができる軸対称回折曲面の切削加工方法が得られる。その実用化により、光学機器の飛躍的な高機能化・小型化・軽量化が期待できる。また、加工工程でチッピングを削除できるため、剣状切削バイトが摩耗しても加工を継続することができ、コストを低減することができる。   According to the present invention, there is obtained an axisymmetric diffraction curved surface cutting method capable of easily and accurately cutting Fresnel lenses made of brittle materials such as various optical crystals and glass at a low processing cost. . With its practical application, it can be expected that optical devices will be dramatically improved in function, size and weight. Further, since the chipping can be eliminated in the machining process, the machining can be continued even if the sword-shaped cutting tool is worn, and the cost can be reduced.

本発明は、主軸(工作物軸)をZ軸とし、水平面上にX軸、鉛直上方にY軸をとり、XYZ各軸回りの回転軸をA、B、C(右ねじ方向を正)と加工機械における座標系を定義し、先端の尖った微小な剣状切削バイトを、回転軸を有する被加工物上で、一定の軌跡に沿って駆動させながら、1軸(Z)直線運動と、2軸(XZ)に加えてB軸の3軸同時制御による直線包絡を行い、前記剣状切削バイトの切れ刃の転写および包絡によって、回転する前記被加工物の表面に不連続な回折曲面を形成する工程において、まず、前記非加工物の回転軸近傍の第1の溝について、1軸(Z)直線運動と、2軸(XZ)に加えてB軸の3軸同時制御による直線包絡を行い、回転する前記被加工物の表面に不連続な回折曲面を形成し、順次、回転軸から外側の溝を同様に加工することを特徴とする軸対称回折曲面の切削加工方法であり、第1の溝の1軸(Z)直線運動の際に発生する、直線加工部先端部の脆性破壊やマイクロチッピングが、次の外側の溝加工の2軸(XZ)に加えてB軸の3軸同時制御による直線包絡加工により、削除されることを特徴とする軸対称回折曲面の切削加工方法が得られる。従って、簡便にして、低加工コストで、高精度な切削加工を行うことができる。   In the present invention, the main axis (workpiece axis) is the Z axis, the X axis is on the horizontal plane, the Y axis is vertically above, and the rotation axes around the XYZ axes are A, B, and C (the right screw direction is positive). A coordinate system in a processing machine is defined, and a single sword (Z) linear motion is driven while driving a fine sword-shaped cutting tool with a sharp tip on a workpiece having a rotation axis along a fixed trajectory, In addition to two axes (XZ), a linear envelope is obtained by simultaneous control of the B axis, and a discontinuous diffraction curved surface is formed on the surface of the rotating workpiece by transferring and enveloping the cutting blade of the sword-shaped cutting tool. In the forming step, first, the first groove in the vicinity of the rotation axis of the non-workpiece is subjected to the linear envelope by the uniaxial (Z) linear motion and the triaxial simultaneous control of the B axis in addition to the biaxial (XZ). To form a discontinuous diffraction curved surface on the surface of the rotating workpiece, and sequentially remove it from the rotation axis. This is a cutting method of an axially symmetric diffraction curved surface characterized by processing the groove in the same manner, and the brittle fracture of the tip of the linearly machined portion that occurs during the uniaxial (Z) linear motion of the first groove, An axisymmetric diffraction curved surface cutting method is obtained in which microchipping is eliminated by linear envelope processing by simultaneous three-axis control of the B-axis in addition to the next two-axis (XZ) of outer groove processing. It is done. Therefore, it is possible to carry out highly accurate cutting at a low processing cost in a simple manner.

また、本発明は、被加工物を所定の回転軸を中心として回転させ、前記回転軸に対して対称な回折曲面を形成するための軸対称回折曲面の切削加工方法であって、前記回転軸に平行なZ軸に沿った直線運動と、前記Z軸に対して垂直なX軸に沿った直線運動と、前記Z軸および前記X軸に対して垂直なY軸を中心とした回転運動とを行うよう、先端の尖った微小な剣状切削バイトを3軸同時制御することにより、前記回転軸を中心として回転する前記被加工物に対して直線包絡法で切削を行い、前記回転軸近傍の第1の溝から順次、外側の溝を加工して、前記被加工物の表面に不連続な回折曲面を形成することを、特徴とする軸対称回折曲面の切削加工方法であり、所定の溝を加工するためのZ軸に沿った直線運動の際に発生する、前記被加工物の直線加工部先端のチッピングが、次の外側の溝加工により削除されるよう、前記剣状切削バイトを3軸同時制御して直線包絡法で切削を行うことを、特徴とする軸対称回折曲面の切削加工方法である。   The present invention also provides an axisymmetric diffraction curved surface cutting method for rotating a workpiece around a predetermined rotation axis to form a diffraction curved surface that is symmetrical with respect to the rotation axis. Linear movement along the Z axis parallel to the Z axis, linear movement along the X axis perpendicular to the Z axis, and rotational movement about the Y axis perpendicular to the Z axis and the X axis; By performing simultaneous control of three axes of a fine sword-shaped cutting tool with a sharp tip, the workpiece rotating around the rotation axis is cut by a linear envelope method, and the vicinity of the rotation axis A cutting method for an axially symmetric diffraction curved surface characterized in that a discontinuous diffraction curved surface is formed on the surface of the workpiece by processing the outer grooves sequentially from the first groove. The added force that occurs during linear motion along the Z-axis to machine the groove Axisymmetric diffraction characterized in that cutting is performed by the linear envelope method with simultaneous control of the three axes of the sword-shaped cutting bite so that chipping at the tip of the linear processing part of the object is eliminated by the next outer groove processing. This is a curved surface cutting method.

以下、本発明の実施例について図面を参照しながら詳細に説明する。図1は本発明の加工方法を示す断面図である。まず、図1(a)において、回転中心軸に一番近い内側の溝加工をA→B→C→Dの順番で行い、加工後に次の外側の溝加工開始位置Eまで、微小な剣状切削バイト11を移動する。次に図1(b)において、回転中心軸から二番目の内側の溝加工をE→F→G→Hの順番で行い、加工後に次の外側の溝加工位置Iまで剣状切削バイト11を移動する。この要領を繰り返して、内側から外側方向に溝加工を行った。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a processing method of the present invention. First, in FIG. 1A, inner groove processing closest to the rotation center axis is performed in the order of A → B → C → D, and after processing, a minute sword shape is reached up to the next outer groove processing start position E. The cutting tool 11 is moved. Next, in FIG. 1B, the second inner groove machining from the rotation center axis is performed in the order of E → F → G → H, and after the machining, the sword-shaped cutting bit 11 is moved to the next outer groove machining position I. Moving. By repeating this procedure, grooving was performed from the inside to the outside.

ここでは、切削加工工具として、微小な剣状切削バイト(Diamond tool)11を用いる。この微小な剣状切削バイト11は、高硬度材であるダイヤモンド、CBN(cubic boron nitride:立方晶系窒化ホウ素)、セラミックスなどから構成することができる。このとき、脆性材料の加工における脆性破壊を防ぐため、剣状切削バイト11のすくい面に微小な面取りを施しておく。これにより剣状切削バイト11の工具すくい角が適正に負の値となり、切削領域において静水圧応力が生成される。   Here, a fine sword-shaped cutting tool (Diamond tool) 11 is used as a cutting tool. The minute sword-shaped cutting tool 11 can be made of diamond, CBN (cubic boron nitride), ceramics, or the like, which is a high hardness material. At this time, in order to prevent brittle fracture in processing of the brittle material, the rake face of the sword-shaped cutting tool 11 is chamfered. As a result, the tool rake angle of the sword-shaped cutting tool 11 is appropriately negative, and hydrostatic pressure stress is generated in the cutting region.

被加工物1のフレネルレンズ基板としては、赤外線から紫外線までの全ての波長範囲において透過性のある硬質脆性材料、具体的には、光学ガラス、シリコン、ゲルマニウム、ZnSe、石英、フッ化カルシウムなどを用いる。特に、単結晶ゲルマニウム(Ge)は赤外線光学材料であり、車載用ナイトビジョンシステムおよび赤外線センサー等のレンズ基板材料として用いることが出来る。   As the Fresnel lens substrate of the work 1, a hard brittle material that is transmissive in all wavelength ranges from infrared to ultraviolet, specifically, optical glass, silicon, germanium, ZnSe, quartz, calcium fluoride, etc. Use. In particular, single crystal germanium (Ge) is an infrared optical material and can be used as a lens substrate material for an in-vehicle night vision system and an infrared sensor.

図2は、本発明の加工方法で、脆性破壊やマイクロチッピングが削除される工程を示す。図2(a)において、剣状切削バイト11の1軸(Z)直線運動を行うことにより、最初に剣状切削バイト11が硬質脆性材料に接触する直線加工部先端(Lens edge)に脆性破壊やマイクロチッピング(microcrack)2が発生する。しかしながら、次の外側の溝加工の際、図2(b)において、2軸(XZ)に加えてB軸の3軸同時制御による直線包絡を行い、前の溝加工時に発生した脆性破壊やマイクロチッピング2を切削除去することが可能となる。   FIG. 2 shows a process in which brittle fracture and microchipping are eliminated in the processing method of the present invention. In FIG. 2 (a), by performing a uniaxial (Z) linear motion of the sword-shaped cutting bite 11, brittle fracture is first caused at the end of the linearly machined portion (Lens edge) where the sword-shaped cutting bite 11 contacts the hard brittle material. Or microcrack 2 occurs. However, at the time of the next outer groove processing, in FIG. 2B, in addition to the two axes (XZ), a linear envelope is obtained by simultaneous control of the B axis, and the brittle fracture or micro- The chipping 2 can be removed by cutting.

図3は、加工用NC(数値制御)プログラムのフローチャートである。
(1)まず、最も内側の溝(最内溝)(n=0)の切削開始点のX座標へバイト11を移動する。
(2)次に、割り込みで工具を被切削材に接触させる。
(3)溝本数(n=n+1)を設定する。
(4)溝の垂直面を形成する(−Z方向へ移動)。
(5)溝の円弧面を形成する(X,Z方向へ垂直運動かつB軸回転)。
(6)溝の加工は完了したか否かチェックする。
(7)溝の加工が完了したら、剣状切削バイト11を離し(Z方向+へ移動)作業を完了する。溝の加工が完了していなければ、次(+1)の溝の加工を続行する。
FIG. 3 is a flowchart of a machining NC (numerical control) program.
(1) First, the cutting tool 11 is moved to the X coordinate of the cutting start point of the innermost groove (innermost groove) (n = 0).
(2) Next, the tool is brought into contact with the workpiece by interruption.
(3) The number of grooves (n = n + 1) is set.
(4) A vertical surface of the groove is formed (moved in the −Z direction).
(5) An arc surface of the groove is formed (perpendicular motion in the X and Z directions and B-axis rotation).
(6) It is checked whether or not the groove processing is completed.
(7) When the groove machining is completed, the sword-shaped cutting tool 11 is released (moved in the Z direction +) to complete the operation. If the groove machining is not completed, the next (+1) groove machining is continued.

具体例として、実験には、(株)不二越製XZB同時3軸制御装置搭載の非球面加工機ASP−15を使用した。図4は、加工装置主要部の概観である。B軸回転テーブル12上に設けられる工具台13に剣状切削バイト11を装着し、反時計方向に回転する主軸14に被加工物1の工作物を固定して、図3のプログラムを実行した。   As a specific example, an aspherical surface processing machine ASP-15 equipped with XZB simultaneous three-axis controller manufactured by Fujikoshi Co., Ltd. was used for the experiment. FIG. 4 is an overview of the main part of the processing apparatus. The program of FIG. 3 was executed by mounting the sword-shaped cutting tool 11 on the tool table 13 provided on the B-axis rotary table 12 and fixing the workpiece of the workpiece 1 on the main spindle 14 rotating counterclockwise. .

図5は剣状切削バイト11の先端の概略斜視図および顕微鏡写真である。刃先角60°、すくい角−30°、逃げ角6°の単結晶ダイヤモンド製の剣状切削バイト11を切削加工工具として使用した。被加工物1の工作物として、直径30mm、厚さ1mmの単結晶ゲルマニウムウエハ(110)面を使用した。フレネルレンズのレンズ曲率半径(R)は100mm、微細溝の深さ(d)は50μmであるため、溝の本数は21本であり、溝の幅(w)は300μm〜3mmの間で変化する。溝の垂直面を加工するとき、工作物1回転あたりの工具のZ軸方向への送り量を50nm、傾斜面を加工する際に、工具主切れ刃と溝傾斜面とのなす角度(切れ刃角k)を0.2°、工作物1回転あたりのXZ軸方向への工具送り量(f)を10μm/rev、実質切取り厚さ(h)を50nm未満に設定した。また、主軸の回転数は1000rpm、切削液は灯油噴霧である。   FIG. 5 is a schematic perspective view and a photomicrograph of the tip of the sword-shaped cutting tool 11. A sword-shaped cutting tool 11 made of single crystal diamond having a cutting edge angle of 60 °, a rake angle of -30 °, and a clearance angle of 6 ° was used as a cutting tool. A single crystal germanium wafer (110) surface having a diameter of 30 mm and a thickness of 1 mm was used as a workpiece of the workpiece 1. Since the lens curvature radius (R) of the Fresnel lens is 100 mm and the depth (d) of the fine groove is 50 μm, the number of grooves is 21, and the groove width (w) varies between 300 μm and 3 mm. . When machining the vertical surface of the groove, the feed amount in the Z-axis direction of the tool per rotation of the workpiece is 50 nm, and when machining the inclined surface, the angle between the tool main cutting edge and the groove inclined surface (cutting edge The angle k) was set to 0.2 °, the tool feed amount (f) in the XZ-axis direction per workpiece rotation was set to 10 μm / rev, and the substantially cut thickness (h) was set to less than 50 nm. The rotation speed of the main shaft is 1000 rpm, and the cutting fluid is kerosene spray.

図6は、本発明の加工後と従来法加工後との直線加工部先端部の比較図面である。図6(a)は本発明の加工方法後で、図6(b)は、従来の加工方法後である。両者を比較することで、本発明の製造方法により脆性破壊やマイクロチッピングが削除されていることが明らかである。   FIG. 6 is a comparative drawing of the front end portion of the linearly processed portion after processing according to the present invention and after processing by the conventional method. 6A is after the processing method of the present invention, and FIG. 6B is after the conventional processing method. By comparing the two, it is clear that brittle fracture and microchipping are eliminated by the production method of the present invention.

本発明の実施の形態の軸対称回折曲面の切削加工方法を示す(a)回転中心軸に一番近い内側の溝加工のときの断面図、(b)回転中心軸から二番目の内側の溝加工のときの断面図である。The sectional view at the time of inner side groove processing nearest to a rotation central axis which shows the cutting method of the axially symmetric diffraction curved surface of an embodiment of the invention, (b) The inner groove second from the rotation central axis It is sectional drawing at the time of a process. 図1に示す軸対称回折曲面の切削加工方法の(a)1軸(Z)直線運動で直線加工部先端部の脆性破壊やマイクロチッピングが発生する状態を示す断面図、(b)2軸(XZ)に加えてB軸の3軸同時制御による直線包絡を行い脆性破壊やマイクロチッピングを除去する工程を示す断面図である。(A) Cross-sectional view showing a state in which brittle fracture or micro-chipping occurs at the tip of the linearly machined part due to a single axis (Z) linear motion in the cutting method of the axially symmetric diffraction curved surface shown in FIG. It is sectional drawing which shows the process of performing a linear envelope by 3 axis | shaft simultaneous control of B axis | shaft in addition to XZ), and removing a brittle fracture and microchipping. 図1に示す軸対称回折曲面の切削加工方法を実行するための加工用NC(数値制御)プログラムのフローチャートである。2 is a flowchart of a machining NC (numerical control) program for executing the cutting method of the axially symmetric diffraction curved surface shown in FIG. 1. 図1に示す軸対称回折曲面の切削加工方法を実施するための加工装置主要部の概観を示す斜視図である。It is a perspective view which shows the general view of the main part of the processing apparatus for enforcing the cutting method of the axisymmetric diffraction curved surface shown in FIG. 図1に示す軸対称回折曲面の切削加工方法の(a)剣状切削バイトを示す概略斜視図、(b)剣状切削バイトの先端を示す顕微鏡写真である。2A is a schematic perspective view showing a sword-shaped cutting tool of the method of cutting an axially symmetric diffraction curved surface shown in FIG. 1, and FIG. 2B is a photomicrograph showing the tip of the sword-shaped cutting tool. (a)図1に示す軸対称回折曲面の切削加工方法による加工後の直線加工部先端部を示す拡大断面図および顕微鏡写真、(b)従来の加工方法による加工後の直線加工部先端部を示す拡大断面図および顕微鏡写真である。(A) Enlarged cross-sectional view and micrograph showing the tip of the straight line processed part after machining by the cutting method of the axially symmetric diffraction curved surface shown in FIG. 1, (b) The tip of the straight line processed part after machining by the conventional machining method It is an expanded sectional view and a microscope picture which are shown.

符号の説明Explanation of symbols

1 被加工物
2 マイクロチッピング
11 剣状切削バイト
12 B軸回転テーブル
13 工具台
14 主軸
DESCRIPTION OF SYMBOLS 1 Workpiece 2 Micro chipping 11 Sword-shaped cutting tool 12 B axis rotary table 13 Tool stand 14 Spindle

Claims (2)

被加工物を所定の回転軸を中心として回転させ、前記回転軸に対して対称な回折曲面を形成するための軸対称回折曲面の切削加工方法であって、
前記回転軸に平行なZ軸に沿った直線運動と、前記Z軸に対して垂直なX軸に沿った直線運動と、前記Z軸および前記X軸に対して垂直なY軸を中心とした回転運動とを行うよう、先端の尖った微小な剣状切削バイトを3軸同時制御することにより、前記回転軸を中心として回転する前記被加工物に対して直線包絡法で切削を行い、前記回転軸近傍の第1の溝から順次、外側の溝を加工して、前記被加工物の表面に不連続な回折曲面を形成することを、特徴とする軸対称回折曲面の切削加工方法。
A cutting method of an axially symmetric diffraction curved surface for rotating a workpiece around a predetermined rotational axis to form a symmetric diffraction curved surface with respect to the rotational axis,
Centered on a linear motion along the Z axis parallel to the rotation axis, a linear motion along the X axis perpendicular to the Z axis, and a Y axis perpendicular to the Z axis and the X axis By performing three-axis simultaneous control of a fine sword-shaped cutting tool with a sharp tip so as to perform a rotational motion, the workpiece that rotates about the rotational axis is cut by a linear envelope method, A cutting method for an axially symmetric diffraction curved surface, characterized in that a discontinuous diffraction curved surface is formed on the surface of the workpiece by sequentially processing outer grooves from the first groove in the vicinity of the rotation axis.
所定の溝を加工するためのZ軸に沿った直線運動の際に発生する、前記被加工物の直線加工部先端のチッピングが、次の外側の溝加工により削除されるよう、前記剣状切削バイトを3軸同時制御して直線包絡法で切削を行うことを、特徴とする請求項1記載の軸対称回折曲面の切削加工方法。
The sword-shaped cutting so that chipping at the tip of the straight machining portion of the workpiece, which occurs during linear movement along the Z-axis for machining a predetermined groove, is eliminated by the next outer groove machining. 2. The cutting method for an axially symmetric diffraction curved surface according to claim 1, wherein the cutting is performed by a linear envelope method by simultaneously controlling three axes of the cutting tool.
JP2007037053A 2007-02-16 2007-02-16 Method of cutting axisymmetric diffraction curved surface Pending JP2008200779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037053A JP2008200779A (en) 2007-02-16 2007-02-16 Method of cutting axisymmetric diffraction curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037053A JP2008200779A (en) 2007-02-16 2007-02-16 Method of cutting axisymmetric diffraction curved surface

Publications (1)

Publication Number Publication Date
JP2008200779A true JP2008200779A (en) 2008-09-04

Family

ID=39778789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037053A Pending JP2008200779A (en) 2007-02-16 2007-02-16 Method of cutting axisymmetric diffraction curved surface

Country Status (1)

Country Link
JP (1) JP2008200779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145165A1 (en) * 2020-01-17 2021-07-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145165A1 (en) * 2020-01-17 2021-07-22
JP7106010B2 (en) 2020-01-17 2022-07-25 株式会社アライドマテリアル single crystal diamond cutting tools

Similar Documents

Publication Publication Date Title
Suzuki et al. Precision cutting of aspherical ceramic molds with micro PCD milling tool
JP5213442B2 (en) Raster cutting technology for ophthalmic lenses
US7524237B2 (en) Diamond tool blade with circular cutting edge
JP2010115741A (en) Cutting method of high hardness material and cutting machine
JP6528527B2 (en) Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer
TW201038345A (en) Processing apparatus and processing method
JP4576255B2 (en) Tool whetstone shape creation method
JP2007307680A (en) Cutting method, optical element and die
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
JP2008200779A (en) Method of cutting axisymmetric diffraction curved surface
Suzuki et al. Precision Cutting of Structured Ceramic Molds with Micro PCD Milling Tool.
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2019198899A (en) Chamfering grinding device
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2020029377A (en) Method for cutting cover glass
JP2005096064A (en) Cutting method for axially symmetric diffraction curved surface and article prepared by the same method
JP2003231001A (en) Lens shape machining method and device thereof
JP2008142799A (en) Working method for diffraction groove
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2004344957A (en) Method for manufacturing compound laser beam machine and precision worked product
Suzuki et al. Precision machining and measurement of micro aspheric molds
JP2009061525A (en) Hard brittle material grinding method, optical fiber array manufacturing method, and hard brittle material machining device
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JP2008126358A (en) Cutting device and cutting method
Yamamoto et al. Development of cross and parallel mode grinding machine for high NA aspherical mold and die